NİTELİKSEL KONTROL GRAFİKLERİ

Ebat: px
Şu sayfadan göstermeyi başlat:

Download "NİTELİKSEL KONTROL GRAFİKLERİ"

Transkript

1 NİTELİKSEL KONTROL GRAFİKLERİ Prof. Dr. Nihal ERGİNEL Ölçülemeyen ancak hatalı / hatasız, geçer / geçmez, tekstil sektöründe leke sayısı, dokuma kaçağı vb nin analiz edilmesi için oluşturulan kontrol grafikleridir. Kusur: Hata veya uygunsuzluktur. Bu hata ve uygunsuzluk parçanın spesifikasyonlar dışına çıkmasına neden olmaktadır. Kusurlu: Bir veya birden fazla kusuru olan parça veya ürün Kusurlu sayısı: n birimlik alınan örnekteki kusurlu parça sayısı(d) Kusur sayısı: Her bir örnekteki toplam kusur sayısıdır. Kusurlar farklı tipte olabilir. 1

2 KUSURLU ORANI (p) KONTROL GRAFİĞİ p (kusurlu oranı) kontrol grafiği Ölçülemeyen ancak hatalı/ hatasız, red/ kabul, geçer/ geçmez şeklinde tanımlanan kalite karakteristiklerinin izlenmesinde kullanılır. Kusurlu Oranı kontrol grafiğidir. En az bir kusuru olan (kusur tipi önemli değil) parça/ ürün oranını izlenmesi p kontrol grafiğinin sınırlarının hesaplanması : örnekteki birim sayısı : örnekteki kusurlu sayısı olmak üzere; = = 2

3 = + 3 = = - 3 Örnek: Karoların hatalı oranlarını izleyebilmek için saat başı 75 karodan oluşan örnekler alınmış ve hatalı karo sayıları aşağıda verilmiştir. Buna göre hatalı karo oranının kontrol altında olup olmadığını p kontrol grafiği ile analiz ediniz. Örnek no Hatalı karo sayısı Hatalı karo oranı

4 P Chart of hatalı karo sayısı UCL= Proportion _ P= Sample 9 LCL= Hatalı karo oranı ortalama %12,6 dır. 4. Örnekteki hatalı oranı ÜKS nı aştığı için hatalı karo oranı kontrol altında değildir. Örnek Bir imalat hattında sabah ve öğlen vardiyalarında alınan örnekler ve bu örneklerdeki hatalı ürün sayıları aşağıda verilmiştir. Buna göre, imalat hattının kontrol altında olup olmadığını ilgili kontrol grafiğini çizerek belirleyiniz. Örnek No Hatalı ürün sayısı ni pi n = 125 için; = + 3 = 0, =0,177 = = 0,0978 = - 3 = 0, = 0,018 4

5 n = 150 için; = + 3 = 0, =0,1705 = = 0,0978 = - 3 = 0, = 0,025 n = 175 için; = + 3 = 0, =0,165 = = 0,0978 = - 3 = 0, = 0, P Chart of hatalı ürün sayısı UCL= Proportion _ P= Sample Tests performed with unequal sample sizes LCL= Hatalı ürün sayısı kontrol altındadır 5

6 KUSURLU SAYISI (np) KONTROL GRAFİĞİ np (kusurlu sayısı) kontrol grafiği Kusurlu sayılarını izlemek için oluşturulur. Örnek büyüklüğü sabit olduğu durumda hesaplama ve yorumlama kolaylığı olduğu için kullanılır. Operatörlerin kullanmasına elverişlidir. Stat>Control Charts>Attributes Charts > np 6

7 Örnek: Bir taşıma şirketi, taşınacak parçaları üreticisinden alıp ana sanayiye taşıma işini üstlenmiştir. Yolda meydana gelebilen hasarları kontrol etmek için günde 50 birimden oluşan örnekleri incelemiş ve hasarlı olanların sayısını aşağıdaki gibi tespit etmiştir. Taşıma işini yorumlayınız. Örnek no Hasarlı sayısı = = 0,073 = 3,65+ 3 = 9,17 = n = 3,65 = -1,87 NP Chart for C1 10 UCL=9,168 Sample Count 5 NP=3, Sample Number LCL=0 Süreç kontrol altında. Noktalar orta çizginin etrafında rassal dağılmıştır. 7

8 KUSUR SAYISI (c) KONTROL GRAFİĞİ c (kusur sayısı) kontrol grafiği Bir veya daha çok kusur aynı karo üzerinde bulunabilir. Örneğin, elek baskı hatası, yağ lekesi, kenar-köşe kırık, oyuk, çatlak, sır damlaması, pasta damlaması, delikcik gibi. Önemli olan bu kusurların sayısıdır. Kusur sayıları bir sütuna girilir. Stat>Control Charts>Attributes Charts >c c kontrol grafiği sınırlarının hesaplanması = + 3 = = = - 3 8

9 C Chart for C1 Sample Count UCL=13,09 C=5,84 0 LCL= Sample Number Kusur sayıları giderek artan bir düzen göstermektedir. Belirlenebilir bir neden söz konusudur. Örnek: Bir bardak imalat sürecinde 150 adet bardaktaki hatalar parti bazında incelenmiş ve hata sayıları aşağıda verilmiştir. Bardak imalat süreci kontrol altında mıdır? ÇÖZÜM parti boya hatası çatlak hatası toplam = = = 5,2 = 5,2+ 3 = 12,04 = 5,2 = 0 9

10 12 10 C Chart of C3 UCL=12.04 Sample Count _ C= LCL= Sample Süreçte artan bir eğim olduğu için süreç kontrol dışı olabilir. BİRİM BAŞINA DÜŞEN KUSUR SAYISI (u) KONTROL GRAFİĞİ u (birim başına düşen kusur sayısı) kontrol grafiği Kusur sayıları ile ilgileniliyor, ancak örnekteki birim sayıları farklı ise kullanılan bir kontrol grafiğidir. Stat>Control Charts>Attributes charts >u 10

11 u kontrol grafiği sınırlarının hesaplanması u : birim başına düşen kusur sayısı olmak üzere, = = = + 3 = = - 3 Örnek Bir konfeksiyon atölyesinde dikimi yapılan ceketler incelendiğinde yapılan hatalar ve sayıları aşağıda verilmiştir. Buna göre dikim sürecini inceleyiniz. düğme kol yaka toplam ceket u dikme takma dikim hata adedi hatası hatası hatası , , , , , , , , , , , ,43 11

12 = = 0,352 n=25 için = + 3 =0, = 0,708 = = 0,352 = - 3 = - 0,00379 = 0 n=30 için = + 3 =0, = 0,676 = = 0,352 = - 3 = 0,027 n=50 için = + 3 =0, = 0,6037 = = 0,352 = - 3 = 0,1 Sample Count Per Unit U Chart of hata sayısı UCL= _ U= Sample Tests performed with unequal sample sizes LCL= Süreç kontrol altındadır. 12

İstatistiksel Süreç Kontrolu. Doç.Dr.Nihal ERGİNEL Anadolu Üniversitesi

İstatistiksel Süreç Kontrolu. Doç.Dr.Nihal ERGİNEL Anadolu Üniversitesi İstatistiksel Süreç Kontrolu Doç.Dr.Nihal ERGİNEL Anadolu Üniversitesi İstatistiksel Süreç Kontrolü Bir üretim/ hizmet sürecinin kontrol altında olup olmadığına karar vermek için kullanılan teknikler bütünüdür.

