Malzemelerin Mekanik Özellikleri

Benzer belgeler
BÖLÜM 8 MEKANİK TESTLER

Uçaklarda bolca, alüminyum alaşım ve karbonla güçlendirilmiş kompozit kullanılmaktadır.

MALZEME BİLGİSİ DERS 8 DR. FATİH AY. fatihay@fatihay.net

BÖLÜM 7 MEKANİK TESTLER

Malzemelerin Mekanik Özellikleri

FZM 220. Malzeme Bilimine Giriş

BÖLÜM 5 MALZEMELERİN MEKANİK ÖZELLİKLERİ


BASMA DENEYİ MALZEME MÜHENDİSLİĞİ BÖLÜMÜ. 1. Basma Deneyinin Amacı

FZM 220. Malzeme Bilimine Giriş

Mühendislik Mimarlık Fakültesi Makine Mühendisliği Bölümü

MALZEME BİLİMİ. Mekanik Özellikler ve Davranışlar. Doç. Dr. Özkan ÖZDEMİR. (DERS NOTLARı) Bölüm 5.

MEKANİK ÖZELLİKLER, SERTLİK (a) ( )

MALZEMELERİN MEKANİK ÖZELLİKLERİ

MALZEME ANA BİLİM DALI Malzeme Laboratuvarı Deney Föyü. Deneyin Adı: Malzemelerde Sertlik Deneyi. Deneyin Tarihi:

MAL 201 MEKANİK ÖZELLİKLER. Prof.Dr. Adnan DİKİCİOĞLU MART 2017

TAHRİBATLI MALZEME MUAYENESİ DENEYİ

Doç.Dr.Salim ŞAHİN SÜRÜNME

MAL 201 MEKANİK ÖZELLİKLER. Prof.Dr. Adnan DİKİCİOĞLU MART 2016

TOKLUK VE KIRILMA. Doç.Dr.Salim ŞAHĠN

METALİK MALZEMELERİN ÇEKME DENEYİ

Dislokasyon hareketi sonucu oluşan plastik deformasyon süreci kayma olarak adlandırılır.

Başlıca mekanik özellikler: Çekme/basma (tensile /compression) Sertlik (hardness) Darbe (impact) Kırılma (fracture) Yorulma (fatigue) Sürünme (creep)

MALZEMELERİN MEKANİK ÖZELLİKLERİ

Uygulanan dış yüklemelere karşı katı cisimlerin birim alanlarında sergiledikleri tepkiye «Gerilme» denir.

FZM 220. Malzeme Bilimine Giriş

ÇEKME DENEYİ (1) MALZEME MÜHENDİSLİĞİ BÖLÜMÜ 1. DENEYİN AMACI:

Sakarya Üniversitesi Teknoloji Fakültesi Makine Mühendisliği Bölümü. İmalat Müh. Deneysel Metotlar Dersi MAK 320. Çalışma 3: SERTLİK ÖLÇÜMÜ

ÇEKME DENEYİ 1. DENEYİN AMACI

PLASTİK ŞEKİLLENDİRME YÖNTEMLERİ

MMT407 Plastik Şekillendirme Yöntemleri

BA KENT ÜNİVERSİTESİ. Malzemeler genel olarak 4 ana sınıfa ayrılabilirler: 1. Metaller, 2. Seramikler, 3. Polimerler 4. Kompozitler.

Deneyin Amacı Çekme deneyinin incelenmesi ve metalik bir malzemeye ait çekme deneyinin yapılması.

METALURJİ VE MALZEME MÜH. LAB VE UYG. DERSİ FÖYÜ

Malzemelerin Mekanik Özellikleri

2. Amaç: Çekme testi yapılarak malzemenin elastiklik modülünün bulunması

MALZEME SEÇİMİ ve PRENSİPLERİ

PLASTİK ŞEKİL VERME (PŞV) Plastik Şekil Vermenin Temelleri: Başlangıç iş parçasının şekline bağlı olarak PŞV iki gruba ayrılır.

Malzeme Bilgisi ve Gemi Yapı Malzemeleri

Prof.Dr.İrfan AY. Arş.Gör.T.Kerem DEMİRCİOĞLU. Öğr. Murat BOZKURT. Balıkesir

ÇEKME DENEYĠ. ġekil 1. Düşük karbonlu yumuşak bir çeliğin çekme diyagramı.

