İSTATİSTİKSEL PROSES KONTROLÜ
|
|
|
- Eren Dede
- 7 yıl önce
- İzleme sayısı:
Transkript
1 İSTATİSTİKSEL PROSES KONTROLÜ ZTM 433 KALİTE KONTROL VE STANDARDİZASYON PROF: DR: AHMET ÇOLAK
2 İstatistiksel işlem kontrolü (İPK), işlemle çeşitli istatistiksel metotların ve analiz sapmalarının kullanımını içerir. İPK metotları basit olarak imalat verisini, histogramlar, işlem kapasitelerini ve kontrol çizelgelerinin kaydını tutmaktır. Kontrol çizelgeleri İİK da en çok kullanılan yöntemdir ve bu bölümde bunlara yoğunlaşacağız. Kontrol çizelgelerinin kontrolde birincil olarak kullanılması önemlidir. Bu grafikler iki tipe ayrılmaktadır. 1-İşlem istatistiksel kontroldeyse gelişigüzel sapmalar 2-İstatistiksel kontrolden ayrılan tanımlanabilir sapmalar. Sürecin istatistiksel kontrolün dışına çıktığını belirlemek kontrol çizelgesinin görevidir, böylece düzeltici bir uygulamaya gidilmesi gerektiği anlaşılır. İstatistiksel Proses Kontrolü (İPK), istatistik tekniklerinin veri toplamak, analiz etmek, yorumlamak ve çözümler getirmek üzere kalite problemlerine uygulanması olarak tanımlanmaktadır. İPK tekniği, seri imalatın belli süreçler içinde kontrol edilerek gidişatın istatistikî yorumunu yapan ve ileride çıkabilecek redlerin önceden hissedip önlemini alarak verimliliği ve kaliteyi arttıran bir yöntemdir
3 İPK uygulamalarında proses sürekli gözlemlenerek problemler tespit edilir, problemin sebepleri belirlenir, çözüm geliştirilir, geliştirilen çözüm uygulanır ve proses tekrar izlenir. Bu döngü sonsuz olup bu sayede prosesin sürekli iyileştirilmesi sağlanır. Kontrol grafikleri istatistiklerin ölçülen belirli işlem karakteristiklerinden hesaplanarak zamana göre çizilmiş şemalardır ve sürecin istatistiksel kontrol altında olup olmadığını belirler. Kontrol şemasının genel formu Şekilde gösterilmiştir. Grafik zamana göre değişmeyen Uç yatay çizgiden oluşur, merkez, alt kontrol limiti (AKL-LCL) ve üst kontrol limiti (ÜKL-UCL). Merkez genellikle nominal tasarım değeridir. Üst ve alt kontrol limitleri genellikle örnek ortalamalarının ±3 standart sapmasıdır. Gelişigüzel bir işlemden örneklenerek çizilen grafiğin üst ve alt kontrol limitlerinin dışında kalması hayli olasılık dışıdır. Bundan dolayı, eğer böyle bir olay gerçekleşirse buradan sistemin kontrolden çıktığı anlaşılır. Böylece sistemin kontrolde olup olmadığı konusunda bir belirleme yapılabilir ve uygun bir düzeltme ile yeniden kontrol altına alınabilir.
4 Örnek Değerleri
5 Benzer sebeplerden, eğer işlem istatistiksel kontrol altındaysa ve grafikte sınır aşımı yoksa herhangi bir ayarlamaya gerek yoktur çünkü işleme belirlenebilir bir değişim katacaktır. Kontrol grafiklerindeki felsefe kırık değilse tamir etme dir. Kontrol grafiklerinin iki çeşidi vardır: 1- Değişkenlerin kontrol grafiği 2- Niteliklerin kontrol grafiği. Değişkenlerin kontrol grafikleri ilgili karakteristik kalite kontrol ölçümlerine ihtiyaç duyar. Niteliklerin kontrol grafikleri basit olarak parçanın hatalı olup olmadığı ya da örneklemde kaç parçanın hatalı olduğu bilgisine ihtiyaç duyar. DEĞİŞKENLER İÇİN KONTROL ŞEMASI İstatistiksel kontrol bakımından kontrol dışı olan bir durum kendini işlem ortalaması ve/ veya işlem değişkenliği şeklinde gösterir. Bu olasılıkların sonucunda iki çeşit değişken kontrol grafiği ortaya çıkar: (x ) grafiği ve R grafiği. (x ) grafiği (x çubuk şeması da denir) bir dizi ölçülen ortalama kalite karakteristiği örneğinin grafikle gösterimidir. İşlem ortalamasının zamana göre değişimini gösterir. R grafiği ise her örneğin aralığını çizer, bundan dolayı işlem çeşitliliğini ve zamana göre değişimini gözlemlemek mümkündür.