Detaylı

Quality Planning and Control

Quality Planning and Control Quality Planning and Control Prof. Dr. Mehmet ÇAKMAKÇI Dokuz Eylül Üniversitesi Endüstri Mühendisliği Anabilim Dalı 1 İstatistiksel Proses Kontrol Kontrol Kartları 2 Kontrol Grafikleri (Shewhart Control

Detaylı

NİCELİKSEL KONTROL GRAFİKLERİ

NİCELİKSEL KONTROL GRAFİKLERİ NİCELİKSEL KONTROL GRAFİKLERİ Prof. Dr. Nihal ERGİNEL Anadolu Üniversitesi X BİRİMLER VE HAREKETLİ DEĞİŞİM ARALIĞI KONTROL GRAFİĞİ X- Birimler Kontrol Grafiği n= birimlik örnekler alınır. Üretim hızı oldukça

Detaylı

Prof.Dr.Nihal ERGİNEL Anadolu Üniversitesi

Prof.Dr.Nihal ERGİNEL Anadolu Üniversitesi İSTATİSTİKSEL SÜREÇ KONTROLÜNE GİRİŞ Prof.Dr.Nihal ERGİNEL Anadolu Üniversitesi İstatistiksel Süreç Kontrolü Bir üretim/ hizmet sürecinin kontrol altında olup olmadığına karar vermek için kullanılan teknikler

Detaylı

T.C. ESKİŞEHİR OSMANGAZİ ÜNİVERSİTESİ KONTROL GRAFİKLERİ. Prof. Dr. Nimetullah BURNAK Prof. Dr. A. Sermet ANAGÜN. Endüstri Mühendisliği Bölümü

T.C. ESKİŞEHİR OSMANGAZİ ÜNİVERSİTESİ KONTROL GRAFİKLERİ. Prof. Dr. Nimetullah BURNAK Prof. Dr. A. Sermet ANAGÜN. Endüstri Mühendisliği Bölümü 1970 T.C. ESKİŞEHİR OSMANGAZİ ÜNİVERSİTESİ KONTROL GRAFİKLERİ Prof. Dr. Nimetullah BURNAK Prof. Dr. A. Sermet ANAGÜN Endüstri Mühendisliği Bölümü 1 Kontrol Grafiği UygulamaAdımları Kontrol edilecek uygun

Detaylı

HİPOTEZ TESTLERİ ANADOLU ÜNİVERSİTESİ. Hipotez Testleri ENM317 Mühendislik İstatistiği Doç. Dr. Nihal ERGİNEL 2014

HİPOTEZ TESTLERİ ANADOLU ÜNİVERSİTESİ. Hipotez Testleri ENM317 Mühendislik İstatistiği Doç. Dr. Nihal ERGİNEL 2014 ANADOLU ÜNİVERSİTESİ Hipotez Testleri ENM317 Mühendislik İstatistiği Doç. Dr. Nihal ERGİNEL 2014 HİPOTEZ TESTLERİ Pek çok problemde bazı parametrelere bağlı bir ifadeyi kabul yada red etmek için karar

Detaylı

ANADOLU ÜNİVERSİTESİ. Hipotez Testleri. ENM317 Mühendislik İstatistiği Prof. Dr. Nihal ERGİNEL

ANADOLU ÜNİVERSİTESİ. Hipotez Testleri. ENM317 Mühendislik İstatistiği Prof. Dr. Nihal ERGİNEL ANADOLU ÜNİVERSİTESİ Hipotez Testleri ENM317 Mühendislik İstatistiği Prof. Dr. Nihal ERGİNEL HİPOTEZ TESTLERİ Pek çok problemde bazı parametrelere bağlı bir ifadeyi kabul yada red etmek için karar vermek

Detaylı

BASİT PROBLEM ÇÖZME TEKNİKLERİ. Doç. Dr. Nihal ERGİNEL

BASİT PROBLEM ÇÖZME TEKNİKLERİ. Doç. Dr. Nihal ERGİNEL BASİT PROBLEM ÇÖZME TEKNİKLERİ Doç. Dr. Nihal ERGİNEL Problemin ve nedenlerinin araştırılması, problemin doğru tanımlanması en önemli adımdır. Eğer problem doğru tanımlanmaz ise, doğru çözümlere ulaşılamaz.

Detaylı

Ölçüm Sisteminin Analizi

Ölçüm Sisteminin Analizi Ölçüm Sisteminin Analizi (Measurement System Analysis) Prof. Dr. Nihal Erginel TOPLAM DEĞİŞKENLİK SÜREÇTEN KAYNAKLANAN DEĞİŞKENLİK ÖLÇÜM SİSTEMİNDEN KAYNAKLANAN DEĞİŞKENLİK Süreç Değişkenlik Kaynakları

Detaylı

Ölçüm Sisteminin Analizi Measurement System Analysis. Dr. Nihal Erginel

Ölçüm Sisteminin Analizi Measurement System Analysis. Dr. Nihal Erginel Ölçüm Sisteminin Analizi Measurement System Analysis Dr. Nihal Erginel TOPLAM DEĞİŞKENLİK Süreçten kaynaklanan değişkenlik Ölçüm sisteminden kaynaklanan değişkenlik Süreç Değişkenlik Kaynakları Hammadde

Detaylı

Quality Planning and Control

Quality Planning and Control Quality Planning and Control END 3618 KALİTE PLANLAMA VE KONTROL Prof. Dr. Mehmet ÇAKMAKÇI Dokuz Eylül Üniversitesi Endüstri Mühendisliği Anabilim Dalı 1 İstatistiksel Proses Kontrol Kontrol Kartları Kontrol

Detaylı

İSTATİSTİK. Hafta 7.2 Kesikli Olasılık Dağılımları Poisson Dağılımı. Yrd. Doç. Dr. H. İbrahim CEBECİ

İSTATİSTİK. Hafta 7.2 Kesikli Olasılık Dağılımları Poisson Dağılımı. Yrd. Doç. Dr. H. İbrahim CEBECİ İSTATİSTİK Hafta 7.2 Kesikli Olasılık Dağılımları Simeon Poisson a atfen isimlendirilen dağılım, bir örnek uzayın belli bir bölgesi veya zamanındaki olayların sayısının incelendiği kesikli bir olasılık

Detaylı

Dokuz Eylül Üniversitesi Mühendislik Fakültesi Endüstri Mühendisliği Bölümü END Kalite Planlama ve Kontrol

Dokuz Eylül Üniversitesi Mühendislik Fakültesi Endüstri Mühendisliği Bölümü END Kalite Planlama ve Kontrol Dokuz Eylül Üniversitesi Mühendislik Fakültesi Endüstri Mühendisliği Bölümü END 3618 - Kalite Planlama ve Kontrol Uygulama Çalışması-I Dr. Öğr. Üyesi Kemal SUBULAN Tarih: 12.04.2018 A Aşağıda yer alan

Detaylı

statistiksel Proses Kontrol -Uygulamalar -

statistiksel Proses Kontrol -Uygulamalar - statistiksel Proses Kontrol -Uygulamalar - Prof.Dr. Erhan Öner [email protected] Prof.Dr. Erhan Öner/PK Problemleri/2002-1/34 Kontrol Diyagramları Niceliksel (kantitatif) kalite özellikleri ile oluturulan

Detaylı

İstatistiksel Kalite Kontrol BBY 374 TOPLAM KALİTE YÖNETİMİ 18 NİSAN 2014

İstatistiksel Kalite Kontrol BBY 374 TOPLAM KALİTE YÖNETİMİ 18 NİSAN 2014 İstatistiksel Kalite Kontrol BBY 374 TOPLAM KALİTE YÖNETİMİ 18 NİSAN 2014 İstatistiksel kalite kontrol o Üretim ve hizmet süreçlerinin ölçülebilir veriler yardımıyla istatistiksel yöntemler kullanılarak

Detaylı

İstatistiksel Proses Kontrol

İstatistiksel Proses Kontrol İstatistiksel Proses Kontrol İstatistiksel Proses Kontrol Nedir? ü İstatistiksel proses kontrolü, üretim sürecinde kaliteyi ölçmek ve kontrol etmek için kullanılan endüstri standardı bir metodolojidir.