MMT310 Malzemelerin Mekanik Davranışı 2 Mukavemet ve deformasyon özelliklerinin belirlenmesi - Basma ve sertlik deneyleri

BİLGİSAYAR DESTEKLİ TASARIM VE ANALİZ (ANSYS)

= σ ε = Elastiklik sınırı: Elastik şekil değişiminin görüldüğü en yüksek gerilme değerine denir.

T.C. GÜMÜŞHANE ÜNİVERSİTESİ. MÜHENDİSLİK ve DOĞA BİLİMLERİ FAKÜLTESİ MAKİNE MÜHENDİSLİĞİ BÖLÜMÜ MM 401 MAKİNE MÜHENDİSLİĞİ DENEYLER I

Malzemenin Mekanik Özellikleri

BARTIN ÜNİVERSİTESİ MÜHENDİSLİK FAKÜLTESİ METALURJİ VE MALZEME MÜHENDİSLİĞİ

OREN3002 STATİK VE MUKAVEMET ders notları

Bölüm 6. Tahribatlı Malzeme Muayenesi

DAYANIM İLE İLİŞKİLİ MALZEME ÖZELİKLERİ

ÇEKME DENEYİ. Şekil. a) Çekme Deneyi makinesi, b) Deney esnasında deney numunesinin aldığı şekiler

Bu deneyler, makine elemanlarının kalite kontrolü için çok önemlidir

T.C. KAHRAMANMARAŞ SÜTÇÜ İMAM ÜNİVERSİTESİ MAKİNE MÜHENDİSLİĞİ BÖLÜMÜ M-220 ÇEKME DENEYİ

SERTLİK DENEYİ MALZEME MÜHENDİSLİĞİ BÖLÜMÜ. 1. Sertlik Deneylerinin Amacı

BARTIN ÜNİVERSİTESİ MÜHENDİSLİK FAKÜLTESİ METALURJİ ve MALZEME MÜHENDİSLİĞİ BÖLÜMÜ METALİK MALZEMELERİN ÇEKME VE BASMA DENEY FÖYÜ

Mekanik Davranışın Temel Kavramları. Cisimlerin uygulanan dış kuvvetlere karşı gösterdiği tepkiye mekanik davranış denir.

Bir cismin içinde mevcut olan veya sonradan oluşan bir çatlağın, cisme uygulanan gerilmelerin etkisi altında, ilerleyerek cismi iki veya daha çok

MALZEME BİLGİSİ DERS 7 DR. FATİH AY. fatihay@fatihay.net

Kırılma nedir? Bir malzemenin yük altında iki veya daha fazla parçaya ayrılması demektir. Her malzemede kırılma karakteri aynı mıdır? Hayır.

MMT310 Malzemelerin Mekanik Davranışı Mukavemet ve deformasyon özelliklerinin belirlenmesi - Çekme Testi

İmal Usulleri. Fatih ALİBEYOĞLU -7-

MEKANİK TEST LABORATUVARI

MALZEMELERİN MUKAVEMETİNİ ARTIRICI İŞLEMLER

FZM 220. Malzeme Bilimine Giriş

Kaynaklı Birleştirmelere Uygulanan Tahribatlı Deneyler

DARBE DENEYİ MALZEME MÜHENDİSLİĞİ BÖLÜMÜ. 1. Metalik Malzemelerin Darbe Deneyi

MUKAVEMET SAKARYA ÜNİVERSİTESİ MAKİNE MÜHENDİSLİĞİ BÖLÜMÜ MAKİNE ELEMANLARI-I DERS NOTU

YAPI MALZEMELERİ DERS NOTLARI

MalzemelerinMekanik Özellikleri II

Sürünme ; Yüksek sıcaklıklara dayanıklı malzemelerde görülen hasar dır. Yük veya gerilme altında zamanla meydana gelen plastik deformasyona sürünme

İNŞAAT MALZEME BİLGİSİ

MMT310 Malzemelerin Mekanik Davranışı 1 Deformasyon ve kırılma mekanizmalarına giriş

Standart Çekme Testi

BARTIN ÜNİVERSİTESİ MÜHENDİSLİK FAKÜLTESİ METALURJİ ve MALZEME MÜHENDİSLİĞİ BÖLÜMÜ METALİK MALZEMELERİN DARBE DENEY FÖYÜ. Arş. Gör.

