TiO 2 KATKILI ALUMİNA ÜRETİMİ-ENJEKSİYON KALIPLAMA

Benzer belgeler
KROM KATKILI ALUMİNANIN ENJEKSİYON KALIPLAMA İLE ŞEKİLLENDİRİLMESİ

GÖZENEKLİ ZİRKON ÜRETİMİ (SLİP DÖKÜM)

TiO 2 KATKILI MÜLLİT ÜRETİMİ-ENJEKSİYON KALIPLAMA

ASC (ANDALUZİT, SİLİSYUM KARBÜR) VE AZS (ANDALUZİT, ZİRKON, SİLİSYUM KARBÜR) MALZEMELERİN ALKALİ VE AŞINMA DİRENÇLERİNİN İNCELENMESİ

Kumaş ve Ferrokrom Elektrofiltre Tozlarından Forsterit-Diopsit Kompoziti Üretimi

TUĞLA MASSESİ ÖĞÜTME DURUMUNUN ÜRÜN TEKNİK ÖZELLİKLERİ ÜZERİNDEKİ ETKİLERİNİN ARAŞTIRILMASI

Tuğla Kırıklarının Tuğla Üretiminde Kullanımı

Kağıt Atıklarından Gözenekli Malzemelerin Üretimi

Yrd. Doç. Dr. Atilla EVCİN Sol-jel Prosesleri Ders Notları

TEKSTİL FABRİKASI ATIK KÜLÜ VE BAZALTİK POMZA KATKILI TUĞLALARIN MÜHENDİSLİK ÖZELLİKLERİ

Tozların Şekillendirilmesi ve Sinterleme. Yrd. Doç. Dr. Rıdvan YAMANOĞLU

Kompozit Malzemeler Metal Matrisli Kompozitler

2. MİKRO İNCELEME ( PETROGRAFİK-POLARİZAN MİKROSKOP İNCELEMESİ)

GRANÜL BOYUT DAĞILIMININ GRANİT KARO ÜRÜN ÖZELLİKLERİNE ETKİSİ. Z.Bayer 1,3, N.Ay 1, N.Erginel 2

Danışman: Yard. Doç. Dr. Metin Özgül

Yoğun Düşük sürünme direnci Düşük/orta korozyon direnci. Elektrik ve termal iletken İyi mukavemet ve süneklik Yüksek tokluk Magnetik Metaller

TiC-Co Esaslı Çizici Kalem Karakterizasyonu

Demirci (Manisa) Kyanit Cevherinin Zenginleştirilmesi ve Seramik Üretiminde Kullanımı

METALİK MALZEMELERİN GENEL KARAKTERİSTİKLERİ BAHAR 2010

Borosilikat Cam Tozu Katkılı Hidroksiapatit in Fiziksel ve Mekanik Özelliklerinin İncelenmesi

NiO / YSZ (YİTRİYA İLE KARARLI HALE GETİRİLMİŞ ZİRKONYA) SERAMİKLERİN KIRILMA TOKLUĞUNA MİKRO YAPININ ETKİSİ

ASC VE AZS MALZEMELERİN ALKALİ VE AŞINMA DİRENÇLERİNİN İNCELENMESİ

Çift Fazlı Paslanmaz Çeliklerde Yaşlandırma Koşullarının Mikroyapı Özellikleri Üzerindeki Etkisinin İncelenmesi

YÜKSEK FIRIN CURUFU KATKISININ ÇİMENTOYA ETKİSİ

Çorum Yöresi Tuğla Topraklarındaki Çözünebilir Alkali Tuzların Olumsuz Etkilerinin BaCO 3 ve SrCO 3 ile Giderilmesi

TOZ METALURJİSİ Prof.Dr. Muzaffer ZEREN

KARBON ELYAF TAKVİYELİ POLİAMİT 6 KARMALARIN ISIL VE MEKANİK ÖZELLİKLERİNİN İNCELENMESİ

Tozların Şekillendirilmesi ve Sinterleme. Yrd. Doç. Dr. Rıdvan YAMANOĞLU

Şekillendirme yöntemine göre, bir parçada şekillendirme sonunda %5-35 su vardır. Bir seramik çamurunun içindeki yoğrulma suyu üç durumda bulunur.

