DEPREM DAYANIMI YETERSİZ BETONARME ÇERÇEVELERİN DÜZLEM DIŞI PERDE DUVAR İLE GÜÇLENDİRİLMESİ



Benzer belgeler
SÜNEK OLMAYAN B/A ÇERÇEVELERİN, ÇELİK ÇAPRAZLARLA, B/A DOLGU DUVARLARLA ve ÇELİK LEVHALAR ile GÜÇLENDİRİLMESİ.

YAPILARIN ONARIM VE GÜÇLENDİRİLMESİ DERS NOTU

11/10/2013 İNŞAAT MÜHENDİSLİĞİNE GİRİŞ BETONARME YAPILAR BETONARME YAPILAR

Güçlendirme Alternatiflerinin Doğrusal Olmayan Analitik Yöntemlerle İrdelenmesi

İSTANBUL TEKNİK ÜNİVERSİTESİ Yapı ve Deprem Uygulama Araştırma Merkezi

BETONARME-II (KOLONLAR)

Suat Yıldırım İnşaat Yük Müh. ODTÜ

T.C. SELÇUK ÜNİVERSİTESİ FEN BİLİMLERİ ENSTİTÜSÜ

Perdelerde Kesme Kuvveti Tasarımı ve Yatay Donatı Uygulaması

YAPILARIN ÜST RİJİT KAT OLUŞTURULARAK GÜÇLENDİRİLMESİ

Yapı Elemanlarının Davranışı

Kesmeye Karşı Güçlendirilmiş Betonarme Kirişlerin Deprem Davranışı

Çok Katlı Perdeli ve Tünel Kalıp Binaların Modellenmesi ve Tasarımı

YAPAN: ESKISEHIR G TIPI LOJMAN TARİH: REVİZYON: Hakan Şahin - ideyapi Bilgisayar Destekli Tasarım

TAŞIYICI SİSTEM TASARIMI 1 Prof. Dr. Görün Arun

Kirişsiz Döşemelerin Uygulamada Tasarım ve Detaylandırılması

TAŞIYICI SİSTEM TASARIMI 1 Prof. Dr. Görün Arun

DEPREME DAYANIKLI YAPI İNŞAATI SORULAR

YAPILARDA HASAR TESPĐTĐ-II

İnşaat Mühendisleri İster yer üstünde olsun, ister yer altında olsun her türlü yapının(betonarme, çelik, ahşap ya da farklı malzemelerden üretilmiş)

BETONARME-I 5. Hafta KİRİŞLER. Onur ONAT Munzur Üniversitesi Mühendislik Fakültesi İnşaat Mühendisliği Bölümü, Tunceli

BETONARME YAPI ELEMANLARINDA DONATI DÜZENLEME İLKELERİ

BETONARME YAPILARDA BETON SINIFININ TAŞIYICI SİSTEM DAVRANIŞINA ETKİSİ

RİSKLİ YAPILARIN TESPİT EDİLMESİNE İLİŞKİN ESASLAR. 5- Risk Tespit Uygulaması: Betonarme Bina

Yapı Elemanlarının Davranışı

BETONARME-II ONUR ONAT HAFTA-4

BÖLÜM 2: DÜŞEY YÜKLERE GÖRE HESAP

TUĞLA DOLGU DUVARLI ÇERÇEVELERİN HASIR DONATI İLE GÜÇLENDİRİLMESİ. Bora ACUN 1, Haluk SUCUOĞLU 1

ÇELİK YAPILAR 7 ÇELİK İSKELETTE DÖŞEMELER DÖŞEMELER DÖŞEMELER DÖŞEMELER. DÖŞEMELER Yerinde Dökme Betonarme Döşemeler

GÜÇLENDİRİLMİŞ TUĞLA DUVAR DENEYLERİNDE YÜK DEFORMASYON ÖLÇÜMLERİNİN POTANSİYOMETRİK DEPLASMAN SENSÖRLER İLE BELİRLENMESİ

RİSKLİ YAPILARIN TESPİT EDİLMESİNE İLİŞKİN ESASLAR. 4- Özel Konular

BETONARME-II ONUR ONAT HAFTA-1 VE HAFTA-II

KESME BAKIMINDAN DOĞRU TASARLANMAMIŞ BETONARME PERDE DUVARLI YÜKSEK BİNALARIN DEPREM PERFORMANSI

MEVCUT BETONARME YAPILARDA KISA KOLON DAVRANIŞLARININ İYİLEŞTİRİLMESİ

Yapının bütün aks aralıkları, enine ve boyuna toplam uzunluğu ölçülerek kontrol edilir.

PENCERE BOŞLUKLU PERDE DUVARLA GÜÇLENDİRİLMİŞ 1/3 ÖLÇEKLİ BETONARME ÇERÇEVELERİN DAVRANIŞI. Alptuğ ÜNAL, 6 M. Yaşar KALTAKCI

Kirişli Döşemeli Betonarme Yapılarda Döşeme Boşluklarının Kat Deplasmanlarına Etkisi. Giriş

BA Yapılarda Hasar Belirleme Onarım ve Güçlendirme

DİNAMİK BENZERİ DENEYLERLE YETERLİ DAYANIMA SAHİP BİR BETONARME ÇERÇEVENİN BİRLEŞİM BÖLGELERİNİN PERFORMANSININ İRDELENMESİ

Süneklik Düzeyi Yüksek Perdeler TANIMLAR Perdeler, planda uzun kenarın kalınlığa oranı en az 7 olan düşey, taşıyıcı sistem elemanlarıdır.

