KOCAELİ TEKNİK LİSESİ ELEKTRİK BÖLÜMÜ OTOMASYON ATÖLYESİ MOTOR SÜRÜCÜLERİ ve SERVO SİSTEMLER DERS NOTU MEHMET TOSUNER 2009

Ebat: px
Şu sayfadan göstermeyi başlat:

Download "KOCAELİ TEKNİK LİSESİ ELEKTRİK BÖLÜMÜ OTOMASYON ATÖLYESİ MOTOR SÜRÜCÜLERİ ve SERVO SİSTEMLER DERS NOTU MEHMET TOSUNER 2009"

Transkript

1 KOCAELİ TEKNİK LİSESİ ELEKTRİK BÖLÜMÜ OTOMASYON ATÖLYESİ MOTOR SÜRÜCÜLERİ ve SERVO SİSTEMLER DERS NOTU MEHMET TOSUNER 2009

2 Güç Elektroniği Anahtarlama Elemanları: Bu ders notunda anlatılan konvertör ve inverter devrelerinde kullanılan yarı iletken anahtarlama elemanları BJT, TRİSTÖR, MOSFET, IGBT veya GTO olabilir. Hangi elemanın kullanılacağı; devrenin özelliklerine, gücüne, maliyetine daha da önemlisi motor sürücüsü imal eden şirketin teknolojisine bağlıdır. Bu nedenle bu elemanlardan bahsedilirken Yarı iletken anahtarlama elemanı. şeklinde genel bir isimlendirme kullanılmıştır. Yarı İletken Anahtarlama Elemanları : DİYOT : Doğru polarmada yani Anod bacağına + Katod bacağına - polaritede bir gerilim verildiğinde kapalı bir anahtar gibi davranarak elektrik akımının geçişine müsaade eden, ters polaritede ( Anot - ve Katod + ) açık anahtar haline gelen ve elektrik akımının geçişine müsaade etmeyen devre elemanıdır. Diyotun iletim ve kesimi tamamen üzerine uygulanan gerilimin polaritesine bağlı olup herhangi bir kontrol edilebilirlik özelliği yoktur..

3 TRİSTÖR ( SCR Silikon Kontrollü Doğrultucu Silicon Control Rectifier ) : Kontrollü bir diyottur diyebiliriz. Doğru polarmada yani Anod bacağına + Katod bacağına - polarite bir gerilim verildiğinde iletime geçmek için Gate bacağından tetikleme gerilimi uygulanmasını bekler. Doğru polarite altında tetikleme verildiğinde iletime geçer ve kapalı bir anahtar gibi davranır. Bir kez iletime gittikten sonra Gate bacağından tetikleme gerilimi kesilse de iletimde kalmayı sürdürür. Kesime götürebilmek için üzerinden geçen akımın kesilmesi veya ters polaritede gerilim uygulanması gerekir. Ters polaritede ( Anot - ve Katod + ) Gate bacağından tetikleme gerilimi verilse de iletime geçirilemez.

4 TRİYAK : Her iki polaritede de iletime geçebilen devre elemanıdır. İletime geçmesi için Gate bacağından A2 bacağına uygulanan gerilimle aynı polaritede bir tetikleme geriliminin verilmesi yeterlidir. Aynı polaritede kaldığı sürece tetikleme gerilimi kesilsede iletimde kalmayı sürdürür. Ters polaritede bir gerilim uygulandığında kesime gider ve iletime gitmek için tekrar Gate bacağından tetikleme gerilimi bekler. Bu çalışması ile Triyak ters paralel bağlı iki Tristöre benzetilebilir..

5 BJT ( Bipolar Jonksiyon Transistör ) : Güç elektroniğinin ilk anahtarlama elemanıdır. Base bacağına uygulanan akımı β akım kazancı katsayısı kadar yükselterek Kolektör Emiter bacakları arasında geçişini sağlar. Her ne kadar elektronikte sinyal yükselteci olarak kullanılsa da güç elektroniğinde Base bacağına tam Base akımı uygulanarak veya uygulanmayarak iletim ve kesime götürülen anahtarlama elemanı olarak kullanılırlar. İletime geçtiğinde Kolektör Emiter bacakları arasındaki gerilim düşümü çok küçüktür. Bu sayede kontrol ettiği devre üzerinde güç harcaması çok azdır ( P = U x I ). Fakat Base bacağından uygulanan tetikleme akımı yük akımı ile karşılaştırıldığında küçük gibi gözükse de diğer anahtarlama elamanlarına oranla tetikleme akımı büyüktür ve güç Tansistörlerinde bu onlarca watı bulur ( I B = I C / β ). Bu yüksek tetikleme akımı Transistoru sürecek kontrol devresinin de yüksek çıkış akımı vermesini gerektir.

6 MOSFET : Alan etkili anahtarlama elemanı olarak da anılırlar. Bunun anlamı şudur; BJT lerin iletime geçmesi için Base bacağına uygulanan tetikleme geriliminin çekmiş olduğu I B tetikleme akımı kontrol devresinden çekmektedir. Mosfetlerde ise Gate bacağına tetikleme gerilimi uygulandığında kontrol devresinden çekeceği akım ihmal edilebilecek kadar çok küçüktür. Bu nedenle kontrol Gate bacağından çekilen akımla değil Gate bacağına uygulanan gerilimle yapılır. Bu avantajının yanı sıra Drain Source bacakları arasındaki gerilim düşümü BJT ye göre daha büyüktür. Bu nedenle kontrol ettiği devrede Mosfetin üzerindeki güç harcaması da büyük olmaktadır lerden sonra BJT lerin yerini alan Mosfet ler 700 V u aşmayan birkaç Kw gücündeki ( Düşük ve orta güç ) devrelerde kullanılırlar..

7 GTO : Kontrol edilebilir Tristör olarak tanımlayabiliriz. Tristör den farklı olarak eğer Gate ucuna ters potansiyelde bir gerilim uygulanırsa ( Ters yönde Gate akımı geçirilirse ) GTO nun Anod - Katod uçları doğru polarmada olsa dahi kesime götürülebilir. Bu avantajının yanı sıra iletimde Tristör de Anod Katod bacakları arasında 1.5V lar civarında olan gerilim düşümü GTO da 3V ları geçmektedir. Bu ise GTO nun kontrol ettiği devrede kendi üzerindeki güç harcamasının Tristör den daha fazla olmasına neden olur. GTO 3KV ve 2KA e kadar büyük güç değerlerinde imal edilebilir..

8 IGBT : BJT ve Mosfet üstün yanlarının alındığı düşük güç sarfiyatına ve alan etkili kontrole sahip hibrit bir elemandır larda geliştirilen IGBT ler yüksek güç değerlerinde imal edilebilirler.

9 Anahtarlama elemanlarına tetikleme sinyali uygulandığında eleman küçük bir zaman gecikmesi ile iletime geçer ve aynı şekilde kesime de zaman gecikmeli olarak gider. Bu durum Tristör e ait aşağıdaki şekilde anlatılmaya çalışılmıştır. Tristör e Gate bacağından tetikleme sinyali uygulandığında akım rampalı bir şekilde artış göstermiştir. Aynı şekilde ters polaritede de akım yine rampalı bir şekilde sıfıra düşmüştür. Bu gecikme bazı kaynaklarda toparlanma süresi olarak ta geçer. Anlaşılması açısından iletim ve kesim akım eğrileri abartılı olarak çizilmiş olsa da tüm anahtarlama elemanında katalog bilgilerinde verilen mikro saniyeler mertebesinde bu gecikmeler söz konusudur. Bu gecikme anahtarlama elemanının çalışma frekansını etkilemektedir. Gecikmesi uzun olan anahtarlama elemanın anahtarlama frekansı düşük olmaktadır. Yani yüksek anahtarlama frekanslarına sahip yarı iletken elemanların gecikme süreleri kısadır. Gecikme süresinden önce yarıiletken anahtarlama elemanına bir sonraki tetikleme sinyali uygulanacak olursa eleman hiç kesime gidemeyecek ve devamlı iletimde kalacaktır. 20 KHZ anahtarlama frekansında çalışan yarıiletken anahtarlama elemanları düşünüldüğünde bu sürenin kısalığı daha iyi anlaşılacaktır. ( 20 KHZ = HZ yani saniyede açma kapama )

10 Elektrik Makinelerinde Devir Sayısı Kontrolü : Elektrik makineleri ders notumuzda da anlatıldığı gibi doğru akım motorlarında devir sayısını veren formül: V a I a. R a n = K. θ idi ve devir; Motor uçlarına ( endüviye ) uygulanan gerilime, kutuplardaki manyetik alana yani kutup sargılarından geçen uyartım akımına ve endüvi iç direncine bağlı idi. Endüvi iç direncinin değiştirilmesi ile devir ayarı dirençlerde oluşacak ısı kayıplarından dolayı tercih edilen bir yöntem değildir. Endüviye uygulanan gerilimin değiştirilmesi, endüvi akımının büyük olması ve büyük akımların kontrolü için kullanılacak olan yarı iletken elektronik elemanların maliyeti nedeni ile pahalı olmaktadır. Diğer bir yöntem manyetik alanın yani kutup sargılarından geçen akımının ( uyartım akımı ) kutuplara uygulanan gerilimle kontrolüdür. Kutup gerilimine bağlı olarak devir kontrolünde ise motor tepki süresi uzun olmaktadır. Sabit mıknatıslı doğru akım motorlarında kutup manyetik alanı değiştirilemeyeceği için devir motor uçlarına uygulanan gerilim ile kontrol edilir. Asenkron motorlarda ise devir sayısını veren formül: 60. f n s = p idi Bu motorlarda ise devir ya kutup sayısı değiştirilerek yada motora uygulanan gerilimin frekansı değiştirilerek kontrol edilebilmekteydi. Bu nedenle; Doğru akım motorlarının kontrolünde değeri değiştirilebilen kontrollü bir doğru akım kaynağına. Asenkron motorların kontrolünde ise frekansı değiştirilebilen kontrollü bir alternatif akım kaynağına ihtiyaç duyulmaktadır.

11 Gerilim Kontrollü Doğru Akım - Doğru Akım Kaynağı: Bir doğru akım kaynağının çıkışındaki gerilimin en kolay kontrolü kaynağın çıkışında yüke seri bir ayarlı bir direnç bağlamak ve gerilim bölücü olarak kullanılan direnç değerini değiştirerek yük üzerinde düşen gerilimin değerini değiştirmek şeklinde olur. Şekildeki devrede 12 V luk kaynağın çıkışına 2Ω luk yük direnci bağlanmıştır. Yük direnci üzerinde düşen gerilimi 6V yapmak için seri bağlı ayarlı direncin değerinin de 2Ω a getirilmesi gerekmektedir. Bu durumda devre akımı 3 A olacak ve yük 18W lık güç harcarken seri direnç üzerinde de 18 W lık bir güç ısı olarak kaybolacaktır. Bu durumda kaynak verimi %50 ye düşecek ve harcanan gücün yarısı kayıp olacaktır. Direnç değeri büyüdükçe bu kayıp miktarı da aynı oranda artacak ve verim düşecektir.

12 Büyük güçlerin kontrolünde ise seri dirençle gerilim kontrolü ekonomik olmaktan çıkacaktır. Gerilim kontrolünün bir diğer yöntemi ise yüke seri bir Transistör bağlayarak Kolektör akımının kontrolü şeklinde olabilir. Şekildeki devrede yine yük üzerindeki gerilimi 6V olarak ayarlamak isteyelim bu durumda Transistorün Kolektör akımını 3A olarak ayarlamamız gerekecektir. Bu durumda yük direnci üzerinde 6V luk gerilim düşümü elde edilse de geriye kalan 6V Transistorün Kollektör - Emiter bacakları arasında düşecek Transistör gövdesinde ve soğutucusu üzerinde 18W lık bir güç ısı olarak kaybolacaktır. O nedenle direnç için söylediğimiz bütün dezavantajlar Transistörle gerilim kontrolü içinde geçerli olacaktır.