PLASTİK ŞEKİLLENDİRME YÖNTEMLERİ

MMM 2011 Malzeme Bilgisi

TEKNOLOJİK ARAŞTIRMALAR

SiC İÇEREN TUĞLALARA ALTERNATİF BİR ÜRÜN OLARAK YÜKSEK ALKALİ VE AŞINMA DİRENCİNE SAHİP HAZAL T2AR TUĞLASININ AR-GE SÜRECİ VE TEKNİK ÖZELLİKLERİ

Büro : Bölüm Sekreterliği Adana, 22 / 04 /2014 Sayı : /

YAPISAL SERAMİK MALZEME TEKNOLOJİSİ-5

Ö.F. Emrullahoglu & C.B. Emrullahoglu. Afyon Kocatepe Üniversitesi, Mühendislik Fakültesi Seramik Mühendisliği Bolümü, Afyon

OSMANLI ALAŞIMLI ÇELİKLER SAN. VE TİC. LTD. ŞTİ.

Magnezyum-Yitriyum-Florür Katkı Sistemiyle Silisyum Nitrür Tozlarının Sinterlenmesi

ISIDAÇ 40. yapı kimyasalları. Özel ürünleriniz için özel bir çimento!

ZnS (zincblende) NaCl (sodium chloride) CsCl (cesium chloride)

TOZ MALZEME TEKNOLOJİSİ-10. Yrd. Doç. Dr. Nuray Canikoğlu

Tozların Şekillendirilmesi ve Sinterleme. Yrd. Doç. Dr. Rıdvan YAMANOĞLU

İNCE AGREGA TANE BOYU DAĞILIMININ ÇİMENTOLU SİSTEMLER ÜZERİNDEKİ ETKİLERİ. Prof. Dr. İsmail Özgür YAMAN

A. Evcin Afyon Kocatepe Üniversitesi, Malzeme Bilimi ve Mühendisliği Bölümü, Afyonkarahisar

TERMOKİMYASAL YÜZEY KAPLAMA (BORLAMA)

DİATOMİT HAMMADDESİNİN TUĞLA ÜRETİMİNDE KULLANILABİLİRLİĞİNİN ARAŞTIRILMASI

Mert KILINÇ, Göknur BAYRAM. Orta Doğu Teknik Üniversitesi, Kimya Mühendisliği Bölümü, 06531, ANKARA ÖZET

CACSAND. yüksek performanslı kalsiyum alüminat agregası. Yüksek dayanıklılık gerektiren uygulamalarınız için özel bir agrega!

Emre Yalçın (Odöksan ELBA) 7.Oturum: Süreçler ve Kontrol 7th Session: Process and Control

Tozların Şekillendirilmesi ve Sinterleme Yrd. Doç. Dr. Rıdvan YAMANOĞLU

Yrd. Doç. Dr. Şeniz R. KUŞHAN AKIN EĞİTİM Doktora, Yüksek Lisans, Lisans, İŞ TECRÜBESİ Yrd. Doç. Dr., Bilimsel Programlar Başuzmanı,

Portland Çimentosu ve Kalsiyum Alüminat Çimentosu Mineral Fazlarının Yapı Kimyasalı Ürünlerinin Performansına Etkileri. Eylül,2017 İstanbul

BASMA DENEYİ MALZEME MÜHENDİSLİĞİ BÖLÜMÜ. 1. Basma Deneyinin Amacı

ISIDAÇ 40. karo. Özel ürünleriniz için özel bir çimento!

