A- Tristörler : 1- Tristörün yapısı ve özellikleri : a-yapısı :



Benzer belgeler
SİLİKON KONTROLLÜ ANAHTAR SİLİCON CONTROLLED RECTETİER ( SCR )

****** GÜÇ ELEKTRONİK DERS NOTLARI / 2006 ******

GÜÇ ELEKTRONİĞİ TEMEL KONTROLLÜ GÜÇ ELEMANLARI YRD.DOÇ. MUHAMMED GARİP

A.Ü. GAMA MYO. Elektrik ve Enerji Bölümü GÜÇ ELEKTRONİĞİ 3. HAFTA

1) Standart tristör: Ağır sanayi cihazlarında AC ve DC de Hz,4000V,1000A

GÜÇ ELEKTRONİĞİ EĞİTİM SETİ DENEY KİTABI. KONU: SCR li Kontrol Devresi

2- Tristör ile yük akımı değiştirilerek ayarlı yükkontrolü yapılabilir.

GÜÇ ELEKTRONİĞİ EĞİTİM SETİ DENEY KİTABI KONU: PNPN DİYOT

T.C. MARMARA ÜNİVERSİTESİ TEKNOLOJİ FAKÜLTESİ MEKATRONİK MÜHENDİSLİĞİ BÖLÜMÜ

AC-DC Dönüştürücülerin Genel Özellikleri

TRİSTÖRÜN YAPISI VE ÖZELLİKLERİ

ÜNİTE 5 KLASİK SORU VE CEVAPLARI (TEMEL ELEKTRONİK) Transformatörün tanımını yapınız. Alternatif akımın frekansını değiştirmeden, gerilimini

DENEY 2: DĠYOTLU KIRPICI, KENETLEME VE DOĞRULTMA DEVRELERĠ

EEME 210 ELEKTRONİK LABORATUARI

DENEY 12 SCR ile İki yönlü DC Motor Kontrolü

AA Motorlarında Yol Verme, Motor Seçimi Yrd. Doç. Dr. Aytaç Gören

Makine Mühendisliği İçin Elektrik-Elektronik Bilgisi. Ders Notu-5 AKTİF DEVRE ELEMANLARI Hazırlayan: Yrd. Doç. Dr. Ahmet DUMLU

1. Güç Elektroniğinin Kapsamı ve Uygulamaları. 2. Önemli Yarı İletken Güç Elemanları. 3. AC-DC Dönüştürücüler / Doğrultucular

DENEY 2: DİYOTLU KIRPICI, KENETLEME VE DOĞRULTMA DEVRELERİ

Şekil-1. Doğru ve Alternatif Akım dalga şekilleri

DENEY 1 DİYOT KARAKTERİSTİKLERİ

ANKARA ÜNİVERSİTESİ GAMA MESLEK YÜKSEKOULU

Elektromekanik Kumanda Sistemleri / Ders Notları

Tristörün (SCR) Kontrol Dışı İletime Geçmesi

Elektrik. Alternatif Akım Motorlarının Kumanda Teknikleri Kumanda Elemanları

ÜÇ FAZLI KONTROLLÜ DOĞRULTUCU VE DİMMER DEVRE UYGULAMASI

Elektronik-I Laboratuvarı 1. Deney Raporu. Figure 1: Diyot

Multivibratörler. Monastable (Tek Kararlı) Multivibratör

T.C. DÜZCE ÜNİVERSİTESİ TEKNOLOJİ FAKÜLTESİ BİLGİSAYAR MÜHENDİSLİĞİ BÖLÜMÜ BMT103 ELEKTRİK DEVRE TEMELLERİ DERSİ LABORATUVARI DENEY NO: 7

İstanbul Teknik Üniversitesi IEEE Öğrenci Kolu

Kırpıcı devrelerin çalışma prensiplerinin deney yoluyla incelenmesi.