İNŞ 320- Betonarme 2 Ders Notları / Prof Dr. Cengiz DÜNDAR Arş. Gör. Duygu BAŞLI

Betonarme Yapılarda Perde Duvar Kullanımının Önemi

BETONARME ÇERÇEVELERDE KISMİ KUŞAKLAMANIN ETKİNLİĞİ ÜZERİNE DENEYSEL BİR ÇALIŞMA

İZMİR İLİ BUCA İLÇESİ 8071 ADA 7 PARSEL RİSKLİ BİNA İNCELEME RAPORU

GENEL KESİTLİ KOLON ELEMANLARIN TAŞIMA GÜCÜ (Ara donatılı dikdörtgen kesitler)

Perdeli-Çerçeveli Taşıyıcı Sistemli Binalarda Taşıyıcı Sistem Seçiminin Yapı Davranışı Üzerindeki Etkisinin İncelenmesi

BÖLÜM 7 MEVCUT BİNALARIN DEĞERLENDİRİLMESİ VE GÜÇLENDİRİLMESİ. sorular

BETONARME BİNALARDA DEPREM HASARLARININ NEDEN VE SONUÇLARI

ÇOK KATLI BİNALARIN DEPREM ANALİZİ

BETONARME KİRİŞLERİN KESME GÜÇLENDİRMESİ İÇİN KULLANILAN YÖNTEMLERİN KARŞILAŞTIRILMASI

BETONARME YAPI ELEMANLARINDA DONATI DÜZENLEME İLKELERİ

BETONARME ÇERÇEVELERDE DOLGU DUVAR ETKİSİNİN İNCELENMESİ ÜZERİNE DENEYSEL ÇALIŞMA

10 - BETONARME TEMELLER ( TS 500)

İNŞAAT MÜHENDİSLERİ ODASI- İZMİR ŞUBESİ

BETONARME YAPI TASARIMI DERSİ Kolon betonarme hesabı Güçlü kolon-zayıf kiriş prensibi Kolon-kiriş birleşim bölgelerinin kesme güvenliği M.S.

BETON İÇİNDE KULLANILAN ÇELİK TELLERİN BETONARME ÇERÇEVENİN DAVRANIŞINA OLAN ETKİSİ

BA Yapılarda Hasar Belirleme Onarım ve Güçlendirme

BETONARME YAPI ELEMANLARINDA HASAR VE ÇATLAK. NEJAT BAYÜLKE İnş. Y. Müh.

T.C. SELÇUK ÜNİVERSİTESİ FEN BİLİMLERİ ENSTİTÜSÜ

BETONARME KİRİŞLERİN ÇELİK LEVHALARLA KESMEYE KARŞI GÜÇLENDİRİLMESİ SHEAR STRENGTHENING OF REINFORCED CONCRETE BEAMS WITH STEEL PLATES

KOLEKSİYON A.Ş. TEKİRDAĞ MOBİLYA FABRİKASI DEPREM GÜVENLİĞİ VE GÜÇLENDİRME ÇALIŞMASI

Nautilus kalıpları, yerinde döküm yapılarak, hafifletilmiş betonarme plak döşeme oluşturmak için geliştirilmiş kör kalıp sistemidir.

Farklı Yöntemler Kullanılarak Güçlendirilmiş Betonarme Binaların Performansa Dayalı Tasarıma göre Deprem Performanslarının Belirlenmesi

ÖRNEK 18 4 KATLI BETONARME PANSİYON BİNASININ GÜÇLENDİRİLMESİ ve DOĞRUSAL ELASTİK OLMAYAN YÖNTEM İLE DEĞERLENDİRİLMESİ

Yapı Elemanlarının Davranışı

YAPILARIN ÇİMENTO ESASLI KOMPOZİT PANALLERLE GÜÇLENDİRİLMESİ

Öndökümlü (Prefabrik) Döşeme Sistemleri-4 Prefabrik Asmolen Döşeme Kirişleri

Dairesel Kesitli Plastik Malzeme Kullanarak Üretilen Betonarme Elemanların Yapısal Davranışlarının İrdelenmesi

Çelik Yapılar - INS /2016

Temeller. Onur ONAT Munzur Üniversitesi Mühendislik Fakültesi İnşaat Mühendisliği Bölümü, Tunceli

Prefabrik yapıların tasarımı, temelde geleneksel betonarme yapıların tasarımı ile benzerdir.

BETONARME YAPI TASARIMI -KOLON ÖN BOYUTLANDIRILMASI-

İzmir Körfez Geçişi Projesi Ardgermeli Kavşak Köprüleri Tasarım Esasları

DEPREM ETKİSİNE MARUZ YIĞMA YAPILARIN DÜZLEM DIŞI DAVRANIŞI

MEVCUT BETONARME BİNALARIN DEPREM GÜVENLİKLERİNİN ARTIRILMASI

BÖLÜM II D. YENİ YIĞMA BİNALARIN TASARIM, DEĞERLENDİRME VE GÜÇLENDİRME ÖRNEKLERİ

İTÜ Mimarlık Fakültesi Mimarlık Bölümü Yapı ve Deprem Mühendisliği Çalışma Grubu BETONARME YAPILAR MIM 232. Döşemeler

YAPI MEKANİĞİ LABORATUVARI

23 Ekim 2011 Van Depremi Ön Değerlendirme Raporu

İÇERİSİ BETON İLE DOLDURULMUŞ ÇELİK BORU YAPI ELEMANLARININ DAYANIMININ ARAŞTIRILMASI ÖZET

ÇATI KONSTRÜKSİYONLARINDA GAZBETON UYGULAMALARI Doç.Dr.Oğuz Cem Çelik İTÜ Mimarlık Fakültesi Yapı Statiği ve Betonarme Birimi

