DENEY 4: ALTERNATİF AKIM VE OSİLOSKOP

Benzer belgeler
DENEY-1 OSİLOSKOP KULLANIMI

ADIYAMAN ÜNĠVERSĠTESĠ MÜHENDĠSLĠK FAKÜLTESĠ ELEKTRĠK-ELEKTRONĠK MÜHENDĠSLĠĞĠ BÖLÜMÜ DEVRE ANALĠZĠ LABORATUVARI-II DENEY RAPORU

OSİLOSKOP KULLANIMINA AİT TEMEL BİLGİLER

EEM0304 SAYISAL ELEKTRONİK LABORATUVARI DENEY FÖYLERİ

6. Osiloskop. Periyodik ve periyodik olmayan elektriksel işaretlerin gözlenmesi ve ölçülmesini sağlayan elektronik bir cihazdır.

BAŞKENT ÜNİVERSİTESİ


OSİLOSKOP I. KULLANIM ALANI

SAKARYA ÜNİVERSİTESİ TEKNOLOJİ FAKÜLTESİ ELEKTRİK-ELEKTRONİK MÜHENDİSLİĞİ BÖLÜMÜ ELEKTRİK ELEKTRONİK MÜHENDİSLİĞİNE GİRİŞ LABORATUARI

AMASYA ÜNİVERSİTESİ TEKNOLOJİ FAKÜLTESİ ELEKTRİK-ELEKTRONİK MÜHENDİSLİĞİ BÖLÜMÜ

DENEY 14: SİNYAL ÜRETECİ VE OSİLOSKOP

YALOVA ÜNİVERSİTESİ MÜHENDİSLİK FAKÜLTESİ Enerji Sistemleri Mühendisliği Bölümü ESM 413 Enerji Sistemleri Laboratuvarı-I


6. DENEY Alternatif Akım Kaynağı ve Osiloskop Cihazlarının Kullanımı

DENEY FÖYÜ 4: Alternatif Akım ve Osiloskop

8.KISIM OSİLOSKOP-2 DC + AC ŞEKLİNDEKİ TOPLAM İŞARETLERİN ÖLÇÜMÜ

AMASYA ÜNİVERSİTESİ TEKNOLOJİ FAKÜLTESİ ELEKTRİK-ELEKTRONİK MÜHENDİSLİĞİ BÖLÜMÜ

Resim 7.1: Çift ışınlı osilâskobun ön panelinin görünümü. elektron merceği. hızlandırıcı elektrot. katot. elektron. merceği. hızlandırıcı elektrot

DENEY NO 6: OSİLOSKOP KULLANARAK GENLİK VE SIKLIK ÖLÇÜMÜ

OSİLOSKOBUN TANITILMASI VE BİR ALTERNATİF GERİLİM ŞEKLİNİN OSİLOSKOBDA İNCELENMESİ

1 - AC ve DC gerilimler, 2 - AC ve DC akımın dolaylı ölçümü, 3 - Periyot, frekans, ve faz ölçümü, 4- Yükselme zamanı ve düşme zamanı ölçme,

Öğr. Gör. Mustafa Şakar

SAYISAL ELEKTRONİK DERSİ LABORATUVARI DENEY FÖYLERİ

BMT104 ELEKTRONİK DEVRELER DERSİ LABORATUVAR UYGULAMALARI

kdeney NO:1 OSİLASKOP VE MULTİMETRE İLE ÖLÇME 1) Osiloskop ile Periyot, Frekans ve Gerlim Ölçme

BMM205 Elektrik Devreleri Laboratuvarı

ELEKTRİK-ELEKTRONİK MÜHENDİSLİĞİ ELEKTRİK DEVRELERİ II LABORATUVARI Deney Adı: Osiloskop Kullanımı

KMU MÜHENDİSLİK FAKÜLTESİ ELEKTRİK ELEKTRONİK MÜHENDİSLİĞİ ELETRONİK LABORATUVARI DENEY 1 OSİLOSKOP KULLANIMI

DENEYLERDE KULLANILACAK LABORATUVAR EKİPMANLARI

SAYISAL ELEKTRONİK DERSİ LABORATUVARI DENEY FÖYLERİ

SAKARYA ÜNİVERSİTESİ TEKNOLOJİ FAKÜLTESİ MAKİNA MÜHENDİSLİĞİ BÖLÜMÜ ELEKTRONİK DEVRELER LABORATUARI

FRANCK HERTZ DENEYİ (CIVA TÜPLÜ 1. BİLGİSAYAR ORTAMINDA SONUÇ ALMAK İÇİN; DENEYİN YAPILIŞI:

Deneyin amacı: Osiloskobu tanımak ve osiloskop yardımıyla bir elektriksel işaretin genlik, periyot ve frekansını ölçmesini öğrenmektir.