T.C. DÜZCE ÜNİVERSİTESİ TEKNOLOJİ FAKÜLTESİ BİLGİSAYAR MÜHENDİSLİĞİ BÖLÜMÜ BMT103 ELEKTRİK DEVRE TEMELLERİ DERSİ LABORATUVARI DENEY NO: 7

BÖLÜM IX DALGA MEYDANA GETİRME USULLERİ

Ders 08. Elektronik Devre Tasarımı. Güç Elektroniği 1. Ders Notları Ege Üniversitesi Öğretim Üyesi Yrd.Doç.Dr. Mehmet Necdet YILDIZ a aittir.

Şekil 1: Diyot sembol ve görünüşleri

BÖLÜM X OSİLATÖRLER. e b Yükselteç. Be o Geri Besleme. Şekil 10.1 Yükselteçlerde geri besleme

Sensörler Öğr. Gör. Erhan CEMÜNAL Thomas Alva Edison

Temel Kavramlar Doðru Akým (DA, DC, Direct Current) Dinamo, akümülâtör, pil, güneþ pili gibi düzenekler tarafýndan

ÜNİTE 3 KLASİK SORU VE CEVAPLARI (TEMEL ELEKTRONİK)

Güç elektroniği elektrik mühendisliğinde enerji ve elektronik bilim dalları arasında bir bilim dalıdır.

DENEY 1: DİYOT KARAKTERİSTİKLERİ

Aşağıdaki formülden bulunabilir. S16-Kesiti S1=0,20 mm²,uzunluğu L1=50 m,özdirenci φ=1,1 olan krom-nikel telin direnci kaç ohm dur? R1=?

TEK FAZLI KONTROLLÜ (TRĠSTÖRLÜ) DOĞRULTUCULAR

T.C. MALTEPE ÜNİVERSİTESİ Elektronik Mühendisliği Bölümü. ELK232 Elektronik Devre Elemanları

DENEY 11 PUT-SCR Güç Kontrolü

ÜNİTE 4 TEST SORU BANKASI (TEMEL ELEKTRONİK) TRANSİSTÖRÜN TANIMI Transistörlerin çalışması için, beyz ve emiterin... kollektörün ise...

İNDEKS. Cuk Türü İzolesiz Dönüştürücü, 219 Cuk Türü İzoleli Dönüştürücü, 228. Çalışma Bölgeleri, 107, 108, 109, 162, 177, 197, 200, 203, 240, 308

Yarım Dalga Doğrultma

Ders 04. Elektronik Devre Tasarımı. Güç Elektroniği 1. Ders Notları Ege Üniversitesi Öğretim Üyesi Yrd.Doç.Dr. Mehmet Necdet YILDIZ a aittir.

Mekatronik Mühendisliği Lab1 (Elektrik-Elektronik) Diyotlu Doğrultucu Uygulamaları

AC/DC DÖNÜŞTÜRÜCÜLER (Doğrultucular)

1. Diyot Çeşitleri ve Yapıları 1.1 Giriş 1.2 Zener Diyotlar 1.3 Işık Yayan Diyotlar (LED) 1.4 Fotodiyotlar. Konunun Özeti

(VEYA-DEĞİL kapısı) (Exlusive OR kapısı) (Exlusive NOR kapısı)

Elektronik cihazların yapımında en çok kullanılan üç yarıiletken şunlardır,

Tek Fazlı Tam Dalga Doğrultucularda Farklı Yük Durumlarındaki Harmoniklerin İncelenmesi

MEKATRONİĞİN TEMELLERİ TEMEL ELEKTRONİK KAVRAMLARI

Yarıiletken devre elemanlarında en çok kullanılan maddeler;

DENEY FÖYÜ 5: Diyotlu Doğrultma Devreleri

KARADENİZ TEKNİK ÜNİVERSİTESİ Mühendislik Fakültesi Elektrik-Elektronik Mühendisliği Bölümü Power Electronic Circuits (Güç Elektroniği Devreleri)

2- İşverenler işyerlerinde meydana gelen bir iş kazasını en geç kaç iş günü içerisinde ilgili bölge müdürlüğüne bildirmek zorundadır?