RİSKLİ BİNALARIN TESPİT EDİLMESİ HAKKINDA ESASLAR 5-Kontrol Uygulaması

Mühendislik Birimleri Laboratuarları 1. İnşaat Mühendisliği Birimi Laboratuarları Yapı Malzemeleri ve Mekanik Laboratuarı

Yapıblok İle Akustik Duvar Uygulamaları: Digiturk & TV8

BETONARME. Çözüm 1.Adım

T.C. DOKUZ EYLÜL ÜNİVERSİTESİ MÜHENDİSLİK FAKÜLTESİ DEKANLIĞI

KOLONLAR Sargı Etkisi. Prof. Dr. Ahmet TOPÇU, Betonarme I, Eskişehir Osmangazi Üniversitesi, 147

Prefabrik Çerçeve Kolonlarının Temel Birleşimlerinde Soketli Temellere Alternatif Bir Sistem-Kolon Pabuçları

teknik uygulama detayları

KISA KOLON TEŞKİLİNİN YAPI HASARLARINA ETKİSİ. Burak YÖN*, Erkut SAYIN

Yığma Yapıların Rehabilitasyonu İçin Bir Yöntem

ARAŞTIRMA MAKALESİ /RESEARCH ARTICLE

MOMENT YENİDEN DAĞILIM

BETONARME-I 3. Hafta. Onur ONAT Munzur Üniversitesi Mühendislik Fakültesi İnşaat Mühendisliği Bölümü, Tunceli

RİSKLİ BİNALARIN TESPİT EDİLMESİ HAKKINDA ESASLAR 4-DBYBHY (2007)ve RBTE(2013) Karşılaştırılması

d : Kirişin faydalı yüksekliği E : Deprem etkisi E : Mevcut beton elastisite modülü

Yapı Elemanlarının Davranışı

Örnek Güçlendirme Projesi. Joseph Kubin Mustafa Tümer TAN

Betonarme Yapıların Davranışının Zaman Tanım Alanında Hesap Yöntemi ile Belirlenmesi

YAPAN: TARİH: REVİZYON: 6500HL-0026 Statik Net50 / K.T.Ü. İnşaat Mühendisliği Bölümü

Transkript:

DEPREM DYNIMI YETERSİZ ETONRME ÇERÇEVELERİN DÜZLEM DIŞI PERDE DUVR İLE GÜÇLENDİRİLMESİ. Ünal 1, H.H. Korkmaz 2, M.Y. Kaltakcı 3, M. Kamanlı 4, F. ahadır 5 ve F.S. alık 5 1 raştırma Görevlisi, İnşaat Müh. ölümü, Selçuk Üniversitesi, Konya 2 Doçent Doktor, İnşaat Müh. ölümü, Selçuk Üniversitesi, Konya 3 Profesör, İnşaat Müh. ölümü, Selçuk Üniversitesi, Konya 4 Doçent Doktor, İnşaat Müh. ölümü, Selçuk Üniversitesi, Konya 5 Öğretim Görevlisi Doktor, İnşaat ölümü, Necmettin Erbakan Üniversitesi Ereğli Kemal kman MYO, Ereğli, Konya Email: alptugunal@selcuk.edu.tr ÖZET: Son yıllarda yapılan araştırma ve inceleme sonuçları, ülkemizde inşa edilmiş yapıların önemli bir kısmında tasarım ve/veya yapım kusurlarının olduğunu göstermiştir. u sebeplerden dolayı, ülkemizdeki yapı stoğunun bir an önce incelenip, gerekli görülenlerin, uygun güçlendirme yöntemleri ile güçlendirilmesi zorunlu hale gelmiştir. Ülkemizde genellikle uygulanan mevcut güçlendirme yöntemlerinde, güçlendirme süresince yapıların kullanılamaması ve tamamen boşaltılması gereği ortaya çıkmakta ve özellikle okul, hastane ve yurt gibi kamu binalarında veya konutlarda uygulandığında büyük ekonomik kayıplarla karşılaşılmaktadır. u çalışmada önerilen yöntemde ise, güçlendirme için yapılan perde duvarlar düzlem dışına yerleştirildikleri için, yapıların boşaltılmasına gerek kalmamakta ve bu şekilde ekonomik kayıplar en aza indirilebilmektedir. Yapılan çalışmada, 1/3 geometrik ölçekli olarak üretilen, iki katlı tek açıklıklı 3 adet deney elemanı, depremi benzeştiren tersinir-tekrarlanır yatay yükler etkisinde test edilmiştir. Deney esnasında, kolonlara taşıma kapasitelerinin %20 si kadar eksenel yük uygulanmıştır. u numunelerden bir tanesi, ülkemizde sıklıkla görülen yapım kusurlarını içeren ve deprem dayanımı yetersiz binaları temsil eden ve herhangi bir güçlendirme yapılmayan betonarme boş çerçevedir. Diğer deney elemanları ise, betonarme boş çerçeveye güçlendirme uygulaması yapılmış olan deney elemanlarıdır. u deney elemanlarından ilki, dış cephelerinde pencere boşluğu bulunan binaları temsil etmek amacıyla oluşturulmuş ve pencere boşluklu düzlem dışı betonarme perde duvar ile güçlendirilmiş olan numunedir. Diğer deney elemanı ise, pencere boşluklarının bulunduğu yerlere güçlendirme perdesi konulmamış ve düzlem dışı iki betonarme perde duvar ile güçlendirilmiş olan numunedir. Çalışma sonucunda, test edilen bu deney elemanlarına ait histerezis eğrileri, zarf eğrileri, rijitlik ve tüketilen enerji grafikleri verilmiş ve bu deney elemanları arasındaki farklar incelenerek, sonuçlar irdelenmiş ve yorumlanmıştır. NHTR KELİMELER: etonarme çerçeve, deprem davranışı, düzlem dışı perde duvar, güçlendirme, tasarım ve yapım kusurları. 1. GİRİŞ Deprem güvenliği olmayan betonarme yapıların güçlendirilmesi ve deprem güvenliğinin artırılması için bir çok teknik geliştirilmiştir. Güçlendirme uygulaması eleman düzeyinde yapılabileceği gibi, sistem düzeyinde de yapılabilir. Ülkemizdeki betonarme yapıların genellikle tasarım ve yapım aşamalarından kaynaklanan kusurlar sonucunda deprem yüklerine karşı yanal dayanımları, süneklikleri ve yanal rijitlikleri yeterli değildir. u nedenle, deprem kuvvetlerine karşı sadece eleman düzeyinde iyileştirme yetersiz kalmakta, taşıyıcı sistem 1