6 x ve R grafiklerini gözlemlemek için uygun kalite karakteristiği seçilmelidir. Mekanik bir işlemde bu belki bir şaft çapı ya da önemli başka bir boyut olabilir. İşlem ölçümleri iki kontrol grafiği kurulumu için kullanılmalıdır. Sorunsuz işleyen ve belirlenebilen değişimlerin olmadığı bir işlemde, küçük boyutlu (n = 4, 5, 6 parça) örnek serisinin (m = 20 veya daha fazla işlem tavsiye edilir) verisi toplanır ve her parça için ilgilenilen karakteristik hesaplanır. Aşağıdaki prosedür her grafik için merkez, üst ve alt limit tayininde kullanılır: 1. Ortalama x ve aralık R değerlerini her m örneklem için hesapla 2. Büyük ortalama değerini hesapla, bu x grafiği, m örneklem için merkez olacak ve x grafiğinin merkezi olacaktır. 3. R değerlerinin ortalaması olan R hesapla, bu R şeması m örneklem için merkez olacak ve R grafiğinin merkezi olacaktır. 4. Üst ve alt limitleri x ve R grafikleri için belirle. Bu yaklaşım çizelgede verilen ve kontrol grafikleri için özel olarak geliştirilmiş istatistiksel faktörlere dayanmaktadır. Faktörlerin değerleri örneklem boyutu olan n'ye bağlıdır.
7
8 Örnek: 4 boyutundaki (n = 4) sekiz örnek (m = 8) istatistiksel kontroldeki bir imalat işleminden toplanıp ilgili boyut her parça için ölçülmüştür. x ve R grafikleri için merkez, LCL ve UCL değerlerinin hesaplanması gerekmektedir. Sekiz örnek için hesaplanan x değerleri (cm cinsinden) 2.008, 1.998, 1.993, 2.002, 2.001, 1.995, ve dur. Hesaplanan R değerleri (cm) 0.027, 0.011, 0.017, 0.009, 0.014, 0.020, ve dir. Çözüm: x ve R değerlerinin hesaplanması çözümün ilk basamağıdır. İkinci basamakta örnek ortalamalarının büyük ortalamaları hesaplanır x = ( )/8 = Üçüncü basamakta R nin ortalaması hesaplanır. R = ( )/8 = Dördüncü basamakta LCL ve UCL değerleri çizelgeye göre belirlenir. Önce x grafiği için denklem kullanılır, LCL = (0.0175) = UCL= (0.0175) = ve R grafiği için ilgili denklemler kullanılarak; LCL = 0(0.0175) = 0 UCL = 2.282(0.0175) = olarak hesaplanır.
9 NİTELİKLERİN KONTROL GRAFİKLERİ Nitelik kontrol grafikleri (NKG) kalite değişkenini hesaplamak için kullanılmaz, bunun yerine hurdaya çıkan parça sayısını ya da hata oranını istatistiksel olarak çizer. Bu tür niteliklerin örnekleri arasında otomobil başına hata sayısını içerir, kötü parçaların örneklem üzerinde oranını verir, plastik parçalarda çapak varlık veya yokluk, sac rulosundaki bozukluk var mı diye bakar. Kontrol şemalarında iki tip nitelik prensibi vardır; p grafiği hata oranını birbirini takip eden örneklemlerde çizer, c grafiği ise hata, bozukluk veya diğer sorun sayılarını örneklem başına çizer. p grafiği : Bu grafik hurda birimlerin veya uygunsuz oranların ilgili kalite karakteristiğini belirtir (p oran için kullanılır). Her örnek için bu p i oranı uygunsuz veya hatalı ürün sayısının d i toplam örnekleme (n) oranıdır (kontrol grafiğinde örneklem sayısının eşit sayıda oluşturulduğu varsayılırsa).
