BETONUNUN ÇARPMA MUKAVEMETİ ÜZERİNE BASINÇ DAYANIMININ ETKİSİ

Benzer belgeler
BETONUN ÇARPMA MUKAVEMET N TESB

Şekil 1. Sarkaçlı darbe deney düzeneği

Elastisite modülü çerçevesi ve deneyi: σmaks

Basınç deneyi sonrası numunelerdeki uygun kırılma şekilleri:

BARTIN ÜNİVERSİTESİ MÜHENDİSLİK FAKÜLTESİ METALURJİ ve MALZEME MÜHENDİSLİĞİ BÖLÜMÜ METALİK MALZEMELERİN DARBE DENEY FÖYÜ. Arş. Gör.

İNŞAAT MALZEME BİLGİSİ

ÇELİK LİF KULLANIMININ YÜKSEK PERFORMANSLI BETONLARIN SÜNEKLİK ÖZELLİĞİNE ETKİSİ

BURSA TEKNİK ÜNİVERSİTESİ DOĞA BİLİMLERİ, MİMARLIK VE MÜHENDİSLİK FAKÜLTESİ MAKİNE MÜHENDİSLİĞİ BÖLÜMÜ 3 NOKTA EĞME DENEYİ FÖYÜ

Malzeme yavaşça artan yükler altında denendiği zaman, belirli bir sınır gerilmede dayanımı sona erip kopmaktadır.

ULUDAĞ ÜNİVERSİTESİ MÜHENDİSLİK FAKÜLTESİ MAKİNE MÜHENDİSLİĞİ BÖLÜMÜ

BASMA DENEYİ MALZEME MÜHENDİSLİĞİ BÖLÜMÜ. 1. Basma Deneyinin Amacı

TOKLUK VE KIRILMA. Doç.Dr.Salim ŞAHĠN

BURSA TEKNĠK ÜNĠVERSĠTESĠ DOĞA BĠLĠMLERĠ, MĠMARLIK VE MÜHENDĠSLĠK FAKÜLTESĠ MAKĠNE MÜHENDĠSLĠĞĠ BÖLÜMÜ

ÇELİK LİFLERİN TAZE BETON ÖZELLİKLERİNE ETKİSİ EFFECT OF STEEL FIBERS ON FRESH CONCRETE PROPERTIES

Çelik Tel ve Matris Dayanımlarının Betonların Kırılma Enerjisine Ortak Etkisi

Maksimum Agrega Tane Boyutu, Karot Narinliği ve Karot Çapının Beton Basınç Dayanımına Etkisi GİRİŞ

DARBE DENEYİ MALZEME MÜHENDİSLİĞİ BÖLÜMÜ. 1. Metalik Malzemelerin Darbe Deneyi

YAPI MALZEMELERİ DERS NOTLARI

Elazığ Ferrokrom Cürufunun Betonun Basınç Dayanımı ve Çarpma Enerjisi Üzerine Etkisi

BAŞKENT ÜNİVERSİTESİ MAKİNE MÜHENDİSLİĞİ BÖLÜMÜ MAK MAKİNE MÜHENDİSLİĞİ LABORATUVARI

T.C. BİLECİK ŞEYH EDEBALİ ÜNİVERSİTESİ MÜHENDİSLİK FAKÜLTESİ MAKİNE VE İMALAT MÜHENDİSLİĞİ BÖLÜMÜ MIM331 MÜHENDİSLİKTE DENEYSEL METODLAR DERSİ

MALZEMELERİN MEKANİK ÖZELLİKLERİ

Beton sınıfına göre tanımlanan hedef (amaç) basınç dayanımları (TS EN 206-1)

HAFİF VE NORMAL BETONDAN YAPILMIŞ ÇİFT KONSOL NUMUNELERİN BASINÇ GÖÇMESİNDE BOYUT ETKİSİ

Agreganın En Büyük Tane Boyutu ve Numune Boyutunun Betonun Karot Dayanımına Etkisi