Detaylı

ANADOLU ÜNİVERSİTESİ. ENM317 Mühendislik İstatistiği İSTATİSTİKSEL TAHMİN Prof. Dr. Nihal ERGİNEL

ANADOLU ÜNİVERSİTESİ. ENM317 Mühendislik İstatistiği İSTATİSTİKSEL TAHMİN Prof. Dr. Nihal ERGİNEL ANADOLU ÜNİVERSİTESİ ENM317 Mühendislik İstatistiği İSTATİSTİKSEL TAHMİN Prof. Dr. Nihal ERGİNEL İSTATİSTİKSEL TAHMİN Örnekten anakütle parametrelerinin tahmin edilmesidir. İki tür tahminleme yöntemi vardır:

Detaylı

İstatistiksel proses kontrol ve kontrol diyagramı. 3. hafta

İstatistiksel proses kontrol ve kontrol diyagramı. 3. hafta İstatistiksel proses kontrol ve kontrol diyagramı 3. hafta İstatistiksel proses kontrol Prosesteki değişkenliği ölçerek ve analiz ederek istatistiksel kontrolünü sağlamak ve sürdürmek için istatistiksel

Detaylı

İSTATİSTİKSEL PROSES KONTROLÜ

İSTATİSTİKSEL PROSES KONTROLÜ İSTATİSTİKSEL PROSES KONTROLÜ ZTM 433 KALİTE KONTROL VE STANDARDİZASYON PROF: DR: AHMET ÇOLAK İstatistiksel işlem kontrolü (İPK), işlemle çeşitli istatistiksel metotların ve analiz sapmalarının kullanımını

Detaylı

ANADOLU ÜNİVERSİTESİ ÖRNEK: GEOMETRİK DAĞILIM

ANADOLU ÜNİVERSİTESİ ÖRNEK: GEOMETRİK DAĞILIM ANADOLU ÜNİVERSİTESİ İST 213 OLASILIK DERSİ KESİKLİ DAĞILIMLAR-2 DOÇ. DR. NİHAL ERGİNEL 2015 GEOMETRİK DAĞILIM Bir Bernoulli deneyi ilk olumlu sonuç elde edilmesine kadar tekrarlansın. X: ilk olumlu sonucun

Detaylı

6 SIGMA FELSEFESİ. Doç. Dr. Nihal ERGİNEL Anadolu Üniversitesi Endüstri Mühendisliği Bölümü

6 SIGMA FELSEFESİ. Doç. Dr. Nihal ERGİNEL Anadolu Üniversitesi Endüstri Mühendisliği Bölümü 6 SIGMA FELSEFESİ 6 Doç. Dr. Nihal ERGİNEL Anadolu Üniversitesi Endüstri Mühendisliği Bölümü Sigma seviyesi, süreçlerin yeterliliği ifade eden bir ölçüttür. Süreçlerin sigma seviyelerinin artması demek,

Detaylı

Bölüm 7 Tahribatsız Malzeme Muayenesi

Bölüm 7 Tahribatsız Malzeme Muayenesi Bölüm 7 Tahribatsız Malzeme Muayenesi Tahribatsız muayene; malzemelerin fiziki yapısını ve kullanılabilirliğini bozmadan içyapısında ve yüzeyinde bulunan süreksizliklerin tespit edilmesidir. Bu işlemlerde,

Detaylı

ENM 5210 İSTATİSTİK VE YAZILIMLA UYGULAMALARI. Örnek Olay 1 (Sayfa 61) Ders 3 Minitab da Grafiksel Analiz-III Örnek Olaylar. Örnek Olay 1 (Sayfa 61)

ENM 5210 İSTATİSTİK VE YAZILIMLA UYGULAMALARI. Örnek Olay 1 (Sayfa 61) Ders 3 Minitab da Grafiksel Analiz-III Örnek Olaylar. Örnek Olay 1 (Sayfa 61) ENM 5210 İSTATİSTİK VE YAZILIMLA UYGULAMALARI Ders 3 Minitab da Grafiksel Analiz-III Örnek Olaylar Örnek Olay 1 (Sayfa 61) Bir zeytinyağı üretim işletmesi şişe etiketleme süreci boyunca açığa çıkan hata

Detaylı

ANADOLU ÜNİVERSİTESİ OLASILIĞA GİRİŞ

ANADOLU ÜNİVERSİTESİ OLASILIĞA GİRİŞ ANADOLU ÜNİVERSİTESİ İST 213 OLASILIK DERSİ OLASILIĞA GİRİŞ DOÇ. DR. NİHAL ERGİNEL OLASILIĞA GİRİŞ - Bugün yağmur yağma olasılığı % 75 dir. - X marka bilgisayarın hiç servis gerektirmeden 100000 saat çalışması

Detaylı

Bar Diyagramı ENM 5210 İSTATİSTİK VE YAZILIMLA UYGULAMALARI. Ders 3 Minitab da Grafiksel Analiz-III. Bar Diyagramı İçin Checklist.

Bar Diyagramı ENM 5210 İSTATİSTİK VE YAZILIMLA UYGULAMALARI. Ders 3 Minitab da Grafiksel Analiz-III. Bar Diyagramı İçin Checklist. ENM 5210 İSTATİSTİK VE YAZILIMLA UYGULAMALARI Ders 3 Minitab da Grafiksel Analiz-III (Bar-Pareto-Neden Sonuç-Saçılım Diagramları) Sayıları, ortalamaları veya diğer özet istatistiksileri kıyaslamak için

Detaylı

İstatistiksel Kalite Kontrol

İstatistiksel Kalite Kontrol İstatistiksel Kalite Kontrol İstatistiksel kalite kontrol (İKK) metodlarının sanayide geniş çapta uygulanması ile imalatın hızlanması, firenin azaltılması, maliyetlerin düşürülmesi ve kalitenin yükseltilmesi

Detaylı

Kalite Geliştirmede İstatistiksel Yöntemler ve Six Sigma

Kalite Geliştirmede İstatistiksel Yöntemler ve Six Sigma Kalite Geliştirmede İstatistiksel Yöntemler ve Six Sigma - 1 Ödevler 5 er kişilik 7 grup Hayali bir şirket kurulacak Bu şirketin kalite kontrol süreçleri raporlanacak Kalite sistem dokümantasyonu oluşturulacak

Detaylı

TANIM: Futbolcunun, ayağının değişik bölümlerini kullanarak yaptığı kısa vuruşlarla topu oyun alanından çıkarmadan değişik yönlere doğru götürmesidir

TANIM: Futbolcunun, ayağının değişik bölümlerini kullanarak yaptığı kısa vuruşlarla topu oyun alanından çıkarmadan değişik yönlere doğru götürmesidir TANIM: Futbolcunun, ayağının değişik bölümlerini kullanarak yaptığı kısa vuruşlarla topu oyun alanından çıkarmadan değişik yönlere doğru götürmesidir Top sürmede şu hususlara dikkat edilmelidir. Top sürme

Detaylı

Dokuz Eylül Üniversitesi Mühendislik Fakültesi Endüstri Mühendisliği Bölümü

Dokuz Eylül Üniversitesi Mühendislik Fakültesi Endüstri Mühendisliği Bölümü Dokuz Eylül Üniversitesi Mühendislik Fakültesi Endüstri Mühendisliği Bölümü END 3618 Kalite Planlama & Kontrol Bölüm 6: Nitelikler (Belirtiler) İçin Kontrol Kartları Yrd. Doç. Dr. Kemal SUBULAN (13-15).03.2018

Detaylı

KALİTE YÖNETİMİ. Hafta 8. Yrd. Doç. Dr. Semra BORAN SAKARYA ÜNİVERSİTESİ

KALİTE YÖNETİMİ. Hafta 8. Yrd. Doç. Dr. Semra BORAN SAKARYA ÜNİVERSİTESİ SAKARYA ÜNİVERSİTESİ KALİTE YÖNETİMİ Hafta 8 Yrd. Doç. Dr. Semra BORAN Bu ders içeriğinin basım, yayım ve satış hakları Sakarya Üniversitesi ne aittir. "Uzaktan Öğretim" tekniğine uygun olarak hazırlanan