10
11 p = i=1 m pi m Kontrol limitleri merkezin her iki tarafındaki üç standart dağılıma göre hesaplanır, buna göre; UCL = p + 3 p (1 p) n Eğer p ve n küçükse alt limit sıfırdan küçük olabilir, bu durumda alt limit sıfır olarak alınır. Bu durumda LCL = 0 olur (hata oranı yüzdesi sıfırdan küçük olamaz).
12 c grafiği: c grafiğinde (count=sayma) örneklemdeki hata sayısı zamana göre çizilir. Örnek bir otomobil gibi tek parça olabilir ve c = son muayenede bulunan kalite hata sayısıdır, ya da örnek halı fabrikasındaki gibi halının kesimden önceki uzunluğu olabilir, c = bir halı rulosundaki hasar sayısı, c grafiği Poisson dağılımına dayanır ve burada c, tanımlı örnek uzayda gerçekleşen olayları tanımlayan parametre sayısıdır (araba başına hata, belirlenen halı uzunluğu için oluşan hata sayısı gibi), c nin gerçek değerine en yakın yaklaşım, işlem istatistiksel kontrol içindeyken yüksek sayıda örneklemin ortalaması olarak belirir: c değeri kontrol grafiğinin merkezi gibi kullanılır. Poisson dağılımında standart sapma c parametresinin kareköküdür. Bundan dolayı kontrol limitleri; LCL (AKL) = c - 3 c UCL (ÜKL) = c + 3 c
13 KONTROL GRAFİKLERİNİN YORUMLANMASI Kontrol çizelgeleri üretim kalitesini izlemek için kullanıldığı zaman, aynı n sayılı işlemden çekilen rastgele örnekler grafikleri oluşturmak için çizilir. x ve R grafikleri için, ölçülen özellik x ve R değerleri kontrol grafiğine dökülmüştür. Gösterim olarak, noktalar genellikle aşağıdaki şekillerdeki gibi bağlanır. Verileri yorumlamak için, işlem, istatistiksel kontrol dışına çıkan işaretlere bakılır. En belirgin işaret, x veya R (veya her ikisi) LCL veya UCL sınırlan dışında kalmasıyla ortaya çıkar. Bu, tür kötü başlangıç malzemesi, yeni operatör, kırık takım veya benzer etkenler olarak atanabilir nedenini gösterir. Bir sınır dışı x işlemde bir kayma anlamına gelir. Bir sınır dışı R, işlemin değişkenliğinin değiştiğini göstermektedir. R nin artmış olmasının genel etkisi, değişkenliğin arttığını gösterir. Daha az belirgin koşul, numune noktaları ±3σ aralığında olsa bile işlem problemleri ortaya çıkarabilir. Bu koşullar arasında (1) aşınma ya da zamanın bir fonksiyonu olarak ortaya çıkan faktörler anlamına gelen verilerde eğilimler veya döngüsel desenler olması, (2) ortalama veri seviyelerinde ani değişiklikler ve (3) üst veya alt sınırları yakınında sürekli görünen noktalar bulunur. x grafik ve R grafiğinin yorumları da aynı şekilde p grafik ve c grafik için de geçerlidir.
Bir ürün yada hizmetin belirlenen yada olabilecek ihtiyaçları karşılama yeterliğine dayanan özelliklerinin toplamıdır.