MALZEMELERİN MEKANİK ÖZELLİKLERİ ve MALZEME MUAYENESİ

Malzemelerin Deformasyonu

BARTIN ÜNĠVERSĠTESĠ MÜHENDĠSLĠK FAKÜLTESĠ METALURJĠ VE MALZEME MÜHENDĠSLĠĞĠ

BURULMA DENEYİ 2. TANIMLAMALAR:

MMT407 Plastik Şekillendirme Yöntemleri

MUKAVEMET DERSİ. (Temel Kavramlar) Prof. Dr. Berna KENDİRLİ

MMT310 Malzemelerin Mekanik Davranışı 3 Tokluk özelliklerinin belirlenmesi Kırılma Mekaniği

İLERİ YAPI MALZEMELERİ-1 MALZEMELERİN GENEL TANIMI

BAŞKENT ÜNİVERSİTESİ MAKİNE MÜHENDİSLİĞİ BÖLÜMÜ MAK 402 MAKİNE MÜHENDİSLİĞİ LABORATUVARI DENEY 9B - BURULMA DENEYİ

METALİK MALZEMELERİN GENEL KARAKTERİSTİKLERİ BAHAR 2010

Burma deneyinin çekme deneyi kadar geniş bir kullanım alanı yoktur ve çekme deneyi kadar standartlaştırılmamış bir deneydir. Uygulamada malzemelerin

PLASTİKLERİN MEKANİK ÖZELLİKLERİ Prof.Dr.Ayşegül AKDOĞAN EKER

MALZEME BİLGİSİ DERS 6 DR. FATİH AY.

MMT310 Malzemelerin Mekanik Davranışı Mukavemet ve deformasyon özelliklerinin belirlenmesi - Sürünme, eğme ve burma deneyleri

MMU 420 FINAL PROJESİ

BURSA TEKNİK ÜNİVERSİTESİ DOĞA BİLİMLERİ, MİMARLIK VE MÜHENDİSLİK FAKÜLTESİ MAKİNE MÜHENDİSLİĞİ BÖLÜMÜ 3 NOKTA EĞME DENEYİ FÖYÜ

SÜRÜNME DENEYİ MÜHENDİSLİK MEKANİĞİ DENEYLERİ ALİ AYDIN CAN

İmal Usulleri 1. Fatih ALİBEYOĞLU -2-

BAŞKENT ÜNİVERSİTESİ MAKİNA MÜHENDİSLİĞİ BÖLÜMÜ MAK 402 MAKİNA MÜHENDİSLİĞİ LABORATUVARI DENEY - 3 ÜÇ NOKTALI EĞİLME DENEYİ

(A) Çekme. (B) Basınç. (C) Dengesiz İki eksenli çekme. (D) Dengeli İki eksenli çekme. (E) Hidrostatik Basınç. (F) Kayma Gerilmesi.

KRİSTALLERİN PLASTİK DEFORMASYONU

YORULMA HASARLARI Y r o u r l u m a ne n dir i?

MUKAVEMET(8. Hafta) MALZEMENİN MEKANİK ÖZELLİKLERİ ÇEKME DENEYİ

BAŞKENT ÜNİVERSİTESİ MAKİNE MÜHENDİSLİĞİ BÖLÜMÜ MAK MAKİNE MÜHENDİSLİĞİ LABORATUVARI

MALZEMENİN MUAYENESİ

LABORATUAR DENEY ESASLARI VE KURALLARI

Transkript:

Malzemelerin Mekanik Özellikleri Mekanik tasarım ve imalat sırasında malzemelerin mekanik davranışlarının bilinmesi çok önemlidir. Başlıca mekanik özellikler: Çekme / basma (tensile /compression) Sertlik (hardness) Darbe (impact) Yorulma (fatigue) Sürünme (creep) 1

Çekme deneyi Malzemenin statik kuvvetler altında dayanımı ve mekanik özelliklerinin test edilmesinde kullanılır. Çekme deneyi 2

: Gerilme : Birim şekil değiştirme F A o l l o l l l o o Çekme deneyinden elde edilen F-L (kuvvet uzama) eğrisi F- L deki verilerinde elde edilen - (Gerilme-Birim uzama) eğrisi 3

Malzemenin plastik şekil değiştirmeye başladığı gerilme değerine akma dayanımı adı verilir. 1. Belirgin akma göstermeyen malzemeler 2. Belirgin akma gösteren malzemeler 0.2 Belirgin olmaması durumunda, akma dayanımı % 0.2 kalıcı pşd oluşturan gerilme değerine eşittir. p =0.002 = % 0.2 a. e Belirgin akma noktası 4