Detaylı

Kalite Yönetimi. Kabul Örneklemesi 11. Hafta

Kalite Yönetimi. Kabul Örneklemesi 11. Hafta Kalite Yönetimi Kabul Örneklemesi 11. Hafta Parti Kabulünde Uygulanacak Yaklaşımlar Muayene uygulamamak % 100 muayene Örnekleme muayenesi Kabul Örneklemesi Yığından örnekler alınır, birimlerin belirli

Detaylı

TEKSTİL SEKTÖRÜNDE İSTATİSTİKSEL PROSES KONTROL TEKNİKLERİ UYGULAMASI ÜZERİNE BİR DENEME

TEKSTİL SEKTÖRÜNDE İSTATİSTİKSEL PROSES KONTROL TEKNİKLERİ UYGULAMASI ÜZERİNE BİR DENEME C.Ü. İktisadi ve İdari Bilimler Dergisi, Cilt 4, Sayı 2, 2003 69 TEKSTİL SEKTÖRÜNDE İSTATİSTİKSEL PROSES KONTROL TEKNİKLERİ UYGULAMASI ÜZERİNE BİR DENEME Hüdaverdi BİRCAN ve Hasan GEDİK Cumhuriyet Üniversitesi,

Detaylı

Mühendislikte İstatistiksel Yöntemler

Mühendislikte İstatistiksel Yöntemler Mühendislikte İstatistiksel Yöntemler BÖLÜM 2 AÇIKLAYICI (BETİMLEYİCİ) İSTATİSTİK Yrd. Doç. Dr. Fatih TOSUNOĞLU 1-Açıklayıcı (Betimleyici) İstatistik İnceleme sonucu elde edilen ham verilerin istatistiksel

Detaylı

ANADOLU ÜNİVERSİTESİ İST 213 OLASILIK DERSİ TANIMLAR VE VERİ SINIFLAMASI

ANADOLU ÜNİVERSİTESİ İST 213 OLASILIK DERSİ TANIMLAR VE VERİ SINIFLAMASI ANADOLU ÜNİVERSİTESİ İST 213 OLASILIK DERSİ TANIMLAR VE VERİ SINIFLAMASI DOÇ. DR. NİHAL ERGİNEL TANIMLAR VE VERİ SINIFLAMASI Olasılık, ilgilenilen olay/olayların meydana gelme olabilirliğinin ölçülmesidir.

Detaylı

BİR KONFEKSİYON FABRİKASINDA PROSES VE KALİTE KONTROL. Process And Quality Control In a Clothing Mill

BİR KONFEKSİYON FABRİKASINDA PROSES VE KALİTE KONTROL. Process And Quality Control In a Clothing Mill BİR KONFEKSİYON FABRİKASINDA PROSES VE KALİTE KONTROL Process And Quality Control In a Clothing Mill Güncel Andaç BEK Tekstil Mühendisliği Anabilim Dalı Emel Ceyhun Sabır Tekstil Mühendisliği Anabilim

Detaylı

İstatistiksel Süreç Kontrol KAZIM KARABOĞA

İstatistiksel Süreç Kontrol KAZIM KARABOĞA İstatistiksel Süreç Kontrol KAZIM KARABOĞA KALİTENİN TARİHSEL KİMLİK DEĞİŞİMİ Muayene İstatistiksel Kalite Kontrol Toplam Kalite Kontrol Toplam Kalite Yönetimi İSTATİSTİKSEL KALİTE KONTROL İstatistiksel

Detaylı

İstatistik ve Olasılık

İstatistik ve Olasılık İstatistik ve Olasılık Ders 2: Prof. Dr. İrfan KAYMAZ Tanım İnceleme sonucu elde edilen ham verilerin istatistiksel yöntemler kullanılarak özetlenmesi açıklayıcı istatistiği konusudur. Açıklayıcı istatistikte

Detaylı

Kaynak Hataları Çizelgesi

Kaynak Hataları Çizelgesi Kaynak Hataları Çizelgesi Referans No Tanıtım ve Açıklama Resimli İzahı 1 2 3 Grup No: 1 Çatlaklar 100 Çatlaklar Soğuma veya gerilmelerin etkisiyle ortaya çıkabilen katı halde bir mevzii kopma olarak meydana

Detaylı

İstatistiksel Süreç Kontrolü Statistical Process Control (SPC) Dr. Musa KILIÇ

İstatistiksel Süreç Kontrolü Statistical Process Control (SPC) Dr. Musa KILIÇ İstatistiksel Süreç Kontrolü Statistical Process Control (SPC) Dr. Musa KILIÇ KALİTE VE KALİTE KONTROLÜ Kalitenin Tanımı Kalite, kullanıma uygunluktur (Juran). Kalite, bir ürünün gerekliliklere uygunluk

Detaylı

MAKİNA MÜHENDİSLİĞİ BÖLÜMÜ HASAR ANALİZİ YÜKSEK LİSANS - DOKTORA DERS NOTLARI. Doç.Dr.İrfan AY BALIKESİR

MAKİNA MÜHENDİSLİĞİ BÖLÜMÜ HASAR ANALİZİ YÜKSEK LİSANS - DOKTORA DERS NOTLARI. Doç.Dr.İrfan AY BALIKESİR MAKİNA MÜHENDİSLİĞİ BÖLÜMÜ HASAR ANALİZİ YÜKSEK LİSANS - DOKTORA DERS NOTLARI Doç.Dr.İrfan AY 2004-2005 BALIKESİR 1 HASAR ANALİZİ TEMEL İLKELERİ 2 HASAR ANALİZİ Hasar ne demektir? Hasar herhangi bir olayın

Detaylı

Parti Bazında Kabul Örneklemesi

Parti Bazında Kabul Örneklemesi KABUL ÖRNEKLEMESİ Hammadde, yarı mamul veya bitmiş (son) ürünün kabul / red kararının verilebilmesi için kullanılan bir yaklaşımdır. Kabul örneklemesi sadece partinin kabul / red kararı için kullanılır,

Detaylı

Dokuz Eylül Üniversitesi Mühendislik Fakültesi Endüstri Mühendisliği Bölümü

Dokuz Eylül Üniversitesi Mühendislik Fakültesi Endüstri Mühendisliği Bölümü Dokuz Eylül Üniversitesi Mühendislik Fakültesi Endüstri Mühendisliği Bölümü END 3618 Kalite Planlama & Kontrol Bölüm 3: İstatistiksel Proses Kontrol Metotları & Felsefesi Yrd. Doç. Dr. Kemal SUBULAN 20-22.02.2018

Detaylı

İstatistik ve Olasılık

İstatistik ve Olasılık İstatistik ve Olasılık Ders 2: Prof. Dr. İrfan KAYMAZ Tanım İnceleme sonucu elde edilen ham verilerin istatistiksel yöntemler kullanılarak özetlenmesi açıklayıcı istatistiği konusudur. Açıklayıcı istatistikte

Detaylı

A.Ü. GAMA MYO. Elektrik ve Enerji Bölümü GÜNEŞ ENERJİSİ İLE ELEKTRİK ÜRETİMİ 10. HAFTA

A.Ü. GAMA MYO. Elektrik ve Enerji Bölümü GÜNEŞ ENERJİSİ İLE ELEKTRİK ÜRETİMİ 10. HAFTA A.Ü. GAMA MYO. Elektrik ve Enerji Bölümü GÜNEŞ ENERJİSİ İLE ELEKTRİK ÜRETİMİ 10. HAFTA İçindekiler FV Güneş Pili Karakteristikleri FV GÜNEŞ PİLİ KARAKTERİSTİKLERİ Bir Fotovoltaj güneş pilinin elektriksel

Detaylı

Veri Düzenleme - Veri Analizi

Veri Düzenleme - Veri Analizi . ÜNİTE ARAŞTIRMA SORULARI ÜRETME, VERİ TOPLAMA, DÜZENLEME VE GÖSTERME VERİ ANALİZİ VE YORUMLAMA 65 66 Veri Düzenleme - Veri Analizi ve Yorumlama Veri İşleme Ünite Öğrenelim Veri Düzenleme Veri Sıklık