13 Transistörler anahtarla elemanları olarak ( aç - kapa ) oldukça kullanışlı olmalarına rağmen akım kontrolünde ısı kayıpları nedeni ile elverişli değillerdir. Doğru akımın bir diğer kontrol şekli ise anahtarlamalı kontroldür. Şekildeki devrede anahtar kapalı iken yük üzerindeki gerilim kaynak gerilimine eşit olacaktır anahtar açıldığında ise yük gerilimi sıfıra düşecektir. Eğer anahtar devamlı kapatılıp açılır ve anahtarın kapalı olma süresi ile açık olma süresi birbirine eşit olursa yük üzerinde 6 V luk bir ortalama gerilim düşmüş olacaktır. Bu ortalama gerilim anahtarın açık ve kapalı olma süreleri ( oranları ) değiştirilerek ayarlanabilecektir. Anahtarın kapalı olduğu periyotlarda anahtarın iç direnci yok kabul edildiğinde üzerinde herhangi bir gerilim düşümü olmayacağı için güç sarfiyatı olmayacaktır. Yine açık olduğu periyotlarda da üzerinden akım geçirmeyeceği için yine güç sarfiyatı olmayacaktır. Anahtarlama elemanında güç sarfiyatının yani kaybın olmaması bu kaynağın veriminin %100 olması anlamına gelecektir. Anahtarlama ile doğru akımın kontrolünde verimin %100 olmasına rağmen çıkış gerilimi dalgalı bir biçimde olacaktır. Anahtarlamalı kontrolün en büyük dezavantajı da budur. Bu dalgalı çıkış omik yüklerde kabul edilemez olsa da motor gibi endüktif yüklerde anahtarlama frekansı çok yüksek olduğu taktirde kabul edilebilir bir dalgalanma olacaktır. Düşük anahtarlama hızları motor devrinde titremelere neden olsa da yüksek anahtarlama hızlarında bu titreşim en az düzeye inecektir. Yüksek anahtarlama hızlarının mekanik anahtarlar ile elde edilmesi imkansızdır bu nedenle anahtarlama elemanı olarak BJT, MOSFET veya IGBT gibi yarı iletken anahtarlama elemanları kullanılır.

14 Serbest Döngü Diyodu: İndüktif yüklerde manyetik alan olarak; W = 1 2.( LI. ) 2 Şeklinde bir enerji depo edilmektedir. Bobin devresindeki anahtarı açmakla aslında bu enerjiyi yok etmeye çalışıyoruz ve buda kendisini kontaklar arasında ark (kıvılcım) şeklinde ortaya çıkarmaktadır. Bir bobinde meydana gelen ters indüksiyon geriliminin değeri; V = L( di ) dt dir ve akımdaki değişim ne kadar büyük olursa ( anahtarlama ne kadar hızlı olursa ) indüksiyon gerilimi o oranda yüksek olacaktır. Bobin devresinde kullanılan yarı iletken anahtarlama elemanı kesime gittiğinde bobin üzerindeki bu enerji yarı iletken anahtarlama elemanı üzerinden geçişini sürdürmek isteyecek ayrıca oluşan ters indüksiyon gerilimi yarı iletken eleman yalıtım geriliminin üzerine çıktığında delinmesine yani arızalanmasına neden olacaktır.

15 Bu sorunu çözmek için endüktif yüklere kaynağa ters polaritede bağlanmış serbest döngü Diyotları bağlanır. Şekildeki devrede Transistör ( Yarı iletken anahtarlama elemanı ) iletimdeyken DC kaynak endüktif yük ( Bobin + Direnç ) üzerinden akım geçirir fakat Diyotdan ters polaritede olduğu için bir akım geçişi olmaz. Transistör kesime gittiğinde bobin üzerindeki enerji serbest döngü Diyodu üzerinden kısa devre olarak yine bobin üzerinde harcanacaktır. Akım şekli incelenecek olursa; Transistör iletime geçtiğinde bobinden ani bir akım geçişi başlamak isteyecek fakat ters indiksüyon gerilimi bu ani akım artışına ters yönde tepki vererek ani artışı engelleyecek rampalayacktır. Akım kararlı bir düzeye oturmadan bu sefer Transistör kesime gidecek ve bobin üzerinde depo edilen enerji serbest döngü diyodu üzerinden sönümlenmeye başlayacaktır. Eğer anahtarlama hızı çok yüksek tutulacak olursa ( Örneğin 20 khz = HZ ) akımdaki bu dalgalanma endüktif yükler için kabul edilebilir bir düzeyde olacaktır.

16 Gerilim Kontrollü Alternatif Akım - Doğru Akım Kaynağı: AC akımın DC akıma çevrilmesinde en bilindik yöntem diyotlar ile yapılan tam dalga veya yarım dalga doğrultuculardır. Yarım dalga doğrultma: Şekildeki devrede AC akımın + alternansında Diyodun Anod ucuna + ve Katot ucuna polarite geleceği için Diyod iletime geçecek ve üzerinde düşecek iletim gerilimi haricinde ( Teorik olarak silisyum diyotta 0.7 germanyum diyotta 0.3 V ) AC akımın + alternansını yük üzerine iletecektir. AC akımın alternansında ise bu sefer Diyodun Anod ucuna - ve Katot ucuna + polarite geleceği için diyod kesime gidecek ve açık anahtar gibi davranacağından yük uçlarına bir gerilim uygulanmayacaktır.

17 Tam dalga doğrultma: Şekildeki devrede AC akımın + alternansında D1 ve D4 Diyodlarının Anod uçlarına + ve Katot uçlarına polarite geleceği için bu iki diyod iletime geçecek ve AC akımın + alternansını yük üzerine iletecektir. AC akımın alternansında ise bu sefer D2 ve D3 Diyodlarının Anod uçlarına + ve Katot uçlarına - geleceği için bu iki diyot iletime geçeçek ve AC akımın alternansında akımın yönünü değiştirerek ( DC akım için aynı yönde kalacak ) yük uçlarına uygulayacaktır. Devre incelendiği taktirde D1 ve D4 diyotları iletimde iken D2 ve D3 diyotları uçlarına ters polarite olacağı için kesimde kalacaklar aynı şekilde D2 ve D3 diyotları iletimde olduğunda ise bu sefer D1 ve D4 diyotları uçlarına ters polarite geleceği için kesimde kalacaklardır.

18 Aşağıda üç fazlı tam dalga ( Köprü tipi ) doğrultma devresi ve gerilim dalga şekilleri verilmiştir.

19 Sabit bir çıkış gerilimi için kullanılıyor olsalar da çıkış geriliminin ayarlanması istenen yerlerde diyotlarla yapılan doğrultma isteneni vermeyecektir. Ayarlı bir DC çıkış, gerilimin periyot içerisinde yüke uygulama süresiyle elde edilir bunun içinde doğrultma işlemi kapı kontrollü bir yarı iletken eleman ile yapılmalıdır. Bu iş için en uygun olanı düşük fiyatı ve iletimde üzerindeki güç sarfiyatının az olması nedeni ile Tristör (SCR) dür. Tristörü kesime götürme zorluğu alternatif akımın diğer alternansa geçmesi ile ortadan kalkmaktadır. Şekildeki devrede tek

20 Tristör ile yarım dalga kontrollü bir doğrultma yapılmıştır. Buradaki α açısı Tristörün tetiklenme açısı olup bu açının büyütülüp küçültülmesi ile bir altarnans içerisindeki DC akımın ortalama değeri ayarlanabilmektedir. Her ne kadar elde edilen gerilim tam bir DC akım olmasa da ilerleyen konularda göreceğimiz devreler ile kabul edilebilir bir noktaya gelecektir. Eğer tam dalga kontrollü bir doğrultucu kullanılacak olursa elde edilen DC akım biraz daha düzelecektir. Bu devrede de diyotla yapılan tam dalga doğrultmada olduğu gibi AC akımın + alternansında T1-T4 ve alternansında T2-T3 tristörleri verilen α açısı ile iletime geçerek doğrultma işlemini gerçekleştirecektir.

21 α açısı 0 O olduğunda DC akımın değeri en büyük olacaktır. Bu değeri veren formül şu şekildedir. V dc = 2 2 V π.. ort α açısının 0 O dan farklı olduğu durumlarda DC akımın değeri. 1 Vdc =.( + Cos Vdo 2 1 α ). formülü ile bulunur. α açısının 0 O ve 180 O arasında değiştirerek en büyük ve en küçük DC çıkış gerilimini ayarlamak mümkün olacaktır. Şekilde 45 O ve 135 O ler için çıkış DC akım dalga şekli gözükmektedir.

22 Endüktif Yüklerde kontrollü doğrultma: Endüktif yük üzerinde manyetik bir enerjinin depolandığını ve yük akımı kesilse dahi bu enerjiden dolayı akımın akmak isteyeceğini daha önce görmüştük. Bu nedenle Tristörler diğrer alternansta ( - alternansta )hemen kesime gidemeyerek akımımın akışına enerji tükenene kadar bir müddet daha müsaade edeceklerdir. Bu durumda yük uçlarındaki gerilim negatif olacak ve akım akışı kesilemeyeceği için Tristör çiftlerinden biri mutlaka devrede kalacak ancak diğer tristör çifti iletime geçtiğinde kesime gidebilecektir. Şekilde 15 O ve 60 O tetikleme açısı için DC akım çıkış dalga şekli görülmektedir. DC çıkış geriliminin negatif değer alması ilk bakışta bir sorun gibi gözükse de ilerleyen konularda göreceğimiz inverterlerin, konvertörlerin motorun frenlenmesi durumunda kaynağa geri enerji vermesini sağlamaktadır.

23 Üç Fazlı Kontrollü Doğrultucular: Eğer üç fazlı sistemlerde tam dalga doğrultma yapılacak olur ise bir periyot içerisinde bütün fazlara ait altı adet + alternans elde edilecek bu ise çıkış dalga şeklinin daha düzgün olmasını sağlayacaktır. Şekildeki devrede α açısının 0 O 30 O 60 O ve 90 O olması durumunda elde edilecek çıkış gerilimleri verilmiştir. Ortalama Vdc gerilimi kesik düz çizgiler ile gösterilmiştir. Fakat 90 O deki ortalama DC gerilimi sıfırdır.

24 Üç fazlı köprü tipi kontrollü bir doğrultucunun çıkışındaki gerilimi veren formül şu şekildedir. Vdc = Vdo. Cosα π

25 Doğrultucu çıkışına bağlanan filtre bobin ve kondansatörleri ile DC çıkışın daha doğruya yakın olması sağlansa da üç fazlı köprü tipi kontrollü doğrultucunun çıkış geriliminin daha da düzgüne yaklaştırılması için bazı özel sürücülerde AC akım devresi bir faz kaydırıcı trafo ile 30 O kaydırılarak çiftlenmekte ve iki adat köprü tipi kontrollü doğrultucu yapılarak bir periyot içerisinde 12 adet + alternans elde edilerek daha düzgün bir DC çıkış alınmaktadır. 240 voltluk AC şebekede bir fazlı kontrollü bir doğrultucu ile 216 V a üç fazlı kontrollü bir doğrultucu ile 560V a kadar ayarlı gerilim elde etmek mümkündür. Daha büyük değerlerde DC çıkış elde etmek için doğrultucunun AC gerilim değeri bir trafo yardımı ile yükseltilir. Motor imalatçıları genellikle bu gerilim değerlerini göz önüne alarak standart üretimler yapmaktadırlar.