düzeyinde iyileştirme gerekmektedir. Yapıyı oluşturan çerçevelerin içine yanal rijitliği çok büyük olan yerinde dökme betonarme dolgu duvarların ilave edilmesi ile yapının deprem güvenliğinin artırılması uygulamada yaygın olarak kullanılan başarılı bir tekniktir. Son yıllarda yapılan araştırmaların sonucu olarak, çok sayıda güçlendirme tekniği üretilmiş olmasına rağmen; bu yöntemlerin birçoğunun pratik olarak uygulanması çok zor gözükmektedir. Günümüzde pratik, ekonomik ve bina kullanıcısını rahatsız etmeyen yöntemler önemli hale gelmiş ve araştırmalar giderek bu konu üzerine yönlenmiştir. u araştırmanın amacı, betonarme yapıların depreme karşı güçlendirilmesinde çerçeve düzlemi dışına, kolon ve kirişlere teğet olarak, ankraj çubukları yardımıyla yerleştirilen betonarme perdelerin ve yerleştirilen bu perdelerdeki boşlukların davranışa olan etkisinin belirlenmesidir. u çalışmada, ülkemizdeki betonarme yapıların çoğunda gözlemlenen bazı yapım ve tasarım kusurları olan betonarme çerçeve, deney elemanı olarak kullanılacaktır. Yapılacak güçlendirmenin, bu tür sünek olmayan betonarme çerçevelerin davranışına, dayanımına, rijitliğine ve enerji tüketimine etkileri incelenmiştir. 3 adet 1/3 geometrik ölçekli, iki katlı tek açıklıklı deney elemanı üretilmiş, deprem yüklerini benzeştiren tersinir-tekrarlanır yatay yükleme altında test edilmiştir. u numunelerden bir tanesi, herhangi bir güçlendirme yapılmayan, ülkemizde sıklıkla görülen yapım kusurlarını içeren ve deprem dayanımı yetersiz binaları temsil eden betonarme boş çerçevedir. Diğer deney elemanları ise, betonarme boş çerçeveye güçlendirme uygulaması yapılmış deney elemanlarıdır. İkinci deney elemanı, pencere boşluklu düzlem dışı betonarme perde duvar ile güçlendirilmiş numunedir. u deney elemanı dış cephelerinde pencere boşluğu bulunan binaları temsil etmek amacıyla oluşturulmuştur. Son deney elemanı ise, düzlem dışı iki betonarme perde duvar ile güçlendirilmiş numunedir. u numunede pencere boşluklarının bulunduğu yerlere güçlendirme perdesi konulmamıştır. Elde edilen deneysel sonuçlar, davranış, dayanım, süneklik, rijitlik ve enerji tüketimi bakımından yorumlanmış ve karşılaştırılmıştır. 2. MTERYL VE METOT 2.1. Deney Numunelerinin oyutları etonarme çerçeve deney elemanlarının tasarlanıp üretilmesinde bilinçli olarak uygulanan kusurlar şunlardır: eton dayanımının düşük olması, Kolon-kiriş birleşim bölgesi içinde etriyelerin devam ettirilmemesi, Kolon-kiriş birleşim bölgelerinde etriye sıklaştırmasının olmaması, Etriye kancalarının 90 o olması, Kuvvetli kiriş-zayıf kolon birleşimi. Tüm deney elemanlarında çerçevelerin geometrik boyutları ve donatı detayları aynıdır. etonarme boş çerçeve tasarlanırken, mevcut binalardaki açıklık ve yükseklik ile kolon kiriş boyutları dikkate alınarak belirlenmiş ve çerçeve boyutları 1/3 geometrik ölçek ile hazırlanmıştır. etonarme çerçevede açıklık dıştan dışa 0 mm, kat yüksekliği ise temel üstünden 1. kat kirişinin üst seviyesine kadar 900 mm dir. Temel bölgesinde herhangi bir ölçüme gerek duyulmaması için, temel kesiti oldukça rijit seçilmiş ve xx mm boyutlarında bir temel kirişi imal edilmiştir. Kolon boyutları olarak x mm lik, kiriş boyutları olarak da, kuvvetli kiriş zayıf kolon oluşumu için x mm lik bir kesit seçilmiştir. Pencere boşluklu düzlem dışı betonarme perde ile güçlendirilmiş çerçeve, referans boş çerçeve ile aynı geometrik boyutlara ve donatı düzenine sahiptir. u deney elemanında ek olarak düzlem dışı betonarme perde uygulaması yapılmış ve binaların büyük bir kısmında bulunan pencere boşluklarının dayanıma etkisi incelenmek istenmiştir. u amaçla hazırlanan deney numunesinde, TDY2007 de belirtilen minimum perde kalınlığı olan 200 mm göz önüne alınmış ve buna göre numunelerin boyutları 1/3 ölçekli olarak seçildiğinden, perde kalınlığı 70 2