Detaylı

OLASILIĞA GİRİŞ P( )= =

OLASILIĞA GİRİŞ P( )= = OLASILIĞA GİRİŞ - Bugün yağmur yağma olasılığı % 75 dir. - X marka bilgisayarın hiç servis gerektirmeden 100000 saat çalışması olasılığı %85 dir. Olasılık modelleri; Sıvı içindeki moleküllerin davranışlarını

Detaylı

Aktüerlik Sınavları I. Seviye / Olasılık-İstatistik Örnek Sorular I

Aktüerlik Sınavları I. Seviye / Olasılık-İstatistik Örnek Sorular I Aktüerlik Sınavları I. Seviye / Olasılık-İstatistik Örnek Sorular I S1. Cep telefonu üreten bir fabrikada toplam üretimin % 30 u A, % 30 u B ve % 40 ı C makineleri tarafından yapılmaktadır. Bu makinelerin

Detaylı

WEIBULL DAĞILIMI WEIBULL DAĞILIMI ANADOLU ÜNİVERSİTESİ

WEIBULL DAĞILIMI WEIBULL DAĞILIMI ANADOLU ÜNİVERSİTESİ ANADOLU ÜNİVERSİTESİ İST 213 OLASILIK DERSİ SÜREKLİ DAĞILIMLAR-2 DOÇ. DR. NİHAL ERGİNEL 2015 WEIBULL DAĞILIMI Weibull dağılımı, pek çok farklı sistemlerin bozulana kadar geçen süreleri ile ilgilenir. Dağılımın

Detaylı

Şekil 1 de ortak emiterli bir devre görülmektedir. Devredeki R C, BJT nin doğru akım yük direnci olarak adlandırılır. Çıkış devresi için,

Şekil 1 de ortak emiterli bir devre görülmektedir. Devredeki R C, BJT nin doğru akım yük direnci olarak adlandırılır. Çıkış devresi için, DENEY 6: BJT NİN YÜK DOĞRUSU VE ÇALIŞMA NOKTASI 6.1. Deneyin Amacı İki kaynak ile kutuplandırılan bir BJT nin yük doğrusunun çizilerek, bu doğru üzerinde hesaplanması ve deney sonucunda elde edilen değerlere

Detaylı

Hipotez Testi ENM 5210 İSTATİSTİK VE YAZILIMLA UYGULAMALARI. Ders 4 Minitab da İstatiksel Çıkarım-I. Hipotez Testi. Hipotez Testi

Hipotez Testi ENM 5210 İSTATİSTİK VE YAZILIMLA UYGULAMALARI. Ders 4 Minitab da İstatiksel Çıkarım-I. Hipotez Testi. Hipotez Testi ENM 52 İSTATİSTİK VE YAZILIMLA UYGULAMALARI Ders 4 Minitab da İstatiksel Çıkarım-I (Ortalamalar ve Oranlar İçin ) İstatistiksel Hipotezler İstatistiksel hipotez testi ve parametrelerin güven aralığı tahmini,

Detaylı

İSTATİSTİKİ PROSES KONTROL UYGULAMALARI İÇİN BİR SİSTEM TASARIMI. Burçin M. DURMAN, Yrd.Doç.Dr. Fatma PAKDİL

İSTATİSTİKİ PROSES KONTROL UYGULAMALARI İÇİN BİR SİSTEM TASARIMI. Burçin M. DURMAN, Yrd.Doç.Dr. Fatma PAKDİL İSTATİSTİKİ PROSES KONTROL UYGULAMALARI İÇİN BİR SİSTEM TASARIMI Burçin M. DURMAN, Yrd.Doç.Dr. Fatma PAKDİL Başkent Üniversitesi, Mühendislik Fakültesi, Endüstri Mühendisliği Bölümü, 06530, Bağlıca, Ankara

Detaylı

Muayene ve Kabul Örneklemesi

Muayene ve Kabul Örneklemesi Muayene ve Kabul Örneklemesi Prof.Dr. Erhan Öner [email protected] http://mimoza.marmara.edu.tr/~eoner Prof.Dr. Erhan Öner / Kabul Örneklemesi / Aralık 2002 1/97 Seminerin İçeriği Muayene Kavramı Hataların

Detaylı

YERLEŞİM SİSTEMLERİ FAALİYET ALANI KOORDİNATÖRLÜĞÜ

YERLEŞİM SİSTEMLERİ FAALİYET ALANI KOORDİNATÖRLÜĞÜ YERLEŞİM SİSTEMLERİ FAALİYET ALANI KOORDİNATÖRLÜĞÜ ST 37 İMAL EDİLEN PARÇALARIN TEKNİK ŞARTNAMESİ 1. Bu Şartname yayınlandığı Tarihte yürürlüğe girer. 2. Bu şartname toplam 5 sayfadan ibarettir. 3. Şartnamede

Detaylı

IO404 4 Fonksiyonlu Seçilebilir Giriş/Çıkış Modülü

IO404 4 Fonksiyonlu Seçilebilir Giriş/Çıkış Modülü IO404 4 Fonksiyonlu Seçilebilir Giriş/Çıkış Modülü ÖZELLİKLER Çalışma Gerilimi: Sükunet Akımı: Maksimum Alarm Akımı: Bağıl Nem: Röle Kontağı: Çalışma Sıcaklığı: Boyutlar: Ağırlık: 16-30 VDC arası

Detaylı

Yedi Temel Araç. Kalite Kontrol Araçları (Yedi Temel Araç) Nicel veriler. 7M Araçları (Yedi Yeni Araç) Nicel ve nitel veriler

Yedi Temel Araç. Kalite Kontrol Araçları (Yedi Temel Araç) Nicel veriler. 7M Araçları (Yedi Yeni Araç) Nicel ve nitel veriler Yedi Temel Araç Kalite Kontrol Araçları (Yedi Temel Araç) Nicel veriler Histogram Sebep Sonuç Diyagramı Kontrol Çizelgesi Pareto Diyagramı Kontrol Kartları Yayılım (Scatter) Diyagramları 7M Araçları (Yedi

Detaylı

Öğr. Gör. Semiye BOTTAN

Öğr. Gör. Semiye BOTTAN Öğr. Gör. Semiye BOTTAN Ölçü Tablosu Bel: 70 + 2 (bolluk payı)= 72 Basen: 94 + 2 (bolluk payı)= 96 Diz Genişliği: 22 Paça Genişliği: 20 Kalça Düşüklüğü: 20 Oturuş Yüksekliği: 26 Diz Boyu: 60 Pantolon Boyu:106

Detaylı

Laboratuvar 3. Yrd.Doç.Dr.Beyazıt Ocaktan. Elektronik Montaj ve Test Örneği

Laboratuvar 3. Yrd.Doç.Dr.Beyazıt Ocaktan. Elektronik Montaj ve Test Örneği 1 SİSTEM SİMULASYONU Laboratuvar 3 Yrd.Doç.Dr.Beyazıt Ocaktan Elektronik Montaj ve Test Örneği 2 Bir elektronik devre üreticisinin kaplama atölyesini ele alalım. Bu isletmede A ve B parcaları farklı atölyelerde

Detaylı

ANADOLU ÜNİVERSİTESİ BEKLENEN DEĞER. X beklenen değeri B[X] ile gösterilir. B[X] = İST 213 OLASILIK DERSİ BEKLENEN DEĞER VE MOMENTLER

ANADOLU ÜNİVERSİTESİ BEKLENEN DEĞER. X beklenen değeri B[X] ile gösterilir. B[X] = İST 213 OLASILIK DERSİ BEKLENEN DEĞER VE MOMENTLER ANADOLU ÜNİVERSİTESİ İST 213 OLASILIK DERSİ BEKLENEN DEĞER VE MOMENTLER DOÇ. DR. NİHAL ERGİNEL 2015 X beklenen değeri B[X] ile gösterilir. B[X] = BEKLENEN DEĞER Belli bir malzeme taşınan kolilerin ağırlıkları