ELEKTRİK-ELEKTRONİK MÜHENDİSLİĞİ ELEKTRİK DEVRELERİ II LABORATUVARI Deney Adı: Osiloskop Kullanımı

Teknoloji Fakültesi El. El. Ölçme Laboratuvarı Deney Föyleri

BMT104 ELEKTRONİK DEVRELER DERSİ LABORATUVAR UYGULAMALARI

DEVRE TEORİSİ VE ÖLÇME LAB DENEY-6 FÖYÜ

EET-202 DEVRE ANALİZİ-II DENEY FÖYÜ OSİLOSKOP İLE PERİYOT, FREKANS VE GERİLİM ÖLÇME

DENEY 1 Osiloskop, Fonksiyon Jenartörü ve DC Güç Kaynağının Ġncelenmesi OSĠLOSKOP

MULTİMETRE. Şekil 1: Dijital Multimetre

Deney 32 de osiloskop AC ve DC gerilimleri ölçmek için kullanıldı. Osiloskop ayni zamanda dolaylı olarak frekansı ölçmek içinde kullanılabilir.

DENEY 5: RC DEVRESİNİN OSİLOSKOPLA GEÇİCİ REJİM ANALİZİ

OSİLOSKOP Genel Kavramlar

OSİLOSKOP Genel Kavramlar

KARADENİZ TEKNİK ÜNİVERSİTESİ Mühendislik Fakültesi Elektrik-Elektronik Mühendisliği Bölümü ELK222 TEMEL ELEKTRİK LABORATUARI-II

EET-202 DEVRE ANALİZİ-II DENEY FÖYÜ OSİLOSKOP İLE PERİYOT, FREKANS VE GERİLİM ÖLÇME

BÖLÜM I GİRİŞ (1.1) y(t) veya y(x) T veya λ. a t veya x. Şekil 1.1 Dalga. a genlik, T peryod (veya λ dalga boyu)

OSİLOSKOP KALİBRASYONU VE ALTERNATİF İŞARETLERİN GENLİK - FREKANS ÖLÇÜMÜ

DENEY NO:30 OSİLOSKOP KULLANIMI

OSiLOSKOP KULLANARAK GENLiK VE SIKLIK ÖLÇÜMÜ

Fatih Üniversitesi Elektrik ve Elektronik Mühendisliği Bölümü EEM 316 Haberleşme I LAB SINAVI DARBE GENLİK MODÜLASYONU (PWM)

DENEY 1: AC de Akım ve Gerilim Ölçme

ELEKTRİK DEVRELERİ LABORATUVARI DENEY FÖYÜ

DENEY 3 Ortalama ve Etkin Değer

T.C. NUH NACİ YAZGAN ÜNİVERSİTESİ MÜHENDİSLİK FAKÜLTESİ ELEKTRİK ELEKTRONİK MÜHENDİSLİĞİ ÖLÇME VE ANALİZ LABORATUVARI DERSİ DENEY FÖYÜ

ELEKTRONİK DEVRE ELEMANLARI

ALTERNATİF AKIMIN DENKLEMİ

ELEKTRİK DEVRELERİ-II LABORATUVARI DENEY FÖYÜ. : Osiloskop Kullanımı

DEVRE ANALİZİ I LABORATUVARI ELEKTRONİK DENEY VE ÖLÇÜM CİHAZLARININ TANITIMI

Alternatif Akım Devre Analizi

5. Elektriksel Büyüklüklerin Ölçülebilen Değerleri

DENEY-4 RL DEVRE ANALİZİ. Alternatif akım altında seri RL devresinin analizi ve deneysel olarak incelenmesi.