Elastik Bölge a Plastik Bölge a Boyun verme (necking) Homojen PŞD Heterojen PŞD Ç Akma noktası (akma dayanımı) x a = 0.2 Elastik sınır x x Çekme dayanımı (boyun verme başlangıcı) Kırılmakopma 0.002 uygulanan gerilme akma uygulanan gerilme akma dayan. elastik dayan. plastik elastik 5

Elastik Şekil Değişimi 6

Ç K 0.2 Plastik Bölge 0.002 7

Elastik Şekil Değişimi a 8

Elastik şekil değişimi Elastik bölgede Hook kanunu geçerlidir. Gerilme ile birim uzama lineer olarak değişir. Kuvvet kalkınca, elastik uzama ortadan kalkar. E, Elastiklik Modülü, lineer kısmın eğimine eşittir Malzemenin karakteristik özelliğidir (malzemeden malzemeye değişir) E büyüdükçe malzeme daha rijit hale gelir yani gerilme ile daha az şekil değişimi gösterir. Küçüldükçe daha elastik davranır. 9

Hook Kanunu Normal gerilme Kayma gerilmesi E = Normal gerilme = Birim şekil değişimi E = Elastiklik modülü G = Kayma gerilmesi = Kayma birim şekil değişimi G = kayma modülü 10

E ye etki eden parametreler: Kimyasal bileşim (Al ve çelikte farklı) Ortam sıcaklığından etkilenir. Doku (tekstür) Isıl işlemden etkilenmez. (Aynı çeliğin yumuşak hali ile sertleştirilmiş hali aynı E ye sahiptir). 11

Kimyasal kompozisyonun etkisi E, bir malzeme özelliğidir. E, kimyasal kompozisyondan etkilenir. Çelik Alüminyuma göre daha rijittir. 12

Sıcaklığın etkisi Sıcaklık arttıkça E, azalır. 13

Poisson Oranı x z y z (izotropik malzemelerde) Malzemelerin elastik özelliklerini belirleyen diğer bir parametredir. Çekme yönünde malzeme uzarken buna dik yönde kısalma gerçekleşir. Aradaki oran poisson oranı ile belirlenir. Metaller için 0.28 ile 0.32 arasında değişir. Genelde 0.3 tür (elastik ş.d.). 14

Plastik Şekil Değişimi 15

Malzemelerin dayanımını ifade eden Akma dayanımının üzerinde gerilmeler uygulanması durumunda plastik şekil değişimleri (kalıcı-geri dönüşsüz) (PŞD) başlar. a Bu noktada PŞD, dislokasyonlar kaymaya başlamasıyla meydana gelir. 16

PŞD de sıcaklık seviyelerine bağlı olarak farklı şekil değiştirme mekanizmaları mevcuttur. Bunlar; 1. Soğuk plastik şekil değiştirme, 2. Sıcak Plastik şekil değiştirme 3. Ilık Plastik şekil değiştirme Bu sıcaklık seviyeleri benzeş sıcaklık ile belirlenir. 17

Benzeş sıcaklık (homologous temperature): T B T T Ç E o o K K T E = Malzemenin erime sıcaklığı T Ç = Çalışma sıcaklığı 0 < T B < 0.25 Soğuk Şekil Değişimi 0.25 < T B < 0.5 Ilık Şekil değişimi 0.5 < T B < 1 Sıcak Şekil değişimi 18

Oda sıcaklığı; Fe, Cu, Al gibi bir çok metal için soğuk şekil değişim bölgesi iken Pb, Sn gibi düşük erime sıcaklığına sahip malzemeler için sıcak şekil değişim bölgesi olur. 19

Soğuk Şekil Değiştirme Soğuk şekil değişiminde iki tür şekil değiştirme mekanizması etkin olabilir. 1.Kayma 2.İkizleme PŞD, Kayma ile yani dislokasyonların kayarak hareket etmeleri ile gerçekleşir. Kaymanın zor olduğu durumlarda plastik şekil değişimi ikizleme (twinning) ile gerçekleşir. 20

Soğuk Şekil Değiştirme Ç K 0.2 Normal çekme deneyi soğuk Şekil Değiştirme alanında gerçekleştiği için aynı eğri elde edilir. 0.002 21