KALİTE KONTROL Kalite: Bir ürün yada hizmetin belirlenen yada olabilecek ihtiyaçları karşılama yeterliğine dayanan özelliklerinin toplamıdır. Kontrol: Mevcut sonuçlarla hedefleri ve amaçları kıyaslama
13. Olasılık Dağılımlar
13. Olasılık Dağılımlar Mühendislik alanında karşılaşılan fiziksel yada fiziksel olmayan rasgele değişken büyüklüklerin olasılık dağılımları için model alınabilecek çok sayıda sürekli ve kesikli fonksiyon
Genel olarak test istatistikleri. Merkezi Eğilim (Yığılma) Ölçüleri Dağılım (Yayılma) Ölçüleri. olmak üzere 2 grupta incelenebilir.
4.SUNUM Genel olarak test istatistikleri Merkezi Eğilim (Yığılma) Ölçüleri Dağılım (Yayılma) Ölçüleri olmak üzere 2 grupta incelenebilir. 2 Ranj Çeyrek Kayma Çeyrekler Arası Açıklık Standart Sapma Varyans
T.C. ESKİŞEHİR OSMANGAZİ ÜNİVERSİTESİ KONTROL GRAFİKLERİ. Prof. Dr. Nimetullah BURNAK Prof. Dr. A. Sermet ANAGÜN. Endüstri Mühendisliği Bölümü
1970 T.C. ESKİŞEHİR OSMANGAZİ ÜNİVERSİTESİ KONTROL GRAFİKLERİ Prof. Dr. Nimetullah BURNAK Prof. Dr. A. Sermet ANAGÜN Endüstri Mühendisliği Bölümü 1 Kontrol Grafiği UygulamaAdımları Kontrol edilecek uygun
ELYAF İŞLETMELERİNDE İSTATİSTİKSEL SÜREÇ KONTROLÜNÜN UYGULANMASI * An Application of Statistical Process Control in Polyester factory
ELYAF İŞLETMELERİNDE İSTATİSTİKSEL SÜREÇ KONTROLÜNÜN UYGULANMASI * An Application of Statistical Process Control in Polyester factory Tuğba ÇOLAK İstatistik Anabilim Dalı Fikri AKDENİZ İstatistik Anabilim
BÖLÜM 9 NORMAL DAĞILIM
1 BÖLÜM 9 NORMAL DAĞILIM Normal dağılım; 'normal dağılım eğrisi (normaly distribution curve)' ile kavramlaştırılan hipotetik bir evren dağılımıdır. 'Gauss dağılımı' ya da 'Gauss eğrisi' olarak da bilinen
İstatistiksel Süreç Kontrol KAZIM KARABOĞA
İstatistiksel Süreç Kontrol KAZIM KARABOĞA KALİTENİN TARİHSEL KİMLİK DEĞİŞİMİ Muayene İstatistiksel Kalite Kontrol Toplam Kalite Kontrol Toplam Kalite Yönetimi İSTATİSTİKSEL KALİTE KONTROL İstatistiksel
SÜREKLĠ OLASILIK DAĞILIMLARI
SÜREKLĠ OLASILIK DAĞILIMLARI Sayı ekseni üzerindeki tüm noktalarda değer alabilen değişkenler, sürekli değişkenler olarak tanımlanmaktadır. Bu bölümde, sürekli değişkenlere uygun olasılık dağılımları üzerinde
İÇİNDEKİLER. BÖLÜM 1 Değişkenler ve Grafikler 1. BÖLÜM 2 Frekans Dağılımları 37
İÇİNDEKİLER BÖLÜM 1 Değişkenler ve Grafikler 1 İstatistik 1 Yığın ve Örnek; Tümevarımcı ve Betimleyici İstatistik 1 Değişkenler: Kesikli ve Sürekli 1 Verilerin Yuvarlanması Bilimsel Gösterim Anlamlı Rakamlar
2. REGRESYON ANALİZİNİN TEMEL KAVRAMLARI Tanım
2. REGRESYON ANALİZİNİN TEMEL KAVRAMLARI 2.1. Tanım Regresyon analizi, bir değişkenin başka bir veya daha fazla değişkene olan bağımlılığını inceler. Amaç, bağımlı değişkenin kitle ortalamasını, açıklayıcı
JEODEZİK VERİLERİN İSTATİSTİK ANALİZİ. Prof. Dr. Mualla YALÇINKAYA
JEODEZİK VERİLERİN İSTATİSTİK ANALİZİ Prof. Dr. Mualla YALÇINKAYA Karadeniz Teknik Üniversitesi, Harita Mühendisliği Bölümü Trabzon, 2018 VERİLERİN İRDELENMESİ Örnek: İki nokta arasındaki uzunluk 80 kere
Örnek 4.1: Tablo 2 de verilen ham verilerin aritmetik ortalamasını hesaplayınız.