T.C. ADIYAMAN ÜNİVERSİTESİ MÜHENDİSLİK FAKÜLTESİ ELEKTRİK-ELEKTRONİK MÜHENDİSLİĞİ BÖLÜMÜ DEVRE ANALİZİ LABORATUVARI I DENEY FÖYLERİ

ARTOS7F1 ARIZA TESPİT CİHAZI VE PC OSİLOSKOP 7 FONKSİYON 1 CİHAZDA

ALTERNATİF AKIMIN TEMEL ESASLARI

ADIYAMAN ÜNĠVERSĠTESĠ MÜHENDĠSLĠK FAKÜLTESĠ ELEKTRĠK-ELEKTRONĠK MÜHENDĠSLĠĞĠ BÖLÜMÜ DEVRE ANALĠZĠ LABORATUVARI-II DENEY RAPORU

BMT104 ELEKTRONİK DEVRELER DERSİ LABORATUVAR UYGULAMALARI

1. Şekildeki devreyi benzetim programında kurunuz (sinyal kaynağı: 3Hz, sinüzoidal dalga: min -3V, max 3V, diyot:1n4001).

DENEY 7 DALGALI GERİLİM ÖLÇÜMLERİ - OSİLOSKOP

DENEY 6: SERİ/PARALEL RC DEVRELERİN AC ANALİZİ

ADIYAMAN ÜNİVERSİTESİ MÜHENDİSLİK FAKÜLTESİ ELEKTRİK-ELEKTRONİK MÜHENDİSLİĞİ BÖLÜMÜ DEVRE ANALİZİ LABORATUVARI-II DENEY RAPORU

Şekil 1: Diyot sembol ve görünüşleri

DENEY-2 ANİ DEĞER, ORTALAMA DEĞER VE ETKİN DEĞER

DOĞRU AKIM DA RC DEVRE ANALİZİ

13. ÜNİTE AKIM VE GERİLİM ÖLÇÜLMESİ

DENEY 9 OSİLOSKOP UYGULAMALARI

DY-45 OSĐLOSKOP KĐTĐ. Kullanma Kılavuzu

ELE 201L DEVRE ANALİZİ LABORATUVARI

DENEY NO : 4 DENEY ADI : Darbe Genişlik Demodülatörleri

Şekil 3-1 Ses ve PWM işaretleri arasındaki ilişki

DY-45 OSİLOSKOP V2.0 KİTİ

AC DEVRELERDE BOBİNLER

Bir devrede dolaşan elektrik miktarı gibi elektriksel ifadelerin büyüklüğünü bize görsel olarak veren bazı aletler kullanırız.

Şekil-1 Katot ışınları tüpü düzeneği

Alternatif Akım; Zaman içerisinde yönü ve şiddeti belli bir düzen içerisinde değişen akıma alternatif akım denir.

T.C HİTİT ÜNİVERSİTESİ ELEKTRİK-ELEKTRONİK MÜHENDİSLİĞİ ELEKTRONİK DEVRELER 1 LAB. DENEY FÖYÜ DENEY-1:DİYOT

A.Ü. GAMA MYO. Elektrik ve Enerji Bölümü ÖLÇME TEKNİĞİ 5. HAFTA

T.C. ERCİYES ÜNİVERSİTESİ MÜHENDİSLİK FAKÜLTESİ MEKATRONİK MÜHENDİSLİĞİ BÖLÜMÜ

BAŞKENT ÜNİVERSİTESİ MAKİNE MÜHENDİSLİĞİ BÖLÜMÜ MAK MAKİNE MÜHENDİSLİĞİ LABORATUVARI DENEY 4

EEM 202 DENEY 9 Ad&Soyad: No: RC DEVRELERİ-II DEĞİŞKEN BİR FREKANSTA RC DEVRELERİ (FİLTRELER)

Bu deneyde lab cihazlarının kullanımı için 4 uygulama yapılacaktır.