mm olarak uygulanmıştır. Pencere boyutları da gerçek pencere ölçüleri referans alınarak hazırlanmış ve 1/3 oranında küçültülerek 350x400 mm olacak şekilde imal edilmiştir. Düzlem dışı iki betonarme perde duvar ile güçlendirilmiş numune de referans boş çerçeve ile aynı geometrik boyutlara ve donatı detaylarına sahiptir. u numunede, pencere boşluklarının altlarında kalan betonarme kısımların dayanıma etkisinin anlaşılması amacıyla pencere bulunan bölgelerde perde imal edilmemiş ve perde kalınlığı, pencere boşluklu numunede olduğu gibi 70 mm seçilerek, iki perdeli olacak şekilde hazırlanmış ve perde genişliği 550 mm olacak şekilde iki perdeden oluşturulmuştur. 2.2. Deney Numunelerinin Detayları Çerçevede kullanılan betonun basınç dayanımının f c =16 MPa, betonarme manto ve perde ile güçlendirilen deney numunelerinin manto ve perdelerindeki betonun basınç dayanımının f c =25 MPa olması hedeflenmiştir. Çerçeve numunelerinin kirişlerinde açıklıkta altta 3f10 eğilme donatısı ve üstte 3f10 montaj donatısı kullanılmıştır. Kirişlerde pilye kullanılmamış, açıklıkta ve mesnette donatı oranı sabit tutulmuştur. Kolonlarda ise 4f10 boyuna donatı kullanılmış olup, donatı oranı ρ=0.02106 olmaktadır. Kirişlerde alt ve üst donatılar, kolon dış yüzeyine kadar uzatılmış ve bu noktadan itibaren kiriş yüksekliği boyunca ( mm) yukarı ve aşağı yönde bükülmüştür. Kolon donatılarında ise, boyuna donatı yerleşiminde sürekli donatı detayı uygulanmış ve bindirmeli ek yapılmamıştır. Kolon ve kirişlerde f6/ mm aralıklarla enine donatı (etriye) kullanılmıştır. etonarme çerçevelerin temelinde ise, 8f14 boyuna donatı ve f8/ mm enine donatı tercih edilmiştir. Güçlendirme elemanlarında10 mm çapında ankraj çubuğu kullanılmış, mm ankraj aralığı ile yerleştirilmiştir. Hasır donatı olarak, piyasadan temin edilen 6 mm çapında nervürlü inşaat çeliği kullanılmıştır. Hasır donatı aralıkları düşeyde ve yatayda 15 cm aralıklarla oluşturulmuştur. Hasır donatılar uçlarından bükülemediği için, hasır donatılarının başlarına Ì şeklinde gövde donatıları eklenmiştir. u donatılar, hasır donatı aralıklarına uygun biçimde 15 cm aralıklarla yerleştirilmiş olup, kenetlenme boyu kadar uzatılmıştır. Deney numunelerinin genel özellikleri, boyutları ve donatı detayları Tablo 1 de gösterilmiştir. etonarme çerçeve hazırlanırken, ilk olarak suntadan imal edilmiş kalıplar oluşturulmuş, sonra bu kalıplar içerisine donatılar yerleştirilmiş ve beton santralinden temin edilen hazır beton, kalıplara dökülmüştür. eton dayanımını kazandıktan sonra numuneler Selçuk Üniversitesi İnşaat Mühendisliği ölümü Deprem raştırma Laboratuvarı nda bulunan vinç yardımıyla düşey konuma getirilmiş ve güçlendirme yapılacak deney elemanlarının hazırlanmasına başlanmıştır. Güçlendirme elemanları hazırlanırken, ilk olarak ankraj donatıları için delikler delinmiş, sonra bu delikler kompresör yardımıyla temizlenmiş ve bu deliklere epoksi sıkılarak ankraj donatıları yerleştirilmiştir. Temele yapılan ankrajlar ise, 10 mm çapında nervürlü çubuklardan yapılmış olup, kolon bölgelerinde 70 mm aralıklarla yerleştirilmiş, orta bölümlerde ise aralıkları açılarak mm ve 200 mm aralık olacak şekilde toplam 14 adet 10 mm çapında donatı yerleştirilmiştir. Kolonlarda ise, 10 mm çapındaki ankraj çubukları bükülerek epoksi yardımıyla yerleştirilmiş ve bu çubukların aralıklarının mm olması sağlanmıştır. Kirişlerde ise, bu aralık 200 mm olarak düzenlenmiş ve yine 10 mm çapında çubuklardan bükülerek yapılmışlardır. nkraj çubukları yerleştirildikten sonra, perde uçlarına dışarıda imal edilen 5 adet f8 çapında boyuna donatıya 50 mm arayla enine donatı uygulaması yapılarak, numuneye yerleştirilmişlerdir. Daha sonra hasır donatılar pencere bölümleri boş kalacak şekilde istenilen boyutlarda kesilmiş ve perdenin bir ön bir de arka yüze olmak üzere iki adet hazırlanmış ve numuneye yerleştirilmişlerdir. Hasır donatıların uç noktalarını birleştirmek amacıyla Ì şeklinde 10 mm çapında ve bir kolu mm olan çift kollu donatılar imal edilerek perde uç bölgelerine mm arayla yerleştirilmiş ve hasır donatının bir bütün olarak çalışması sağlanmıştır. 3