DENEY 21 IC Zamanlayıcı Devre

Elektromekanik Kumanda Sistemleri / Ders Notları

Şekil Sönümün Tesiri

Karadeniz Teknik Üniversitesi Elektrik-Elektronik Mühendisliği Bölümü Elektronik Laboratuvarı I ENDÜSTRİYEL KONTROL UYGULAMALARI

AC/DC DÖNÜŞTÜRÜCÜLER (Doğrultucular)

F AKIM DEVRELER A. DEVRE ELEMANLARI VE TEMEL DEVRELER

T.C. ERCİYES ÜNİVERSİTESİ MÜHENDİSLİK FAKÜLTESİ MEKATRONİK MÜHENDİSLİĞİ BÖLÜMÜ TEMEL ELEKTRİK DEVRE LABORATUVARI TEMEL DEVRE TEOREMLERİNİN UYGULANMASI

GÜÇ ELEKTRONİĞİ EĞİTİM SETİ DENEY KİTABI KONU: TURN-OFF ZAMANLAYICI DENEYİ. Giriş: Turn-off tipi zamanlayıcı devresi şekil 19.1 de görülmektedir.

SCHMITT TETİKLEME DEVRESİ

Adapazarı Meslek Yüksekokulu Analog Elektronik

Güç Elektroniği Ders 02

TEK FAZLI VE ÜÇ FAZLI KONTROLLÜ DOĞRULTUCULAR

Deney 3: Diyotlar ve Diyot Uygulamaları. Amaç: Araç ve Malzeme: Teori:

Modern Fiziğin Teknolojideki Uygulamaları

Metal Oksitli Alan Etkili Transistör (Mosfet) Temel Yapısı ve Çalışması

DENEY 1: DİYOT KARAKTERİSTİKLERİ

DİYOT ÇEŞİTLERİ TEMEL ELEKTRONİK

GERİLİM REGÜLATÖRLERİ DENEYİ

2. Bölüm: Diyot Uygulamaları. Doç. Dr. Ersan KABALCI

1.1. Deneyin Amacı: Temel yarı iletken elemanlardan, diyot ve zener diyotun tanımlanması, test edilmesi ve bazı karakteristiklerinin incelenmesi.

İÇİNDEKİLER. ÖNSÖZ...iii İÇİNDEKİLER...v 1. GÜÇ ELEKTRONİĞİNE GENEL BİR BAKIŞ YARI İLETKEN GÜÇ ELEMANLARI...13

Elektrik Kumanda Devreleri Dersleri. Tablo 1.1: Kumanda Devre Sembolleri

T.C. MİLLÎ EĞİTİM BAKANLIĞI MEGEP (MESLEKÎ EĞİTİM VE ÖĞRETİM SİSTEMİNİN GÜÇLENDİRİLMESİ PROJESİ) ELEKTRİK ELEKTRONİK TEKNOLOJİSİ

ELEKTRONİK DEVRE ELEMANLARI

Sensörler. Yrd.Doç.Dr. İlker ÜNAL

DENEY 3: DOĞRULTUCU DEVRELER Deneyin Amacı

T.C. KOCAELİ ÜNİVERSİTESİ ELEKTRİK MÜHENDİSLİĞİ BÖLÜMÜ

6. ENVERSÖR PAKET ŞALTER

10. ÜNİTE ALTERNATİF AKIMIN DOĞRULTULMASI

T.C. AMASYA ÜNİVERSİTESİ TEKNOLOJİ FAKÜLTESİ ELEKTRİK-ELEKTRONİK MÜHENDİSLİĞİ EEM207/ GEEM207 ELEKTRONİK-I LABORATUVARI DENEY RAPORU

BMT104 ELEKTRONİK DEVRELER DERSİ LABORATUVAR UYGULAMALARI

EEME210 ELEKTRONİK LABORATUARI

Geçmiş yıllardaki vize sorularından örnekler

ELEKTRİK ELEKTRONİK MÜHENDİSLİĞİNE GİRİŞ

AFYON KOCATEPE ÜNİVERSİTESİ ELEKTRİK MÜHENDİSLİĞİ GÜÇ ELEKTRONİĞİ LABORATUVAR DENEY # 1

Çok sayıda motor şekilde gibi sadece bir durumunda başlatma kontrol merkezi ile otomatik olarak çalıştırılabilir.