.4. Merkezi Eğilim ve Dağılım Ölçüleri Merkezi eğilim ölçüleri kitleye ilişkin bir değişkenin bütün farklı değerlerinin çevresinde toplandığı merkezi bir değeri gösterirler. Dağılım ölçüleri ise değişkenin
Ders 4: Rastgele Değişkenler ve Dağılımları
Ders 4: Rastgele Değişkenler ve Dağılımları Rastgele değişken kavramı Kesikli ve sürekli rastgele değişkenler İki boyutlu rastgele değişkenler Beklenen değer Varyans Örnek uzaydaki her elemanı bir sayıyla
OLASILIK ve KURAMSAL DAĞILIMLAR
OLASILIK ve KURAMSAL DAĞILIMLAR Kuramsal Dağılımlar İstatistiksel çözümlemelerde; değişkenlerimizin dağılma özellikleri, çözümleme yönteminin seçimi ve sonuçlarının yorumlanmasında önemlidir. Dağılma özelliklerine
Sıklık Tabloları, BASİT ve TEK değişkenli Grafikler Ders 3 ve 4 ve 5
Sıklık Tabloları, BASİT ve TEK değişkenli Grafikler Ders 3 ve 4 ve 5 Sıklık Tabloları Veri dizisinde yer alan değerlerin tekrarlama sayılarını içeren tabloya sıklık tablosu denir. Tek değişken için çizilen
Örneklem Dağılımları & Hipotez Testleri Örneklem Dağılımı
Örneklem Dağılımları & Hipotez Testleri Örneklem Dağılımı Ortalama veya korelasyon gibi istatistiklerin dağılımıdır Çıkarımsal istatistikte örneklem dağılımı temel fikirlerden biridir. Çıkarımsal istatistik
BÖLÜM 12 STUDENT T DAĞILIMI
1 BÖLÜM 12 STUDENT T DAĞILIMI 'Student t dağılımı' ya da kısaca 't dağılımı'; normal dağılım ve Z dağılımının da içerisinde bulunduğu 'sürekli olasılık dağılımları' ailesinde yer alan dağılımlardan bir
8.Hafta. Değişkenlik Ölçüleri. Öğr.Gör.Muhsin ÇELİK. Uygun değişkenlik ölçüsünü hesaplayıp yorumlayabilecek,
İSTATİSTİK 8.Hafta Değişkenlik Ölçüleri Hedefler Bu üniteyi çalıştıktan sonra; Uygun değişkenlik ölçüsünü hesaplayıp yorumlayabilecek, Serilerin birbirlerine değişkenliklerini yorumlayabileceksiniz. 2
Ders 9: Kitle Ortalaması ve Varyansı için Tahmin
Ders 9: Kitle Ortalaması ve Varyansı için Tahmin Kitle ve Örneklem Örneklem Dağılımı Nokta Tahmini Tahmin Edicilerin Özellikleri Kitle ortalaması için Aralık Tahmini Kitle Standart Sapması için Aralık
1.58 arasındaki her bir değeri alabileceği için sürekli bir
7.SUNUM Hatırlanacağı gibi, kesikli rassal değişkenler sonlu (örneğin; 0, 1, 2,...,10) veya sayılabilir sonsuzlukta (örneğin; 0, 1, 2,...) değerler alabilmektedir. Fakat birçok uygulamada, rassal değişkenin