İÇİNDEKİLER BÖLÜM 1 BÖLÜM 2

Dökme Demirlerin Korozyonu Prof.Dr.Ayşegül AKDOĞAN EKER

Çimento Fazları ve Etkileri

Dumlupınar Gaz Atomizasyonu Ünitesi

AFYON KOCATEPE ÜNİVERSİTESİ DÖNER SERMAYE GELİR GETİRİCİ FAALİYET CETVELİ İNŞAAT MÜHENDİSLİĞİ BÖLÜMÜ

T.C. SÜLEYMAN DEMİREL ÜNİVERSİTESİ MÜHENDİSLİK FAKÜLTESİ MADEN MÜHENDİSLİĞİ BÖLÜMÜ DOĞAL TAŞLAR TEKNOLOJİSİ LABORATUARI ISPARTA TEKNİK RAPOR

6. BEYAZ ve YÜKSEK ALAŞIMLI DÖKME DEMİRLER

CERRAHİ İĞNE ALAŞIMLARI. Microbiologist KADİR GÜRBÜZ

Kompozit Malzemeler. Polimer kompozit malzemeler reçine (Matrix) ve takviye (Reinforcement) bileşenlerinden oluşur.

DOKUZ EYLÜL ÜNİVERSİTESİ FEN BİLİMLERİ ENSTİTÜSÜ MÜDÜRLÜĞÜ DERS/MODÜL/BLOK TANITIM FORMU. Dersin Kodu: MME 5009

THERMAL SPRAY KAPLAMA

2015 ÜRÜN KATALOĞU DAHA İYİ KUMLAMA VE YÜZEY İŞLEMLERİ İÇİN.

Toz Metalürjisi. Prof. Dr. Akgün ALSARAN. Notların bir bölümü Dr. Rahmi Ünal ın web sayfasından alınmıştır.

YAPI MALZEMESİ YAPI MALZEMESİNE GİRİŞ

ZnS (zincblende) NaCl (sodium chloride) CsCl (cesium chloride)

TOKLUK VE KIRILMA. Doç.Dr.Salim ŞAHĠN

Farin İlavesinin Çini Bünye Özelliklerine Etkisi

THE EFFECT OF SINTERING PERIOD ON THE WEAR RESISTANCE OF AlMgSi-SiC P COMPOSITES PRODUCED BY POWDER METALLURGY METHOD

ALKALİ AKTİVE EDİLMİŞ YÜKSEK FIRIN CÜRUFLU HARÇLARDA ASİT ETKİSİ. İlker Bekir TOPÇU & Mehmet CANBAZ *

Silisyum Karbür Esaslı Seramik Köpük Filtre Üretimi

Etibor Kırka Boraks Atığının Yer Karosu Bünye Özelliklerine Etkisi Effect of Etibor Kırka Boraks Tailing. Addition on Properties of Floor Tile Body

METAL MATRİSLİ KOMPOZİT ÜRETİMİ İÇİN SiC İÇERİKLİ ÖN ŞEKİL ÜRETİMİ

Toz Metalurjik Malzemeler. Yrd. Doç. Dr. Rıdvan YAMANOĞLU

Konu: Yüksek Hassasiyetli Yağ Keçelerinin Takviye Bilezik Kalıplarının Üretiminde Kullanılan Takım Çelikleri ve Üretim Prosesleri

YAPISAL SERAMİK MALZEME TEKNOLOJİSİ 1 MTM 545

İLERİ YAPI MALZEMELERİ DOĞAL TAŞLAR,KİLLER,SERAMİKLER

UÇUCU KÜLLÜ BETONLARIN DONMA-ÇÖZÜLME ETKİSİNDE MEKANİK ÖZELLİKLERİNİN ARAŞTIRILMASI. Necdet Sezer Kampüsü Gazlıgöl Yolu Afyon,

3/20/2018. Puzolan malzemelerin sınıflandırılması:

2/13/2018 MALZEMELERİN GRUPLANDIRILMASI

E. Sönmez ve S. Yorulmaz

KOMPOZİTLER Sakarya Üniversitesi İnşaat Mühendisliği

DOKUZ EYLÜL ÜNİVERSİTESİ FEN BİLİMLERİ ENSTİTÜSÜ MÜDÜRLÜĞÜ DERS/MODÜL/BLOK TANITIM FORMU. Dersin Kodu: MME 5048

ZEMİN MEKANİĞİ DENEYLERİ

İÇME SUYU ARITMA TESİSİ ALÜM ÇAMURUNUN PUZOLANİK MALZEME OLARAK KULLANIMI ÜZERİNE BİR ARAŞTIRMA

Akreditasyon Sertifikası Eki. (Sayfa 1/4) Akreditasyon Kapsamı

3.2 Bitümlü Bağlayıcılar

6XXX EKSTRÜZYON ALAŞIMLARININ ÜRETİMİNDE DÖKÜM FİLTRELERİNDE ALIKONAN KALINTILARIN ANALİZİ

ISIDAÇ 40. refrakter. Özel ürünleriniz için özel bir çimento!

Genel olarak bir kompozit malzeme, her iki bileşene ait özelliklerin birleşimiyle daha iyi özellikteki kombinasyonlarının elde edildiği çok fazlı bir

ÇUKUROVA ÜNİVERSİTESİ MÜHENDİSLİK-MİMARLIK FAKÜLTESİ MADEN MÜHENDİSLİĞİ BÖLÜMÜ ADANA

TERMĐK SANTRAL ATIKLARININ YER KAROSU ĐMALATINDA KULLANIM OLANAKLARININ ARAŞTIRILMASI

İmal Usulleri. Fatih ALİBEYOĞLU -11-

LABORATUVARDA YAPILAN ANALİZLER

T. Kavas Afyon Kocatepe üniversitesi, Afyon G. Önce Osmangazi Üniversitesi, Eskişehir

DENEYİN ADI: Döküm Kumu Deneyleri. AMACI: Döküme uygun özellikte kum karışımı hazırlanmasının öğretilmesi.

Transkript:

TiO 2 KATKILI ALUMİNA ÜRETİMİ-ENJEKSİYON KALIPLAMA Ö. ŞENTÜRK, C.B. EMRULLAHOĞLU, Ö.F.EMRULLAHOĞLU Afyon Kocatepe Universitesi Afyon Mühendislik Fakültesi Seramik Mühendisliği Bölümü/ Afyon ÖZET Bu çalışmada ağırlıkça % 5 TiO 2 içeren alumina tozunun düşük basınçlı enjeksiyon kalıplama makinasında kalıplanarak elde edilen ürünlerin bağlayıcısının uzaklaştırılması ve 1300-1600 C sıcaklık aralığında sinterlenmesine ait deney ve sonuçları sunulmuştur. Deneysel çalışmalar üç aşamadan oluşmaktadır. Birinci aşamada alumina, titan ve bağlayıcı içeren sıcak karışım enjeksiyon kalıplama makinasında şekillendirilmiştir. İkinci aşamada şekillendirilen ürünler wax uzaklaştırma ve sinterleme işlemlerine tabi tutulmuştur. Üçüncü aşamada da sinterlenmiş numunelere çeşitli testler uygulanmıştır. Yapılan incelemeler sonucunda sinterleme sıcaklığı artışı ile birlikte birim hacim ağırlığı, basma dayanımı artmış, su emme ve porozite değerlerinde azalmalar meydana gelmiştir. Anahtar Kelimeler; Alumina, Titanyum Dioksit, Enjeksiyon kalıplama 1. GİRİŞ Alumina seramikleri ise 50 li yıllardan beri bilinmektedir. Tekstil makinalarında iplik klavuzu olarak kullanılan alumina seramikler, çelik, cam ve sırlanmış porselen ile aşınma ve erozyon direnci, dayanımı ve boyutsal dengesi, ipliğe verdiği zarar açısından kıyaslandığı zaman daha üstün özelliklere sahiptir[1,2] Bu malzemeler yüksek sıcaklık, düşük yoğunluk, ısısal kararlılık, korozyon dayanımı gibi üstün özellikleri nedeni ile teknolojinin gelişmesine paralel olarak yeni kullanım alanları bulmaktadır. Alumina seramiklerin en iyi bilinen askeri uygulaması ise hafif balistik panel yüzeylerinin balistik dayanımını artırmak için alumina seramik plakalarla kaplanmasıdır. Alumina seramiklere çeşitli katkı maddelerinin ilave edilmesinin amacı sinterleme sırasında yoğunlaşmayı artırmak veya geçiktirmek ve mekanik özelliklerini geliştirmektir. Genellikle Cr 2 O 3, NiO, MgO, TiO 2 ve MnO 2 gibi katkılar tek başına veya birkaçı bir arada olacak şekilde en yaygın kullanılan katkılardır[1]. Daha yoğun, gözeneksiz ve daha düşük sıcaklıklarda sinterlenebilen malzeme üretimi için sürekli araştırmalar yapılmaktadır. İlk çalışmalar katkıların aluminanın sinterleşme davranışına etkisi üzerine yoğunlaşmıştır[3-5]. Daha sonraki çalışmalar aluminanın sertliğini geliştiren krom katkısı üzerinedir[6,7]. Birçok diğer seramiklerde olduğu gibi aluminanın dayanımı da tane büyüklüğü ile ilişkilidir. Bu yüzden aluminanın mikroyapısı ince ve homojen olduğunda dayanımı yüksektir. Bununla beraber malzemenin krılma tokluğu genellikle düşüktür. Alumina içeren seramiklerin kırılma tokluğu büyük uzun veya levhamsı taneler ince tane yapılı matrikste rastgele dağıldığı zaman artar. Kırılma işlemi sırasında bu büyük taneler çatlak ilerlemesine wisker içeren kompozit malzemelerde olduğu gibi etkili bir şekilde direnç gösterirler[7]. Az miktarda MgO katkısının sinterleme sırasında aluminanın anormal tane büyümesini önlediği, mikroyapıyı ince ve homojen yaptığı çok iyi bilinmektedir. Tersi olarak da MgO katılmadığı durumlarda sinterleme sırasında anormal tane büyümesi genellikle gerçekleşir. Tane sınırlarında ikinci bir fazın bulunması aluminanın anormal tane büyümesi için gerekli olan bir şart olduğu