DENEY 1: DİYOT KARAKTERİSTİKLERİ

DENEY FÖYÜ 2: Doğru Akım ve Gerilimin Ölçülmesi

DENEY FÖYÜ 2: Doğru Akım ve Gerilimin Ölçülmesi

LABORATUVAR ALETLERİ SİSTEMİ DENEY SETİ ( Ön panel, Kontroller ve Göstergeler )

DENEY 11 PUT-SCR Güç Kontrolü

DENEY 1: DĠRENÇLERĠN SERĠ/PARALEL/KARIġIK BAĞLANMASI VE AKIM, GERĠLĠM ÖLÇÜLMESĠ

1.1. Deneyin Amacı: Temel yarı iletken elemanlardan, diyot ve zener diyotun tanımlanması, test edilmesi ve bazı karakteristiklerinin incelenmesi.

ADIYAMAN ÜNĠVERSĠTESĠ MÜHENDĠSLĠK FAKÜLTESĠ ELEKTRĠK-ELEKTRONĠK MÜHENDĠSLĠĞĠ BÖLÜMÜ DEVRE ANALĠZĠ LABORATUVARI-II DENEY RAPORU

ALTERNATİF AKIMIN DENKLEMİ

Transkript:

DENEY 4: ALTERNATİF AKIM VE OSİLOSKOP A. DENEYİN AMACI : Bu deneyde, osiloskopun çalışma prensibinin, tetikleme ve senkronizasyonun nasıl yapıldığının ve osiloskop yardımıyla çeşitli büyüklüklerin (genlik, faz farkı ve frekans gibi) nasıl ölçülebileceğinin anlaşılması amaçlanmıştır. B. KULLANILACAK ARAÇ VE MALZEMELER : - Osiloskop - Fonksiyon üreteci - Multimetre - DC Güç Kaynağı C. DENEY İLE İLGİLİ ÖN BİLGİ: Şekil 4.1 (a) da gösterilen zamana göre değişmeyen işaretler DC işaretler olarak isimlendirilmişti. Şekil 4.1 (b) de gösterilen zamana göre periyodik olarak değişen işaretler ise AC işaretler olarak isimlendirilir. Şekil 4.1 AC işaretlerin temel büyüklükleri ve arasındaki genel ilişkiler ise Tablo 4.1 de verilmiştir. Tablo 4.1

Osiloskop Nedir? İngilizce osscillation ve scope kelimelerinin birleşmesinden oluşan osiloskop, sinyallerin özelliklerini dalga formlarıyla birlikte görebilmemizi ve hesaplayabilmemizi sağlayan elektronik cihazdır. Osiloskop, elektronikte en çok kullanılan ölçü aletlerinden biridir. X ve Y kanallarına uygulanan iki işaret arasındaki bağıntıyı bir ekranda görüntüler. Bu işaretlerin periyodik fonksiyonlar olması durumunda ve özel şartlar altında ekranda duran şekiller elde edilir. Böylece iki fonksiyon arasındaki zaman bağıntısı duran bir şekil üzerinde rahatça izlenebilir. Kısaca osiloskop, elektriksel işaretlerin ani değerini ve zamanla değişimini gösteren alet olarak tanımlanabilir. Osiloskopun Yapısı Şekil 4.2 Osiloskobun İç Yapısı Katot ışınlı tüp osiloskopun en önemli ünitesi olup, görüntünün oluşmasını sağlar. Tüp üç ana kısımdan oluşur: 1. Elektron tabancası ve odaklama-hızlandırma elemanları 2. Düşey ve yatay saptırma levhaları 3. Elektron ışını çarpınca parlayan fosforlu bir ekrana sahip vakumlu muhafaza Katot ışınlı tüpün yapısı Şekil 4.2 de görülmektedir. Oksitli bir tabaka içeren katot, flaman tarafından ısıtılır. Bunun sonucunda katot yüzeyinden kopan elektronlar serbest duruma gelirler. Kontrol ızgarası, tüp içerisine yayılan elektron miktarını ayarlar. Daha sonra odaklama ve hızlandırma anotları elektronları odaklayarak ince bir demet haline getirip hızlandırırlar. Yüksek hızlı bu ince elektron demeti iki ayrı saptırma levhaları arasından geçer. Birinci saptırma levhaları elektron demetini düşey doğrultuda aşağı-yukarı saptırırlar. Düşey saptırmanın yönünü, saptırma levhalarına uygulanan gerilimin polaritesi belirler. Sapma miktarını ise, aynı gerilimin genliği belirler.