1. Kristal Diyot 2. Zener Diyot 3. Tünel Diyot 4. Iºýk Yayan Diyot (Led) 5. Foto Diyot 6. Ayarlanabilir Kapasiteli Diyot (Varaktör - Varikap)

ELK273 Elektrik ve Elektronik Mühendisliğinin Temelleri Ders 8- AC Devreler. Yard.Doç.Dr. Ahmet Özkurt.

T.C. YALOVA ÜNİVERSİTESİ MÜHENDİSLİK FAKÜLTESİ ENERJİ SİSTEMLERİ MÜHENDİSLİĞİ BÖLÜMÜ ESM 413 ENERJİ SİSTEMLERİ LABORATUVARI I

TEMEL ELEKTRİK-ELEKTRONİK DERSİ SORU BANKASI

Transkript:

A- Tristörler : SİLİKON KONTROLLÜ ANAHTAR SİLİCON CONTROLLED RECTETİER ( SCR ) Tanımı: Tristör, anot ( A ), katot ( K ) ve geyt ( G ) ucu bulunan ve geytine uygulanan ( + ) sinyal ile A - K arası iletime geçen yarı iletken anahtarlara tristör denir. 1- Tristörün yapısı ve özellikleri : a-yapısı : PNPN şeklinde dört tabaka silisyum veya germanyum yarı iletken maddeden yapılır. Aşağıdaki şekilde görüldüğü üzere 1. P maddesinde anot ucu, 4. N maddesinde ise katot ucu, 3. P maddesinde ise geyt ucu mevcuttur. b- Özelliği : Tristörün sembo1ü, yapısı ve görünüşü Tristörün anoduna ( + ), katoduna ( -) ve geytine de ( + ) sinyal uygulandığında anot ile katot arasında akım akarak iletken olur. Tristör iletimde iken anoduna mutlaka bir yük bağlanmalıdır. Yük bağlanmadan uygulanan gerilim tristör üzerinden büyük akım geçmesine neden olacağından tristör yanar aşağıdaki şekilde değişik tristör resimleri görülmektedir. Değişik tristör resimleri Aşağıdaki şekilde tristörün geyt akımı sıfır iken akım-gerilim eğrisi verilmiştir. Tristör yalıtımdayken düz ve ters polarmada biraz sızıntı akımı geçirir. Ters polarma gerilimi ters kırılma gerilimine ulaştığında sızıntı akımı aniden yükselir. Tristörde bu istenmeyen durumdur. 1

Tristörün çalışma eğrisi Düz polarmada ise polarma gerilimi Düz kırılma gerilimine ulaştığında tristör iletime geçer. Bu durumda A - K arası direnç değeri azaldığından A - K arası büyük bir akım geçerek tristör iletken olur. Doğru akımda tristörün geytini bir defa tetiklemek yeterlidir. Alternatif akımda ise geyt her alternansta tetiklenmelidir. Tristörün A.V.O Metre İle Sağlamlık Kontrolü : Sağlamlık kontrolünde iki yöntem kullanılır: I.Yöntem: Tristörün A.V.O. metre ile sağlamlık kontrolü Avometre direnç kademesinde ve X 100 konumundayken yukarıdaki şekilde ki gibi ohm metrenin ( - ) ucunu '' pilin ( + ) ucu '' anoda, ( + ) ucunu '' pilin ( - ) ucu '' katoda tutulduğunda ibre sapmayacak, anot ile geyt bir an için kısa devre edildiğinde ibre sapacak ve geytten kısa devreyi kaldırdığımızda ibre saptığı yerde kalıyorsa tristör sağlamdır. 2