Detaylı

.: ĠNġAAT MÜHENDĠSLĠĞĠ BÖLÜMÜ :. Yapıların Güçlendirme Prensipleri

.: ĠNġAAT MÜHENDĠSLĠĞĠ BÖLÜMÜ :. Yapıların Güçlendirme Prensipleri .: ĠNġAAT MÜHENDĠSLĠĞĠ BÖLÜMÜ :. Prof. Dr. Tuncer ÇELİK, Doç. Dr. Namık Kemal ÖZTORUN, Araş. Gör. Barış YILDIZLAR danışmanlığında Yapıların Güçlendirme Prensipleri Gebrail BEKDAŞ, Elif ŞENER, Haldun ÖZCAN,

Detaylı

TBS 5 KUTULAMA PROSESİ ÜRETİM VERİMLİLİĞİNİ ARTTIRMA PROJESİ

TBS 5 KUTULAMA PROSESİ ÜRETİM VERİMLİLİĞİNİ ARTTIRMA PROJESİ TBS 5 KUTULAMA PROSESİ ÜRETİM VERİMLİLİĞİNİ ARTTIRMA PROJESİ 1. Adım: Konu Seçimi MUTLU AKÜ Montaj Bölümü 5.Hat TBS 5 Kutulama Prosesindeki üretim kayıpları ve kalite hatalarının önlenmesi projesi TBS5

Detaylı

YIL SONU AMORTİSMAN HESAPLAMA VE KONTROL RAPORLARI KILAVUZU

YIL SONU AMORTİSMAN HESAPLAMA VE KONTROL RAPORLARI KILAVUZU YIL SONU AMORTİSMAN HESAPLAMA VE KONTROL RAPORLARI KILAVUZU 04.11.2015 tarihli ve 29522 sayılı Resmi Gazetede yayımlanan 47 Sıra Nolu Amortisman ve Tükenme Payları konulu Muhasebat Genel Müdürlüğü Genel

Detaylı

ANADOLU ÜNİVERSİTESİ REGRESYON KATSAYILARININ GÜVEN ARALIĞI = + REGRESYON KATSAYILARININ GÜVEN ARALIĞI

ANADOLU ÜNİVERSİTESİ REGRESYON KATSAYILARININ GÜVEN ARALIĞI = + REGRESYON KATSAYILARININ GÜVEN ARALIĞI ANADOLU ÜNİVERSİTESİ Deney Tasarımı ve Regresyon Analizi Regresyonda Güven Aralıkları ve Hipotez Testleri Doç. Dr. Nihal ERGİNEL-2015 REGRESYON KATSAYILARININ GÜVEN ARALIĞI + in güven aralığı : i-) n 30

Detaylı

4. HİSTOGRAM. Tolerans Aralığı. Değişim Aralığı HEDEF. Üst Spesifikasyon Limiti. Alt Spesifikasyon Limiti

4. HİSTOGRAM. Tolerans Aralığı. Değişim Aralığı HEDEF. Üst Spesifikasyon Limiti. Alt Spesifikasyon Limiti 4. HİSTOGRAM Nedir? Sınıflandırılmış verilerin sütun grafiğidir. Sütunların (sınıfların) genişliği sabit olup, bir veri sınıfını temsil etmektedir. Sütunların yüksekliği ise her bir veri sınıfına düşen

Detaylı

KESİKLİ DÜZGÜN DAĞILIM

KESİKLİ DÜZGÜN DAĞILIM KESİKLİ DÜZGÜN DAĞILIM Eğer X kesikli rassal değişkeninin alabileceği değerler (,,..., ) eşit olasılığa sahip ise, kesikli düzgün dağılım söz konusudur. p(x) =, X=,,..., şeklinde gösterilir. Bir kutuda

Detaylı

Prof.Dr. Nihal ERGİNEL Anadolu Üniversitesi Endüstri Mühendisliği Bölümü

Prof.Dr. Nihal ERGİNEL Anadolu Üniversitesi Endüstri Mühendisliği Bölümü 6 6 SIGMA FELSEFESİ Prof.Dr. Nihal ERGİNEL Anadolu Üniversitesi Endüstri Mühendisliği Bölümü Sigma seviyesi, süreçlerin yeterliliği ifade eden bir ölçüttür. Süreçlerin sigma seviyelerinin artması demek,

Detaylı

ELEKTRONİK ÇİZELGE. Hücreleri Biçimlendirme. Formülleri Kullanma. Verileri Sıralama. Grafik Oluşturma 1) HÜCRELERİ BİÇİMLENDİRME

ELEKTRONİK ÇİZELGE. Hücreleri Biçimlendirme. Formülleri Kullanma. Verileri Sıralama. Grafik Oluşturma 1) HÜCRELERİ BİÇİMLENDİRME Hücreleri Biçimlendirme ELEKTRONİK ÇİZELGE Formülleri Kullanma Verileri Sıralama Grafik Oluşturma 1) HÜCRELERİ BİÇİMLENDİRME Elektronik Çizelge de sayıları; bin ayracı, yüzde oranı, tarih/saat ve para

Detaylı

Tekrarlanabilirlik. Sapma, Tekrarlanabilirlik, Tekrar yapılabilirlik, Kararlılık, Doğrusallık. Sapma

Tekrarlanabilirlik. Sapma, Tekrarlanabilirlik, Tekrar yapılabilirlik, Kararlılık, Doğrusallık. Sapma ÖLÇÜM SİSTEMİ ANALİZİ (MEASUREMENT SYSTEM ANALYSIS - MSA) Ölçüm Sistemi Varyansının Türleri Ölçüm sistemi hataları beş grupta ele alınır. Sapma Sapma, Tekrarlanabilirlik, Tekrar yapılabilirlik, Kararlılık,

Detaylı

HAFTALIK EĞİTİM DEVAM ÇİZELGESİ

HAFTALIK EĞİTİM DEVAM ÇİZELGESİ EĞİTİMİN TARİHİ : - 14 Aralık 25 Aralık 25 Aralık 25 Aralık 25 Aralık 25 Aralık 25 Adı Soyadı UNVANI BİRİMİ Sabah Öğlen Sabah Öğlen Sabah Öğlen Sabah Öğlen Sabah Öğlen EĞİTİMİN TARİHİ : - 14 Aralık 25

Detaylı

KALİTE KAVRAMI ve UNSURLARI

KALİTE KAVRAMI ve UNSURLARI KALİTE KAVRAMI ve UNSURLARI Kalite, bir ürün veya hizmet ile ilgili özelliklerin, belirlenen veya olabilecek ihtiyaçları karşılama derecesidir. Kalite Sözlüğü Kalite, genel olarak günlük konuşmalarda

Detaylı

TEMEL BEDEN KALIBI. Öğr. Gör. Semiye BOTTAN

TEMEL BEDEN KALIBI. Öğr. Gör. Semiye BOTTAN TEMEL BEDEN KALIBI Öğr. Gör. Semiye BOTTAN Ölçüler 38 Beden Göğüs: 88 + 4 (bolluk payı) = 92 + 2 (göğüs pens bolluğu) = 94 cm Bel: 70 + 6 (bolluk payı) = 76 + 1 (göğüs pens açılımından) = 77 cm Basen:

Detaylı

TOPLAM KALİTE YÖNETİMİ - 2

TOPLAM KALİTE YÖNETİMİ - 2 TOPLAM KALİTE YÖNETİMİ - 2 İstatistiksel Süreç Kontrolü İstatistiksel Süreç Kontrol bir araçlar topluluğu olup birlikte kullanıldığında değişkenliği azaltır ve süreci kararlı (stability) kılar. Kalite

