MALZEME BİLİMİ VE MÜHENDİSLİĞİ. Malzeme Üretim Laboratuarı I Deney Föyü KOMPOZİT DENEYLERİ



Benzer belgeler
MALZEME MÜHENDİSLİĞİ VE BİLİMİ ANA BİLİM DALI Malzeme Proses Laboratuarı Deney Föyü KOMPOZİT DENEYLERİ

İÇERİK Kompozit malzemeler

İki malzeme orijinal malzemelerden elde edilemeyen bir özellik kombinasyonunu elde etmek için birleştirilerek kompozitler üretilir.

KOMPOZİTLER Sakarya Üniversitesi İnşaat Mühendisliği

Mühendislik Mimarlık Fakültesi Makine Mühendisliği Bölümü

BASMA DENEYİ MALZEME MÜHENDİSLİĞİ BÖLÜMÜ. 1. Basma Deneyinin Amacı

T.C. BİLECİK ŞEYH EDEBALİ ÜNİVERSİTESİ MÜHENDİSLİK FAKÜLTESİ MAKİNE VE İMALAT MÜHENDİSLİĞİ BÖLÜMÜ MIM331 MÜHENDİSLİKTE DENEYSEL METODLAR DERSİ

Şekil 1. Sarkaçlı darbe deney düzeneği

TOKLUK VE KIRILMA. Doç.Dr.Salim ŞAHĠN

BURSA TEKNİK ÜNİVERSİTESİ DOĞA BİLİMLERİ, MİMARLIK VE MÜHENDİSLİK FAKÜLTESİ MAKİNE MÜHENDİSLİĞİ BÖLÜMÜ 3 NOKTA EĞME DENEYİ FÖYÜ

Deneyin Amacı Çekme deneyinin incelenmesi ve metalik bir malzemeye ait çekme deneyinin yapılması.

KARADENİZ TEKNİK ÜNİVERSİTESİ MADEN MÜHENDİSLİĞİ BÖLÜMÜ MADEN İŞLETME LABORATUVARI

Kompozit Malzemeler. Polimer kompozit malzemeler reçine (Matrix) ve takviye (Reinforcement) bileşenlerinden oluşur.

MALZEME SEÇİMİNİN ÖNEMİ VE MÜHENDİSLİK MALZEMELERİ. Doç.Dr. Salim ŞAHİN

FZM 220. Malzeme Bilimine Giriş

TAHRİBATLI MALZEME MUAYENESİ DENEYİ

matris: a (Mo) (sünek) woven fibers cross section view fiber: g (Ni 3 Al) (kırılgan)

matris: a (Mo) (sünek) woven fibers cross section view fiber: g (Ni 3 Al) (kırılgan)

YAPI MALZEMELERİ DERS NOTLARI

Genel olarak bir kompozit malzeme, her iki bileşene ait özelliklerin birleşimiyle daha iyi özellikteki kombinasyonlarının elde edildiği çok fazlı bir

YILDIZ TEKNİK ÜNİVERSİTESİ

BURULMA DENEYİ 2. TANIMLAMALAR:

MMM 2011 Malzeme Bilgisi

ÇEKME DENEYİ 1. DENEYİN AMACI

100 TL/adet ISO TL/adet Metalik Malzemelerde. Standard Specification. 200 TL/adet 99. Elyaf takviyeli plâstik.

= σ ε = Elastiklik sınırı: Elastik şekil değişiminin görüldüğü en yüksek gerilme değerine denir.

BA KENT ÜNİVERSİTESİ. Malzemeler genel olarak 4 ana sınıfa ayrılabilirler: 1. Metaller, 2. Seramikler, 3. Polimerler 4. Kompozitler.

MMT113 Endüstriyel Malzemeler 11 Kompozit Malzemeler. Yrd. Doç. Dr. Ersoy Erişir Güz Yarıyılı

PLASTİK MALZEMELERİN İŞLENME TEKNİKLERİ

MALZEMELERİN GERİ KAZANIMI

Kompozit Malzemeler. Tanım:

Kompozit Malzemeler. Tanım:

KARBON ELYAF TAKVİYELİ POLİAMİT 6 KARMALARIN ISIL VE MEKANİK ÖZELLİKLERİNİN İNCELENMESİ

MALZEMELERİN MEKANİK ÖZELLİKLERİ

FZM 220. Malzeme Bilimine Giriş

Akreditasyon Sertifikası Eki. (Sayfa 1/7) Akreditasyon Kapsamı

Sürünme ; Yüksek sıcaklıklara dayanıklı malzemelerde görülen hasar dır. Yük veya gerilme altında zamanla meydana gelen plastik deformasyona sürünme

ÇEKME DENEYİ. Şekil. a) Çekme Deneyi makinesi, b) Deney esnasında deney numunesinin aldığı şekiler

DENEY ADI: KÜKÜRT + (GRAFİT, FİLLER YA DA ATEŞ KİLİ) İLE YAPILAN BAŞLIKLAMA

PLASTİK ŞEKİL VERME (PŞV) Plastik Şekil Vermenin Temelleri: Başlangıç iş parçasının şekline bağlı olarak PŞV iki gruba ayrılır.