26 Doğrultucularda tristör veya diğer yarı iletken anahtarlama elemanlarının sıralı tetiklenmesi çoğunlukla bu iş için tasarlanmış elektronik entegre devreler ile yapılmaktadır. Bu devre, ayarlanan ve motordan alınan geri dönüş bilgilerine göre α açısını gerilim kaydırma yöntemi ile ayarlamaktadır. Güç devresinin yüksek geriliminin tetikleme devresine zarar vermemesi için güç ve tetikleme devreleri birbirlerinden optokuplörler veya tetikleme trafoları ile yalıtılmaktadır. α açısının nasıl ayarlandığına dair aşağıda temel bir devre bulunmaktadır. + alternansta Tristörün Anod ve Katod uçları doğru polarma altındadır fakat Gate bacağına bağlı olan C1 kondansatörü boştur ve + alternansta bu kondansatör sarj olmaya başlar Gate bacağındaki gerilim değeri ancak C1 kondansatörü sarj olduğunda tristörü tetikleyebilecek düzeye gelir. C1 kondansatörü sarj olma süresi tetikleme gecikmesini verir. Şarj süresi ise R2 potansiyometresi ile ayarlanır.

27 Tam doğru olmayan konvertör çıkışındaki gerilimin motor momentinde ve devrinde titreşimler oluşturması beklenebilir. Fakat her ne kadar motora titreşimli bir gerilimde uygulasak da motor sargılarının endüktif özelliğinden dolayı motor akımı gerilim kadar çok titreşimli olmayacak ve neredeyse motor üzerinden doğru akıma yakın bir akım geçecektir. Moment motor akımına bağlı olduğu için akımın yapmış olduğu bu küçük titreşimler momentte kendisini çok fazla hissettirmeyecektir. Düşük endüktanslı motorlarda ise devrelerine seri bağlanan filitre bobinleri sayesinde akım şekli düzeltilmektedir. Titreşimli besleme gerilimin dez avantajı olmuyor diyemeyiz. Gerilimdeki bu titreşim azda olsa alternatif bir etki yaparak az önce bahsettiğimiz endüktif direnç oluşturmaktadır. Tam doğru gerilimde ısı kayıpları I 2 x R iken bu durumda küçük de olsa R nin yanına bir endüktif direnç X L eklenmekte bu ise kayıpları bir miktar arttırmaktadır.

28 Frekans Kontrollü Doğru Akım Kaynağı - Alternatif Akım Kaynağı: Asenkron motorların devir kontrolü için frekansının değiştirilmesi gerektiğini biliyoruz. Frekansı kontrol edilebilir bir AC kaynak için en temel devre yandaki gibidir. Şekildeki devrede S1 ve S4 transistörleri iletime geçirildiğinde S1 Yük S4 üzerinden bir akım geçişi gerçekleşecektir. Daha sonra bu transistör çifti kesime götürülüp S2 ve S3 transistör çifti iletime geçirildiğinde bu sefer yük üzerinde birincisine ters yönde S2 Yük S3 şeklinde bir akım geçişi gerçekleşecektir. Bu sıralı anahtarlama hızları değiştirilerek yüke uygulanan gerilimin ve akımın frekansı değiştirilebilmektedir.

29 . İki farklı frekans için gerilim grafiği yandaki şekilde verilmiştir. Grafikten de görüleceği üzere elde edilen gerilim sinüs dalga biçiminden çok uzak bir kare dalgadır. Ama alternatif bir akımdır. İlerleyen konularda devre üzerine yapılacak ilaveler ile asenkron motorlar için kabul edilebilir bir dalga haline getirilecektir.

30 İnverter devrelerinde dikkat edilmesi gereken nokta iki anahtarlama eleman çiftinin aynı anda devreye girmemesidir. Eğer şekildeki devrede S1 ve S3 (veya S2-S4) transistörleri aynı anda devreye girecek olursa bu anahtarlama elemanları kaynağı kısa devre edecekler hem kendileri hem de DC besleme kaynağı zarar görecektir. Daha önce endüktif devrelerde akımın birden sıfıra çekilemeyeceğini görmüştük bu nedenle inverter devrelerinde anahtarlama elemanlarına ters paralel olarak serbest döngü diyotlarının bağlanması gerekmektedir. İnverterler çoğunlukla AC akım devrelerinde motorla kaynak arasına bağlanarak frekans değiştirici görevini görmektedir bu nedenle şekilde görülen DC kaynak olarak AC-DC çevirici kontrollü veya kontrolsüz kaynaklar kullanılmaktadır. Asenkron motorların frekans kontrolünde her ne kadar devir sayısı değiştirilse de motor momentinin ve akımının sabit tutulması istenir. Endüktif reaktansın formülü: X = 2. π. L f. l Eğer omik direnç bir an için göz önüne alınmaz ise yükten geçen akım I = U X L Şeklinde olacaktır.

31 Eğer motor devrini düşürmek için frekansta düşürülecek olursa endüktif direnç X L nin değeri düşecek ve akım artacaktır. Akım artışı motorlarda istenmeyen bir durum olduğu için akım artışını önlemek için DC kaynak geriliminin de aynı oranda düşürülmesi gerekecektir. Yine benzer şekilde motor devrini arttırmak için motor frekansı arttırıldığında X L endüktif direncinin değeri artacak bu seferde motor akımı yani momenti düşecektir. Bu sorunu ortadan kaldırmak için bu seferde DC kaynak geriliminin arttırılması gerekmektedir. Yani inverter devrelerinde tek başına frekansı değiştirmek yeterli olmayacaktır. Frekansla birlikte DC kaynak gerilimini arttırıp azaltmanın iki farklı yolu vardır. Genellikle büyük güçlü inverter devrelerinde kontrollü DC kaynaklar kullanılmaktadır. Kontrollü DC kaynakların maliyeti arttırması nedeni ile orta ve küçük güçlü inverter devrelerinde sabit DC akım kaynakları kullanılır ve gerilim anahtarlama elemanlarının iletim kesim süreleri ile değiştirilir.

32 Şekilde a gerilim grafiğine dikkat edilecek olursa geniş bir periyoda yani düşük bir frekansa sahiptir. Bu durumda anahtarlama elemanlarının kesim süreleri uzatılarak ortalama gerilim azaltılmıştır. b de ise frekans arttırılmış ve anahtarlama elemanlarının devrede kalma süreleri arttırılarak ortalama kaynak gerilimi artırılmıştır. c de ise frekans artırılmış ve gerilim değerini büyütmek için anahtarlama elemanları yarım periyot içerisinde hiç kesime götürülmemiştir. Bu noktadan sonra frekans daha da arttırılırda şekil d deki gibi gerilimin artmayacağı görülür. Serbest döngü Diyodunu anlatırken endüktif yüklerin yani motorların akımlarının neden aniden maksimum değer ve aniden sıfır olamayacağından bahsetmiştik. Aynı durum inverter anahtarlaması sırasındada oluşmaktadır. Her ne kadar gerilimin şekli sinüsoidal bir şekilde olmasa da motor akımı sinüs şekline oldukça yakındır ve bu şekli ile kabul edilebilir bir alternatif akımdır.

33 Anahtarlama elemanlarının bir periyot içerisinde iletim ve kesim süreleri ayarlanarak çıkış geriliminin ortalama değerinin değiştirilmesine Darbe Genlik Modülasyonu ( PWM Pulse Width Modulation ) denir. V ÇIKIŞ =Vx0,25 V ÇIKIŞ =Vx0,50 V ÇIKIŞ =Vx0,75

34 Üç Fazlı İnverter: Endüstride kullanılan asenkron motorların hemen hemen hepsi üç fazlı olduğu için bu motorların kontrolünde üç fazlı inverterler kullanılmaktadır. Buna ait prensip şema yanda verilmiştir. Şekildeki devrede transistörler 120 O lik faz açısı yapacak şekilde sıralı iletime geçirilerek üç faz elde edilmektedir.

35

36 Yukarıda bir ve üç fazlı inverter devrelerinin prensip şemaları verilmiştir. Anlaşılması kolay olması açısından yarı iletken anahtarlama elemanları olarak transistör gösterilmiştir. Gerçek devreler bu kadar basit olmayıp bu anahtarlama elemanları yanı sıra devrede filitre bobin ve kondansatörleri ile motorun fren çalışması sırasında DC kaynağa geri enerji beslemesi yapan diğer anahtarlama elemanları bulunmaktadır. Gerek AC gerilimin DC ye çevrilmesi gerekse de DC gerilimden AC gerilim elde edilerek motorun sürülmesi sırasında yarı iletken anahtarlama elemanlarının gerilimi kırpması sırasında motor sürücüleri harmonikler üretirler bu harmonik motor sürücüsünün bağlı olduğu hattaki diğer elektronik elemanlara zarar verebileceği gibi kompanzasyon kondansatörleri içinde tehlikeli olurlar. Bu zararlı etkiyi azaltmak için Avrupa ve Türkiye standartları bazı sınırlamalar getirmektedir. Harmonik değerlerini azaltmak için yukarıda bahsi geçtiği gibi filitre devreleri haricinde bir periyot içerisindeki anahtarlama sayısı Khz ler mertebesine çıkarılarak harmonik açısından gerekli değerler elde edilir.

37 Harmonik Nedir: Sinüsoidal olarak bildiğimiz şehir şebekesi aslında gerilim değeri ( Genliği ) ve frekansı değişik birçok küçük sinüs dalgalarının ( Harmoniklerin ) toplamından oluşmaktadır. Bu harmoniklerin frekans ve genlikleri Fourier Teoremi ile bulunur. Yukarıdaki Fourier açılımının anlamı şudur; 50 Hz frekansındaki Temel dalgamız, ( Tek sayı olarak devam eder ) Harmoniklerin toplamına eşittir.

38 3. harmonik Temel dalga genliğinin ( Geriliminin ) 1/3 ünde genliğe ve temel dalga frekansının 3 misli ( 3x50=150 ) frekansa sahiptir. 5. harmonik Temel dalga genliğinin ( Geriliminin ) 1/5 ünde genliğe ve temel dalga frekansının 5 misli ( 5x50=250 ) frekansa sahiptir. Harmonik değerleri bu şekilde devam eder. Şebeke dalga şeklinin simetri özelliği nedeni ile çift harmonik bileşenleri ( ) bulundurmaz. Eğer şebeke gerilimi çok hızlı bir şekilde anahtarlanacak ( açılıp kapanacak ) olursa Temel dalga yani ana bileşenimizin sinüsoidal şekli bozulacaktır. Bu durumda yukarıda belirttiğimiz; harmoniklerin genlik ( gerilim ) değerleri değişecek veya farklı harmonikler ortaya çıkacaktır. Harmonik kaynaklarını genel olarak şu şekilde sayabiliriz. - Motor sürücüleri. - Anahtarlanabilir güç kaynakları. - Kesintisiz güç kaynaklari (UPS). - Endüksiyon ocakları. - Doğrultucular (redresör), akü şarj cihazları. - Kaynak makineleri. Harmoniklerin kullanıcılara verdiği zararlar ise şu şekildedir. - Kompanzasyon kondansatörlerinin aşırı yüklenerek çok kısa sürede bozulması. - Nötr akımının artması. - Transformatörlerin ısınması, kayıpların artması. - Devre kesicilerde ve diğer kontrol sistemlerinde istenmeyen sebebi belirsiz açılmalar. - Kompanzasyon kademe sigortalarının açılması. - İletişim sistemlerinde parazitlerin oluşması. - Elektronik cihazlarda kart arızalarının meydana gelmesi. - Kontrol sistemlerinde beklenmeyen duruşlar ve arıza kodlarının oluşması.