genellikle kabul edilen husustur. Bu yüzden aluminanın mikroyapısı sık sık TiO 2, MnO 2 veya SiO 2 ile kombinasyonu ve diğer oksitler (Na 2 O, CaO, SrO ve BaO) gibi ikinci fazların ilavesi ile kontrol edilir[7].. Toz enjeksiyonkalıplama yötemi yoğun ürün üretim tekniklerinen birisidir. Küresel yapılı küçük metal ve seramik tozlar yaklaşık 100 C sıcaklıkta polimerik veya organik bağlayıcı içerisinde karıştırılır ve enjeksiyon kalıplama makinası kullanılarak şekillendirilir. Toz enjeksiyon kalıplama şimdi yüksek ölçü hassasiyeti olan küçük, karmakşık şekilli ürünlerin üretilmesinde kullanılmaya başlanmıştır.. 2.DENEYSEL ÇALIŞMALAR 2.1. Toz Hazırlama : Deneysel çalışmalarda ticari kalitede alumina, titanyum dioksit tozları ve parafin kullanılmıştır. Alumina malzemeler α-al 2 O 3 (Alcoa CT 3000 SG, 99.7 % saflıkta, d 50 = 0.7 µm) ile TiO 2 (Kronos). ve parafin (Öztil Chemical Ltd) kullanılarak üretilmiştir. Tozların dispersiyonunu sağlamak üzere Tariş Zeytinyağı Fabrikası ndan temin edilen oleik asit kullanulmıştır. 2.2. Karışım Hazırlama : Karışım ağırlıkça % 79.16 alumina, % 4.16 TiO 2, % 16.67 parafin ve % 0.1 oleik asit kullanılmıştır. Önce tank sıcaklığı 50 C ye ayarlanarak parafin eritilmiş, daha sonra tank sıcaklığı 125 C ye yükseltilerek toz karışımı ilave edilmeye başlanmıştır.toz ilavesine başlandığında karıştırıcı da çalıştırılmıştır. Karışım ilave toz alamayacak duruma geldiğinde oleik asit ilave edilerek akışkanlık artırılmış ve tekrar toz ilave edilmeye devam edilmiştir. İstenen kıvamda karışım hazırlandıktan sonra tank kapağı sıkı bir şekilde kapatılarak 6 saat süre ile karıştırılmış, daha sonra 2 saat süre ile de vakum ortamında karıştırma yapılmıştır. 2.3.Numunelerin Şekillendirilmesi : Şekillendirme çift karıştırıcı, ısıtıcı bobin ile donatılmış düşük basınçlı (max 8 atm) Teknoser marka enjeksiyon kalıplama makinasında gerçekleştirilmiştir. Numunelerin şekillendirilmesinde paslanmaz çelikten yapılmış, 1.6 cm çapında, 5.6 cm yüksekliğinde silindirik metal kalıp kullanılmıştır. Karışım 6 atmosfer basınçta şekillendirilmiştir. 2.4. Bağlayıcı uzaklaştırma : Numuneler iri taneli Seydişehir aluminası içerisine aralıklı olarak yerleştirilerek bağlayıcı uzaklaştırma işlemi elektrikle ısıtılan kuyu fırında gerçekleştirilmiştir. Fırın sıcaklığı önce 160 C ye ayarlanmış ve fırın bu sıcaklıkta 24 saat bekletilmiş, sonra fırın sıcaklığı 600 C ye yükseltilerek bu sıcaklığa ulaştıktan sonra 6 saat bekletilmiş, daha sonra fırın kapatılarak soğumaya bırakılmıştır 2.5. Sinterleme İşlemi : Aluminanın sinterleme şekli katı hal sinterleme olup sinterleme işlemi 5 C/dak ısıtma hızı ile 1300, 1400, 1500 ve 1600 C lerde 2 saat bekletme şeklinde gerçekleştirilmiştir. 2.6. Numunelere Uygulanan Testler : Sinterlenmiş numunelerin ilk ve son hacimlerinden hesaben pişme küçülmesi hesaplanmıştır. Numunelerin kuru, su emmiş ve su içerisindeki ağırlıklarından hareketle de su emme, görünür, kapalı ve toplam porozite ile birim hacim ağırlığı ve görünür yoğunluklar hesaplanmıştır. Numuneler ayrıca üç nokta eğme dayanımı testine tabi tutulmuştur. Karakterizasyon çalışmalarında SEM ( Leo 1430VP) kullanılmıştır