II.Yöntem: Bu yöntemde altı değişik ölçüm yapılarak sağlamlık kontrolü gerçekleştirilir: 1) Tristörün A (+), K( - ) uygulanırsa yüksek direnç 2) Tristörün A( - ), K(+) 3) Tristörün A (+), G( - ) 4) Tristörün A ( - ), G(+) 5) Tristörün K (+), G( - ) 6) Tristörün K ( - ), G(+) düşük Tristör İletime Geçirme Yöntemleri: 1- Tristörün Dışardan Bir Doğru Akım Kaynağı Tarafından Tetiklenmesi : Tristörün dışarıdan bir doğru akım kaynağı tarafından tetiklenme devresi Şekilde tristörün geyti, anodu besleyen kaynak dışında ayrı bir DC kaynaktan tetiklenmesi görülmektedir. Bu devrede kullanılan anot kaynağı AC bir kaynak ise; Sı anahtarı kapatıldıktan sonra S2 anahtarının biran için kapatılıp açılması tristörü iletime sokar ve tristör hep iletimde kalır. S2 anahtarının açılması tristörün iletimde kalmasına engel değildir. Tabiidir ki; DC kaynağın ( -) ucu katod, (+) anod yönünde bağlanmalıdır. Şayet kullanılan VAA kaynağı AC bir kaynaksa; tristör AC gerilim yalnızca pozitif alternansları anoda geldiğinde doğru yönde polarma olacağından, negatif alternanslarda yalıtımda kalır. Pozitif alternanslarda iletimde olabilmesi için her alternansta geyt devresinin yeniden tetiklenmesi gerekmektedir. Bu sebeple S2 anahtarı açıldığı anda devam eden pozitif alternans süresince iletirnde kalır, pozitif alternansın bitişi ile yalıtıma geçer ve S2 açık kaldığı sürece yalıtımda kalır. Bu devrede RG direnci geyt akımını sınırlayarak tristörün bozulmasını önlemek için kullanılmıştır. 2-Geytin Anot Kaynağı Üzerinden Tetiklenmesi: Şekildeki devrede ayrı bir kaynak kullanılmayıp, anod kaynağı yardımıyla tetiklenme AC veya DC i yöntemi görülmektedir. Yine burada da kullanılan VAA kaynağı DC bir bir kaynak ise S ı 'in kapatılmasından sonra S2'yi bir anlık kapatmak bile tristörü iletime geçirerek lambanın yanmasını sağlar. İletim sonrasında S2'nin açılması tristörün iletim halini sürdürmesini engellemez. Ancak VAA kaynağı AC bir kaynak ise tristörün iletimi yalnızca pozitif alternansta mümkün olup, her pozitif alternansta iletime geçebilmesi için S2'nin kapalı kalması, yani her pozitif alternansta 3