KAYMA: PEKLEŞME KAVRAMI Plastik deformasyon sırasında, dislokasyonlar kayma düzlemlerinde kayarak hareket ederler. Fakat bu sırada yeni dislokasyonlar meydana gelir ve yoğunlukları artar. Sayılarının artması ile birbirlerinin hareketini engellemeye veya başka engellere (boşluk, yer alan, ara yer, tane sınırı, çökelti, vs.) takılmaya başlarlar. Böylece hareketleri için daha yüksek gerilmeler gerekir. Bu durum deformasyon sertleşmesi veya PEKLEŞME (strain hardening-work hardening) olarak adlandırılır. 22

HOMOJEN PŞD BÖLGESİ - eğrisinin akma noktası ile tepe noktası (boyun verme) arasında kalan kısmıdır. Açıklama: PŞD de parça uzunluğu sürekli artar. Hacim sabit kalır ve uzunluktaki artış kesit alanında daralma ile dengelenir. Akma noktasından sonra tepe noktasına kadar malzeme pekleşir ve daha çok gerilme gerekir fakat pşd oldukça kesit küçülür böylece gerilme artar bu iki durum birbirini dengeler. 23

HETOROJEN PŞD BÖLGESİ - eğrisinin tepe noktası (boyun verme) ile kopma noktası arasında kalan kısmıdır. Açıklama: Tepe noktasından (çekme dayanımı) sonra plastik kararsızlık başlar. Kesit bir bölgede hızla daralmaya başlar ve malzeme boyun (neck) verir. Şekil değişimi için gereken kuvvet azalır. Bu nedenle eğri aşağı doğru döner. Belli bir noktada kopma gerçekleşir. 24

Akma noktasından sonra homojen PŞD. (pekleşme / kesit daralması dengesi) Boyun verme başlangıcı Max noktadan sonra heterojen PŞD.(dengenin bozulması) Ç 0.2 a Kırılma (kopma) 0.002 25

26

Çekme diyagramından elde edilen veriler E, Elastiklik modülü a, Akma dayanımı ç, Çekme dayanımı k, Kopma gerilmesi, Kopma uzaması, Kesit daralması ün, Üniform uzama Statik tokluk Rezilyans Ayrıca her hangi bir noktada Elastik şekil değişim miktarı Plastik şekil değişim miktarı, vs bulunabilir 27

Plastik deformasyon Ç ; Çekme dayanımı Elastik Sınır A noktası Elastik deformasyon A ; Akma dayanımı k ; Kopma gerilmesi Elastiklik modülü P E T (= E + P ) Kopma uzaması 28

Süneklik / Gevreklik / Tokluk / Rezilyans Süneklik: plastik şekil değiştirme kabiliyetini ifade eder. Bu değerin büyümesi, malzeme kopana kadar daha büyük plastik şekil değiştirme göstermesi anlamına gelir. Kopma uzaması ve alan daralması parametreleri ile ifade edilebilir. Gevreklik: Plastik şekil değiştirme kabiliyetinin olmaması durumunu ifade eder. Eğri bazen elastik sınırda bazen de elastik sınıra çok yakın bir noktada son bulur. Tokluk: Malzemenin kopana dek absorbe ettiği toplam enerjiyi ifade eder. - eğrisinin altında kalan alana eşittir. Sünek malzemelerin tokluğu gevrek malzemelere göre daha yüksektir. Rezilyans: Malzemenin elastik şekil değişimi sırasında depoladığı enerjidir. - eğrisinde elastik bölgenin altında kalan alana eşittir. 29

Süneklik Kopma uzaması; l k, eğriden de bulunabilir. lk l l o o l k = Kopma anında ölçü boyu l o = ilk ölçü boyu Kesit daralması: Ak, Eğriden bulunamaz. A A o A o k A o = İlk kesit alanı A k = Kopmadan sonra ölçülen kesit alanı 30

Statik Tokluk Tokluk malzeme kırılıncaya kadar harcadığı enerjiyi ifade eder - eğrisinin altında kalan alandır Tokluk d 31

Statik Tokluk Gevrek Orta süneklik Yüksek süneklik Malzemenin kırılana kadar ne kadar enerji yutacağının göstergesidir. Tokluk d 32

Rezilyans Rezilyans, - eğrisinde, elastik bölge altında kalan alandır. Elastik davranış sırasında depoladığı enerjiyi ifade eder. Yay çelik Rezilyans: U p e. d 0. e 2 e Basit karbonlu çelik 33