Elektron demeti daha sonra, yatay saptırma levhalarına uygulanan gerilimin polaritesine ve genliğine bağlı olarak sağa-sola saptırılır. Böylece, elektron demetinin fosforlu ekran üzerinde hangi noktaya düşeceği belirlenmiş olur. Fosforlu ekran üzerine düşen yüksek enerjili elektron demeti fosforun parlamasına neden olur. Görüntünün ekran üzerinde meydan gelmesi bu şekilde olur. Nikelden yapılmış ve silindirik yapıya sahip katodun ucu oksit tabakasıyla kaplanmıştır. Tungsten veya tungsten alaşımından yapılmış olan flaman, üzerinden akım geçirildiğinde katodu dolaylı olarak ısıtır ve elektronların katot yüzeyindeki oksit tabakadan ayrılarak serbest kalmalarına sebep olur. Serbest kalan bu elektronlar ekrana doğru değişik açı ve hızlarda harekete başlarlar. Şekil 4.3 Elektron demetinin ızgaralara uygun gerilimler uygulanarak hızlandırılması ve odaklanması Elektron akışını kontrol etmek ve biraz da odaklama yapmak amacıyla, katodun önündeki kontrol ızgarası kullanılmaktadır. Kontrol ızgarasından geçen elektronlara, katoda göre 400 V pozitif potansiyele sahip ön-hızlandırma anodu yardımıyla, tüpün ekranına doğru bir ilk hız verilir. Odaklama anodu ve hızlandırma anodu yardımıyla elektron demeti, Şekil 4.3 de görüldüğü gibi ince bir ışın haline getirilir ve hızlandırılır. İki levha arasından geçen elektron ışını Şekil 4.4 te görülmektedir. Üst levhanın potansiyeli alt levhaya göre daha pozitif olduğunda elektron ışını yukarı doğru, tersi olduğunda ise elektron demeti aşağı doğru sapar. Şekil 4.4 teki saptırma levhalarına dışarıdan uygulanan gerilim, düşey doğrultuda saptırılmış bir işaret oluşturacağından, bu levhalara düşey saptırma levhaları adı verilmektedir. Şekil 4.4

Saptırma miktarı aşağıdaki ifade ile verilir: Bu ifadede, λ: Saptırma levhasının uzunluğunu Va: Hızlandırma gerilimini L: Levhaların ortasından ekrana uzaklık Vd: Saptırma gerilimi d: Levhalar arası uzaklık Yatay saptırma levhaları ise elektron ışınını yatay olarak saptırmaya yaramaktadırlar. Buradaki mantık düşey saptırmada olduğu gibidir. Yatay saptırma levhaları, düşey saptırma levhalarına dik olarak yerleştirilmiştir. Düşey saptırma levhaları, ekrana yatay saptırma levhalarından daha uzak olduklarından, ölçülen işarette düşey duyarlılık yatay duyarlılıktan daha yüksektir. Şu an piyasada genel olarak iki tür osiloskop bulunmaktadır: 1. Katot ışın tüplü osiloskop (Cathode Ray Tube Oscilloscope-CRTO): Ac işareti göstermek için yapısında bulunan katot ışınlı tüp nedeniyle boyut olarak büyük yer kaplar ve ağırdır. Çalışma prensibi kısaca elektron demetinin saptırılarak ekran üzerine çarptırılması sonucu işareti göstermek şeklindedir. Bu klasik tip osiloskoplar yerlerini yavaş yavaş dijital osiloskoplara bırakmaktadır. 2. Dijital osiloskop: İşareti göstermek için dijital ekran kullandıklarından dolayı daha az yer kaplar ve hafiftir. Bazı şarjlı ve taşınabilir tipte olan dijital osiloskoplar özellikle sahada yapılan çalışmalar sırasında büyük avantaj sağlamaktadır. Ayrıca hafıza özelliği ve bir ara bağlantı kablosu ile işaret bilgilerini bilgisayara aktarma özellikleri gibi çok sayıda teknolojik avantajları vardır. Son zamanlarda, elde edilen işaret üzerinde çeşitli hesaplar yapılabilmesine olanak tanıyan yeni nesil osiloskoplar üretilmeye de başlanmıştır.