PLASTİK ŞEKİLLENDİRME YÖNTEMLERİ

Malzeme yavaşça artan yükler altında denendiği zaman, belirli bir sınır gerilmede dayanımı sona erip kopmaktadır.


MALZEME BİLGİSİ DERS 8 DR. FATİH AY. fatihay@fatihay.net

SERAMİK MATRİSLİ KOMPOZİT MALZEMELER ve ÜRETİMİ

Burma deneyinin çekme deneyi kadar geniş bir kullanım alanı yoktur ve çekme deneyi kadar standartlaştırılmamış bir deneydir. Uygulamada malzemelerin

Kompozit Malzemeler Polimer Matrisli Kompozitler

ENDİREKT (DOLAYLI) ÇEKME DAYANIMI (BRAZILIAN) DENEYİ

KARADENİZ TEKNİK ÜNİVERSİTESİ MADEN MÜHENDİSLİĞİ BÖLÜMÜ MADEN İŞLETME LABORATUVARI. ( Bahar Dönemi) BÖHME AŞINMA DENEYİ

BİLGİSAYAR DESTEKLİ TASARIM VE ANALİZ (ANSYS)

2/13/2018 MALZEMELERİN GRUPLANDIRILMASI

KIRIK YÜZEYLERİN İNCELENMESİ

Basınç deneyi sonrası numunelerdeki uygun kırılma şekilleri:

BURSA TEKNĠK ÜNĠVERSĠTESĠ DOĞA BĠLĠMLERĠ, MĠMARLIK VE MÜHENDĠSLĠK FAKÜLTESĠ MAKĠNE MÜHENDĠSLĠĞĠ BÖLÜMÜ

BURULMA DENEYİ 2. TANIMLAMALAR:

BARTIN ÜNİVERSİTESİ MÜHENDİSLİK FAKÜLTESİ METALURJİ ve MALZEME MÜHENDİSLİĞİ BÖLÜMÜ METALİK MALZEMELERİN ÇEKME VE BASMA DENEY FÖYÜ

Malzeme Bilgisi ve Gemi Yapı Malzemeleri

MALZEME BİLİMİ (DERS NOTLARI)

BARTIN ÜNİVERSİTESİ MÜHENDİSLİK FAKÜLTESİ METALURJİ ve MALZEME MÜHENDİSLİĞİ BÖLÜMÜ METALİK MALZEMELERİN DARBE DENEY FÖYÜ. Arş. Gör.

MALZEME SEÇİMİ ve PRENSİPLERİ

Elastisite modülü çerçevesi ve deneyi: σmaks

Prof. Dr. HÜSEYİN UZUN KAYNAK KABİLİYETİ

METALURJİ VE MALZEME MÜH. LAB VE UYG. DERSİ FÖYÜ

MMT310 Malzemelerin Mekanik Davranışı 3 Tokluk özelliklerinin belirlenmesi Kırılma Mekaniği

İmalat Yöntemleri. Prof. Dr. Akgün ALSARAN

Ç l e i l k i l k e l r e e e Uyg u a l na n n n Yüz ü ey e y Ser Se tle l ş e t ş ir i me e İ şl ş e l m l r e i

ÇEKME DENEYĠ. ġekil 1. Düşük karbonlu yumuşak bir çeliğin çekme diyagramı.