39 Bu arızaların daha kolay anlaşılması için şu örneği verebiliriz. Kondansatörlerin kapasitif reaktasının formülü; X C = 1 2. π. f. C 3. Harmoniğin frekansı 150 Hz olduğu için kapasitif reaktasda 1/3 oranında azalmaktadır. Eğer 3. harmoniğin genlik ( Gerilim ) değeri temel dalga genliğinin ( Geriliminin ) 1/3 ünü geçecek olursa kapasitif reaktas azaldığı için kondansatör daha fazla akım çekecek ve bir süre sonra delinme şeklinde arıza verecektir. Harmoniklerin oluşmasının temel nedeni olan motor sürücüleri içerisinde harmonik filtrelerine sahip olsalar da çok miktarda motor sürücüsüne sahip olan işletmeler harmonik değerlerini istenen değerlerin altına düşürmek için ayrıca harmonik filitreleri kullanmak zorunda kalabilirler.

40

41 DA Motorun Çalışma Bölgeleri: Şekildeki grafikte A noktası DA motorunun anma değerinde çalıştığı noktadır ve motorun kaynaktan çekeceği akımın değeri I = V E R Formülü ile bulunur. Akımın yönü kaynaktan ( V ) motora doğrudur. Eğer motor devrini düşürmek için Va kaynak geriliminin değeri düşürülecek olursa bu sefer zıt emk nın ( E ) değeri kaynak geriliminden ( V ) büyük olacak ve akım formülü I = E V R Şeklinde değişecektir bu durumda motor REJENERATİF çalışacak ve motor kaynağı besleyecektir. Yani akım yönü motordan kaynağa doğru olacaktır. Bu durumda motorun çalışma noktası B ye kaymış olacaktır.

42

43 Kısaca A noktasına motor çalışma B noktasına ise jeneratör (dinamo) çalışma diyebiliriz. Rejeneratif çalışmada motorun sürtünme ve diğer kayıplardan dolayı devri düşecek ve tekrar zıt emk ( E ) nin değeri kaynak geriliminin ( V ) değerinin altına düşerek motor yeni devrinde motor çalışmaya devam edecektir. Kaynak geriliminin azaltılması haricinde vinç veya asansör motorlarında yükün aşağı inişi sırasında motorun devri anma devrinin üzerine çıkacak bu durumda zıt emk ( E ) nın değeri artarak kaynak geriliminin ( V ) üzerine çıkacak ve motor bu durumda da Rejeneratif çalışmaya geçecektir. Doğru akım motorlarının devir yönünü değiştirmek için kaynak yönü aniden değiştirilmemelidir. Bu durumda kaynak gerilimi ( V ) ve o anki zıt emk ( E ) aynı yönde olacak ve akım değeri I V = R E Şeklinde olacaktır ki bu akımın anma değerinin iki katına kadar çıkması anlamına gelir. Bu nedenle yön değiştirilmeden önce motor durdurulmalıdır. DA motorlarını durdurmak için kaynak gerilimi azaltılmalı motorun Rejeneratif çalışarak durması sağlanmalı daha sonra kaynak bağlantı uçları değiştirilerek gerilim arttırılmalıdır.

44 Bu çalışmaya ait gerilim grafiği aşağıdaverilmiştir. Burada motorun frenlenmesi ile birlikte akımın yön değiştirdiğine dikkat ediniz. Grafiğin altında kalan motordan kaynağa aktarılan güç üst tarafında ise kaynaktan motora aktarılan güç gözükmektedir. + alanın - alandan büyük olmasının nedeni frenleme sırasında sürtünme ve bakır kayıplarının oluşudur. Motorun frenleme sırasında kaynağı beslemesi yeni çıkan motor sürücülerinde yapılan ek devreler ile sağlanmaktadır. Yani sürücü ters yönde çalışarak kaynağa akım basmaktadır. Küçük güçlü veya eski tip sürücülerde bu özellik yerine motor Rejeneratif çalışmaya başladığı anda motor uçları küçük bir direnç üzerinden kısa devre edilerek motor üzerindeki enerjinin direnç üzerinde ısı olarak kaybolması sağlanmaktadır.

ASENKRON MOTORLARA YOL VERME METODLARI

ASENKRON MOTORLARA YOL VERME METODLARI DENEY-6 ASENKRON MOTORLARA YOL VERME METODLARI TEORİK BİLGİ KALKINMA AKIMININ ETKİLERİ Asenkron motorların çalışmaya başladıkları ilk anda şebekeden çektiği akıma kalkınma akımı, yol alma akımı veya kalkış

Detaylı

2- Tristör ile yük akımı değiştirilerek ayarlı yükkontrolü yapılabilir.

2- Tristör ile yük akımı değiştirilerek ayarlı yükkontrolü yapılabilir. Tristörlü Redresörler ( Doğrultmaçlar ) : Alternatif akımı doğru akıma çeviren sistemlere redresör denir. Redresörler sanayi için gerekli olan DC gerilimin elde edilmesini sağlar. Büyük akım ve gerilimlerin

Detaylı

KARADENİZ TEKNİK ÜNİVERSİTESİ Mühendislik Fakültesi Elektrik-Elektronik Mühendisliği Bölümü Power Electronic Circuits (Güç Elektroniği Devreleri)

KARADENİZ TEKNİK ÜNİVERSİTESİ Mühendislik Fakültesi Elektrik-Elektronik Mühendisliği Bölümü Power Electronic Circuits (Güç Elektroniği Devreleri) KARADENİZ TEKNİK ÜNİVERSİTESİ Mühendislik Fakültesi Elektrik-Elektronik Mühendisliği Bölümü Power Electronic Circuits (Güç Elektroniği Devreleri) 1. DENEYİN AMACI ÜÇ FAZ EVİRİCİ 3 Faz eviricilerin çalışma

Detaylı

Güç elektroniği elektrik mühendisliğinde enerji ve elektronik bilim dalları arasında bir bilim dalıdır.

Güç elektroniği elektrik mühendisliğinde enerji ve elektronik bilim dalları arasında bir bilim dalıdır. 3. Bölüm Güç Elektroniğinde Temel Kavramlar ve Devre Türleri Doç. Dr. Ersan KABALC AEK-207 GÜNEŞ ENERJİSİ İLE ELEKTRİK ÜRETİMİ Güç Elektroniğine Giriş Güç elektroniği elektrik mühendisliğinde enerji ve

Detaylı

SİLİKON KONTROLLÜ ANAHTAR SİLİCON CONTROLLED RECTETİER ( SCR )

SİLİKON KONTROLLÜ ANAHTAR SİLİCON CONTROLLED RECTETİER ( SCR ) Tristörler : SİLİKON KONTROLLÜ ANAHTAR SİLİCON CONTROLLED RECTETİER ( SCR ) Tanımı: Tristör, anot ( A ), katot ( K ) ve geyt ( G ) ucu bulunan ve geytine uygulanan ( + ) sinyal ile A - K arası iletime

Detaylı

Elektromekanik Kumanda Sistemleri / Ders Notları

Elektromekanik Kumanda Sistemleri / Ders Notları İkincisinde ise; stator düşük devir kutup sayısına göre sarılır ve her faz bobinleri 2 gruba bölünerek düşük devirde seri- üçgen olarak bağlanır. Yüksek devirde ise paralel- yıldız olarak bağlanır. Bu

Detaylı

AA Motorlarında Yol Verme, Motor Seçimi Yrd. Doç. Dr. Aytaç Gören

AA Motorlarında Yol Verme, Motor Seçimi Yrd. Doç. Dr. Aytaç Gören 04.12.2011 AA Motorlarında Yol Verme, Motor Seçimi Yrd. Doç. Dr. Aytaç Gören İçerik AA Motorlarının Kumanda Teknikleri Kumanda Elemanları na Yol Verme Uygulama Soruları 25.11.2011 2 http://people.deu.edu.tr/aytac.goren

Detaylı

TEK FAZLI VE ÜÇ FAZLI KONTROLLÜ DOĞRULTUCULAR

TEK FAZLI VE ÜÇ FAZLI KONTROLLÜ DOĞRULTUCULAR KARADENİZ TEKNİK ÜNİVERSİTESİ Mühendislik Fakültesi Elektrik-Elektronik Mühendisliği Bölümü Power Electronic Circuits (Güç Elektroniği Devreleri) TEK FAZLI VE ÜÇ FAZLI KONTROLLÜ DOĞRULTUCULAR 1. DENEYİN

Detaylı

Şekil-1. Doğru ve Alternatif Akım dalga şekilleri

Şekil-1. Doğru ve Alternatif Akım dalga şekilleri 2. Alternatif Akım =AC (Alternating Current) Değeri ve yönü zamana göre belirli bir düzen içerisinde değişen akıma AC denir. En çok bilinen AC dalga biçimi Sinüs dalgasıdır. Bununla birlikte farklı uygulamalarda

Detaylı

TEK FAZLI KONTROLLÜ (TRĠSTÖRLÜ) DOĞRULTUCULAR

TEK FAZLI KONTROLLÜ (TRĠSTÖRLÜ) DOĞRULTUCULAR TEK FAZLI KONTROLLÜ (TRĠSTÖRLÜ) DOĞRULTUCULAR Teorik Bilgi Deney de sabit çıkış gerilimi üretebilen diyotlu doğrultucuları inceledik. Eğer endüstriyel uygulama sabit değil de ayarlanabilir bir gerilime

Detaylı

A.Ü. GAMA MYO. Elektrik ve Enerji Bölümü GÜÇ ELEKTRONİĞİ 3. HAFTA

A.Ü. GAMA MYO. Elektrik ve Enerji Bölümü GÜÇ ELEKTRONİĞİ 3. HAFTA A.Ü. GAMA MYO. Elektrik ve Enerji Bölümü GÜÇ ELEKTRONİĞİ 3. HAFTA 1 İçindekiler Tristör Triyak 2 TRİSTÖR Tristörler güç elektroniği devrelerinde hızlı anahtarlama görevinde kullanılan, dört yarı iletken

Detaylı

Haftanın Amacı: Asenkron motorun hız ayar ve frenleme tekniklerinin kavranmasıdır.