3. DENEY SONUÇLARININ DEĞERLENDİRİLMESİ 3.1. Pişme Küçülmesi Pişme küçülmesi değerlerinin sinterleme sıcaklığı ile değişimi çizelge 1 de sunulmuştur. Çizelge 1.. Numunelerinin Artan Sinterleme Sıcaklığı ile Pişme Küçülme % leri Değişimi Sinterleme Sıcaklığı.( C) 1300 1400 1500 1600 Pişme küçülmesi (%) 34.96 35.16 36.02 36.56 Çizelge 1. de görüldüğü gibi artan sinterleme sıcaklığı ile gözenekler kapandığı için numunelerde küçülme artmıştır. 3.2. Su Emme Deneyi Sonuçları Su emme % lerinin sinterleme sıcaklığı ile değişimi çizelge 2 de sunulmuştur Çizelge 2.. Numunelerinin Artan Sinterleme Sıcaklığı ile Su Emme % leri Değişimi Sinterleme Sıcaklığı. ( C) 1300 1400 1500 1600 Su emme ( %) 3.22 2.05 1.82 1.34 Çizelge 2. de görüldüğü gibi artan sinterleme sıcaklığı ile daha fazla gözenek kapandığı için numunelerin su emme % lerinde azalma meydana gelmektedir. 3.3. Birim Hacim Ağırlığı (Bulk yoğunluk) Birim hacim ağırlığının sinterleme sıcaklığı ile değişimi sonuçları çizelge 3 de sunulmuştur Çizelge 3.. Numunelerinin Artan Sinterleme Sıcaklığı ile Birim Hacim Ağırlığının Değişimi Sinterleme Sıc..( C) 1300 1400 1500 1600 B. H. Ağırlığı (gr/cm 3 ) 3.30 3.47 3.52 3.57 Çizelge 3. de görüldüğü gibi artan sinterleme sıcaklığı ile numuneler küçüldüğü için bunun sonucu olarak da numunelerin birim hacim ağırlığı değerlerinde artma meydana gelmektedir. 3.4. GörünürYoğunluk Görünür yoğunluk değerlerinin sinterleme sıcaklığı ile değişimi çizelge 4 de sunulmuştur. Çizelge 4.. Numunelerinin Artan Sinterleme Sıcaklığı ile Görünür Yoğunluk Değişimi Sinterleme Sıc..( C) 1300 1400 1500 1600 Görünür yoğ. (gr/cm 3 ) 3.68 3.73 3.75 3.78 Çizelge 4. de görüldüğü gibi sinterleme sıcaklığı arttıkça görünür yoğunluk değerlerinin arttığı görülmektedir. Artan sinterleme sıcaklığı ile açık kapalı porlar azaldığı numunelerin görünür yoğunluk değerlerinde azalma meydana gelebilir.

3.5. Görünür Porozite Görünür porozite değerlerinin sinterleme sıcaklığı ile değişimi çizelge 5 de sunulmuştur. Çizelge 5. Numunelerinin Artan Sinterleme Sıcaklığı ile Görünür Porozite Değişimi Sinterleme Sıc..( C) 1300 1400 1500 1600 Görünür porozite ( %) 10.46 7.08 5.89 4.73 Çizelge 5. de görüldüğü gibi artan sinterleme sıcaklığı ile açık porlar tamamen veya kısmen malzeme tarafından doldurulduğu için numunelerin görünür porozite değerlerinde azalma meydana gelmektedir. 3.6. Kapalı Porozite Kapalı porozite değerlerinin sinterleme sıcaklığı ile değişimi çizelge 6 da sunulmuştur. Çizelge 6. Numunelerinin Artan Sinterleme Sıcaklığı ile Kapalı Porozite Değişimi Sinterleme Sıc..( C) 1300 1400 1500 1600 Kapalı porozite ( %) 7.10 5.57 5.30 5.22 Çizelge 6. de görüldüğü gibi artan sinterleme sıcaklığı ile kapalı porlar tamamen veya kısmen malzeme tarafından doldurulduğu için numunelerin kapalı porozite değerlerinde azalma meydana gelmektedir. 3.7. Toplam Porozite Toplam porozite değerlerinin sinterleme sıcaklığı ile değişimi sonuçları şekil 7 ve çizelge 7 de sunulmuştur. Çizelge 7. Numunelerinin Artan Sinterleme Sıcaklığı ile Toplam Porozite Değişimi Sinterleme Sıc..( C) 1300 1400 1500 1600 Toplam porozite ( %) 17.56 12.65 11.19 9.95 Çizelge 7. de görüldüğü gibi sinterleme sıcaklığı arttıkça toplam porozite değerlerinin azaldığı görülmektedir. Artan sinterleme sıcaklığı ile bazı porlar küçüldüğü, bazıları da tamamen kapandığı için numunelerin toplam porozite değerlerinde azalma meydana gelmektedir. 3.8. Üç Nokta Eğme Dayanımı Üç nokta eğme dayanımım değerlerinin sinterleme sıcaklığı ile değişimi sonuçları çizelge 8 de sunulmuştur. Çizelge 8. Numunelerinin Artan Sinterleme Sıcaklığı ile Üç Nokta Eğme Dayanımı Değişimi Sinterleme Sıcaklığı.( C) 1300 1400 1500 1600 Üç N.E. dayanımı (kğ/cm 2 ) 380.67 381.92 452.47 482.06 Çizelge 8. de görüldüğü gibi artan sinterleme sıcaklığı ile pekişme arttığı için bunun sonucu olarak da numunelerin üç nokta eğme dayanımı değerlerinde artma meydana gelmektedir.