Şekil 4.5 Genel Bir Osiloskobun Görüntüsü ve Tuşların Fonksiyonu Problar Osiloskop çalıştırıldıktan sonra giriş sinyal kanalına bir prob takılır. Genellikle iki tür ölçme probu kullanılır. Bunlar sinyali zayıflatmayan X1 prob ile sinyali 10 defa zayıflatan X10 probtur. Bu ikinci tür prob ile çalışıyorken, probun ucunda 5 V luk bir gerilim varsa, bu gerilim osiloskoba 0,5 V olarak ulaşır. İşaretin büyüklüğü de ölçülecekse, bu durum göz önünde bulundurulmalıdır. Günümüzde bütün problarda BNC tipi konnektörler (fişler) kullanılmaktadır. Bu fişler yerlerine oturtulduktan sonra dış taraflarındaki hareketli kısım saat yönünde bir miktar çevrilerek kilitlenir. X10 veya X100 tipi bir prob kullanılmadan önce aşağıdaki şekilde kompanze (düzenleme) edilmelidir (Şekil 4.6). Şekil 4.6 Kompanze Prob, CH1 e takılır. Diğer ucu yandaki gibi osiloskop üzerindeki kare dalga üretecine bağlanır ve üzerindeki düğme X10 konumuna getirilir. CH1 tuşuna bir kere basıp çıkan menüden prob ayarı olarak X10 seçilir. AUTO tuşuna bastıktan kısa bir süre sonra ekranda kare dalga görülmelidir. Eğer kare dalga görünmezse, prob üzerindeki vidayla ayarlama yapılır. Aynı işlemler CH2 için tekrarlanır. Bu işlemden sonra hatasız bir ölçüm yapmak mümkündür. X1 tipi probların bu işleme ihtiyacı yoktur.

Osiloskopla Gerilim Ölçülmesi Ekrandaki sinyalin genliği düşey eksende ölçülür. Genlik, ilk önce ekran üzerindeki kareler cinsinden belirlenir. Daha sonra VOLTS/DIV giriş zayıflatıcısı komutatörünün üzerindeki sinyalin gösterdiği değer ile kare sayısı çarpılarak gerilimin gerçek değeri belirlenir. Eğer zayıflatıcılı ( X10 veya X100) bir prob kullanılıyorsa zayıflatma katsayısı da hesaba katılmalıdır. Osiloskobun hassasiyeti VOLTS/DIV komutatörünü saat yönünde çevirerek arttırılır. Osiloskopla Frekans Ölçülmesi Modern osiloskoplarda frekans yerine periyot ölçülmektedir. Periyot ölçümleri yatay eksende yapılır. Dalga şeklinin bir periyodunun X ekseni yönündeki uzunluğu kareler sayılarak belirlenir. Daha sonra TIMEBASE komutatörünün gösterdiği değer ile kare sayısı çarpılarak sinyalin periyodu belirlenir. Kullanılan prob (X1, X10 veya X100) zaman ölçümlerini etkilemez. Tetikleme (Trigger) Bu düzen, ekranda gösterilecek sinyal cihaza geldikten ve en azından belirli bir büyüklüğe eriştikten sonra testere dişinin başlatılmasını sağlar. Tetikleme ile testere dişinin gerçekten başlaması arasında belirli bir süre geçer. Bu nedenle, düşey saptırma plakalarına uygulanacak sinyal bir miktar geciktirilir. Yoksa ışın harekete başlamadan önce Y-plaka çiftine ulaşan sinyaller gösterilemezdi. İşaret düşey saptırma plakalarına uygulanmadan önce zaten bir kuvvetlendiriciden geçirildiğinden, gecikme burada gerçekleşir. Gecikme süresi -cihaz tipine göre- 200 ns ile 500 ns arasındadır. Dışarıdan Tetikleme Bazı durumlarda, elektron ışınının ekranı taramaya başlamasını içeriden (internal), yani ekranda gösterilen sinyale bağımlı olarak tetiklemek yerine, ölçülen sinyalle herhangi bir ilişkisi bulunan başka bir sinyal yardımıyla tetiklemek yararlı olur. Bunun için osiloskopta bu tetikleme sinyalinin uygulanabileceği bir external trigger girişinin bulunması gerekir. Bu giriş, osiloskoplarını ileri düzeyde kullanabilen kişiler açısından önemlidir. Temel Osiloskop Fonksiyonları 1. Dikey Pozisyon (vertical position) Bu düğme yardımıyla ekrandaki şekil aşağıya veya yukarıya doğru kaydırılabilir. Bu fonksiyon YSHIFT olarak da adlandırılır. 2. Yatay Pozisyon (horisontal position) Bu düğme ile ekrandaki şekil sağa veya sola doğru kaydırılabilir. Bu fonksiyon X-SHIFT olarak da adlandırılır.