Haftanın Amacı: Asenkron motorun hız ayar ve frenleme tekniklerinin kavranmasıdır. ASENKRON MOTORLARDA HIZ AYARI ve FRENLEME Haftanın Amacı: Asenkron motorun hız ayar ve frenleme tekniklerinin kavranmasıdır. Giriş Bilindiği üzere asenkron motorun rotor hızı, döner alan hızını (n s )

Detaylı

TEK FAZLI VE ÜÇ FAZLI KONTROLSÜZ DOĞRULTUCULAR

TEK FAZLI VE ÜÇ FAZLI KONTROLSÜZ DOĞRULTUCULAR KARADENİZ TEKNİK ÜNİVERSİTESİ Mühendislik Fakültesi Elektrik-Elektronik Mühendisliği Bölümü Power Electronic Circuits (Güç Elektroniği Devreleri) TEK FAZLI VE ÜÇ FAZLI KONTROLSÜZ DOĞRULTUCULAR 1. DENEYİN

Detaylı

A.Ü. GAMA MYO. Elektrik ve Enerji Bölümü GÜÇ ELEKTRONİĞİ 9. HAFTA

A.Ü. GAMA MYO. Elektrik ve Enerji Bölümü GÜÇ ELEKTRONİĞİ 9. HAFTA A.Ü. GAMA MYO. Elektrik ve Enerji Bölümü GÜÇ ELEKTRONİĞİ 9. HAFTA 1 İçindekiler DC/AC İnvertör Devreleri 2 Güç elektroniğinin temel devrelerinden sonuncusu olan Đnvertörler, herhangi bir DC kaynaktan aldığı

Detaylı

3 FAZLI ASENKRON MOTORLAR

3 FAZLI ASENKRON MOTORLAR 3 FAZLI ASENKRON MOTORLAR 3 FAZLI ASENKRON MOTORLAR Üç fazlı AC makinelerde üretilen üç fazlı gerilim, endüstride R-S-T (L1-L2- L3) olarak bilinir. R-S-T gerilimleri, aralarında 120 şer derece faz farkı

Detaylı

AC-DC Dönüştürücülerin Genel Özellikleri

AC-DC Dönüştürücülerin Genel Özellikleri AC-DC Dönüştürücülerin Genel Özellikleri U : AC girişteki efektif faz gerilimi f : Frekans q : Faz sayısı I d, I y : DC çıkış veya yük akımı (ortalama değer) U d U d : DC çıkış gerilimi, U d = f() : Maksimum

Detaylı

Elektrik. Alternatif Akım Motorlarının Kumanda Teknikleri Kumanda Elemanları

Elektrik. Alternatif Akım Motorlarının Kumanda Teknikleri Kumanda Elemanları Elektrik Alternatif Akım Motorlarının Kumanda Teknikleri Kumanda Elemanları 24.12.2013 Dr. Levent Çetin 2 24.12.2013 Dr. Levent Çetin 3 Buton/Anahtar / Limit Anahtarı Kalıcı butona basıldığında, buton

Detaylı

DC motorların sürülmesi ve sürücü devreleri

DC motorların sürülmesi ve sürücü devreleri DC motorların sürülmesi ve sürücü devreleri Armatür (endüvi) gerilimini değiştirerek devri ayarlamak mümkündür. Endüvi akımını değiştirerek torku (döndürme momentini) ayarlamak mümkündür. Endüviye uygulanan

Detaylı

İNDEKS. Cuk Türü İzolesiz Dönüştürücü, 219 Cuk Türü İzoleli Dönüştürücü, 228. Çalışma Bölgeleri, 107, 108, 109, 162, 177, 197, 200, 203, 240, 308

İNDEKS. Cuk Türü İzolesiz Dönüştürücü, 219 Cuk Türü İzoleli Dönüştürücü, 228. Çalışma Bölgeleri, 107, 108, 109, 162, 177, 197, 200, 203, 240, 308 İNDEKS A AC Bileşen, 186 AC Gerilim Ayarlayıcı, 8, 131, 161 AC Kıyıcı, 8, 43, 50, 51, 54, 62, 131, 132, 133, 138, 139, 140, 141, 142, 144, 145, 146, 147, 148, 149, 150, 151, 152, 153, 154, 155, 156, 157,

Detaylı

ELEKTRİK MOTORLARI VE SÜRÜCÜLER

ELEKTRİK MOTORLARI VE SÜRÜCÜLER BÖLÜM 4 A.A. MOTOR SÜRÜCÜLERİ 4.1.ALTERNATİF AKIM MOTORLARININ DENETİMİ Alternatif akım motorlarının, özellikle sincap kafesli ve bilezikli asenkron motorların endüstriyel uygulamalarda kullanımı son yıllarda

Detaylı

DENEY 3: DOĞRULTUCU DEVRELER Deneyin Amacı

DENEY 3: DOĞRULTUCU DEVRELER Deneyin Amacı DENEY 3: DOĞRULTUCU DEVRELER 3.1. Deneyin Amacı Yarım ve tam dalga doğrultucunun çalışma prensibinin öğrenilmesi ve doğrultucu çıkışındaki dalgalanmayı azaltmak için kullanılan kondansatörün etkisinin

Detaylı

DOĞRU AKIM MOTORLARI VE KARAKTERİSTİKLERİ

DOĞRU AKIM MOTORLARI VE KARAKTERİSTİKLERİ 1 DOĞRU AKIM MOTORLARI VE KARAKTERİSTİKLERİ Doğru Akım Motor Çeşitleri Motorlar; herhangi bir enerjiyi yararlı mekanik enerjiye dönüştürür. Doğru akım motoru, doğru akım elektrik enerjisini mekanik enerjiye

Detaylı

Samet Biricik Elk. Y. Müh. Elektrik Mühendisleri Odası 28 Ocak2011

Samet Biricik Elk. Y. Müh. Elektrik Mühendisleri Odası 28 Ocak2011 Samet Biricik Elk. Y. Müh. Elektrik Mühendisleri Odası 28 Ocak2011 1 KompanzasyonSistemlerinde Kullanılan Elemanlar Güç Kondansatörleri ve deşarj dirençleri Kondansatör Kontaktörleri Pano Reaktif Güç Kontrol

Detaylı

Bölüm 1 Güç Elektroniği Sistemleri

Bölüm 1 Güç Elektroniği Sistemleri Bölüm 1 Güç Elektroniği Sistemleri Elektrik gücünü yüksek verimli bir biçimde kontrol etmek ve formunu değiştirmek (dönüştürmek) için oluşturlan devrelere denir. Şekil 1 de güç girişi 1 veya 3 fazlı AA

Detaylı

Ders 04. Elektronik Devre Tasarımı. Güç Elektroniği 1. Ders Notları Ege Üniversitesi Öğretim Üyesi Yrd.Doç.Dr. Mehmet Necdet YILDIZ a aittir.

Ders 04. Elektronik Devre Tasarımı. Güç Elektroniği 1. Ders Notları Ege Üniversitesi Öğretim Üyesi Yrd.Doç.Dr. Mehmet Necdet YILDIZ a aittir. Elektronik Devre Tasarımı Ders 04 Ders Notları Ege Üniversitesi Öğretim Üyesi Yrd.Doç.Dr. Mehmet Necdet YILDIZ a aittir. www.ozersenyurt.net www.orbeetech.com / 1 AC-DC Dönüştürücüler AC-DC dönüştürücüler

Detaylı

MOTOR KORUMA RÖLELERİ. Motorların şebekeden aşırı akım çekme nedenleri

MOTOR KORUMA RÖLELERİ. Motorların şebekeden aşırı akım çekme nedenleri MOTOR KORUMA RÖLELERİ Motorlar herhangi bir nedenle normal değerlerinin üzerinde akım çektiğinde sargılarının ve devre elemanlarının zarar görmemesi için en kısa sürede enerjilerinin kesilmesi gerekir.

Detaylı

ENDÜKTİF REAKTİF AKIM NEDİR?

ENDÜKTİF REAKTİF AKIM NEDİR? ENDÜKTİF REAKTİF AKIM NEDİR? Elektrodinamik sisteme göre çalışan transformatör, elektrik motorları gibi cihazlar şebekeden mıknatıslanma akımı çekerler. Mıknatıslanma akımı manyetik alan varken şebekeden

Detaylı

DENEY 2: DĠYOTLU KIRPICI, KENETLEME VE DOĞRULTMA DEVRELERĠ

DENEY 2: DĠYOTLU KIRPICI, KENETLEME VE DOĞRULTMA DEVRELERĠ DENEY 2: DĠYOTLU KIRPICI, KENETLEME VE DOĞRULTMA DEVRELERĠ 1- Kırpıcı Devreler: Girişine uygulanan sinyalin bir bölümünü kırpan devrelere denir. En basit kırpıcı devre, şekil 1 'de görüldüğü gibi yarım

Detaylı

AC/DC DÖNÜŞTÜRÜCÜLER (Doğrultucular)

AC/DC DÖNÜŞTÜRÜCÜLER (Doğrultucular) AC/DC DÖNÜŞTÜRÜCÜLER (Doğrultucular) AC-DC dönüştürücüler (doğrultucular), AC gerilimi DC gerilime dönüştüren güç elektroniği devreleridir. Güç elektroniğinin temel güç devrelerinden doğrultucuları 2 temel

Detaylı

Yumuşak Yol Vericiler - TEORİ

Yumuşak Yol Vericiler - TEORİ Yumuşak Yol Vericiler - TEORİ 1. Gerilimi Düşürerek Yolverme Alternatif akım endüksiyon motorları, şebeke gerilimine direkt olarak bağlandıklarında, yol alma başlangıcında şebekeden Kilitli Rotor Akımı

Detaylı

22. ÜNİTE SENKRON MOTORLAR

22. ÜNİTE SENKRON MOTORLAR 22. ÜNİTE SENKRON MOTORLAR KONULAR 1. YAPISI VE ÇALIŞMA PRENSİBİ 2. YOL VERME YÖNTEMLERİ 3. KULLANILDIĞI YERLER Herhangi bir yükü beslemekte olan ve birbirine paralel bağlanan iki altematörden birsinin

Detaylı

ÜNİTE 5 KLASİK SORU VE CEVAPLARI (TEMEL ELEKTRONİK) Transformatörün tanımını yapınız. Alternatif akımın frekansını değiştirmeden, gerilimini

ÜNİTE 5 KLASİK SORU VE CEVAPLARI (TEMEL ELEKTRONİK) Transformatörün tanımını yapınız. Alternatif akımın frekansını değiştirmeden, gerilimini ÜNİTE 5 KLASİK SORU VE CEVAPLARI (TEMEL ELEKTRONİK) Transformatörün tanımını yapınız. Alternatif akımın frekansını değiştirmeden, gerilimini alçaltmaya veya yükseltmeye yarayan elektro manyetik indüksiyon

Detaylı

Arttıran tip DC kıyıcı çalışması (rezistif yükte);

Arttıran tip DC kıyıcı çalışması (rezistif yükte); NOT: Azaltan tip DC kıyıcı devresinde giriş gerilimi tamamen düzgün bir DC olmasına karsın yapılan anahtarlama sonucu oluşan çıkış gerilimi kare dalga formatındadır. Bu gerilimin düzgünleştirilmesi için

Detaylı

GÜÇ ELEKTRONİĞİ TEMEL KONTROLLÜ GÜÇ ELEMANLARI YRD.DOÇ. MUHAMMED GARİP

GÜÇ ELEKTRONİĞİ TEMEL KONTROLLÜ GÜÇ ELEMANLARI YRD.DOÇ. MUHAMMED GARİP GÜÇ ELEKTRONİĞİ TEMEL KONTROLLÜ GÜÇ ELEMANLARI YRD.DOÇ. MUHAMMED GARİP TRİSTÖR (SCR) Yapı ve Sembol İletim Karakteristiği KARAKTERİSTİK DEĞERLER I GT : Tetikleme Akımı. U GT : Tetikleme Gerilimi I GTM

Detaylı

A- Tristörler : 1- Tristörün yapısı ve özellikleri : a-yapısı :

A- Tristörler : 1- Tristörün yapısı ve özellikleri : a-yapısı : A- Tristörler : SİLİKON KONTROLLÜ ANAHTAR SİLİCON CONTROLLED RECTETİER ( SCR ) Tanımı: Tristör, anot ( A ), katot ( K ) ve geyt ( G ) ucu bulunan ve geytine uygulanan ( + ) sinyal ile A - K arası iletime

Detaylı

PWM Doğrultucular. AA/DA güç dönüşümü - mikroelektronik devrelerin güç kaynaklarında, - elektrikli ev aletlerinde,

PWM Doğrultucular. AA/DA güç dönüşümü - mikroelektronik devrelerin güç kaynaklarında, - elektrikli ev aletlerinde, PWM DOĞRULTUCULAR PWM Doğrultucular AA/DA güç dönüşümü - mikroelektronik devrelerin güç kaynaklarında, - elektrikli ev aletlerinde, - elektronik balastlarda, - akü şarj sistemlerinde, - motor sürücülerinde,

Detaylı

ELEKTRİK ELEKTRONİK MÜHENDİSLİĞİNE GİRİŞ

ELEKTRİK ELEKTRONİK MÜHENDİSLİĞİNE GİRİŞ Giresun Üniversitesi Mühendislik Fakültesi Elektrik Elektronik Mühendisliği Bölümü Bölüm Başkanı Bölümün tanıtılması Elektrik Elektronik Mühendisliğinin tanıtılması Mühendislik Etiği Birim Sistemleri Direnç,

Detaylı

ÜÇ FAZLI KONTROLLÜ DOĞRULTUCU VE DİMMER DEVRE UYGULAMASI

ÜÇ FAZLI KONTROLLÜ DOĞRULTUCU VE DİMMER DEVRE UYGULAMASI KARADENİZ TEKNİK ÜNİVERSİTESİ Mühendislik Fakültesi Elektrik-Elektronik Mühendisliği Bölümü Güç Elektroniği Uygulamaları ÜÇ FAZLI KONTROLLÜ DOĞRULTUCU VE DİMMER DEVRE UYGULAMASI 1. DENEYİN AMACI Bu deneyin

Detaylı

Çok sayıda motor şekilde gibi sadece bir durumunda başlatma kontrol merkezi ile otomatik olarak çalıştırılabilir.