Gerçek Gerilme-birim şekil değiştirme Şu ana kadar hesaplamalarda başlangıç geometrik veriler kullanıldı. Bu şekilde hesaplanan veriler Mühendislik değerlerdir. Gerçekte plastik şekil değiştirme ile birlikte kesit alanı (hacmin sabit kalması ile) sürekli azalır. Bu şekilde elde edilen verilere Gerçek değerdir. Özellikle metal şekillendirme uygulamalarında gerçek değerler kullanılır. 34

Mühendislik birim uzama. l l o l l o l l l o o 1 l l o 1 Gerçek birim uzama. g g d g l l o dl l dl l ln ln( 1) l l o PŞD de Hacim sabit kalır. A o l o Al A A o l l o Mühendislik Gerilme. F A o Gerçek gerilme. g F A F A o l l o ( 1) 35

4 2 3 x x 4 x xx 1 x 2 3 1 Gerçek değerlere göre çizilen gerçek gerilme-birim uzama eğrisine Akma eğrisi (Flow curve) de denir. Elastik bölgede fark yoktur. Boyun vermeden sonra homojen olmayan şekil değişiminden dolayı uzama hesaplanamaz. Gerçek ve mühendislik - (Gerilme-Gerinme) eğrileri. 36

Akma Eğrileri Akma eğrileri: genelde Holloman bağıntısı ile ifade edilir. ln( ) g K g g n ln K nln K = Dayanım sabiti n = Pekleşme üsteli K ve n; malzeme sabitleri g n=0 n=0.15 n=0.4 g g g g g g 37

Doğrunun eğimi, n, pekleşme üstelini verir. n, pekleşme (deformasyon sertleşmesi) kabiliyetini gösterir. n arttıkça boyun verme zorlaşır, homojen şd. kabiliyeti artar. 0 < n < 0.4 arasında değerler alır. Bir çok mühendislik malzemede 0.15 < n < 0.25 Sıcak deformasyonda n 0 K, doğrudan malzemenin dayanımı hakkında bilgi verir. 38

Çekme diyagramı 1. Belrigin akma gösteren malzemelerin - diyagramları 2. Belirgin akma göstermeyen malzemeler - diyagramları Belirgin akma noktası 39

Belirgin akma gösteren malzemeler Çekme dayanımı Boyun verme Pekleşme Büzülme Luders bantlarının oluşumu Kırılma-kopma Şekil 6.10: Düşük karbonlu çelik belirgin akma noktası gösterir. Ayrıca 2 adet akma noktası tanımlanmıştır: (a)üst akma noktası, (b) Alt akma noktası. 40

Belirgin akma ve Cottrel atmosferi Bu olaya C, N gibi arayer atom kümelerinin dislokasyonların alt kısmına yerleşip hareketlerini kilitlemesinin sebep olduğu düşünülür. Bu arayer atom bulutuna Cottrell atmosferi adı verilir. C ve N den arındırılmış malzemeler belirgin akma göstermiyor. 41

Üst akma noktası mekanik olarak bu kilitlerin kırılmasını ifade eder. İlk akmanın meydana geldiği kayma bandının pekleşme ile kilitlenmesinden sonra diğer düzlemlerde akma meydana gelir. Bu olayın kesit boyunca devamı ile luders bantları oluşur. Bu olay tamamlanınca homojen şekil değişimi başlar. Üst akma noktası Akma uzaması Alt akma noktası Lüders bantlar Akmamış bölge 42

Deformasyon yaşlanması Normal malzemenin davranışı. A. Eğer deney x te durdurulup, beklenmeden devam ettirilirse, eğri kaldığı yerden devam eder. B. Eğer deney y de durdurulup 100-200 o C civarında ısıl aktivasyon uygulanırsa ve soğutulan malzemeye yeniden çekme uygulanırsa, belirgin akma noktası tekrar görülür. 43

44

Sıcak şekil değiştirme Şekil değişiminin sıcakta gerçekleşmesi ile ısıl aktivasyon mekanizmaları aktif hale gelir. Pekleşme olamaz: Kenar dislokasyonlarda tırmanma (climb) Vida dislokasyonlarında çapraz kayma (cross slip) Mekanizmaları aktif hale gelir ve dislokasyonlar engellerden kurtularak kaymaya devam ederler Dislokasyon yoğunluk artışı olmaz. Pozitif ve negatif kenar dislokasyonları üst üste dizilip tam düzlem haline gelir ve dislokasyon yoğunluğunu azalır. Tane sınırı kayması olur: Artan sıcaklıkla birlikte taneleri bir arada tutan kuvvet azalır. Difüzyon mekanizmasının etkinleşmesi ile taneler birbirleri üzerinde kayarlar. 45