Bir Normal Dağılım Ortalaması İçin Testler
Bir Normal Dağılım Ortalaması İçin Testler İÇERİK o Giriş ovaryansı Bilinen Bir Normal Dağılım Ortalaması İçin Hipotez Testler P-değerleri: II. Çeşit hata ve Örnekleme Büyüklüğü Seçimi Örnekleme Büyüklüğü
BÖLÜM 6 MERKEZDEN DAĞILMA ÖLÇÜLERİ
1 BÖLÜM 6 MERKEZDEN DAĞILMA ÖLÇÜLERİ Gözlenen belli bir özelliği, bu özelliğe ilişkin ölçme sonuçlarını yani verileri kullanarak betimleme, istatistiksel işlemlerin bir boyutunu oluşturmaktadır. Temel
İstatistik ve Olasılık
İstatistik ve Olasılık KORELASYON ve REGRESYON ANALİZİ Doç. Dr. İrfan KAYMAZ Tanım Bir değişkenin değerinin diğer değişkendeki veya değişkenlerdeki değişimlere bağlı olarak nasıl etkilendiğinin istatistiksel
MAK 210 SAYISAL ANALİZ
MAK 210 SAYISAL ANALİZ BÖLÜM 6- İSTATİSTİK VE REGRESYON ANALİZİ Doç. Dr. Ali Rıza YILDIZ 1 İSTATİSTİK VE REGRESYON ANALİZİ Bütün noktalardan geçen bir denklem bulmak yerine noktaları temsil eden, yani
Dokuz Eylül Üniversitesi Mühendislik Fakültesi Endüstri Mühendisliği Bölümü END Kalite Planlama ve Kontrol
Dokuz Eylül Üniversitesi Mühendislik Fakültesi Endüstri Mühendisliği Bölümü END 3618 - Kalite Planlama ve Kontrol Uygulama Çalışması-I Dr. Öğr. Üyesi Kemal SUBULAN Tarih: 12.04.2018 A Aşağıda yer alan
Hipotez Testi ENM 5210 İSTATİSTİK VE YAZILIMLA UYGULAMALARI. Ders 4 Minitab da İstatiksel Çıkarım-I. Hipotez Testi. Hipotez Testi
ENM 52 İSTATİSTİK VE YAZILIMLA UYGULAMALARI Ders 4 Minitab da İstatiksel Çıkarım-I (Ortalamalar ve Oranlar İçin ) İstatistiksel Hipotezler İstatistiksel hipotez testi ve parametrelerin güven aralığı tahmini,
1203608-SIMÜLASYON DERS SORUMLUSU: DOÇ. DR. SAADETTIN ERHAN KESEN. Ders No:5 Rassal Değişken Üretimi
1203608-SIMÜLASYON DERS SORUMLUSU: DOÇ. DR. SAADETTIN ERHAN KESEN Ders No:5 RASSAL DEĞIŞKEN ÜRETIMI Bu bölümde oldukça yaygın bir biçimde kullanılan sürekli ve kesikli dağılımlardan örneklem alma prosedürleri
İstatistiksel Proses Kontrol
İstatistiksel Proses Kontrol İstatistiksel Proses Kontrol Nedir? ü İstatistiksel proses kontrolü, üretim sürecinde kaliteyi ölçmek ve kontrol etmek için kullanılan endüstri standardı bir metodolojidir.