Çok sayıda motor şekilde gibi sadece bir durumunda başlatma kontrol merkezi ile otomatik olarak çalıştırılabilir. 7.1.4 Paket Şalter İle Bu devredeki DG düşük gerilim rölesi düşük gerilime karşı koruma yapar. Yani şebeke gerilimi kesilir ve tekrar gelirse motorun çalışmasına engel olur. 7.2 SIRALI KONTROL Sıralı kontrol,

Detaylı

Elektromekanik Kumanda Sistemleri / Ders Notları

Elektromekanik Kumanda Sistemleri / Ders Notları 10. MOTORLARIN FRENLENMESİ Durdurulacak motoru daha kısa sürede durdurmada veya yükün yer çekimi nedeniyle motor devrinin artmasına sebep olduğu durumlarda elektriksel frenleme yapılır. Kumanda devrelerinde

Detaylı

ELEKTRİKSEL EYLEYİCİLER

ELEKTRİKSEL EYLEYİCİLER ELEKTRİKSEL EYLEYİCİLER Eyleyiciler (Aktuatörler) Bir cismi hareket ettiren veya kontrol eden mekanik cihazlara denir. Elektrik motorları ve elektrikli sürücüler Hidrolik sürücüler Pinomatik sürücüler

Detaylı

Bilezikli Asenkron Motora Yol Verilmesi

Bilezikli Asenkron Motora Yol Verilmesi Bilezikli Asenkron Motora Yol Verilmesi 1. GİRİŞ Bilezikli asenkron motor, sincap kafesli asenkron motordan farklı olarak, rotor sargıları dışarı çıkarılmış ve kömür fırçaları yardımıyla elektriksel bağlantı

Detaylı

ASENKRON MOTORLARI FRENLEME METODLARI

ASENKRON MOTORLARI FRENLEME METODLARI DENEY-7 ASENKRON MOTORLARI FRENLEME METODLARI Frenlemenin tanımı ve çeşitleri Motorların enerjisi kesildikten sonra rotorun kendi ataletinden dolayı bir süre daha dönüşünü sürdürür. Yani motorun durması

Detaylı

21. ÜNİTE FREKANS-GÜÇ KATSAYISI VE DEVİR SAYISININ ÖLÇÜLMESİ

21. ÜNİTE FREKANS-GÜÇ KATSAYISI VE DEVİR SAYISININ ÖLÇÜLMESİ 21. ÜNİTE FREKANS-GÜÇ KATSAYISI VE DEVİR SAYISININ ÖLÇÜLMESİ KONULAR 1. Frekansın Ölçülmesi 2. Güç Katsayısının Ölçülmesi 3. Devir Sayının Ölçülmesi 21.1.Frekansın Ölçülmesi 21.1.1. Frekansın Tanımı Frekans,

Detaylı

L3 Otomasyon Laboratuvarı

L3 Otomasyon Laboratuvarı L3 Laboratuvarı Otomasyon laboratuvarı olarak kullanılmaktadır. Bu laboratuvarda ders alan öğrencilerimiz; Elektrik makinelerinin yapısı, bakımı, kontrolü ve endüstriyel uygulama alanlarını öğrenir. Enerji

Detaylı

ELEKTRİK ENERJİ SİSTEMLERİNDE OLUŞAN HARMONİKLERİN FİLTRELENMESİNİN BİLGİSAYAR DESTEKLİ MODELLENMESİ VE SİMÜLASYONU

ELEKTRİK ENERJİ SİSTEMLERİNDE OLUŞAN HARMONİKLERİN FİLTRELENMESİNİN BİLGİSAYAR DESTEKLİ MODELLENMESİ VE SİMÜLASYONU T.C. MARMARA ÜNİVERSİTESİ FEN BİLİMLERİ ENSTİTÜSÜ ELEKTRİK ENERJİ SİSTEMLERİNDE OLUŞAN HARMONİKLERİN FİLTRELENMESİNİN BİLGİSAYAR DESTEKLİ MODELLENMESİ VE SİMÜLASYONU Mehmet SUCU (Teknik Öğretmen, BSc.)

Detaylı

BÖLÜM X OSİLATÖRLER. e b Yükselteç. Be o Geri Besleme. Şekil 10.1 Yükselteçlerde geri besleme

BÖLÜM X OSİLATÖRLER. e b Yükselteç. Be o Geri Besleme. Şekil 10.1 Yükselteçlerde geri besleme BÖLÜM X OSİLATÖRLER 0. OSİLATÖRE GİRİŞ Kendi kendine sinyal üreten devrelere osilatör denir. Böyle devrelere dışarıdan herhangi bir sinyal uygulanmaz. Çıkışlarında sinüsoidal, kare, dikdörtgen ve testere

Detaylı

Adapazarı Meslek Yüksekokulu Analog Elektronik

Adapazarı Meslek Yüksekokulu Analog Elektronik 22 Adapazarı Meslek Yüksekokulu Analog Elektronik Doğrultma Devreleri AC gerilimi DC gerilime çeviren devrelere doğrultma devreleri denir. Elde edilen DC gerilim dalgalı bir gerilimdir. Kullanılan doğrultma

Detaylı

Statik güç eviricilerinin temel görevi, bir DA güç kaynağı kullanarak çıkışta AA dalga şekli üretmektir.

Statik güç eviricilerinin temel görevi, bir DA güç kaynağı kullanarak çıkışta AA dalga şekli üretmektir. 4. Bölüm Eviriciler ve Eviricilerin Sınıflandırılması Doç. Dr. Ersan KABALCI AEK-207 GÜNEŞ ENERJİSİ İLE ELEKTRİK ÜRETİMİ Giriş Statik güç eviricilerinin temel görevi, bir DA güç kaynağı kullanarak çıkışta

Detaylı

Anma güçleri 3 kw tan büyük olan motorların üç fazlı şebekelere bağlanabilmeleri için üç fazlı olmaları gerekir.

Anma güçleri 3 kw tan büyük olan motorların üç fazlı şebekelere bağlanabilmeleri için üç fazlı olmaları gerekir. Elektrik motorlarında yol verme işlemi Motorun rotor hızının sıfırdan anma hızına hızına ulaşması için yapılan işlemdir. Durmakta olan motorun stator sargılarına gerilim uygulandığında endüklenen zıt emk

Detaylı

Yükseltici DA Kıyıcılar, Gerilim beslemeli invertörler / 12. Hafta

Yükseltici DA Kıyıcılar, Gerilim beslemeli invertörler / 12. Hafta E sınıfı DC kıyıcılar; E sınıfı DC kıyıcılar, çift yönlü (4 bölgeli) DC kıyıcılar olarak bilinmekte olup iki adet C veya iki adet D sınıfı DC kıyıcının birleşiminden oluşmuşlardır. Bu tür kıyıcılar, iki

Detaylı

DENEY 2: DİYOTLU KIRPICI, KENETLEME VE DOĞRULTMA DEVRELERİ

DENEY 2: DİYOTLU KIRPICI, KENETLEME VE DOĞRULTMA DEVRELERİ DENEY 2: DİYOTLU KIRPICI, KENETLEME VE DOĞRULTMA DEVRELERİ 1. Kırpıcı Devreler: Girişine uygulanan sinyalin bir bölümünü kırpan devrelere denir. En basit kırpıcı devre, Şekil 1 de görüldüğü gibi yarım

Detaylı

DENEY 12 SCR ile İki yönlü DC Motor Kontrolü

DENEY 12 SCR ile İki yönlü DC Motor Kontrolü DENEY 12 SCR ile İki yönlü DC Motor Kontrolü DENEYİN AMACI 1. Elektromanyetik rölelerin çalışmasını ve yapısını öğrenmek 2. SCR kesime görüme yöntemlerini öğrenmek 3. Bir dc motorun dönme yönünü kontrol

Detaylı

ASENKRON MAKİNELER. Asenkron Motorlara Giriş

ASENKRON MAKİNELER. Asenkron Motorlara Giriş ASENKRON MAKİNELER Asenkron Motorlara Giriş İndüksiyon motor yada asenkron motor (ASM), rotor için gerekli gücü komitatör yada bileziklerden ziyade elektromanyetik indüksiyon yoluyla aktaran AC motor tipidir.

Detaylı

AKÜ ŞARJ REDRESÖRLERİ

AKÜ ŞARJ REDRESÖRLERİ MONOFAZE GİRİŞ: GEMTA GRR1000-LH Serisi redresörler, elektrik şebekelerinde, telefon santrallerinde ve benzeri yerlerde DC gerilim ihtiyacını karşılama ve aküleri tam şarjlı olarak tutmakta kullanılırlar.

Detaylı

BÖLÜM IX DALGA MEYDANA GETİRME USULLERİ

BÖLÜM IX DALGA MEYDANA GETİRME USULLERİ BÖLÜM IX DALGA MEYDANA GETİRME USULLERİ 9.1 DALGA MEYDANA GETİRME USÜLLERİNE GİRİŞ Dalga üreteçleri birkaç hertzden, birkaç gigahertze kadar sinyalleri meydana getirirler. Çıkışlarında sinüsoidal, kare,

Detaylı

ELEKTRĐK MOTORLARI SÜRÜCÜLERĐ EELP212 DERS 05

ELEKTRĐK MOTORLARI SÜRÜCÜLERĐ EELP212 DERS 05 EELP212 DERS 05 Özer ŞENYURT Mayıs 10 1 BĐR FAZLI MOTORLAR Bir fazlı motorların çeşitleri Yardımcı sargılı motorlar Ek kutuplu motorlar Relüktans motorlar Repülsiyon motorlar Üniversal motorlar Özer ŞENYURT

Detaylı

KIRIKKALE ÜNİVERSİTESİ

KIRIKKALE ÜNİVERSİTESİ KIRIKKALE ÜNİVERSİTESİ ELEKTRİK-ELEKTRONİK MÜHENDİSLİĞİ BÖLÜMÜ SAYISAL ELEKTRONİK LAB. DENEY FÖYÜ DENEY 4 OSİLATÖRLER SCHMİT TRİGGER ve MULTİVİBRATÖR DEVRELERİ ÖN BİLGİ: Elektronik iletişim sistemlerinde

Detaylı

FRENIC MEGA ÖZET KULLANIM KLAVUZU

FRENIC MEGA ÖZET KULLANIM KLAVUZU FRENIC MEGA ÖZET KULLANIM KLAVUZU GENEL BİLGİLER SÜRÜCÜ KONTROL BAĞLANTILARI PLC 24 VDC CM DİJİTAL GİRİŞ COM UCU FWD REV X1 - X7 EN DİJİTAL GİRİŞLER ( PNP / NPN SEÇİLEBİLİR ) ENABLE GİRİŞİ SW1 Y1 - Y4