MALZEME SEÇİMİ ve PRENSİPLERİ

BAŞKENT ÜNİVERSİTESİ MAKİNE MÜHENDİSLİĞİ BÖLÜMÜ MAK 402 MAKİNE MÜHENDİSLİĞİ LABORATUVARI DENEY 9B - BURULMA DENEYİ

ALIN KAYNAKLI LEVHASAL BAĞLANTILARIN EĞME TESTLERİ

MAKİNE ELEMANLARI DERS SLAYTLARI

Bazalt Lifli Donatının Yüksek Dayanımlı Betondaki Aderans Performansı

DENEY ADI: KÜKÜRT + (GRAFİT, FİLLER YA DA ATEŞ KİLİ) İLE YAPILAN BAŞLIKLAMA

MUKAVEMET DERSİ. (Temel Kavramlar) Prof. Dr. Berna KENDİRLİ

YAPI MALZEMESİ OLARAK BETON

KARADENİZ TEKNİK ÜNİVERSİTESİ MADEN MÜHENDİSLİĞİ BÖLÜMÜ KAYA MEKANİĞİ LABORATUVARI

METALURJİ VE MALZEME MÜH. LAB VE UYG. DERSİ FÖYÜ

Bartın Üniversitesi Mühendislik ve Teknoloji Bilimleri Dergisi

5/3/2017. Verilenler: a) TS EN standardından XF1 sınıfı donma-çözülme ve XA3 sınıfı zararlı kimyasallar etkisi için belirlenen kriterler:

Mühendislik Mimarlık Fakültesi Makine Mühendisliği Bölümü

Taze beton karışımının yapısına ve ıslaklık derecesine bağlı olarak betonun göstereceği farklı çökme şekilleri:

Bu deneyler, makine elemanlarının kalite kontrolü için çok önemlidir

İÇERİSİ BETON İLE DOLDURULMUŞ ÇELİK BORU YAPI ELEMANLARININ DAYANIMININ ARAŞTIRILMASI ÖZET

2. POTANSİYEL VE KİNETİK ENERJİ 2.1. CİSİMLERİN POTANSİYEL ENERJİSİ. Konumundan dolayı bir cismin sahip olduğu enerjiye Potansiyel Enerji denir.

beton karışım hesabı

BETONARME YAPI TASARIMI -KOLON ÖN BOYUTLANDIRILMASI-

YTÜ Mimarlık Fakültesi Statik-Mukavemet Ders Notları

BURSA TECHNICAL UNIVERSITY (BTU) Department of Mechanical Engineering

Çelik Lif ile Güçlendirilmiş Betonarme Kirişlerin Sonlu Eleman Yöntemiyle Modellenmesi

METALİK MALZEMELERİN DARBE DENEYİ 2. DENEYDE KULLANILAN MALZEMELER VE TEÇHİZATLAR

Betona Değişik Geometrik Formlarda Çelik Lif Eklenmesinin Basınç Dayanımına Etkisi

Prof. Dr. Cengiz DÜNDAR

YAPIDAKİ BETON DAYANIMININ STANDART KÜRDE SAKLANAN NUMUNELER YARDIMIYLA TAHMİNİ. Adnan ÖNER 1, Süleyman DİRER 1 adnan@kou.edu.tr, sdirer@engineer.

ENDİREKT (DOLAYLI) ÇEKME DAYANIMI (BRAZILIAN) DENEYİ

Kahramanmaras Sutcu Imam University Journal of Engineering Sciences

5/8/2018. Windsor Probe Penetrasyon Deneyi:

TAHRİBATLI MALZEME MUAYENESİ DENEYİ

Malzemenin Mekanik Özellikleri

Çelik Lif Katkılı Betonarme Kirişlerin Taşıma Gücünün Deneysel İncelenmesi

Yrd.Doç.Dr. Hüseyin YİĞİTER

ICS TÜRK STANDARDI TS EN /Nisan Ön söz

FZM 220. Malzeme Bilimine Giriş

YAPI MEKANİĞİ LABORATUVARI

BETONARME-I 3. Hafta. Onur ONAT Munzur Üniversitesi Mühendislik Fakültesi İnşaat Mühendisliği Bölümü, Tunceli

Yığma yapı elemanları ve bu elemanlardan temel taşıyıcı olan yığma duvarlar ve malzeme karakteristiklerinin araştırılması

MALZEME BİLİMİ. Mekanik Özellikler ve Davranışlar. Doç. Dr. Özkan ÖZDEMİR. (DERS NOTLARı) Bölüm 5.