(a) Dislokasyon tırmanması: artan atom arayer veya boşluklara yerleşebilir (b) Fazla atomların eklenmesi dislokasyon aşağı inebilir. Sıcaklığın artması ile; Elastiklik modülü azalır, Pekleşme etkisi azalır veya ortandan kalkar. 46

KAYMA: PEKLEŞME KAVRAMI Plastik deformasyon sırasında, dislokasyonlar kayma düzlemlerinde kayarak hareket ederler. Fakat bu sırada yeni dislokasyonlar meydana gelir ve yoğunlukları artar. Sayılarının artması ile birbirlerinin hareketini engellemeye veya başka engellere (boşluk, yer alan, ara yer, tane sınırı, çökelti, vs.) takılmaya başlarlar. Böylece hareketleri için daha yüksek gerilmeler gerekir. Bu durum deformasyon sertleşmesi veya PEKLEŞME (strain hardening-work hardening) olarak adlandırılır. 47

HOMOJEN PŞD BÖLGESİ - eğrisinin akma noktası ile tepe noktası (boyun verme) arasında kalan kısmıdır. Açıklama: PŞD de parça uzunluğu sürekli artar. Hacim sabit kalır ve uzunluktaki artış kesit alanında daralma ile dengelenir. Akma noktasından sonra tepe noktasına kadar malzeme pekleşir ve daha çok gerilme gerekir fakat pşd oldukça kesit küçülür böylece gerilme artar bu iki durum birbirini dengeler. 48

HETOROJEN PŞD BÖLGESİ - eğrisinin tepe noktası (boyun verme) ile kopma noktası arasında kalan kısmıdır. Açıklama: Tepe noktasından (çekme dayanımı) sonra plastik kararsızlık başlar. Kesit bir bölgede hızla daralmaya başlar ve malzeme boyun (neck) verir. Şekil değişimi için gereken kuvvet azalır. Bu nedenle eğri aşağı doğru döner. Belli bir noktada kopma gerçekleşir. 49

Akma noktasından sonra homojen PŞD. (pekleşme / kesit daralması dengesi) Boyun verme başlangıcı Max noktadan sonra heterojen PŞD.(dengenin bozulması) Ç 0.2 a Kırılma (kopma) 0.002 50

Sertlik Sertlik: Bir malzemenin yüzeyine batırılan sert bir cisme karşı gösterdiği dirençtir. Sertlik değerleri direk olarak malzemelerin dayanımları ile alakalı olduğu için büyük önem taşır. Sertlik deneyi; malzemelerin dayanımları ile ilgili bağıl değerler veren tahribatsız bir test yöntemidir. Sertlik ölçme yöntemleri: Batıcı ucun geometrisine ve uygulanan kuvvet büyüklüğüne göre: Brinell sertlik ölçme metodu Vickers sertlik ölçme metodu Rockwell sertlik ölçme metodu 51

Sertlik ölçme yöntemleri: Batıcı ucun geometrisine ve uygulanan kuvvet büyüklüğüne göre:(a) Brinell, (b)vickers, (c) Rockwell sertlik ölçüm metotları. 52

Brinell Yöntemi iz Standart test: 10mm çaplı sert bilye ve 3000kgf yük ile yüzeye bastırılır. Yüzeyde bıraktığı iz dikkate alınır: izin çapı ölçülür. Pratikte daha küçük yük/çap kombinasyonları mevcut. Yük: F(kgf) = A.D 2 (mm 2 ) A malzemenin türüne bağlıdır. 2.5mm bilye ile çelik ölçülüyorsa, 187.5 kgf, Al ölçülüyorsa 31.25kgf yük gerekir. 2F BSD D[ D D BSD = Brinell sertlik değeri D = Bilye çapı F = Uygulanan kuvvet d = izin çapı. Malzeme 2 A Demir / Çelik 30 Cu / Pirinç / Bronz 10 Al / Pb vb. 5 d 2 ] 53