Detaylı

AC/DC DÖNÜŞTÜRÜCÜLER (Doğrultucular)

AC/DC DÖNÜŞTÜRÜCÜLER (Doğrultucular) AC/DC DÖNÜŞTÜRÜCÜLER (Doğrultucular) AC-DC dönüştürücüler (doğrultucular), AC gerilimi DC gerilime dönüştüren güç elektroniği devreleridir. Güç elektroniğinin temel güç devrelerinden doğrultucuları 2 temel

Detaylı

ZENER DİYOTLAR. Hedefler

ZENER DİYOTLAR. Hedefler ZENER DİYOTLAR Hedefler Bu üniteyi çalıştıktan sonra; Zener diyotları tanıyacak ve çalışma prensiplerini kavrayacaksınız. Örnek devreler üzerinde Zener diyotlu regülasyon devrelerini öğreneceksiniz. 2

Detaylı

Alternatif Akım. Yrd. Doç. Dr. Aytaç Gören. Alternatif Akım

Alternatif Akım. Yrd. Doç. Dr. Aytaç Gören. Alternatif Akım Yrd. Doç. Dr. Aytaç Gören Paralel devre 2 İlk durum: 3 Ohm kanunu uygulandığında; 4 Ohm kanunu uygulandığında; 5 Paralel devrede empedans denklemi, 6 Kondansatör (Kapasitans) Alternatif gerilimin etkisi

Detaylı

TEK FAZLI KONTROLLU VE KONTROLSUZ DOĞRULTUCULAR

TEK FAZLI KONTROLLU VE KONTROLSUZ DOĞRULTUCULAR FIRAT ÜNİVERSİTESİ MÜHENDİSLİK FAKÜLTESİ ELEKTRİK-ELEKTRONİK MÜHENDİSLİĞİ BÖLÜMÜ GÜÇ ELEKTRONİĞİ LABORATUVARI DENEY NO:1 TEK FAZLI KONTROLLU VE KONTROLSUZ DOĞRULTUCULAR 1.1 Giriş Diyod ve tristör gibi

Detaylı

DEVRE ANALİZİ LABORATUARI DENEY 6 KONDANSATÖRÜN VE BOBİNİN DOĞRU AKIM DAVRANIŞI

DEVRE ANALİZİ LABORATUARI DENEY 6 KONDANSATÖRÜN VE BOBİNİN DOĞRU AKIM DAVRANIŞI DEVRE ANALİZİ LABORATUARI DENEY 6 KONDANSATÖRÜN VE BOBİNİN DOĞRU AKIM DAVRANIŞI DENEY 6: KONDANSATÖRÜN VE BOBİNİN DOĞRU AKIMDA DAVRANIŞI 1. Açıklama Kondansatör doğru akımı geçirmeyip alternatif akımı

Detaylı

İÇİNDEKİLER. ÖNSÖZ...iii İÇİNDEKİLER...v 1. GÜÇ ELEKTRONİĞİNE GENEL BİR BAKIŞ YARI İLETKEN GÜÇ ELEMANLARI...13

İÇİNDEKİLER. ÖNSÖZ...iii İÇİNDEKİLER...v 1. GÜÇ ELEKTRONİĞİNE GENEL BİR BAKIŞ YARI İLETKEN GÜÇ ELEMANLARI...13 İÇİNDEKİLER ÖNSÖZ...iii İÇİNDEKİLER...v 1. GÜÇ ELEKTRONİĞİNE GENEL BİR BAKIŞ...1 1.1. Tanım ve Kapsam...1 1.2. Tarihsel Gelişim ve Bugünkü Eğilim...3 1.3. Yarı İletken Güç Elemanları...4 1.3.1. Kontrolsüz

Detaylı

Anahtarlama Modlu DA-AA Evirici

Anahtarlama Modlu DA-AA Evirici Anahtarlama Modlu DA-AA Evirici Giriş Anahtarlama modlu eviricilerde temel kavramlar Bir fazlı eviriciler Üç fazlı eviriciler Ölü zamanın PWM eviricinin çıkış gerilimine etkisi Diğer evirici anahtarlama

Detaylı

Servo Motor. Servo Motorların Kullanıldığı Yerler

Servo Motor. Servo Motorların Kullanıldığı Yerler Servo Motor Tanımı: 1 devir/dakikalık hız bölgelerinin altında bile kararlı çalışabilen, hız ve moment kontrolü yapan yardımcı motorlardır. Örneğin hassas takım tezgâhlarında ilerleme hareketleri için

Detaylı

Multivibratörler. Monastable (Tek Kararlı) Multivibratör

Multivibratörler. Monastable (Tek Kararlı) Multivibratör Multivibratörler Kare dalga veya dikdörtgen dalga meydana getiren devrelere MULTİVİBRATÖR adı verilir. Bu devreler temel olarak pozitif geri beslemeli iki yükselteç devresinden oluşur. Genelde çalışma

Detaylı

6. ÜNİTE DOĞRU AKIM MAKİNALARININ DEVREYE BAĞLANTI ŞEMALARI

6. ÜNİTE DOĞRU AKIM MAKİNALARININ DEVREYE BAĞLANTI ŞEMALARI 6. ÜNİTE DOĞRU AKIM MAKİNALARININ DEVREYE BAĞLANTI ŞEMALARI KONULAR 1. Doğru Akım Jeneratörleri (Dinamolar) 2. Doğru Akım Jeneratörlerinin Paralel Bağlanması 3. Doğru Akım Motorları GİRİŞ Bir iletkende

Detaylı

Yarım Dalga Doğrultma

Yarım Dalga Doğrultma Elektronik Devreler 1. Diyot Uygulamaları 1.1 Doğrultma Devreleri 1.1.1 Yarım dalga Doğrultma 1.1.2 Tam Dalga Doğrultma İki Diyotlu Tam Dalga Doğrultma Dört Diyotlu Tam Dalga Doğrultma Konunun Özeti *

Detaylı

SABİT MIKNATISLI MOTORLAR ve SÜRÜCÜLERİ

SABİT MIKNATISLI MOTORLAR ve SÜRÜCÜLERİ SABİT MIKNATISLI MOTORLAR ve SÜRÜCÜLERİ 1-Step Motorlar - Sabit mıknatıslı Step Motorlar 2- Sorvo motorlar - Sabit mıknatıslı Servo motorlar 1- STEP (ADIM) MOTOR NEDİR Açısal konumu adımlar halinde değiştiren,

Detaylı

ALTERNATİF AKIMIN TEMEL ESASLARI

ALTERNATİF AKIMIN TEMEL ESASLARI ELEKTRİK-ELEKTRONİK MÜHENDİSLİĞİ BÖLÜMÜ ELEKTRİK-ELEKTRONİK MÜHENDİSLİĞİNE GİRİŞ DERSİ ALTERNATİF AKIMIN TEMEL ESASLARI Dr. Öğr. Üyesi Ahmet ÇİFCİ Elektrik enerjisi, alternatif akım ve doğru akım olarak

Detaylı

KARAMANOĞLU MEHMETBEY ÜNİVERSİTESİ ELEKTRİK ELEKTRONİK MÜHENDİSLİĞİ BÖLÜMÜ

KARAMANOĞLU MEHMETBEY ÜNİVERSİTESİ ELEKTRİK ELEKTRONİK MÜHENDİSLİĞİ BÖLÜMÜ KARAMANOĞLU MEHMETBEY ÜNİVERSİTESİ ELEKTRİK ELEKTRONİK MÜHENDİSLİĞİ BÖLÜMÜ Elektrik Makinaları II Laboratuvarı DENEY 3 ASENKRON MOTOR A. Deneyin Amacı: Boşta çalışma ve kilitli rotor deneyleri yapılarak

Detaylı

F AKIM DEVRELER A. DEVRE ELEMANLARI VE TEMEL DEVRELER

F AKIM DEVRELER A. DEVRE ELEMANLARI VE TEMEL DEVRELER ALTERNATİF AKIM DEVRELERİ A. DEVRE ELEMANLARI VE TEMEL DEVRELER Alternatif akım devrelerinde akımın geçişine karşı üç çeşit direnç (zorluk) gösterilir. Devre elamanları dediğimiz bu dirençler: () R omik

Detaylı

TRİSTÖR MODÜL SÜRÜCÜ KARTI (7 SEG) KULLANIM KILAVUZU AKE-PE-TMS-001

TRİSTÖR MODÜL SÜRÜCÜ KARTI (7 SEG) KULLANIM KILAVUZU AKE-PE-TMS-001 TRİSTÖR MODÜL SÜRÜCÜ KARTI (7 SEG) KULLANIM KILAVUZU AKE-PE-TMS-001 1.CİHAZ ÖLÇÜLERİ 2.CİHAZ BAĞLANTI ŞEMASI 3.UYARILAR Cihazı kullanmaya başlamadan önce mutlaka kullanma kılavuzu okunmalıdır ve cihaz

Detaylı

Doğru Akım (DC) Makinaları

Doğru Akım (DC) Makinaları Doğru Akım (DC) Makinaları Doğru akım makinaları motor veya jeneratör olarak kullanılabilir. Genellikle DC makinalar motor olarak kullanılır. En büyük avantajları hız ve tork ayarının kolay yapılabilmesidir.

Detaylı

1000 V a kadar Çıkış Voltaj. 500 V a kadar İzolasyon Sınıfı. F 140C İzolasyon Malzemesi IEC EN 60641-2 Çalışma Frekansı. 50-60 Hz.

1000 V a kadar Çıkış Voltaj. 500 V a kadar İzolasyon Sınıfı. F 140C İzolasyon Malzemesi IEC EN 60641-2 Çalışma Frekansı. 50-60 Hz. BİR ve İKİ FAZLI İZOLASYON TRANSFORMATÖR Bir ve İki fazlı olarak üretilen emniyet izolasyon transformatör leri insan sağlığı ile sistem ve cihazlara yüksek güvenliğin istenildiği yerlerde kullanılır. İzolasyon

Detaylı

İNVERTER ENTEGRELİ MOTORLAR

İNVERTER ENTEGRELİ MOTORLAR İNVERTER ENTEGRELİ MOTORLAR ENTEGRE MOTOR ÇÖZÜMLERİ Günümüzde enerji kaynakları hızla tükenirken enerjiye olan talep aynı oranda artmaktadır. Bununla beraber enerji maliyetleri artmakta ve enerjinin optimum

Detaylı

YILDIZ TEKNİK ÜNİVERSİTESİ MAKİNE FAKÜLTESİ MEKATRONİK MÜHENDİSLİĞİ BÖLÜMÜ MEKATRONİK MÜHENDİSLİĞİNE GİRİŞ DERSİ. Işığı Takip Eden Kafa 2 Nolu Proje

YILDIZ TEKNİK ÜNİVERSİTESİ MAKİNE FAKÜLTESİ MEKATRONİK MÜHENDİSLİĞİ BÖLÜMÜ MEKATRONİK MÜHENDİSLİĞİNE GİRİŞ DERSİ. Işığı Takip Eden Kafa 2 Nolu Proje YILDIZ TEKNİK ÜNİVERSİTESİ MAKİNE FAKÜLTESİ MEKATRONİK MÜHENDİSLİĞİ BÖLÜMÜ MEKATRONİK MÜHENDİSLİĞİNE GİRİŞ DERSİ Işığı Takip Eden Kafa 2 Nolu Proje Proje Raporu Hakan Altuntaş 11066137 16.01.2013 İstanbul

Detaylı

DENEY 16 Sıcaklık Kontrolü

DENEY 16 Sıcaklık Kontrolü DENEY 16 Sıcaklık Kontrolü DENEYİN AMACI 1. Sıcaklık kontrol elemanlarının türlerini ve çalışma ilkelerini öğrenmek. 2. Bir orantılı sıcaklık kontrol devresi yapmak. GİRİŞ Solid-state sıcaklık kontrol

Detaylı

Güç Faktörünün İyileştirilmesi Esasları: KOMPANZASYON HAKKINDA GENEL BİLGİ Tüketicilerin normal olarak şebekeden çektikleri endüktif gücün kapasitif yük çekmek suretiyle özel bir reaktif güç üreticisi

Detaylı

1) Standart tristör: Ağır sanayi cihazlarında AC ve DC de Hz,4000V,1000A

1) Standart tristör: Ağır sanayi cihazlarında AC ve DC de Hz,4000V,1000A KONU: A. TRİSTÖRÜN YAPISI VE ÖZELLİKLERİ a) Tristörün yapısı ve çeşitleri : Tristör en az dört silisyum yarı iletken parçanın birleştirilmesinden oluşan, anahtar ve doğrultma görevi yapan bir elemandır.