7.3 ELASTĐK ZEMĐNE OTURAN PLAKLARIN DAVRANIŞI (BTÜ DE YAPILAN DENEYLER) BTÜ de Yapılan Deneyler

BURULMA DENEYİ 2. TANIMLAMALAR:

KARADENİZ TEKNİK ÜNİVERSİTESİ MADEN MÜHENDİSLİĞİ BÖLÜMÜ KAYA MEKANİĞİ LABORATUVARI

= σ ε = Elastiklik sınırı: Elastik şekil değişiminin görüldüğü en yüksek gerilme değerine denir.

Verilenler: a) TS EN standardından XF1 sınıfı donma-çözülme ve XA3 sınıfı zararlı kimyasallar etkisi için belirlenen kriterler:

FARKLI ÇAPMA ETKİLERİNE MARUZ KALMIŞ BETONARME KİRİŞLERİN DAVRANIŞININ BELİRLENMESİ

Makine Elemanları I. Yorulma Analizi. Prof. Dr. İrfan KAYMAZ. Erzurum Teknik Üniversitesi. Mühendislik Fakültesi Makine Mühendisliği Bölümü

ÇELİK LİFLİ BETONLARIN DARBE DİRENCİNE AGREGA MAKSİMUM BOYUTUNUN ETKİSİ

2/13/2018 MALZEMELERİN GRUPLANDIRILMASI

Effect of Glass Fiber Addition on the Compressive and Tensile Strength of Concrete

Mukavemet. Betonarme Yapılar. Giriş, Malzeme Mekanik Özellikleri. Dr. Haluk Sesigür İ.T.Ü. Mimarlık Fakültesi Yapı ve Deprem Mühendisliği

FL 3 DENEY 4 MALZEMELERDE ELASTĐSĐTE VE KAYMA ELASTĐSĐTE MODÜLLERĐNĐN EĞME VE BURULMA TESTLERĐ ĐLE BELĐRLENMESĐ 1. AMAÇ

BETONARME KESİT DAVRANIŞINDA EKSENEL YÜK, MALZEME MODELİ VE SARGI DONATISI ORANININ ETKİSİ

ÇELİK LİFLİ BETONUN DİREKT ÇEKME DAYANIMININ ÖLÇÜLMESİ ÜZERİNE DENEYSEL BİR ÇALIŞMA

TRAKYA ÜNĐVERSĐTESĐ MÜHENDĐSLĐK-MĐMARLIK FAKÜLTESĐ MAKĐNA MÜHENDĐSLĐĞĐ BÖLÜMÜ LABORATUAR RAPORU

BİR BİLİM ADAMININ ARDINDAN

Faz Malzeme Oranının Polimer Beton Özellikleri Üzerindeki Etkisinin Araştırılması

MUKAVEMET FATİH ALİBEYOĞLU

Statik ve Dinamik Yüklemelerde Hasar Oluşumu

DAYANIM İLE İLİŞKİLİ MALZEME ÖZELİKLERİ

İnşaat Mühendisleri İster yer üstünde olsun, ister yer altında olsun her türlü yapının(betonarme, çelik, ahşap ya da farklı malzemelerden üretilmiş)

Malzeme Bilimi Ve Labaratuvarı MEKANİK ÖZELLİKLER

BETONARME KİRİŞ ELEMANLARDA ÇELİK LİF KATKISININ TAŞIMA GÜCÜNE ETKİSİNİN DENEYSEL İNCELENMESİ

Pamukkale Üniversitesi Mühendislik Bilimleri Dergisi Pamukkale University Journal of Engineering Sciences

SÜLEYMAN DEMİREL ÜNİVERSİTESİ MÜHENDİSLİK FAKÜLTESİ İNŞAAT MÜHENDİSLİĞİ BÖLÜMÜ- YAPI MALZEMELERİ LABORATUARI. Kemal Tuşat YÜCEL