Detaylı

İSTATİSTİK I KISA ÖZET KOLAYAOF

İSTATİSTİK I KISA ÖZET KOLAYAOF DİKKATİNİZE: BURADA SADECE ÖZETİN İLK ÜNİTESİ SİZE ÖRNEK OLARAK GÖSTERİLMİŞTİR. ÖZETİN TAMAMININ KAÇ SAYFA OLDUĞUNU ÜNİTELERİ İÇİNDEKİLER BÖLÜMÜNDEN GÖREBİLİRSİNİZ. İSTATİSTİK I KISA ÖZET KOLAYAOF 2 Kolayaof.com

Detaylı

İzostatik Sistemlerin Hareketli Yüklere Göre Hesabı

İzostatik Sistemlerin Hareketli Yüklere Göre Hesabı İzostatik Sistemlerin Hareketli Yüklere Göre Hesabı Hareketli Yük Çeşitleri: a) I. tip hareketli yük: Sistemin tümünü veya bir bölümünü kaplayan, boyu değişken düzgün yayılı hareketli yüklerdir (insan,

Detaylı

ELYAF İŞLETMELERİNDE İSTATİSTİKSEL SÜREÇ KONTROLÜNÜN UYGULANMASI * An Application of Statistical Process Control in Polyester factory

ELYAF İŞLETMELERİNDE İSTATİSTİKSEL SÜREÇ KONTROLÜNÜN UYGULANMASI * An Application of Statistical Process Control in Polyester factory ELYAF İŞLETMELERİNDE İSTATİSTİKSEL SÜREÇ KONTROLÜNÜN UYGULANMASI * An Application of Statistical Process Control in Polyester factory Tuğba ÇOLAK İstatistik Anabilim Dalı Fikri AKDENİZ İstatistik Anabilim

Detaylı

FREKANS VERİLERİ. Prof.Dr. Levent ŞENYAY III - 1

FREKANS VERİLERİ. Prof.Dr. Levent ŞENYAY III - 1 3 FREKANS VERİLERİ 3.1. Frekans Tablolarının Düzenlenmesi 3.2. Frekans poligonu 3.3. Frekans tablosu hazırlama 3.4. Frekans Histogramı 3.5. Frekans eğrisi tipleri 3.6. Diğer İstatistiksel Grafik Gösterimler

Detaylı

ENM 316 BENZETİM ÖDEV SETİ

ENM 316 BENZETİM ÖDEV SETİ ENM 16 BENZETİM ÖDEV SETİ Ödev 1. Bir depo ve N adet müşteriden oluşan bir taşımacılık sisteminde araç depodan başlayıp bütün müşterileri teker teker ziyaret ederek depoya geri dönmektedir. Sistemdeki

Detaylı

KONFEKSİYON ÜRETİMİNDE HATA TÜRÜ VE ETKİLERİ ANALİZİ

KONFEKSİYON ÜRETİMİNDE HATA TÜRÜ VE ETKİLERİ ANALİZİ (REFEREED RESEARCH) KONFEKSİYON ÜRETİMİNDE HATA TÜRÜ VE ETKİLERİ ANALİZİ FAILURE MODE AND EFFECT ANALYSIS IN CLOTHING PRODUCTION Yrd. Doç. Dr. Önder YÜCEL Ege Ü. Bayındır MYO e-mail: [email protected]

Detaylı

TEKNİK KILAVUZ : QUARD VE QUEND SOĞUK ŞEKİLLENDİRİLMESİ

TEKNİK KILAVUZ : QUARD VE QUEND SOĞUK ŞEKİLLENDİRİLMESİ TEKNİK KILAVUZ : QUARD VE QUEND SOĞUK ŞEKİLLENDİRİLMESİ Distributed by Duferco 1. Giriş Quard, aşınmaya dayanıklı çelik ve Quend, yüksek dayanımlı çelik en iyi soğuk şekillendirme performansı için geliştirilmiştir.

Detaylı

TEMEL BEDEN KALIBI. Öğr. Gör. Semiye BOTTAN

TEMEL BEDEN KALIBI. Öğr. Gör. Semiye BOTTAN TEMEL BEDEN KALIBI Öğr. Gör. Semiye BOTTAN Ölçüler 38 Beden Göğüs: 88 + 4 (bolluk payı) = 92 + 2 (göğüs pens bolluğu) = 94 cm Bel: 70 + 6 (bolluk payı) = 76 + 1 (göğüs pens açılımından) = 77 cm Basen:

Detaylı

VERİ SETİNE GENEL BAKIŞ

VERİ SETİNE GENEL BAKIŞ VERİ SETİNE GENEL BAKIŞ Outlier : Veri setinde normal olmayan değerler olarak tanımlanır. Ders: Kantitatif Yöntemler 1 VERİ SETİNE GENEL BAKIŞ Veri setinden değerlendirme başlamadan çıkarılabilir. Yazım

Detaylı

Dairesel grafik (veya dilimli pie chart circle graph diyagram, sektor grafiği) (İngilizce:"pie chart"), istatistik

Dairesel grafik (veya dilimli pie chart circle graph diyagram, sektor grafiği) (İngilizce:pie chart), istatistik DAİRESEL GRAFİK Dairesel grafik (veya dilimli diyagram, sektor grafiği) (İngilizce:"pie chart"), istatistik biliminde betimsel istatistik alanında kategorik (ya sırasal ölçekli ya da isimsel ölçekli) verileri

Detaylı

İstatistik ve Olasılık

İstatistik ve Olasılık İstatistik ve Olasılık KORELASYON ve REGRESYON ANALİZİ Doç. Dr. İrfan KAYMAZ Tanım Bir değişkenin değerinin diğer değişkendeki veya değişkenlerdeki değişimlere bağlı olarak nasıl etkilendiğinin istatistiksel

Detaylı

İŞLETMELERDE İŞ SÜREÇ YÖNETİMİ (BPM) UYGULAMASI. Hazırlayanlar Fatma Didem GÜRKAN Endüstri Mühendisi Ahmet Alper ÇALIŞKAN Endüstri Mühendisi

İŞLETMELERDE İŞ SÜREÇ YÖNETİMİ (BPM) UYGULAMASI. Hazırlayanlar Fatma Didem GÜRKAN Endüstri Mühendisi Ahmet Alper ÇALIŞKAN Endüstri Mühendisi İŞLETMELERDE İŞ SÜREÇ YÖNETİMİ (BPM) UYGULAMASI Hazırlayanlar Fatma Didem GÜRKAN Endüstri Mühendisi Ahmet Alper ÇALIŞKAN Endüstri Mühendisi Ajanda 1) İş Süreç Yönetimi (BPM) 2) BPM Yazılımları 3) Farklı

Detaylı

Kesikli Şans Değişkenleri İçin; Olasılık Dağılımları Beklenen Değer ve Varyans Olasılık Hesaplamaları

Kesikli Şans Değişkenleri İçin; Olasılık Dağılımları Beklenen Değer ve Varyans Olasılık Hesaplamaları Kesikli Şans Değişkenleri İçin; Olasılık Dağılımları Beklenen Değer ve Varyans Olasılık Hesaplamaları 1 Şans Değişkeni: Bir dağılışı olan ve bu dağılışın yapısına uygun frekansta oluşum gösteren değişkendir.