tristörün yeniden tetiklenmesi gerekmektedir. S2 açıldığı anda anodda pozitif alternans var ise pozitif alternansın bitimine kadar tristör iletirnde kalır, pozitif alternansın bitişiyle birlikte yalıtıma gider. Bu devrede kullanılan Dı diyodu VAA kaynağının AC olduğu durumlarda gerekli olup, geyt devresinin negatif alternanslarda aşırı ters polarizasyon altında kalarak bozulmasını önlemek için kullanılmıştır. 3- Optokuplör ile Tetiklemek : Büyük akım ve gerilim ile çalışan yüklerin kontrolü için en uygun yöntemdir. Bu yöntem kumanda devresi ile güç devresini birbirinden ayırmak için kullanılır. Aşağıdaki şekilde ki devredes anahtarı kapatılırsa infrared LED iletken olarak ışık verir. Bu ışık ile foto transistör iletken olur ve tristör tetiklenerek Iamba veya motoru kumanda eder. 4- Pals Transformatörü ile Tristörün Tetiklenmesi : Yukarıdaki şekildeki yöntem ise güç devresi ile kumanda devresini birbirinden yalıtmak için kullanılır. Bu devrede kullanılacak transformatörün amacı gerilim kazancı sağlamaktan ziyade elektromanyetik bir kuplaj meydana getirmek olduğundan dönüştürme oranının 1/1 olması tercih edilir. Tristörü Durdurma ( Kesime Götürme ) Yöntemleri : Tristör AC' de çalışırken geyt akımı kesilirse pozitif alternansın sonunda tristör durur. Doğru akımda çalışırken ise tristörün geyti tetiklenirse tristör iletken olur, geyt akımı kesilse dahi tristör iletimde kalır. İletken bir tristörün üzerinde çok az bir gerilim düşümü olur ( yak]aşık 1 Volt ) ve devreden geçen akım kesilse dahi tristör bu akımı 100μ saniye kadar devam ettirmeye çalışır. Ancak tristöre ters polarma uygulanırsa bu zaman 20 μ saniyeye düşer. Küçük akım ve küçük gerilimlerde tristöre seri veya paralel anahtar bağlayarak kesime götürülürken, büyük akım ve gerilimlerde ise kapasitif devreler durdurulur. 4

Tristörü durdurma yöntemleri şunlardır : 1- Anot-Katot arsını kısa devre etmek. 2- Anot veya katot gerilimlerini kesmek. 3- Anoda ters gerilim uygulamak( kapsitif durdurma ) 4- Geyte ters gerilim uygulamak 1- Anot-Katot Arasını Kısa Devre Yapmak: Aşağıdaki şekilde ki devrede tristöre paralel bağlanan bir anahtar çalışmayı durdurmak için kullanılır. Tristör iletimdeyken B2 butona basıldığında bütün akım direnç ve B2 butonu üzerinden geçer. Tristör üzerindeki akım ve gerilim sıfır olur ( anahtarı en az 100 µ saniye kapalı tutmak gerekir ). B1 butonu açık olduğu için geyt akımı kesik olacağından tristör durur. Geyt akımı devam ederken ( B1 kapalı iken ) b2 butonuna basmak yükün çalışmasını etkilemez yani tristör durmaz, yük çalışmaya devam eder. Tristörü kesime götürmek için B2 butonuna basmadan önce geyt akımının kesilmesi gerekir. 2-Anot veya Katot Gerilimlerinin Bir An İçin Kesilmesi: Şekildeki devrede S1 ve S2 anahtarları kapalı iken B1 butonuna bir an için basmak tristörü iletime geçirmeye yeter. B1 butonunun bırakılması sonrasında bile lamba yanmaya devam eder. Tristörün yalıtıma geçebilmesi (lambanın sönmesi) için Sı ya da Sı anahtarlarından birinin bir an için bile olsa açılarak; o an için anod-katod akımının kesilmesi tristörü yalıtıma sokar. Tristörün yalıtıma geçmesi sonrasında Sı veya Sı'nin kapatılması birşeyi değiştirmez, tristör yalıtımda kalır. Yani lamba sönüktür. İletim için Bı butonuyla geyt devresinin yeniden tetiklenmesi gereklidir. 3- Kapasitif Durdurma : Büyük akım ve gerilimlerde çalışan tristörleri durdurmak için kullanılan bir yöntemdir. Uygun bir kondansatörün üzerinde biriken şarj yardımı ile tristöre ters polarma uygulanarak çalışması durdurulabilir. Bu iki şekilde yapılabilir. Aşağıdaki şekilde DC devresini kontrol eden tristörün bir kapasitif devre ve anahtar yardımı ile durdurulması görülmektedir. Devre normal çalışırken R2 şarj direnci üzerinden C kondansatörü şarj olur ( S anahtarı açık ). Tristörün çalışması durdurulacağı zaman, tristör geyt akımı 5