Mühendislikte İstatistiksel Yöntemler
Mühendislikte İstatistiksel Yöntemler BÖLÜM 2 AÇIKLAYICI (BETİMLEYİCİ) İSTATİSTİK Yrd. Doç. Dr. Fatih TOSUNOĞLU 1-Açıklayıcı (Betimleyici) İstatistik İnceleme sonucu elde edilen ham verilerin istatistiksel
İstatistiksel proses kontrol ve kontrol diyagramı. 3. hafta
İstatistiksel proses kontrol ve kontrol diyagramı 3. hafta İstatistiksel proses kontrol Prosesteki değişkenliği ölçerek ve analiz ederek istatistiksel kontrolünü sağlamak ve sürdürmek için istatistiksel
İSTATİSTİK MHN3120 Malzeme Mühendisliği
İSTATİSTİK MHN3120 Malzeme Mühendisliği CBÜ - Malzeme Mühendisliği Bölümü Ofis: Mühendislik Fakültesi A Blok Ofis no:311 Tel: 0 236 2012404 E-posta :[email protected] YARDIMCI KAYNAKLAR Mühendiler
Hatalar Bilgisi ve İstatistik Ders Kodu: Kredi: 3 / ECTS: 5
Ders Kodu: 0010070021 Kredi: 3 / ECTS: 5 Yrd. Doç. Dr. Serkan DOĞANALP Necmettin Erbakan Üniversitesi Harita Mühendisliği Bölümü Konya 07.01.2015 1 Giriş 2 Giriş Matematiksel istatistiğin konusu yığın
OLASILIK ve İSTATİSTİK Hipotez Testleri
OLASILIK ve İSTATİSTİK Hipotez Testleri Yrd.Doç.Dr. Pınar YILDIRIM Okan Üniversitesi Mühendislik ve Mimarlık Fakültesi Bilgisayar Mühendisliği Bölümü Hipotezler ve Testler Hipotez, kitleye(yığına) ait
Yrd. Doç. Dr. Fatih TOSUNOĞLU Erzurum Teknik Üniversitesi Mühendislik Fakültesi İnşaat Mühendisliği Bölümü
Mühendislikte İstatistiksel Yöntemler Yrd. Doç. Dr. Fatih TOSUNOĞLU Erzurum Teknik Üniversitesi Mühendislik Fakültesi İnşaat Mühendisliği Bölümü 1 Araştırma sonuçlarının açıklanmasında frekans tablosu
İstatistik ve Olasılık
İstatistik ve Olasılık Ders 2: Prof. Dr. İrfan KAYMAZ Tanım İnceleme sonucu elde edilen ham verilerin istatistiksel yöntemler kullanılarak özetlenmesi açıklayıcı istatistiği konusudur. Açıklayıcı istatistikte
DAĞILMA YADA DEĞİ KENLİK ÖLÇÜLERİ (MEASURE OF DISPERSION) Prof.Dr.A.KARACABEY Doç.Dr.F.GÖKGÖZ
DAĞILMA YADA DEĞİ KENLİK ÖLÇÜLERİ (MEASURE OF DISPERSION) 1 AMAÇ... Mevcut veri seti için bulunan merkezi eğilim ölçüsünün yorumlamak Birden fazla veri seti için dağılımlar arası kıyaslama yapabilmek amaçlarıyla
Prof. Dr. Aydın Yüksel MAN 504T Yön. için Finansal Analiz & Araçları Ders: Risk-Getiri İlişkisi ve Portföy Yönetimi I
Risk-Getiri İlişkisi ve Portföy Yönetimi I 1 Giriş İşlenecek ana başlıkları sıralarsak: Finansal varlıkların risk ve getirisi Varlık portföylerinin getirisi ve riski 2 Risk ve Getiri Yatırım kararlarının
Sürekli Rastsal Değişkenler
Sürekli Rastsal Değişkenler Normal Dağılım: Giriş Normal Dağılım: Tamamen ortalaması ve standart sapması ile tanımlanan bir rastsal değişken, X, için oluşturulan sürekli olasılık dağılımına normal dağılım
İstatistiksel Yorumlama
İstatistiksel Yorumlama Amaç, popülasyon hakkında yorumlamalar yapmaktadır. Populasyon Parametre Karar Vermek Örnek İstatistik Tahmin 1 Tahmin Olaylar hakkında tahminlerde bulunmak ve karar vermek zorundayız