Detaylı

Kasım 2016 VSE CCQ V4.1

Kasım 2016 VSE CCQ V4.1 VIEWSONIC EUROPE SINIRLI PİKSEL POLİTİKASI Kasım 2016 VSE CCQ V4.1 ISO 9241 International Organization for Standardization (ISO) tarafından belirlenen bir çok parçalı standarttır ve insan-bilgisayar etkileşimi

Detaylı

İŞARETLİ SIRA İSTATİSTİĞİNİ KULLANAN PARAMETRİK OLMAYAN KONTROL DİYAGRAMIYLA SÜRECİN İZLENMESİ

İŞARETLİ SIRA İSTATİSTİĞİNİ KULLANAN PARAMETRİK OLMAYAN KONTROL DİYAGRAMIYLA SÜRECİN İZLENMESİ V. Ulusal Üretim Araştırmaları Sempozyumu, İstanbul Ticaret Üniversitesi, 25-27 Kasım 2005 İŞARETLİ SIRA İSTATİSTİĞİNİ KULLANAN PARAMETRİK OLMAYAN KONTROL DİYAGRAMIYLA SÜRECİN İZLENMESİ Metin ÖNER Celal

Detaylı

Farklı İki Tür Pres Kullanılan Orta Yoğunlukta Lif Levha (MDF) Üretiminde Çalışma Karakteristiği Eğrisi Yardımıyla Kalite Kontrol

Farklı İki Tür Pres Kullanılan Orta Yoğunlukta Lif Levha (MDF) Üretiminde Çalışma Karakteristiği Eğrisi Yardımıyla Kalite Kontrol Farklı İki Tür Pres Kullanılan Orta Yoğunlukta Lif Levha (MDF) Üretiminde Çalışma Karakteristiği Eğrisi Yardımıyla Kalite Kontrol Arş. Gör. Tarık GEDİK, KTÜ, Orman Endüstri Mühendisliği, Orman Fakültesi,

Detaylı

SPSS (Statistical Package for Social Sciences)

SPSS (Statistical Package for Social Sciences) SPSS (Statistical Package for Social Sciences) SPSS Data Editor: Microsoft Excel formatına benzer satır ve sütunlardan oluşan çalışma sayfası (*sav) Data Editör iki arayüzden oluşur. 1. Data View 2. Variable

Detaylı

ANADOLU ÜNİVERSİTESİ. ENM 317 Prof. Dr. Nihal ERGİNEL

ANADOLU ÜNİVERSİTESİ. ENM 317 Prof. Dr. Nihal ERGİNEL ANADOLU ÜNİVERSİTESİ ENM 317 Prof. Dr. Nihal ERGİNEL 2 ÖRNEKLEME Anakütleden n birimlik örnek alınması ve anakütle parametrelerinin örnekten tahmin edilmesidir. 3 ÖRNEKLEME ALMANIN NEDENLERİ Anakütleye

Detaylı

KONFEKSİYON İŞLETMESİNDE DİKİŞ HATALARININ İSTATİSTİKSEL PROSES KONTROL YÖNTEMLERİNİ KULLANARAK AZALTILMASI

KONFEKSİYON İŞLETMESİNDE DİKİŞ HATALARININ İSTATİSTİKSEL PROSES KONTROL YÖNTEMLERİNİ KULLANARAK AZALTILMASI (REFEREED RESEARCH) KONFEKSİYON İŞLETMESİNDE DİKİŞ HATALARININ İSTATİSTİKSEL PROSES KONTROL YÖNTEMLERİNİ KULLANARAK AZALTILMASI DECREASING SEWING DEFECTS BY USING STATISTICAL PROCESS CONTROL METHODS IN

Detaylı

ENTEGRE YÖNETİM SİSTEMİ TALİMATLAR

ENTEGRE YÖNETİM SİSTEMİ TALİMATLAR 23.02.2017 00-1-7 KYS.18 TE 18 1.0 AMAÇ Eker Süt Ürünlerinde, üretilen katı ürünlerin (kaşar, beyaz peynir vb.) standart kalitede sürekliliği sağlamak, yağ ve protein değerlerini kontrol etmek için kullanılan

Detaylı

Bölüm 1 de ürün gereklilikleri ve müşteri talepleri doğrultusunda en az 3 (üç) adet alternatif tasarım ortaya konacaktır.

Bölüm 1 de ürün gereklilikleri ve müşteri talepleri doğrultusunda en az 3 (üç) adet alternatif tasarım ortaya konacaktır. TASARIM PROJESİ TEKLİF FORMU Tasarımcı: Bahaeddin Önal Musteri:... Projenin Adı ve Tanımı:... Projenin Aşamaları: Ücret (TL) Süre (İş Günü) Bölüm 1 : Konsept Tasarıma Karar verilmesi Bölüm 2 : Tasarım

Detaylı

İçindekiler KALİTE KONTROL KALİTE KALİTE GÜVENCESİ MUAYENE KALİTE KONTROL

İçindekiler KALİTE KONTROL KALİTE KALİTE GÜVENCESİ MUAYENE KALİTE KONTROL İçindekiler KALİTE KONTROL... 1 İSTATİSTİKSEL KALİTE KONTROL... 2 1. İPK Uygulaması... 3 1.1. Çetele Tablosu/Veri Toplama... 5 1.2. Pareto Analizi... 6 1.3. Sebep-Sonuç/Balık Kılçığı Diyagramları... 8

Detaylı

GRAFİK YORUMLAMA. 1 ) Sütun Grafiği : Belirli bir zaman aralığında bazı veri grup-

GRAFİK YORUMLAMA. 1 ) Sütun Grafiği : Belirli bir zaman aralığında bazı veri grup- GRAFİK YORUMLAMA Verilerin veya karşılaştırılması yapılacak değişkenlerin çizgi, tablo, nokta veya şekillerle ifade edilmesine grafik adı verilir. Grafik türleri olarak; sütun, çizgi, daire, histogram,

Detaylı

İstatistik ve Olasılık

İstatistik ve Olasılık İstatistik ve Olasılık Rastgele Değişkenlerin Dağılımları I Prof. Dr. İrfan KAYMAZ Ders konusu Bu derste; Rastgele değişkenlerin tanımı ve sınıflandırılması Olasılık kütle fonksiyonu Olasılık yoğunluk

Detaylı

BİYOİSTATİSTİK Uygulama 4 Yrd. Doç. Dr. Aslı SUNER KARAKÜLAH

BİYOİSTATİSTİK Uygulama 4 Yrd. Doç. Dr. Aslı SUNER KARAKÜLAH BİYOİSTATİSTİK Uygulama 4 Yrd. Doç. Dr. Aslı SUNER KARAKÜLAH Ege Üniversitesi, Tıp Fakültesi, Biyoistatistik ve Tıbbi Bilişim AD. Web: www.biyoistatistik.med.ege.edu.tr 1 Örnek Senaryo İmplant üreten İMPLANTDENT

Detaylı

ÜRETİM ŞEMASI, ZAMAN ETÜDÜ VE AĞ PLANI TEKNİKLERİNİN KOMBİNASYONU İLE İMALAT SÜRELERİNİN BELİRLENMESİ ( BİR KONFEKSİYON ÜRÜNÜ ÖRNEĞİ)

ÜRETİM ŞEMASI, ZAMAN ETÜDÜ VE AĞ PLANI TEKNİKLERİNİN KOMBİNASYONU İLE İMALAT SÜRELERİNİN BELİRLENMESİ ( BİR KONFEKSİYON ÜRÜNÜ ÖRNEĞİ) ÜRETİM ŞEMASI, ZAMAN ETÜDÜ VE AĞ PLANI TEKNİKLERİNİN KOMBİNASYONU İLE İMALAT SÜRELERİNİN BELİRLENMESİ ( BİR KONFEKSİYON ÜRÜNÜ ÖRNEĞİ) Mücella GÜNER Ege Ü. Mühendislik Fak. Tekstil Müh. Böl. Alime Aslı

Detaylı

Tahribatlı Tahribatsız Deney Yöntemleri

Tahribatlı Tahribatsız Deney Yöntemleri Tahribatlı Tahribatsız Deney Yöntemleri Tahribatlı Tahribatsız Deney Yöntemleri TAHRİBATLI YÖNTEM 1.Yapıya zarar verebilir. 2.Tekrar edilmez. 3.Tek başına sonuç verir. 4.Maliyetlidir. 5.Standard sapması

Detaylı

3/29/2011. Create PDF files without this message by purchasing novapdf printer (http://www.novapdf.com)

3/29/2011. Create PDF files without this message by purchasing novapdf printer (http://www.novapdf.com) Problem Çözme Teknikleri: Pareto Prensibi, Tabakalama Analizi, Çeteleler Prof. Dr. Burak BİRGÖREN Endüstri Mühendisliği Bölümü - Kırıkkale Üniversitesi Pareto Prensibi ve Diyagramı Wilfredo Pareto: İtalyan

Detaylı