Deney No Deney Numunesinin Özellikleri Tablo 1. Deney numunelerinin genel özellikleri Deney Numunesinin oyutları Deney Numunesinin Donatı Detayları 1.Deney etonarme oş Çerçeve RS (Reference Specimen) - Kesiti 0 1300 900 900 8φ14 etrφ8/ - Kesiti 0 900 900 4φ10 4φ10 - Kesiti 1300 - Kesiti 0 2.Deney Pencere oşluklu Düzlem Dışı etonarme Perde İle Güçlendirilmiş Çerçeve OSWMSW (Outer Shearwall With Middle Small Window) 400 350 550 350 - Kesiti 70 0 400 400 1300 350 350 1800 8φ14 etrφ8/ 400 350 550 350 - Kesiti φ6/ φ6/ φ6/ φ6/ φ6/ φ6/ φ6/ φ6/ 1800 - Kesiti 4φ10 5φ10 etrφ5.5/50 φ6/boyuna φ6/enine - Kesiti 3.Deney Düzlem Dışı İki etonarme Perde İle Güçlendirilmiş Çerçeve 900 900 φ6/ φ6/ φ6/ φ6/ φ6/ φ6/ φ6/ φ6/ 900 900 OSW2P (Outer Shearwall With 2 Pieces) 70 1300 8φ14 etrφ8/ - Kesiti 4φ10 5φ10 etrφ5.5/50 φ6/boyuna φ6/enine - Kesiti 4

2.3. Deney Düzeneği ve Ölçüm Tekniği Deney numuneleri 0 kn basma, kn çekme kapasiteli bir hidrolik silindir vasıtasıyla yüklenmiştir. Hidrolik silindire yük ölçümü için yük hücresi (loadcell) bağlanması gerektiğinden, hidrolik silindirin ucuna yiv açılmıştır. u sayede hem basınçta hem de çekmede yük hücresi-loadcellden yük verileri bilgisayar ortamına aktarılabilmiştir. Hidrolik silindirin ucuna bağlanan yük hücresi kapasitesi basma ve çekmede kn dur. Yük hücresi bir plakaya bağlanmış ve bu plakanın ucuna mafsallı bir sistem yapılarak numunenin alt ve üst katlarında oluşabilecek farklı deplasmanlarda sistemin serbestçe hareket edebilmesi amaçlanmıştır. u mafsal, 300x300 mm kesitinde 0 mm boyunda bir kutu profile üst kat kirişinin ortası hizasından 300 mm aşağıya ve alt kat kirişinin ortası hizasından 600 mm olacak şeklide kaynaklanmıştır. öylece, kat yüksekliği 900 mm olan numuneye toplam yatay yükün 2/3 ü üst kata, 1/3 ü ise alt kata olmak üzere yük aktarılması sağlanmıştır. Literatürdeki bazı araştırmalarda, yükleme sistemindeki sorundan kaynaklı olarak, böyle sistemlerde alt katın tamamen hasar gördüğü ve üst katta herhangi bir hasarın meydana gelmediği, hatta çatlak oluşumunun bile gözlenmediği görülmüştür. u durumu engellemek için kutu profil doğrudan numuneye bağlanmamış, alt ve üst katlar hizasından mafsallı plakalar konularak deprem etkisi tam olarak verilmeye çalışılmıştır. Rijit çelik profil, mafsallar vasıtasıyla numune kat hizalarından bağlanmıştır. Kat hizalarında kirişlere paralel şekilde yerleştirilen transmisyon milleri ile yükün çekme çevrimlerinde de uygulanması sağlanmıştır. Eksenel yük ise iki adet hidrolik silindirle ve bu yükü okumak için iki adet yük hücresi kullanılarak oluşturulan eksenel yük sistemi vasıtası ile uygulanmıştır. rtan yatay deplasmanlar altında uygulanan eksenel yükün artmaması için eksenel yük sisteminin numune üstü ile birlikte hareket etmesi gerekmektedir. u nedenle, döşeme tabanına özel bir makara sistemi yerleştirilmiştir. Laboratuvar tabanına mafsal ve makaralar ile mesnetlenen transmisyon milleri dikey olarak numune üstüne yerleştirilen hidrolik silindir ve yük hücrelerinin içinden geçmektedir. lt taraftan makara sistemine bağlı olan mil + şeklinde kutu profilin içinden geçmektedir. Yük hücresi ve hidrolik silindirin içinden geçen mil vidalarla sıkıştırılarak sabitlenmiştir. TS e göre kolon olarak boyutlandırılıp donatılacak taşıyıcı sistem elemanlarında, kapasitenin en az %10 u kadar eksenel yük uygulanması gerektiğinden, numunelerin kolonlarındaki eksenel yük düzeyinin, kapasitenin %20 si civarında olması hedeflenmiştir. Temelin hareketini engellemek amacıyla I profilden teşkil edilen payandalar kullanılmış ve bu payandalar ile temel arasına hidrolik silindir konularak temel sıkıştırılmıştır. yrıca, numunelere uygulanan tersinir-tekrarlanır yükler altında potansiyometrik cetvellerin (LVDT) oynamaması için kutu profillerden bir iskele yapılmıştır. u iskele de laboratuvardaki rijit döşemelere çelik miller vasıtasıyla sabitlenmişlerdir. Deneylerde uygulanan yük miktarı, yük hücreleri vasıtası ile okunmuştur. Yatay yük için bir adet, eksenel yük için de iki adet kn kapasiteli yük hücreleri kullanılmıştır. Yük hücrelerinde bulunan yivler sayesinde, basma ve çekmede ulaşılan yükler okunabilmekte ve bilgisayar ortamına aktarılabilmektedir. Yapılan deneylerde, deplasmanlar elektronik deplasman ölçüm aletleri LVDT kullanılarak ölçülmüştür. lınan ölçümler, yük değerleri ile birlikte data toplayıcı aracılığıyla bilgisayara aktarılıp, bilgisayarda kullanılan yazılım vasıtasıyla kaydedilmiştir. Deplasman ölçümleri için 5 adet LVDT kalibre edilmiştir. Her bir kata ikişer adet olmak üzere toplam 4 adet LVDT kat kirişi hizasından yerleştirilmiştir. Diğer LVDT ise, temelde oluşabilecek hareketleri ölçmek amacıyla temele yerleştirilmiştir. Deneylerde üst kata bağlanan LVDT ler 300 mm, orta kata bağlanan LVDT ler 200 mm, temele bağlanan LVDT ise mm lik bir okuma yapabilmektedir. Şekil 1 de bir deneye ait yükleme düzeneği, yük hücresi ve LVDT yerleşimi gösterilmiştir. Deney sonunda yük hücresi ve LVDT lerden elde edilen sonuçlara göre numunelerin histerezis ve zarf eğrileri, rijitlikleri ve enerji tüketme kapasiteleri incelenmiş ve sonuçlar yorumlanmıştır. 5