METALİK MALZEMELERİN ÇEKME DENEYİ

UÇUCU KÜLLÜ BETONLARIN DONMA-ÇÖZÜLME ETKİSİNDE MEKANİK ÖZELLİKLERİNİN ARAŞTIRILMASI. Necdet Sezer Kampüsü Gazlıgöl Yolu Afyon,

KARADENİZ TEKNİK ÜNİVERSİTESİ MADEN MÜHENDİSLİĞİ BÖLÜMÜ MADEN İŞLETME LABORATUVARI. ( Bahar Dönemi) BÖHME AŞINMA DENEYİ

MAKİNE ELEMANLARI LABORATUARI

Deneyin Amacı Çekme deneyinin incelenmesi ve metalik bir malzemeye ait çekme deneyinin yapılması.

T.C. BİLECİK ŞEYH EDEBALİ ÜNİVERSİTESİ MÜHENDİSLİK FAKÜLTESİ MAKİNE VE İMALAT MÜHENDİSLİĞİ BÖLÜMÜ MÜHENDİSLİKTE DENEYSEL METODLAR II DERSİ EĞME DENEYİ

YAPIDAKİ BETONUN KARAKTERİSTİK BASINÇ DAYANIMININ KAROT VERİLERİNE DAYANARAK BELİRLENMESİ

DÖKÜM MALZEMELRDE DARBE DENEYİ (Charpy ve Izod)

Shigley s Mechanical Engineering Design Richard G. Budynas and J. Keith Nisbett

BETONARME-I 5. Hafta KİRİŞLER. Onur ONAT Munzur Üniversitesi Mühendislik Fakültesi İnşaat Mühendisliği Bölümü, Tunceli


Transkript:

BETONUNUN ÇARPMA MUKAVEMETİ ÜZERİNE BASINÇ DAYANIMININ ETKİSİ Erdinç ARICI Fırat Üniversitesi, Teknik Eğitim Fakültesi, Yapı Eğitimi Bölümü, Elazığ, Türkiye Özet Bu çalışmada; betonun çarpma mukavemetine basınç dayanımının etkisi belirleyebilmek için Charpy metodu kullanılmıştır. Bu amaç doğrultusunda 100x100x500 mm. lik beton numunelerde kullanılabilecek boyutlarda charpy deney düzeneği hazırlanmıştır. Çarpma mukavemetinin belirlenmesi için yapılan deneylerde max. agrega çapı 8 mm. olan, farklı başlangıç çatlağı boyutuna ( relatif çentik boyu 0,2 ve 0,3 ) ve basınç dayanımına sahip üç seri numune hazırlanmıştır. Ayrıca serilerin basınç, yarma ve eğilme dayanımları belirlenebilmesi içinde numuneler dökülmüştür. Elde edilen deneysel verilerden çarpma dayanımında betonun basınç dayanımının etkisi incelenmiştir. Anahtar Kelimeler: Beton, Basınç dayanımı, Charpy metodu, çarpma dayanımı. EFFECT OF COMPRESSIVE STRENGTH ON IMPACT STRENGTH OF CONCRETE Abstract In this study, Charpy test method has used for determine to impact resistance of compressive strength of concrete. At direction of this objective, a Charpy test mechanism has prepared that it has got dimensions to use at 100x100x500mm concrete specimens. At carried out tests to determine of impact resistance, three series specimens has prepared that they has got three different compressive strength, max. aggregate size 8mm and two different notch lenghts (relative notch lenghts 0,2 and 0,3). Separately, specimens has prepared to determine to compressive strength, bending strength and engraving strenght. Effect of compressive strength of concrete is studied to impact resistance from finding experimental datas Keywords: Concrete, Compressive strength, Charpy method, impact resistance. 1