METALİK MALZEMELERİN ÇEKME DENEYİ

İMALAT YÖNTEMİ SEÇİM DİYAGRAMLARI

İLERİ YAPI MALZEMELERİ DERS-6 KOMPOZİTLER

Sakarya Üniversitesi Teknoloji Fakültesi Makine Mühendisliği Bölümü. İmalat Müh. Deneysel Metotlar Dersi MAK 320. Çalışma 3: SERTLİK ÖLÇÜMÜ

ÇELİK YAPILAR (2+1) Yrd. Doç. Dr. Ali SARIBIYIK

MEKANİK TEST LABORATUVARI

ÜRETİM YÖNTEMLERİ (Devam)

Yoğun Düşük sürünme direnci Düşük/orta korozyon direnci. Elektrik ve termal iletken İyi mukavemet ve süneklik Yüksek tokluk Magnetik Metaller

2. Amaç: Çekme testi yapılarak malzemenin elastiklik modülünün bulunması

Akreditasyon Sertifikası Eki (Sayfa 1/7) Akreditasyon Kapsamı

Kırılma Hipotezleri. Makine Elemanları. Eşdeğer Gerilme ve Hasar (Kırılma ve Akma) Hipotezleri

T.C. KAHRAMANMARAŞ SÜTÇÜ İMAM ÜNİVERSİTESİ MAKİNE MÜHENDİSLİĞİ BÖLÜMÜ M-220 ÇEKME DENEYİ

DOKUMA BAZALT-CAM VE FINDIK KABUĞU TAKVİYELİ POLİMER KOMPOZİTLERİNİN EĞİLME DAYANIMI VE ISI GEÇİRGENLİKLERİNİN İNCELENMESİ

MALZEME BİLGİSİ DERS 6 DR. FATİH AY.

TEKNOLOJİNİN BİLİMSEL İLKELERİ. Bölüm-4 MALZEMELERDE ÇEKME-BASMA - KESME GERİLMELERİ VE YOUNG MODÜLÜ Malzemelerde Zorlanma ve Gerilme Şekilleri

Kompozit Malzemeler ve Mekaniği. Yrd.Doç.Dr. Akın Ataş

MALZEME BİLİMİ. Mekanik Özellikler ve Davranışlar. Doç. Dr. Özkan ÖZDEMİR. (DERS NOTLARı) Bölüm 5.

TERMOSET PLASTİK KALIPÇILIĞI DERSİ ÇALIŞMA SORULARI. a. Kırılganlık. b. Saydamlık. c. Elastikiyet. d. Mukavemet. b.

Beton; kum, çakıl, su, çimento ve diğer kimyasal katkı maddelerinden oluşan bir bileşimdir. Bu maddeler birbirleriyle uygun oranlarda karıştırıldığı

Malzeme Bilimi ve Malzemelerin Sınıflandırılması

İNŞAAT MALZEME BİLGİSİ

Plastik Şekil Verme

DARBE DENEYİ MALZEME MÜHENDİSLİĞİ BÖLÜMÜ. 1. Metalik Malzemelerin Darbe Deneyi

Kırılma nedir? Bir malzemenin yük altında iki veya daha fazla parçaya ayrılması demektir. Her malzemede kırılma karakteri aynı mıdır? Hayır.

Malzemenin Mekanik Özellikleri

Mukavemet 1. Fatih ALİBEYOĞLU. -Çalışma Soruları-

ALIN KAYNAKLI LEVHASAL BAĞLANTILARIN EĞME TESTLERİ

1 Tanıtım, ders içeriği, polimer işleme yöntemlerinin sınıflandırılması 2

Bir cismin içinde mevcut olan veya sonradan oluşan bir çatlağın, cisme uygulanan gerilmelerin etkisi altında, ilerleyerek cismi iki veya daha çok

TEKNİK ŞARTNAME ÇOCUK OYUN GRUBU

NOKTA YÜKLEME DAYANIM İNDEKSİ TAYİNİ. Bu deney, kayaların nokta yükleme dayanım indekslerinin tayinine ilişkin bir deneydir.

BARTIN ÜNĠVERSĠTESĠ MÜHENDĠSLĠK FAKÜLTESĠ METALURJĠ VE MALZEME MÜHENDĠSLĠĞĠ

Metalurji Mühendisliğine Giriş. Yrd. Doç. Dr. Rıdvan YAMANOĞLU

Transkript:

1. AMAÇ Bu deneyin amacı; plastik matrisli e-camı takviyeli düzlemsel kompozit plakanın çekme dayancı, eğme dayancı ve darbe dayancının saptanması ve kırılma analizinden hareketle delaminasyon (tabaka ayrılması), fibre pull-out (sıyrılma) problemlerinin görsel olarak izlenmesidir. 2. TEORİK BİLGİ Birbirinden farklı en az iki malzemenin aralarında bir ara yüzey oluşturarak, kimyasal bağ yapmaksızın oluşturdukları yeni malzeme grubuna kompozit denir. Çizelge 1. Kompozit malzemelerin matris, takviye ve oluşan yapı türüne göre gruplanması. Matris Malzemeleri Takviye Elemanları Kompozit Yapının Şekli Polimerler Lifler Tabakalar Metaller Granüler Kaplamalar Seramikler Whiskers Film-Folyo Pudra Bal peteği Yonga Filaman sarılmış yapılar 2.1. Kompozit Malzemelerin Matrislerine Göre Gruplandırılması Plastik Matrisli Kompozitler (PMCs): Günümüzde en yaygın olarak kullanılan kompozit türüdür. Tüm kompozitlerin içinde yaklaşık %80 kullanım oranına sahiptir. Sürekli veya süreksiz tarzda fiberlerle desteklenebildiği gibi partikül ile de takviyelendirilebilirler. Metal Matrisli Kompozitler (MMCs): Plastik matrisli kompozitlerinden sonra en çok kullanım alanına sahip gruptur. Genellikle partikül takviyeli olarak kullanılan metal matrisler aşınma dayanımı gerekiren yerlerde kullanılmaktadır. Ayrıca alüminyumdan üretilen bal peteği yapısı da bu grupta yer almaktadır. Seramik Matrisli Kompozitler (CMCs): Çok yaygın bir kullanılma sahip değillerdir. Diğer grupların aksine gevrek bir matrise sahiptir. Bu gruptaki kompozitler sünek liflerle takviye edilerek gevrek matrisin tokluğu arttırılmaktadır. 2.2. Plastik Matrisli Kompozitler Plastik matris sağladığı pek çok avantajla en çok kullanılan kompozit elemanıdır. Bu yüzden kompozitin özelliklerini öğrenmek için plastiğin tanımak önemlidir. Plastikler; karbon, hidrojen, oksijen, azot ve diğer organik ya da inorganik elementler ile oluşturduğu monomer adı verilen, basit yapıdaki molekülü gruplardaki bağın koparılarak, polimer adı verilen uzun ve zincirli bir yapıya dönüştürülmesi ile elde edilen malzemelerdir. Plastik matris genel olarak iki gruba ayrılır: A)Termoplastikler B)Termosetler

İçerdikleri takviyeye göre ise aşağıdaki gibi bir sınıflandırma yapılabilir: Plastik-Plastik Kompozitler Plastik-Metal Kompozitler Plastik-Seramik Kompozitler Plastik-Köpük Kompozitler 2.3. Plastik Matrisli Kompozitlerin Üretim Yöntemleri El yatırması metodu: Geniş yüzeyli CTP kalıplaması için en çok kullanılan metoddur. Kalıp ayırıcı uygulandıktan sonra jelkot uygulanır. Jelkot tabakasının sertleşmesinden sonra cam elyafı ve polyester fırça veya yün rulo ile uygulanır. Düşük sabit sermaye yatırımı gerektiren bir kalıplama yöntemi olan el yatırması ile %25-35 oranında cam elyafı ile takviyeli polyester ürün elde edilebilir. Emek-yoğun bir üretim metodu olduğundan kapasite, emek ve kalıp adedine bağlıdır. Bir kalıptan günde ortalama 2 ürün alınabilir. Püskürtme metodu: El yatırması metodunun daha seri olarak uygulanmasını sağlayan bir kalıplama metodudur. Üretim sırasında kalıp üzerine polyester ve cam elyafı özel bir makine yardımı ile püskürtülür. Püskürtme metodunda devamlı cam elyafından fitil, püskürtme işlemi sırasında 17-50 mm uzunluğunda kırpılarak kullanılır. Geniş yüzeyli ürünlerde seri üretim olanağı ve işçilikten tasarruf sağlar. Reçine enjeksiyonu: Bu üretim metodunda dişi ve erkek olmak üzere iki kalıp kullanılarak iki yüzü düzgün ürün elde edilir. Reçine enjeksiyonu için üretilmiş olan özel cam keçe

(devamlı keçe) kalıp üzerine yerleştirilir ve kalıplar kapatılır. Önceden hazırlanmış olan bir reçine enjeksiyon noktasından, basınç altında polyester, kalıp içine enjekte edilir. Reçine enjeksiyonu metodu ile daha seri ve ekonomik olarak el yatırmasına oranla daha kaliteli ürün elde edilir. SMC/BMC hazır kalıplama bileşimleri: Ürün boyutuna göre 3-6 dakikalık bir kalıplama süresi sağlayan hızlı, seri bir kalıplama metodudur. Önceden hazırlanmış, pestil veya hamur haldeki cam elyafı polyester dolgu ve katkı malzemeleri karışımının 150-170 C sıcaklıkta, 50-120 kgf/cm2 basınç altında çelik kalıplarda şekillendirilmesi metodudur.