3. Time/Div. (Time per Division) Zaman bazı da denen anahtartır. Bu düğme ile yatay saptırma plakaları için yavaş veya hızlı testere dişi sinyallerin üretilmesi sağlanır. Kademeler ekran bölümü başına saniyenin kesirleri cinsinden kalibre edilmiştir. Böylece bir sinyalin süresi ölçülebilir. Örneğin anahtar 50 μs/bölüm kademesinde bulunuyorsa ve gösterilen darbe 3 bölüm genişliğinde ise, darbenin süresi 150 μs dir. 4.Volts/Div. (Volts per division ) Gösterilecek sinyale uygun olarak osiloskobun giriş duyarlığının ayarlanması için kullanılan komütatördür. Aynı zamanda, bu anahtarın konumu ve ekrandaki sinyalin yüksekliğinden gerilim değeri de okunabilir. 5. Trigger Bu isim altında birkaç fonksiyon toplanmıştır. Auto: Testere dişinin kendiliğinden başlatılması. Intern: Testere dişinin ekranda gösterilen sinyalin kendisi tarafından tetiklenmesi. Extern: Testere dişinin osiloskoba dışarıdan uygulanan yabancı bir sinyalle tetiklenmesi. Level: İçeriden veya dışarıdan tetiklemede, tetikleme sinyalinin üretilebilmesi için tetikleyen sinyalin yükselmesi gereken seviye ayarı bu düğme ile yapılır. (+/-): Testere dişinin, iç veya dış tetikleme sinyalinin pozitif ya da negatif kenarı ile başlatılmasını sağlar. 6. Ext. Trigger Dış tetikleme sinyalinin bağlanması için priz. Tetikleme sinyalinin genellikle 1 V veya daha büyük olması istenir. 7. AC 0-DC Ölçülecek sinyal için giriş tipini seçer. AC: Sadece alternatif gerilimler ölçülebilir. Eğer alternatif gerilim bir doğru gerilimin üzerine binmişse, bu doğru gerilim osiloskobun içine alınmaz. 0: Giriş her türlü sinyale kapalıdır. Ekrandaki yatay çizgi bu durumda VERTICAL POSITION ile istenen yere getirilebilir. DC: Bu konumda doğru gerilimler ve alternatif gerilimler birlikte ölçülebilir. 8. Vertical Input veya Y-Input: Düşey giriş. 9. Horizontal Input veya X-Input: Yatay giriş

Osiloskop İle AC Sinyalin Vp-P, Vp, Zaman Ve Frekans Değerlerinin Ölçülmesi: Bir örnekle bu durumu inceleyelim. Örnek: AC sinüs sinyal, dikey eksende 6 karelik bir alan kaplamıştır. Volts/div. değeri 2V, time/div 2.5 ms ise AC sinyalinin Vp-p Vp, T ve f değerlerini bulunuz (Şekil-4.7). Şekil-4.7: AC ekran görüntüsü Çözüm : AC sinyalinin dikey eksende kapladığı kare sayısı A= 6 Volts/div. değeri B= 2 V volts/div. kademesi osiloskop ekranında gözüken her bir karenin dikey ekseninin kaç volta denk geldiğinin ifadesidir. Osiloskop ekranında gördüğümüz sinyalin dikey eksende kapladığı kare sayısını, volts/div. (her bir karenin dikey ekseninin voltaj değeri) ile çarpımı sonucunda Vp-p değerine ulaşırız. Vp-p=A B Vp-p= 6 2 = 12 Volt Vp-p ekranda gördüğümüz sinyalin maksimum noktası ile minimum noktası arasındaki gerilim değeridir. Vp ise sinyalin maksimum noktası ile ground seviyesi (ekranda 1 ile gösterilen yatay çizgi) arasındaki gerilim değeridir. Bu ise Vp-p değerinin yarısına eşittir. Vp= Vp-p /2 Vp= 12/2 = 6 Volt AC sinyalinin iki tepe noktası arasındaki kare sayısı C= 8 Time/div. değeri D= 2.5 ms time/div. kademesi osiloskop ekranında gözüken her bir karenin yatay ekseninin kaç saniyeye denk geldiğinin ifadesidir. Osiloskop ekranında gördüğümüz sinyali iki tepe noktası arasındaki kare sayısını, time/div. (her bir karenin yatay ekseninin saniye değeri) ile çarpımı sonucunda periyot (T) değerine ulaşırız. T=C D T= 8 2.5 10-3 = 20 10-3 saniye = 20 ms