1. Giriş Betonun kalitesi genel olarak dayanımla ölçülmektedir. Beton dayanımı, üzerine gelen yüklerin neden olacağı şekil değiştirmelere ve kırılmaya karşı, betonun gösterebileceği maksimum direnme olarak tanımlanmaktadır[1]. Betonun üzerine değişik yönlerde uygulanan yükler, değişik etkilere sebep olabilmektedir. Betonun kullanılacağı yapının tasarımı yapılırken, betonun üzerine gelebilecek değişik türdeki yüklerin büyüklükleri göz önünde tutulmakta ve üretilecek betonun mekaniksel özelliklerinin bu yüklere karşı yeterli dayanımı göstereceği varsayılmalıdır. Üretilecek betondaki dayanım değerlerinin, tasarım hesaplarında kullanılmış olan değerlerden daha az olmaması gerekmektedir [2]. Betonların mekaniksel özellikleri, kırılma mekaniğinde ki gelişmeler sonucu daha net olarak açıklanabilmektedir. Bu gelişmelere parelel olarak farklı etkenlerin betonun kırılma parametrelerine etkisi incelenmiştir [3-4]. Betonun mekaniksel özelliklerinden biri olan çarpma dayanımının direk belirlenebilmesi için kesin bir metod belirtilmemiş, dolaylı yollardan veya farklı metodların modifiye edilmesi sonucu belirlemeye gidilmiştir [5]. Bir cismin belirli bir yükseklikten düşmesi veya bir kuvvetin birden bire uygulanmasıyla malzeme çarpma etkisine maruz kalmaktadır. Çarpma sonucu, gerilme çok kısa süre içerisinde artarak büyük değerlere ulaşır. Bu tür çarpma etkisinin meydana getirdiği gerilme altında eğer malzeme çarpma tesirlerine dayanıklı değilse kısa sürede deformasyona uğrar ve beklenilen fonksiyonu gösteremez. Çarpma olayında, malzeme dış kuvvetlerin yapmış olduğu bir işe maruz kalmaktadır. Malzemenin deformasyon işinin kırılma işi denilen kritik bir değere ulaşması halinde malzeme çarpma etkisiyle mukavemetini kaybederek kırılır [6]. Çarpma deneyleri, malzeme şekline ve cinsine bağlı olarak farklı şekillerde yapılabilmektedir. Bunlar; a- Hareketli Sarkaç Charpy [7-8] İzod [9-10] b- Düşen Top Düşme makinesinin farklı tipleri ise sabit yükseltideki düşüş veya değişken yükseltideki düşüş [11-12] c- Kesin bir yükseklikten düşürülen yapısal elemanlar [13] d- Patlayıcı Maddeler [11-12-14] dir. Beton ve betonarme elemanlar kullanım yerlerine bağlı olarak önemli ölçüde çarpma etkisi altında kalabilirler. Hava alanları, yollar, genel amaçlı döşeme kaplamaları, kazık ve palplanş başlıkları çarpma tesiri altında kalabilmektedir. Betonun yeterli çarpma dayanımına 2

sahip olmaması halinde bu gibi yapılar ve elemanlar işlevlerinin göremez hale gelirler veya faydalı ömürleri kısalır. Bir malzeme üzerinde çarpma etkisi, yüzeyine bir cismin belirli yükseklikten düşmesi yolu ile olacağı gibi aniden uygulanan kuvvetler şeklinde de olabilir. Çarpma sonucunda bir cisimde gerilmeler çok kısa sürede büyük değerlere ulaşabilmekte, gerilme ve deformasyonlar karmaşık, teorik irdelemesi ise zor hale gelebilmektedir. Bir cismin çarpma dayanımı, gerilme- birim deformasyon eğrisinin altındaki alan, yani tokluluğu ile yakından ilişkilidir. Bu alanın büyük olması cismin yüksek dayanımına sahip olması kadar, sünek olmasına da bağlıdır. Genelde kırılgan bir malzeme olan betonda dayanım normal değişmektedir [15]. agrega kullanılması halinde harç matrisine ve ara yüzeyinin kalitesine bağlı olarak Yükleme şekli esas alındığında malzemeyi kırmak iki yolla mümkündür. Birincisi, gerilme-şekil değiştirme diyagramlarının elde edilişinde yapıldığı gibi yükü yavaş yavaş arttırmak suretiyle kırmaktır ve kırılma işi şekil değiştirme eğrisinin altında kalan alanla ölçülür. İkincisi ise malzemeyi sarkaç şeklinde G ağırlığındaki bir tokmak vasıtasıyla kırmak veya başka bir cismi, mesela bir tokmağı hızla çarpmak suretiyle kırmaktır [15]. 2. Charpy Deney Metodu Malzemenin çarpma dayanımlarını belirlemek için çeşitli deney metotları uygulanmaktadır. Metallerde Charpy çentik darbe deneyi kullanılırken, yapı taşlarında bir ağırlığın belirli bir yükseklikten serbestçe numune üzerine düşürülmesi yöntemi uygulanır. Fakat betonlar için belli bir standart metot bulunmamaktadır. Darbe deneyinde, numunenin dinamik bir zorlama altında kırılması için gereken enerji miktarı tayin edilir. Bulunan değer, malzemenin darbe direnci (darbe mukavemeti) olarak tanımlanır. Şekil 1 de görülen Charpy düzeneğinde ağırlığı G olan sarkaç, h 0 yüksekliğine çıkarıldığında potansiyel enerji (G X h 0 ) mertebesindedir. Sarkaç bu yükseklikten serbest bırakıldığında, düşey bir düzlem içinde hareket ederek numuneyi kırar ve aksi istikamette h 1 yüksekliğine kadar çıkar. Böylece, numunenin kırılmasından sonra sarkaçta kalan potansiyel enerji (G x h 1 ) mertebesinde demektir. 3