2. Türkiye Deprem Mühendisliği ve Sismoloji Konferansı Y k h cresi (Loadcell) Hidrolik Silindir Eksenel Y k Sistemi Mafsal Y k h cresi (Loadcell) LVDT-1 LVDT-2 Hidrolik Silindir Y k Da tma parat Destek profilleri LVDT-3 LVDT-4 Rijit Duvar LVDT-5 Rijit Dˆ eme Hidrolik Silindir Y ksek Dayan ml a lant «ubuklar Şekil 1. Yükleme düzeneği ve ölçüm tekniği 3. RŞTIRM SONUÇLRI Test edilen deney numuneleri, depremde oluşacak üçgen yük dağılımı prensibiyle 2. kata 2 birim, 1. kata 1 birim yük gelecek şekilde yüklenmiştir. Tüm deneylerde yüklemeye önce yük kontrollü olarak başlanmış, yük deplasman eğrisi yatay konuma döndüğünde yani nominal akma sınırına ulaşıldığı zaman, deplasman kontrollü olarak devam edilmiş ve deney elemanında büyük hasarlar meydana gelenceye kadar deneyler devam ettirilmiştir. Deney numunelerinde nominal akma sınırına ulaşıldıktan sonra, güçlendirilmiş elemanlarda yaklaşık 5 mm, boş çerçevede ise 10 mm deplasman artışları ile deplasman kontrollü olarak deneye devam edilmiştir. Tüm deney numunelerine eksenel yük olarak her bir kolon için 43 kn olacak şekilde, toplam 86 kn yük verilmiştir. Yapılan bu deneysel çalışmada, deney esnasında oluşan çatlaklar her kademede işaretlenerek numaralandırılmış ve fotoğraflanmıştır. Deney numunelerinin deneyde uygulanan son çevrimden sonraki durumu fotoğraflanarak oluşan hasarlar tesbit edilmiş ve ayrıca, bilgisayar ortamında da oluşan çatlaklar ve hasarlar çizilmiştir. Deney elemanlarının deney sonu görünümü Şekil 2 de verilmiştir. (a) (b) (c) Şekil 2. Deney numunelerinin deney sonu görünümü (a) RS (b) OSWMSW (c) OSW2P 6