Detaylı

KOMPANZASYON SİSTEMLERİ

KOMPANZASYON SİSTEMLERİ Mühendislik Geliştirme Eğitimleri MÜGE 2018 BAHAR DÖNEMİ KOMPANZASYON SİSTEMLERİ 02.05.2018 Özgür BULUT Elektrik Elektronik Mühendisi (SMM) EMO Ankara Şube Üyesi EMO Ankara SMM Komisyon Başkanı ozgurbbulut@hotmail.com

Detaylı

****** GÜÇ ELEKTRONİK DERS NOTLARI / 2006 ******

****** GÜÇ ELEKTRONİK DERS NOTLARI / 2006 ****** Güç elektroniği terimi, çok geniş bir alanda elektronik devreleri içine alır ve buradaki amaç ise bir kaynaktan bir yüke giden elektrik gücünün kontrol edilmesidir. Bu kontrol çok değişik biçimlerde; örneğin

Detaylı

ÜÇ-FAZLI TAM DALGA YARI KONTROLLÜ DOĞRULTUCU VE ÜÇ-FAZLI EVİRİCİ

ÜÇ-FAZLI TAM DALGA YARI KONTROLLÜ DOĞRULTUCU VE ÜÇ-FAZLI EVİRİCİ KARADENİZ TEKNİK ÜNİVERSİTESİ Mühendislik Fakültesi Elektrik-Elektronik Mühendisliği Bölümü Güç Elektroniği Uygulamaları ÜÇ-FAZLI TAM DALGA YARI KONTROLLÜ DOĞRULTUCU VE ÜÇ-FAZLI EVİRİCİ Hazırlık Soruları

Detaylı

T.C. MARMARA ÜNİVERSİTESİ TEKNOLOJİ FAKÜLTESİ MEKATRONİK MÜHENDİSLİĞİ BÖLÜMÜ

T.C. MARMARA ÜNİVERSİTESİ TEKNOLOJİ FAKÜLTESİ MEKATRONİK MÜHENDİSLİĞİ BÖLÜMÜ T.C. MARMARA ÜNİVERSİTESİ TEKNOLOJİ FAKÜLTESİ MEKATRONİK MÜHENDİSLİĞİ BÖLÜMÜ LABORATUVAR RAPORU ADI SOYADI : Fedi Salhi 170214925 Bilge Batuhan Kurtul 170214006 Hamdi Sharaf 170214921 DERSİN ADI : Güç

Detaylı

T.C. DÜZCE ÜNİVERSİTESİ TEKNOLOJİ FAKÜLTESİ BİLGİSAYAR MÜHENDİSLİĞİ BÖLÜMÜ BMT103 ELEKTRİK DEVRE TEMELLERİ DERSİ LABORATUVARI DENEY NO: 7

T.C. DÜZCE ÜNİVERSİTESİ TEKNOLOJİ FAKÜLTESİ BİLGİSAYAR MÜHENDİSLİĞİ BÖLÜMÜ BMT103 ELEKTRİK DEVRE TEMELLERİ DERSİ LABORATUVARI DENEY NO: 7 T.C. DÜZCE ÜNİVERSİTESİ TEKNOLOJİ FAKÜLTESİ BİLGİSAYAR MÜHENDİSLİĞİ BÖLÜMÜ BMT103 ELEKTRİK DEVRE TEMELLERİ DERSİ LABORATUVARI DENEY NO: 7 KONDANSATÖRLER VE BOBİNLER Doç. Dr. İbrahim YÜCEDAĞ Arş. Gör. M.

Detaylı

ELEKTRİK MÜHENDİSLERİ ODASI GÜÇ SİSTEMLERİNDE HARMONİKLER VE FİLTRELEMELERİN İNCELENMESİ

ELEKTRİK MÜHENDİSLERİ ODASI GÜÇ SİSTEMLERİNDE HARMONİKLER VE FİLTRELEMELERİN İNCELENMESİ ELEKTRİK MÜHENDİSLERİ ODASI EMO ANKARA ŞUBESİ İÇ ANADOLU ENERJİ FORUMU GÜÇ SİSTEMLERİNDE HARMONİKLER VE FİLTRELEMELERİN İNCELENMESİ EMO ŞUBE : KIRIKKALE ÜYE : Caner FİLİZ HARMONİK NEDİR? Sinüs formundaki

Detaylı

BÖLÜM 3 ALTERNATİF AKIMDA SERİ DEVRELER

BÖLÜM 3 ALTERNATİF AKIMDA SERİ DEVRELER BÖÜM 3 ATENATİF AKMDA SEİ DEVEE 3.1 - (DİENÇ - BOBİN SEİ BAĞANMAS 3. - (DİENÇ - KONDANSATÖÜN SEİ BAĞANMAS 3.3 -- (DİENÇ-BOBİN - KONDANSATÖ SEİ BAĞANMAS 3.4 -- SEİ DEVESİNDE GÜÇ 77 ATENATİF AKM DEVE ANAİİ

Detaylı

Gerilim beslemeli invertörler, akım beslemeli invertörler / 13. Hafta. Sekil-7.7 de endüktif yükte çalışan PWM invertör görülmektedir.

Gerilim beslemeli invertörler, akım beslemeli invertörler / 13. Hafta. Sekil-7.7 de endüktif yükte çalışan PWM invertör görülmektedir. 1 fazlı Gerilim Kaynaklı PWM invertörler (Endüktif yükte); Sekil-7.7 de endüktif yükte çalışan PWM invertör görülmektedir. Şekil-7.7 den görüldüğü gibi yükün endüktif olması durumunda, yük üzerindeki enerjinin

Detaylı

1 ALTERNATİF AKIMIN TANIMI

1 ALTERNATİF AKIMIN TANIMI 1 ALTERNATİF AKIMIN TANIMI Alternatif Akımın Tanımı Doğru gerilim kaynağının gerilim yönü ve büyüklüğü sabit olmakta; buna bağlı olarak devredeki elektrik akımı da aynı yönlü ve sabit değerde olmaktadır.

Detaylı

Şekil1. Geri besleme eleman türleri

Şekil1. Geri besleme eleman türleri HIZ / KONUM GERİBESLEME ELEMANLARI Geribesleme elemanları bir servo sistemin, hızını, motor milinin bulunduğu konumu ve yükün bulunduğu konumu ölçmek ve belirlemek için kullanılır. Uygulamalarda kullanılan

Detaylı

DENEY-8 KONDANSATÖRÜN VE BOBİNİN DOĞRU AKIMDA DAVRANIŞI

DENEY-8 KONDANSATÖRÜN VE BOBİNİN DOĞRU AKIMDA DAVRANIŞI DENEY-8 KONDANSATÖRÜN VE BOBİNİN DOĞRU AKIMDA DAVRANIŞI Teorinin Açıklaması: Kondansatör doğru akımı geçirmeyip alternatif akımı geçiren bir elemandır. Yükselteçlerde DC yi geçirip AC geçirmeyerek filtre

Detaylı

Elektrik Motorları ve Sürücüleri

Elektrik Motorları ve Sürücüleri Elektrik Motorları ve Sürücüleri Genel Kavramlar Motor sarımı görüntüleri Sağ el kuralı bobine uygulanırsa: 4 parmak akım yönünü Başparmak N kutbunu gösterir N ve S kutbunun oluşumu Manyetik alan yönü

Detaylı

3 Fazlı Açma-Kapama Kontrollü AC Voltaj Kontrolcü. (yıldız bağlı rezistif yükte);

3 Fazlı Açma-Kapama Kontrollü AC Voltaj Kontrolcü. (yıldız bağlı rezistif yükte); 3 FAZLI AC KIYICILAR 1 fazlı AC kıyıcılar, daha önce de belirtildiği gibi, düşük güçlü ısıtıcı kontrolü, aydınlatma kontrolü ve motor kontrolünde kullanılmaktadır. Orta ve yüksek güçteki benzer uygulamalarda

Detaylı

Mekatronik Mühendisliği Lab1 (Elektrik-Elektronik) Diyotlu Doğrultucu Uygulamaları

Mekatronik Mühendisliği Lab1 (Elektrik-Elektronik) Diyotlu Doğrultucu Uygulamaları YILDIZ TEKNİK ÜNİVERSİTESİ MAKİNA FAKÜLTESİ MEKATRONİK MÜHENDİSLİĞİ BÖLÜMÜ ELEKTRİKELEKTRONİK LABORATUARI (LAB I) DENEY 6 Deney Adı: Diyotlu Doğrultucu Uygulamaları Öğretim Üyesi: Yard. Doç. Dr. Erhan

Detaylı

Makine Mühendisliği İçin Elektrik-Elektronik Bilgisi. Ders Notu-5 AKTİF DEVRE ELEMANLARI Hazırlayan: Yrd. Doç. Dr. Ahmet DUMLU

Makine Mühendisliği İçin Elektrik-Elektronik Bilgisi. Ders Notu-5 AKTİF DEVRE ELEMANLARI Hazırlayan: Yrd. Doç. Dr. Ahmet DUMLU Makine Mühendisliği İçin Elektrik-Elektronik Bilgisi Ders Notu-5 AKTİF DEVRE ELEMANLARI Hazırlayan: Yrd. Doç. Dr. Ahmet DUMLU DİYOTLAR Diyot tek yöne elektrik akımını ileten bir devre elemanıdır. Diyotun

Detaylı

Alternatif Akım Devreleri

Alternatif Akım Devreleri Alternatif akım sürekli yönü ve şiddeti değişen bir akımdır. Alternatif akımda bazı devre elemanları (bobin, kapasitör, yarı iletken devre elemanları) doğruakım devrelerinde olduğundan farklı davranırlar.

Detaylı

1. BİR FAZLI ASENKRON MOTORLAR

1. BİR FAZLI ASENKRON MOTORLAR 1. BİR FAZLI ASENKRON MOTORLAR Bir fazlı yardımcı sargılı motorlar Üniversal motorlar 1.1. Bir fazlı yardımcı sargılı motorlar 1.1.3. Yardımcı Sargıyı Devreden Ayırma Nedenleri Motorun ilk kalkınması anında

Detaylı

Bir fazlı AA Kıyıcılar / 8. Hafta

Bir fazlı AA Kıyıcılar / 8. Hafta AC-AC Dönüştürücüler AC kıyıcılar (AC-AC dönüştürücüler), şebekeden aldıkları sabit genlik ve frekanslı AC gerilimi isleyerek çıkışına yine AC olarak veren güç elektroniği devreleridir. Bu devreleri genel

Detaylı