3.10. SEM İncelemesi Sonuçları Numunelerin SEM görüntüleri Resim 1, 2, 3 ve 4 de sunulmuştur. Resim.1. 1300 C de Sinterlenmiş Numunin SEM Görüntüsü Resim 2. 1400 C de Sinterlenmiş Numunin SEM Görüntüsü Resim 3. 1500 C Sinterlenmiş Numunenin Sem Görüntüsü Resim 4. 1600 C de Sinterlenmiş Numunenin SEM Görüntüsü SEM görüntülerinin incelenmesi sonucunda ; 1300 ve 1400 C lerde sinterlenen numunelerde büyük ve çok miktarda gözenek bulunduğu, 1500 C de sinterlenen numunede ise

hem gözeneklerin azaldığı ve hem de ortalama 3 mikron büyüklüğünde birbirine yakın boyutta tanelerin oluştuğu, 1600 C de sinterlenen numunede ise tanelerin birbirine kenetlenerek veya sıvı faz nedeni ile birleşerek büyüdüğü görülmektedir. SONUÇLAR Sinterleme sıcaklığı artışı ile beraber pişme küçülme % si, birim hacim ağırlığı, kapali porozite ve üç nokta eğme dayanımı değerlerinin arttığı, su emme % si, görünür yoğunluk, görünür porozite, toplam porozite değerlerinin azaldığı görülmüştür. SEM görüntülerinin incelenmesi sonucu sinterleme sıcaklığı arttıkça gözeneklerin azaldığı ve küçüldüğü görülmektedir. KAYNAKLAR 1. Erkalfa H., Mısırlı Z., Baykara T. Cr 2 O 3 ve MnO 2 Katkısının Aluminanın Özelliklerine Etkisi Rapor, Tübitak MAM Malzeme Araştırma Bölümü Gebze Kocaeli, Kasım 1994. 2. Dorre E., Hubner H., Alumina Processing, Properties and Applications Springer Velag, 1984 3. Keski J.R., Cutler I.B. Initial Sintering of Mn x O, Al 2 O 3 J. Am. Ceram. Soc., 51(8)440-44, 1968 4. Keski J.R., Cutler I.B., Effect of Manganese Oxide on Sintering of Alumina J. Am. Ceram. Soc., 48(12)653, 1965. 5. Hirata T., Akiyama K., Yamamoto H., Sintering Behavior of Cr 2 O 3 -Al 2 O 3 Ceramics Journal of the European Ceramic Society 20 (2000) 195-199 6. Bradt R.C., Cr 2 O 3 Solid Solution Hardening of Al 2 O 3 J. Am. Ceram. Soc., 50(1) 54-55, 1967 7. Riu D.H., Kong Y.M., Kim H.E., Effect of Cr 2 O 3 Addition on Microstructural Evolution and Mechanical Properties of Al 2 O 3 Journal of the European Ceramic Society 20 (2000) 1475-1481