Referans deney olan ilk deneyde (etonarme boş çerçeve-rs), çatlaklar genel olarak kolon- kiriş birleşim bölgeleri ile temel ve kolonların birleşim bölgelerinde meydana gelmiştir. Deney ilerledikçe, artan yükle birlikte ilk oluşan çatlakların açıldığı görülmüş ve kuvvetli kiriş-zayıf kolon oluşumu gözlenmiştir. u deneyde, S101 kolonunda kesme çatlağı oluşmuş ve numune düşey stabilitesini kaybedince deney sonlandırılmıştır. Deney numunesinde ulaşılan maksimum yatay yük ileri-pozitif çevrimde 29.67 kn ve karşılık gelen tepe deplasmanı 44.22 mm, geri-negatif çevrimde -37.88 kn ve karşılık gelen tepe deplasmanı -41.74 mm dir. İkinci deneyde (Pencere boşluklu düzlem dışı betonarme perde ile güçlendirilmiş çerçeve-oswmsw), ilk çatlaklar güçlendirme perdesinin temel ile birleştiği bölgelerde ve pencere kenarlarında meydana gelmiştir. Özellikle pencere köşelerinden başlayan çatlakların pencere altlarına doğru ilerlemesiyle pencerenin altındaki beton tabakası dökülmüştür. Deney sonuna yaklaşıldıkça kolon kiriş birleşim bölgesinde, temel ile güçlendirme perdesinin birleşim bölgesinde ve özellikle pencere altlarında büyük hasarlar meydana gelmiş ve deney sonlandırılmıştır. u deney numunesinde, RS numunesine göre çok daha fazla yatay yüke ulaşılmış, ancak, süneklik önemli ölçüde azalmıştır. Deney numunesinin maruz kaldığı maksimum yatay yük ileri-pozitif çevrimlerde 241.52 kn ve karşılık geldiği tepe deplasmanı 21.65 mm, geri-negatif çevrimlerde -244.21 kn ve karşılık geldiği tepe deplasmanı 32.57 mm dir. Üçüncü deneyde (Düzlem dışı iki betonarme perde ile güçlendirilmiş çerçeve-osw2p) ise, numunedeki ilk çatlaklar temel ile güçlendirme perdelerinin birleştiği yerlerde meydana gelmiştir. Deney sonuna doğru güçlendirme perdesi ile betonarme çerçeve ve temel arasındaki ankrajlarda sıyrılmalar oluşmuş ve düşey stabilite kaybolunca deney sonlandırılmıştır. u deneyde süneklik, OSWMSW numunesine göre ise artmıştır. Deney numunesinin maruz kaldığı maksimum yatay yük ileri-pozitif çevrimlerde 153.55 kn ve karşılık geldiği tepe deplasmanı 21.67 mm, geri-negatif çevrimlerde -.97 kn ve karşılık geldiği tepe deplasmanı 31.87 mm dir. u veriler ışığında tüm numuneler için oluşturulan, toplam yatay yük- tepe deplasmanı zarf eğrileri grafikleri, tüketilen enerji grafikleri ve rijitlik grafikleri Şekil 4 te aynı eksen takımı üzerinde, histerezis eğrileri ise Şekil 3 te verilmiştir. (a) (b) (c) Şekil 3. Deney numunelerinin histerezis eğrileri (a) RS (b) OSWMSW (c) OSW2P 7

(a) (b) (c) Şekil 4. Deney sonu grafikleri (a) Toplam yatay yük-tepe deplasmanı zarf eğrisi (b) Rijitlik (c) Tüketilen enerji Referans deney numunesinin dayanımı, güçlendirme ile büyük ölçüde artmıştır. una göre, dayanımı en fazla olan numune pencere boşluklu numune, dayanımı en az olan numune ise referans numunedir. Dayanımlardaki artış, yüzde olarak, referans numuneye (RS) göre OSWMSW numunesinde pozitif çevrimlerde % 716, negatif çevrimlerde % 545; OSW2P numunesinde ise pozitif çevrimlerde % 419, negatif çevrimlerde % 299 dır. yrıca en yüksek dayanıma sahip olan OSWMSW numunesi, OSW2P numunesinden pozitif çevrimlerde % 57, negatif çevrimlerde ise % 62 daha fazla dayanım göstermiştir. Yapılan güçlendirmelerin başlangıç rijitliğine etkisi incelendiğinde, ilk dayanım rijitliği küçükten büyüğe doğru sırasıyla; referans numune, 2 perdeli numune ve pencere boşluklu tam perdeli numune olarak belirlenmiştir. Çevrim rijitlikleri tüm numuneler için ilerleyen deplasmanlarda azalmakta ve yaklaşık 60 mm tepe deplasmanında birleşmektedir. Deney sonuçları enerji tüketimi bakımından değerlendirildiğinde ise, elde edilen enerji tüketim değerleri büyükten küçüğe doğru sırasıyla; pencere boşluklu tam perdeli numune, 2 perdeli numune, referans numune şeklinde tespit edilmiştir. 4. SONUÇLR u çalışmada, güçlendirme için yapılan perde duvarlar düzlem dışına yerleştirilerek, güçlendirme süresince yapıların boşaltılmasına gerek kalmaması ve ekonomik kayıpların en aza indirilmesi amaçlanmıştır. Çalışmadaki güçlendirme uygulaması ile güçlendirme elemanlarındaki pencere boşluklarının etkisi de incelenmiştir. Güçlendirme perdesinde bulunan boşluklar, dayanımda azalmaya sebep olmakla birlikte, referans numuneye perde duvar ilavesi ile referans numunenin deprem dayanımında, yanal rijitliğinde ve enerji yutma kapasitelerinde oldukça büyük artışlar gözlenmiştir. Sınırlı sayıdaki bu deneyler ışığında, elde edilen sonuçlara dayanılarak, düzlem dışı perde duvar ilavesi ile güçlendirme uygulamasının, dayanım, rijitlik ve enerji yutma kapasiteleri bakımından uygulanabilir bir seçenek olduğu düşünülmektedir. 8

KYNKLR TDY, (2007). ayındırlık ve İskan akanlığı, Deprem bölgelerinde yapılacak binalar hakkında yönetmelik 2007, TMMO İnşaat Mühendisleri Odası İzmir Şubesi, Yayın No: İMO/09/01, İzmir. Ünal,. (2010). TDY 2007 ye Göre Tasarlanmamış etonarme Çerçevelerin Düzlem Dışı Perde Duvarla Güçlendirilmesi. Yüksek Lisans Tezi, İnşaat Mühendisliği ölümü, Selçuk Üniversitesi, Konya. Unal,., Kaltakci, M. Y., alik, F. S., Korkmaz, H. H., ahadir, F., Korkmaz, S. Z., Kamanli, M. (2013). Strengthening of Reinforced Concrete Frames Not Designed ccording to TDY2007 With External Shear Walls. The 4th International Conference on Multi-Functional Materials and Structures, angkok, Thailand. 9