kesilmeli Ig = 0 ve S anahtarı kapatılmalıdır. Anahtar kapatıldığında C kondansatör uçlarındaki gerilim anot ( - ) ve katot ( + ) olacak şekilde tristör uçlarına uygulanır. Tristör uçlarına uygulanan yaklaşık besleme gerilimine eşit bu ters gerilim, geyt akımı kesik tristörü 15-20 µ saniye gibi kısa bir zaman içinde durdurur. Anahtar açılıp tristör tetiklendiği zaman çalışma tekrar devam eder. Yukarıdaki şekildeki devrede anahtar yerine bir tristör bağlanırsa tristör otomatik olarak durdurulabilir. Doğru akım kontrollerinde kullanılan tristörlerin genel olarak, tetikleme gerilimlerine bağlı olarak çalışması arzu edilir. Bu işlem otomatik olursa birçok pratik faydalar sağlar. Bunun için aşağıdaki şekilde ki devreden faydalanılabilir. Tristörü otomatik durdurma Yukarıdaki şekildeki devrede b butonuna basıldığında SCR1 iletken olur. SCR2 iletimde iken C kondansatörü R2 direnci üzerinden şarj olur. Tristör durdurulmak istendiğinde SCR2 iletime geçirilerek SCR1 uçlarına ters polarma gerilimi uygulanır. Dolayısı ile SCR1 kesime gider. Butona basana kadar SCR1 yalıtımda kalır. 4-Geyte Ters Gerilim Uygulayarak Durdurma: Şekil devrede tristörün geytine önce pozitif pals uygulanarak tristör iletime geçiriliyor, ancak hemen arkasından -5V tepe değerine sahip negatif pals tatbik edilerek tristör bünyesindeki tetiklerne devresi dışarıdan etkiyle ters polarizasyona sokulup hızla kesime gitmesi ve yük akımının kesilmesi sağlanmaktadır. Bu olay tekrarlanarak tristörün bir iletime bir yalıtıma gitmesi sağlanıp, anahtarlama hızlı bir şekilde gerçekleştirilebilmektedir. 6

Tristörün korunması : 1- Aşırı Gerilimlerden Korunması : Tristörlerin çalışma gerilimleri kataloglarda belirtilmiştir. Tristörün devreyi açması, tristörün devreyi kapaması ve tristörün söndürülmesi anlarında meydana gelen ani akım değişmelerinin oluşturduğu devre selfinden ( bobinin oluşturacağı zıt E.M.K' den ) dolayı tristör uçlarında meydana gelen aşırı gerilimler, kataloglarda belirtilen tristörlerin gerilim değişme hızlarını aşarsa tristörler bozulur. Tristörün bozulmasını önlemek için tristörün anot -katot uçları arasına aşağıdaki şekilde görüldüğü gibi paralel olarak R-C elemanları bağlanır. Tristörün kesime gittiği anda yük üzerinde oluşan manyetik alan R-C elemanı üzerinden söndürülerek tristörün zarar görmesi önlenmiş olur. R-C elemanı ile tristörün korunması Devreye bağlanacak olan R-C elemanın değeri pratik olarak şu şekilde hesaplanır. C = 2,5. Iort nf R = 2U DRM 3I ya Ω I ort = Tristörün üzerinden geçen ortalama akım ( A ) U DRM = Tristörün periyodik pozitif-kapama gerilimi ( V ) I ya = Tristör yol alma akımı ( A ) 2- Aşırı Akımdan Korunması : Tristörün devreyi açması ve kapaması anında meydana gelen akım yükselme hızı, kritik akım yükselme hızını aşarsa tristör bozulur. Ayrıca ; müsaade edilen aşırı yük akımı ve darbe akımı sınır değerlerinin üzerine çıkılmaması gereklidir. Aksi takdirde tristör bozulur. Tristörün kapasitif ve endüktif yüklerde aşırı akımdan korunması aşağıda açıklanmıştır. 7