Brinell Yüzeyin düzgün hazırlanması gerekir. Malzemeye göre değişen yük/çap oranları Sertleştirilmiş çelik bilye ile 400BSD ne kadar, sinterlenmiş karbür bilye ile 550BSD ne kadar ölçüm yapılabilir. Bu metot daha büyük sertliklere uygun değildir. Eğer bilye ezilmeye başlarsa yanlış ölçümler yapılır. 54

Vickers Batıcı uç tepe açısı 136 o olan elmas piramit yüzeye bastırılır. Yüzeyde bıraktığı iz dikkate alınır: Kare şeklindeki izin köşegenleri mikroskopla ölçülür. Sert veya yumuşak tüm malzemelere uygulanabilir. Kuvvet seçiminde malzeme kriteri yoktur. BSD değeri gibi çekme dayanımının tespitinde kullanılabilir. d ort d 1 d 2 2 1.854F VSD 2 d ort VSD= Birinell sertlik değeri F = Uygulanan kuvvet, kg d ort = izin köşegen ortalaması mm. 55

Rockwell metodu Batıcı uç olarak sertleştirilmiş çelik bilye veya elmas koni kullanılır. Ucun yüzeye battığı derinlik dikkate alınır. Malzemeye göre uç/yük kombinasyonu seçilmelidir. Plastik malzemelerin ölçümü de yapılabilir: bir çok skalası mevcuttur. C skalası; sert metaller için kullanılır: 150kgf yük ve tepe açısı 120 o olan elmas koni uç kullanılır. B; 100kgf yük ve 1/16 çapında sert bilye kullanılır. 56

57

Ölçüm yüzeyleri temiz olmalıdır. Deney parçası yeterli kalınlıkta olmalı, kenara yakın ölçümler yapılmamalı, birbirine yakın ölçümler yapılmamalı, en az 3 ölçüm yapılmalıdır. 58

Çentik/Darbe Çentik darbe deneyi, malzemeyi gevrek davranmaya iten şartlar altında malzemenin dinamik tokluğunu ölçmek için yapılır Normal şartlarda sünek malzeme Üç eksenli yükleme hali Düşük sıcaklıkta zorlama Kuvvetin ani uygulanması (darbe) durumlarında plastik şekil değişimine imkan bulamaz ve gevrek davranış gösterirler. Bu şartlardan biri veya bir kaçı gerçekleşmişse malzeme gevrek davranabilir. Bu amaç için Charpy (üç noktadan eğme) veya Izod (ankastre eğme) deneyleri mevcuttur. 59

Belli bir potansiyel enerjiye sahip kütle V-çentik açılmış numuneye çarptırılır. Numunenin kırılması için gereken enerji Darbe Enerjisi - E k saptanır. Ek mg ( h h') 60

Darbe enerjisine etki eden faktörler: a) Dayanım: a) Dayanım b) Kristal yapı, c) Sıcaklık d) Kimyasal bileşim Darbe deneyleri dinamik tokluğu belirlemektedir. Fakat statik toklukla (- grafiğinin altındaki alan) arasında ilişki vardır. Dayanımı yüksek malzemeler darbeye karşı direnci zayıf olurken düşük dayanımlı malzemelerin darbe dirençleri yüksek olabilir. 61

Kristal Yapı YMK; sünek ve tok, SDH; gevrek, HMK; bazı şartlarda gevrek bazılarında tok davranmaktadır. Belirli bir sıcaklık altında HMK tokluğunu yitirerek gevrek davranış göstermeye başlar. Bu sıcaklığa Sünek-gevrek geçiş sıcaklığı adı verilir (ductile-brittle transition temperature). 62

Kristal Yapı /Sıcaklık SDH HMK da ki bu düşüşün sebebinin arayer atomalarının düşük sıcaklıklarda, dislokasyon hareketlerini engellemesi olarak düşünülür. Nispeten yüksek sıcaklıklarda dislokasyonlar engellerden kurtulabildiği düşünülmekte ve bu yüzden darbe enerjisini arttığı varsayılmaktadır. 63

Sünek-gevrek geçiş Sıcaklığı Tg T @ E max 2 E min 64

Kompozisyon HMK da geçiş sıcaklığı, kimyasal bileşimden çok etkilenir. Örneğin, C artarsa Tg artar. Mn (ve Ni) artarsa Tg azalır. Düşük sıcaklıklarda yüksek tokluk için ideal alaşım elementleridir. 65

Kaynak: http://web.itu.edu.tr/~dikicioglu/webmal201/mal 201MekanikOzelliklerSurunme(4).pdf 66