Şekil 1. Şematik Olarak Çentik Darbe Deneyinin Gösterilmesi Sarkacın, numune ile temas haline geldiği andaki enerjisi ile numune kırıldıktan sonra sarkaçta kalan potansiyel enerji farkı, o numunenin kırılması için gereken enerjiyi başka bir deyimle, darbe direncini verir. Bu enerji aşağıdaki formülle de gösterilebilir: U = G(h 0 -h 1 ) = G.L. (cosβ cosα) (2.1) Deney esnasında sarkaç, daha önce tespit edilen potansiyel enerjiye sahip olabileceği bir yüksekliğe çıkarılır. Daha sonra numune, uygun bir şekilde yerleştirilir. Örneğin, en çok uygulanan Charpy deneyinde numune, mesnetlere tam yaslanacak şekilde ve çekicin salınım düzlemi ile çentiğin simetri düzlemi 0,5 mm içinde birbirine çakışacak şekilde yerleştirilir. Bu durum cihaza bağlı, yardımcı bir aletle sağlanabilir. Numune uygun şekilde yerleştirildikten sonra, okumaların yapıldığı kadranın göstergesi başlangıç durumuna getirilir ve sarkaç düzgün bir şekilde serbest bırakılır. Sonuç, deneyden sonra kadrandan okunur [16]. Tokmağın ilk ve son konumlarındaki potansiyel enerjileri arasındaki fark bulunur ve numune kesit alanından faydalanılarak çarpma mukavemeti belirlenir. Ç=U/A=(G(h 0 -h 1 ))/A (2.2) Charpy metodunun temeldeki ana fikir enerjinin korunumudur. Sarkaç belli bir yükseklikte (h 0 ) durgun halde iken potansiyel enerjisi maksimumdadır. Numuneye çarptığı anda kinetik enerji maksimum seviyeye ulaşmıştır. Numuneyi kırdığında enerjinin belli bir miktarı numunenin kırılma enerjisi olarak harcanır, geriye kalan enerji vasıtasıyla tokmak devam ederek h 1 seviyesine yükselir. Buradaki enerji kaybı bize çarpmadaki kırılma enerjisini verir. Kırılma enerjisinden faydalanarak çarpma mukavemeti belirlenir. Genel olarak çarpma dayanımı kg.m/cm² veya N.mm/mm 2 cinsinden ifade edilmektedir. 4