Not-1: Bu işlemlerin hepsi dijital osiloskop ekranında görülebilir (bizim kullandığımız osiloskoplarda görülebilir). Ama analog osiloskoplarda görülemeyeceği için nasıl hesaplanacağı öğrenilmelidir. D. DENEY BASAMAKLARI: 1. Sinyal üretecinden 1V-2kHz lik sinüs biçimli bir ac voltajın üretilmesi: a) Sinyal üretecini açınız. Tuşlar ve düğmeler için hızlıca genel bir kontrol yapınız. b) Frekans ayarı: Öncelikle 2kHz için uygun frekans sahasını belirleyerek range tuşlarıyla saha seçimini yapınız. Daha sonra frekans ayar düğmesi ile 2kHz i hassas olarak ayarlayınız. c) Genlik ayarı: Osiloskobu açarak, netlik, parlaklık ve kalibrasyon ayarlarını kontrol ediniz. Sinyal üretecini osiloskobun CH1 kanalına bağlayınız. Kanal seçim anahtarının CH1 de bulunduğundan emin olunuz. CH1 in sıfır ayarını kontrol ediniz. 1V ayarlamak için yukarıda verilen Genlik=(kare sayısı)x(düşey çözünürlük değeri) formülünü göz önüne alınız. Bu formüle göre hangi düşey çözünürlük değerlerini kullanabileceğinizi düşününüz. Örneğin (1 kare)x(volts/div=1)=1v verir. Ancak daha hassas olarak (2 kare)x(volts/div=0.5)=1v durumunun daha uygun olacağının farkına varınız. O halde volt/div değerini 0.5 e ayarlayınız. Sinyal üretecindeki genlik (AMPLITUDE) ayar düğmesini kullanarak ekrandaki işaretin genliğinin tam 2 kare olmasını sağlayınız. d) Kontrol işlemi: Uygun volt/div ve time/div çözünürlükleri sağlayarak işaretin genliği ve frekansını ölçünüz. Sonuç başlangıçta istenen 1V-2kHz i sağlamalıdır. 2. Aşağıda verilen ac voltaj işaretlerini deneysel olarak üretiniz. Altlarına ürettiğiniz işareti çiziniz a) 0.5V-12kHz üçgen dalga:

b) 0.65V-1.4kHz kare dalga: c) 1.1V-500Hz sinüs dalgası: d) Bir kanalda 1V-1kHz sinüs dalgası ve diğer kanalda 1V-1kHz kare dalgayı üretiniz. Bu iki işareti osiloskopta toplatınız. (Bunun için her iki kanalın volt/div değerleri aynı olmalıdır): e) Bir kanalda 1V-5kHz üçgen dalga ve diğer kanalda 1V-1kHz kare dalgayı üretiniz. Bu iki işareti osiloskopta toplatınız (Bunun için her iki kanalın volt/div değerleri aynı olmalıdır):

f) 2.kanalda 1.5V-1.5kHz sinüs işaretini üretiniz. CH2 nin 9 nolu sinyal tersleyici tuşunu kullanarak, işarette nasıl bir değişim olduğunu gözleyiniz. Bu tuş CH2 deki işaret için nasıl bir matematiksel işlem sağlamaktadır? Tersi: E. DENEY İLE İLGİLİ ÇALIŞMA SORULARI: 1. Katot tüplü ve dijital osiloskoplarda ekran üzerinde görüntü nasıl oluşur? 2. Katot tüplü ve dijital osiloskopları kıyaslayarak birbirine göre olumlu ve olumsuz yönleri nelerdir?