a- Kapasitif Yüklerde Akım Yükselme Hızının Kontrolü : Burada dikkat edilmesi gereken husus tristörün kumanda ettiği yükün cinsidir. Yük yeteri kadar endüktif ise L bobinine ihtiyaç yoktur. Yük kapasitif ise L bobinine ihtiyaç vardır. Tristörün kapasitif yüklerden korunması Yük kapasitif ise uygun bir L bobini yukarıdaki şekilde görüldüğü gibi yüke seri olarak bağlanır. Bilindiği gibi bobin ani akım yükselmelerini engeller. Devre akımının yükselme hızı bu şekilde kontrol altına alınarak tristörün bozulmasını önlenir. b- Endüktif Yük Üzerinde Meydana Gelen Magnetik Enerjinin Söndürülmesi : Röle, kontaktör gibi endüktif yüklerin tristör, ile kontrolünde tristörün yük enerjisini kesmesiyle ( devreyi kapamasıyla ) endüktif yük uçlarında ters EMK indüklenir. Tristörün kapasitif yüklerden korunması Bu gerilimin akıtacağı akım ile tristör bozulabilir. Bu durumda tristörü korumak için yukarıdaki şekildeki gibi D diyotu yük uçlarına ters paralel bağlanır. Bu şekilde yük enerjisinin kesilmesiyle yükte meydana gelen ters EMK diyot tarafından yine yük üzerinde harcanır. 8

Tristörün Uygulama Alanları Tristör, kontrollü bir diyottur. Kapısına sürekli ve yeterli bir sinyal verilen tristör, diyoda eşdeğerdir ve diyot gibi davranır. Diyodun da kontrolsüz bir tristör olduğu söylenebilir. İletimden çıkma olayı ikisinde de aynıdır. Tristör ve diyotlar, normal akım ve kısa süreli ani akım değerleri en yüksek olan elemanlardır. Tristörlerin de normal ve hızlı türleri mevcuttur. Sönme Süresi, normal tristörlerde birkaç 100 μs civarında, hızlı tristörlerde ise 100 μs nin altındadır. Normal Tristörler, AC şebekeye bağlı doğrultucular ile AC kıyıcılarda yaygın olarak kullanılmaktadır. Hızlı Tristörler ise, tam kontrollü güç elemanlarının güçleri yetmediğinde, inverter ve DC kıyıcılarda kullanılmaktadır. Elektrikli taşıma sistemlerinde kullanılan DC kıyıcılar ile endüksiyonla ısıtma sistemlerinde kullanılan inverterler buna örnek gösterilebilir. Tristörlü Örnek Devreler 1. Tristörlü bir AC Uygulama Bu devrede, tristör, α anında kısa süreli bir sinyalle tetiklenir ve iletimde olarak kilitlenir. Tristör içerisinden akım geçtiği sürece iletimde kalır. π anında akımın 0 olmasıyla, tristör kendiliğinden doğal olarak söner yani kesime girer. Yeni bir pozitif yarım dalgada yeni bir α anında tekrar tetikleninceye kadar tristör kesimde kalır. Sonuç olarak, tristör, pozitif yarım dalgalarda ve α-π aralıklarında iletimde kalır ve sinüsoidal bir akım geçirir. α açıları değiştirilerek yükün gücü ayarlanabilir yani güç kontrolü yapılabilir. Bu devre, yarım dalga kontrollü bir doğrultucu olup, doğal komütasyonlu bir devredir. 9

2. Tristörlü bir DC Uygulama Bu devrede ise, yine kısa süreli bir sinyal ile iletime giren tristör, içerisinden geçen akım hiç kesilmeyeceğine göre, doğal olarak hiç iletimden çıkmaz ve sürekli akım geçirir. Ancak, ilave devre ve düzenlerle istenildiği zaman zorla söndürülebilir. Tristörün iletimde kalma oranı değiştirilerek güç kontrolü yapılabilir. Bu devre ise, bir DC kıyıcı olup, zorlamalı komütasyonlu bir devredir. 10