3. Deneysel Çalışma Betonuun çarpma dayanımına basınç dayanımının etkisinin belirlenmesi için yapılan deneylerde kullanılacak numunelerin karışım hesaplamaları TS 802 [17] esasları dikkate alınarak yapılmış ve Tablo 1 de bu değerler gösterilmiştir. Üçüncü seride karışıma akışkanlaştırıcı ilave edilmiştir. Numuneler max. agrega çapı 8 mm. olan, iki farklı başlangıç çatlağı boyutuna ( relatif çentik boyu (a) 0,2 ve 0,3 ) ve farklı basınç dayanımına sahip üç seri halinde hazırlanmıştır. 28 günlük numunelerden elde edilen basınç, eğilmede çekme ve yarma dayanımları Tablo 2 de gösterilmiştir. Çarpma dayanımlarının belirlenmesi için ise beton numune boyutlarına uygun olarak hazırlanan Charpy deney düzeneği kullanılmıştır. Bu düzenekte 100x100x500 mm. lik numunelerin kırılmadaki potansiyel enerji değerleri ve bu değerlerden faydalanılarak hesaplanan Çarpma dayanımı sonuçları Tablo 3 de serilere göre verilmiştir. Tablo 1. Karışım Hesaplamaları Malzeme (kg/m 3 ) Seri Su Çimento Kum Çakıl I 230 430 1100 500 II 210 395 890 820 III 195 395 915 843 Tablo 2. Serilerin Dayanımları (N/mm 2 ) Dayanım cinsi Seri I (Düşük dayanımlı) Seri II (Normal dayanımlı) Seri III (Yüksek dayanımlı) Basınç Dayanımı (N/mm 2 ) 13 28 38 Eğilmede Çekme Dayanımı (N/mm 2 ) 1,55 2,91 3,49 Yarma Dayanımı (N/mm 2 ) 1,53 2,88 3,26 Seriler Seri I Seri II Seri III Tablo 3. Serilerin Çarpma Dayanım Deney sonuçları Başlangıç Basınç Potansiyel Çarpma Çatlak Boyutu Dayanımı Enerji Dayanımı q (a) (σ) (U) (Ç) (mm) (N/mm 2 ) (N.mm) (N.mm/mm 2 ) (Ç/ σ) 20 39003 4,88 0,79 38 30 35351 5,05 0,82 20 32943 4,12 0,77 28 30 29291 4,18 0,79 20 21832 2,73 0,76 13 30 19346 2,76 0,77 5

Elde edilen verilerden görüleceği üzere, betonun basınç dayanımındaki artışla birlikte numunelerin kırılması için gerekli olan potansiyel enerji (U), betonun çarpma dayanımı (Ç) ve çarpma dayanımının basınç dayanımına oranı (q) değerleri artmıştır. Fakat seriler başlangıç çatlağı boyutuna (a) göre kendi içinde incelendiğinde; çatlak boyu büyük olan numunelerde kesit alanı azaldığından, Şekil 2 de görüldüğü gibi kırılması için daha az enerji gerekli olmuştur. Buna rağmen, Şekil 3 de gösterilen çarpma dayanımları ve q değerlerine (Şekil 4) bakıldığında kesit alanı ile ters orantılı olduğu görülmektedir. Şekil 2. Numuneleri Kırmada Gerekli Potansiyel Enerji Değerleri (U) Şekil 3. Numunelerin Çarpma Dayanım Değerleri (Ç) 6

Şekil 4. Numunelerin q ( Ç/σ ) Değerleri 4. Sonuç ve Öneriler Yapılan çalışmalar ve elde edilen deneysel veriler neticesinde aşağıdaki sonuçlara ulaşılmıştır. 1- Betonun basınç dayanımına bağlı olarak, eğilmede çekme ve yarma dayanımlarıda artmaktadır. Aynı şekilde basınç dayanımının artması çarpma mukavemetini de olumlu yönde etkilemektedir. 2- Başlangıç çatlak boyu arttıkça faydalı enkesit alanı azalmaktadır. Bunun sonucunda kırılma için gerekli olan enerji miktarıda azalmaktadır. Fakat çarpma dayanımı ters orantılı olarak artmaktadır. Bu olayın tam olarak yorumlanabilmesi için çarpma dayanımının boyut etkisi açısından incelenmesi daha uygun olacaktır. 3- Betonun çarpma dayanımı (Ç) ile basınç dayanımı (σ) arasındaki orana (q) baktığımızda bu değerler 0,77-0,82 arasında değişmektedir. Bu sonuçlar deneysel veriler açısından olumlu olmaktadır. 4- Çarpma mukavemeti teknolojik bir özellik olmasından dolayı deney sonuçlarını etkileyen bazı faktörler vardır. Bunlar; tokmak ağırlığı, kol boyu, düşme açısı, çarpma hızı ve mesnetlenmedir. 5- Charpy deneyinde numune ile tokmak arasında kırılma sonrası sürtünme v.b. sebeplerden dolayı enerji kayıpları meydana gelebilir. Deney sonuçlarının bu enerji kaybından minimum derecede etkilenmesi için numune genişliği ve mesnet aralığına bağlı olarak bir katsayı belirlenmelidir. Deneysel verilerin bu katsayı ile çarpımı sonucunda daha doğru sonuçlar alınabilir, böylece genel formülasyon olayına gidilebilir. 7