Elyaf sarma metodu: Özellikle boru ve tank üretimi için kullanılan kalıplama metodudur. Devamlı cam elyafından fitillerin polyester banyosundan ıslatıldıktan sonra dönen bir kalıp üzerine belirli açılarda sarılması şeklindedir. Savurma döküm metodu: Boru, depo, direk gibi silindirik ürünlerin yapımında kullanılır. Döner bir kalıp içine cam elyafı ve polyester birlikte püskürtülür. Kalıbın dönmesinden meydana gelen merkezkaç kuvvet, laminatın kalıp yüzeyine yapışmasını ve her iki yüzü düzgün ürün elde edilmesini sağlar.

Profil çekme metodu (Pultruzyon): Devamlı cam elyafından fitillerin polyester banyosundan geçirildikten sonra istenilen profilde bir sıcak kalıp içinden çekilirken sertleştirilmesi prensibine dayanır. Elyaf takviyesi yönünde çok dayanıklı ve cam elyafı oranı çok yüksek profil ürünler elde edilir. Termoplastik enjeksiyon / ekstrüzyon metodu: Profil türü ürünlerin kalıplanmasında ekstrüzyon makineleri kullanılırken, karmaşık şekilli ürünlerin kalıplanmasında, enjeksiyon makineleri kullanılmaktadır. Benzer prensiple çalışan enjeksiyon ve ekstrüzyon makinelerinde; besleme haznesinden verilen granül halindeki reçine, ısıtma bölgesinde ısıtılarak akışkan hale getirilmekte ve burgu yivleri ile bir taraftan homojen karışım sağlanırken, diğer taraftan çıkış ucuna doğru taşınmaktadır.

Ekstrüderlerde, çıkış ucuna yerleştirilen, kalıp içinden basınç etkisi ve çekme aparatları yardımı ile kalıp şekline uygun şekilde profiller çekilirken, enjeksiyon makinelerinde, çıkış memesinin hemen yanında bulunan kapalı kalıp içine akışkan hale getirilmiş termoplastik reçine enjekte edilir ve kapalı kalıp içinde soğuması ve sertleşmesi sağlanır. 2.3. Cam Elyaf Üretimi Cam elyafı, silika, kolemanit, alüminyum oksit, soda, magnezyum oksit... gibi geleneksel cam üretim hammaddelerinden üretilmektedir. Hammadde bileşimi, çok ince öğütülerek, homojen bir karışım elde etmek üzere karıştırılır ve yaklaşık 1600 C sıcaklıkta çalışan bir ergitme fırınına beslenir. Fırın içinde, karışım yavaşça sıvı hale geçer. Prosese uygun olarak yerleştirilmiş bir sarma sistemi ile 50-70 m/sn gibi yüksek bir hız ile daha sonraki uygulama türüne bağlı olarak 5 ila 20 mikron çapında çekilen cam lifleri bir mandral üzerine sarılarak "kek" adı verilen bir bobin üzerinde toplanır. Cam lifleri, demet haline getirilmeden önce, bağlayıcı adı verilen bir kimyasal bileşim ile kaplanır. Bağlayıcı cinsi, kompozit malzeme içinde cam elyafının performansını etkileyen en önemli faktörlerden birisidir. Kompozitin mukavemeti, reçine-cam bağının kuvveti ile orantılıdır. Bu bağın kuvveti, kullanılan bağlayıcı içindeki bağlama gruplarının cinsine bağlıdır. Bağlayıcı, "film oluşturucu", "bağlama grupları", "antistatik katkı", "plastifiyan" "lübrikant" adı verilen malzemelerin karışımından oluşmaktadır.