Kaynaklar [1] ACI-116.R-90, Cement and Concrete Terminology, ACI Manual of Concrete Practicle, Part I, Detroit, 1994. [2] Erdoğan, T. Y., Beton, Odtü, Ankara, 2003. [3] Alyamaç, K.E., İnce, R., Investigation of Effect of Curing Time on Fracture Parameters of Concrete, 8 th International Fracture Conference, 600-608, 2007. [4] Alyamaç, K.E., İnce, R., Determination of Relationship Between Moisture Rate and Fracture Parameters for Conventional Concrete, 8 th International Fracture Conference, 634-643, 2007. [5] Arıcı, E., Dursun, R., İnce, R., Determination of Impact Strength of Concrete, 8 th International Fracture Conference, 628-633, 2007. [6] Güner M. S., Süme, V., Yapı Malzemesi ve Beton, Aktif Yayınevi, Ankara, 2000. [7] Edgington, J., Hannant, D. J. and Williams, G. I. T., Steel fibre reinforced concrete, Building Research Establishment Current Paper, CP 69/74, July 1974. [8] Johnston, C. D., Steel fiber reinforced mortar and concrete: a review of mechanical properties, Fiber Reinforced Concrete, Publication SP-44, American Concrete Institute, Detroit, pp.127-142. 1974, [9] Krenchel, H. and Miller, A. Slagseghet, Metodstudie, Fibrobetong, Nordforsks projektkommitte for FRC material, De1rapporter, Nordforsks,Stockholm~Sub-Report R,R1- R15 [10] Skarendahl, A., Stalfiberbetongs slagseghet vid 1-och 2-dimensionell fiberorientering, Nordforsks projektkommitte for FRC mat., Delrapporter, Nordforsks, Stockholm, Sub-Report S, 1-10. [11] Verhagen, A. H., Impact testing of fibre reinforced concrete: reflection on possible test methods, Testing and Test Methods of Fibre Cement Composites, RILEM Symposium Edited by R. N. Swamy, The Construction Press Ltd., Hornby, pp. 99-105, 1978. TMMOB İnş. Müh. Od. 1996, 4. Ulusal Beton Kongresi, İstanbul. [12] Jamrozy, Z. and Swamy, R.N., Use of steel fibre reinforcement for impact resistance and machinery foundations, International Journal of Cement Composites,Vol.1,No.2, pp.65-75, 1979. 8

[13] Barb, S. and Hanson, D., Investigation of fiber reinforced breakwater armour units, Fiber Reinforced Concrete Publication SP-44, American Concrete Institute, Detroit, pp. 415-434, 1974. [14] U.S. Army Engineering Division, Fibrous reinforcements for Portland cement concrete, Technical Report No. 2-40, Ohio River, Corps of Engineers, Ohio River Division Laboratories, Cincinnati, Ohio 45227, May 1965. [15] Kocataşkın, F., Yapı Malzemesi Bilimi, Arı Kitabevi, İstanbul, 1969. [16] Anık, S., Metalik Malzemelerin Mekanik Deneyleri, Birsen Yayın Evi, İstanbul, 1999. [17] TS 802, Beton Karışım Hesapları, Türk Standartları Enstitüsü, Ankara, 1985. 9