3. KULLANILAN STANDARTLAR TS EN ISO 527-4: Plâstikler Çekme özelliklerinin tayini Bölüm 4: İzotropik ve ortotropik elyaf takviyeli plâstik kompozitler için deney şartları, TS EN ISO 14125: Plastik kompozitler - elyaf takviyeli eğilme özelliklerinin tayini, TS EN ISO 179-1: Plastikler Charpy darbe özelliklerinin tayini-bölüm 1: Ölçü aletsiz darbe deneyi. 4. KULLANILAN CİHAZLAR VE MATERYALLER Deney standartlarına uygun fiber takviyeli plastik numuneler, Dijital kumpas, Çekme/eğme cihazı, Üç noktalı eğme aparatı, Çekme numunesi pimleri, Darbe cihazı. 5. DENEYİN YAPILIŞI 5.1. Çekme Deneyi: Kompozitlerin çekme deneyi tek eksenli olarak çekme dayancının saptanması amacıyla yapılır. Matris termoset plastik olduğundan gevrek tutum gösterir. E- camı fiberler zaten doğal olarak gevrek malzeme olduğundan kırılma gevrek kırılma biçiminde oluşur. Bu nedenle kopma uzamasından söz etmek anlamsız olur. Çekme deneyinin şematik resmi Şekil 1 de verilmiştir. Şekil 1. Çekme deneyinin yapılışı Çekme deneyi sonucu yük(kg)-uzama(mm) eğrisi elde edilir. Fakat bu değerler, kullanılan numunenin boyutlarına göre farklılık gösterdiğinden mühendislik açısından anlamlı değerler değildir. Bu yüzden yük, numune alanına bölünerek gerilme (σ) ve uzama, ilk boya bölünerek

gerilme bir diğer deyişle birim şekil değiştirme (ε) değerleri kullanılmalıdır. Gerilme-gerinim eğrisi mühendislik açısından önem taşır, plastik davranışın başladığını belirtir. Mühendislik dizaynı ve hesaplarında kullanılır. Genellikle sünek malzemelerin adlandırılmasında kullanılır. 5.2. Eğme Deneyi: Genelde gevrek malzemelerin eğme dayancının belirlenmesinde kullanılır. Cam, seramik ve kompozitlerin önemli deney grubudur. Kompozitlerin eğme deneyi 3 ve 4 noktalı eğme olarak yapılır. 5.3. Darbe Deneyi: Darbe deneyi farklı sıcaklıklarda yada farklı kompozisyonlardaki malzemenin kırılma davranışlarını saptamaya yarayan tek darbeli deneydir. Sünek

malzemelerde çatlak ilerlemesinin kontrolü için çentikli numune kullanıldığından çentik darbe deneyi olarak adlandırılır. Cam seramik dökme demir kompozit gibi malzemeler gevrek tutum gösterdiğinden doğrudan darbe dayancı yapılır. Bu nedenle kompozitlerin darbe dayancı terimi kullanılacaktır. 6. SONUÇLARIN ALINMASI Çekme deneyi sonunda maksimum kopma yükü cihaz üzerindeki göstergeden Kilopond (kp) cinsinden okunur. Çekme dayanımının bulunması için kp cinsinden okunan bu diğer 9,81 ile çarpılarak Newton (N) a çevrilir. Önceden kumpas ile ölçülen numune boyutlarından (mm cinsinden genişlik ve kalınlık) numunenin kesit alanı (mm2) hesaplanır. N cinsindeki maksimum yükün, numune kesit alanına bölümü ile MPa cinsinden maksimum çekme dayancı değeri (Fmax) hesaplanır. Eğme deneyinde deformasyonun gerçekleştiği maksimum eğem yükü kp cinsinden cihaz üzerindeki göstergeden okunur. Bu değer N a çevrilir. Önceden kumpas ile mm cinsinden ölçülen numune boyutlarından da faydalanarak eğme dayancı formülünde değerler yerine konarak numunenin maksimum eğme dayancı hesaplanır.

Darbe dayancı hesaplama deneyinde yine önceden boyutları kumpas ile belirlenen numune kullanılır. Numune Charpy konumunda yerleştirildikten sonra sürtünmesiz düşen çekiç etkisiyle numunenin kırılması ve bu esnada absorbladığı enerjiyi cihaz üzerindeki göstergeden okunması gözlemlenir. J cinsinden okunan absorblanan enerjinin mm2 cinsinden hesaplanan numunenin kesit alanına bölünmesiyle darbe dayancı bulunur. Çekme Deneyi: S = a. b = mm R = F S (MPa) Eğme Dayancı: σ ğ = 3. F. L 2. a. b (MPa) Darbe Dayancı: DD = I J A mm 8. SONUÇ Kompozit numunelere uygulanan mekanik deneyler sonucu numunelerin maksimum çekme dayancı, eğme dayancı ve darbe dayancı değerleri bulunur. Deneyler sonucu numunelerde kırık analizleri yapılır. Numune kırık kesitlerinde yapılan incelemeler sonucu kompozitlerin temel hasar sebeplerinden fiber sıyrılması (fiber pull-out) ve delaminasyon problemleri gözlenir.