İstatistik. Temel Kavramlar Dr. Seher Yalçın 1
İstatistik Temel Kavramlar 26.12.2016 Dr. Seher Yalçın 1 Evren (Kitle/Yığın/Popülasyon) Herhangi bir gözlem ya da inceleme kapsamına giren obje ya da bireylerin oluşturduğu bütüne ya da gruba Evren veya
İstatistiksel Kalite Kontrol
İstatistiksel Kalite Kontrol İstatistiksel kalite kontrol (İKK) metodlarının sanayide geniş çapta uygulanması ile imalatın hızlanması, firenin azaltılması, maliyetlerin düşürülmesi ve kalitenin yükseltilmesi
İstatistik ve Olasılık
İstatistik ve Olasılık Ders 2: Prof. Dr. İrfan KAYMAZ Tanım İnceleme sonucu elde edilen ham verilerin istatistiksel yöntemler kullanılarak özetlenmesi açıklayıcı istatistiği konusudur. Açıklayıcı istatistikte
Merkezi Limit Teoremi
Örnekleme Dağılımı Merkezi Limit Teoremi Şimdiye kadar normal dağılıma uygun olan veriler ile ilgili örnekler incelendi. Çarpıklık gösteren veriler söz konusu olduğunda ne yapılması gerekir? Hala normal
İstatistik ve Olasılık
İstatistik ve Olasılık Ders 8: Prof. Dr. İrfan KAYMAZ Tanım Tahmin (kestirim veya öngörü): Mevcut bilgi ve deneylere dayanarak olayın bütünü hakkında bir yargıya varmaktır. Bu anlamda, anakütleden çekilen
TEMEL İSTATİSTİKİ KAVRAMLAR YRD. DOÇ. DR. İBRAHİM ÇÜTCÜ
TEMEL İSTATİSTİKİ KAVRAMLAR YRD. DOÇ. DR. İBRAHİM ÇÜTCÜ 1 İstatistik İstatistik, belirsizliğin veya eksik bilginin söz konusu olduğu durumlarda çıkarımlar yapmak ve karar vermek için sayısal verilerin
Quality Planning and Control
Quality Planning and Control END 3618 KALİTE PLANLAMA VE KONTROL Prof. Dr. Mehmet ÇAKMAKÇI Dokuz Eylül Üniversitesi Endüstri Mühendisliği Anabilim Dalı 1 İstatistiksel Proses Kontrol Kontrol Kartları Kontrol
Kitle: Belirli bir özelliğe sahip bireylerin veya birimlerin tümünün oluşturduğu topluluğa kitle denir.
BÖLÜM 1: FREKANS DAĞILIMLARI 1.1. Giriş İstatistik, rasgelelik içeren olaylar, süreçler, sistemler hakkında modeller kurmada, gözlemlere dayanarak bu modellerin geçerliliğini sınamada ve bu modellerden
İÇİNDEKİLER ÖN SÖZ...
İÇİNDEKİLER ÖN SÖZ... v GİRİŞ... 1 1. İSTATİSTİK İN TARİHÇESİ... 1 2. İSTATİSTİK NEDİR?... 3 3. SAYISAL BİLGİDEN ANLAM ÇIKARILMASI... 4 4. BELİRSİZLİĞİN ELE ALINMASI... 4 5. ÖRNEKLEME... 5 6. İLİŞKİLERİN
Konum ve Dağılım Ölçüleri. BBY606 Araştırma Yöntemleri Güleda Doğan
Konum ve Dağılım Ölçüleri BBY606 Araştırma Yöntemleri Güleda Doğan Konum ölçüleri Merkezi eğilim ölçüleri Verilerin ortalamaya göre olan gruplanması nasıl? Yakın, uzak? Sıklık dağılımlarının karşılaştırılması
Dokuz Eylül Üniversitesi Mühendislik Fakültesi Endüstri Mühendisliği Bölümü
Dokuz Eylül Üniversitesi Mühendislik Fakültesi Endüstri Mühendisliği Bölümü END 3618 Kalite Planlama & Kontrol Bölüm 14: Değişkenlere Göre Örnekleme Planları ve Diğer Örnekleme Yöntemleri Yrd. Doç. Dr.
İstatistiksel Süreç Kontrolu. Doç.Dr.Nihal ERGİNEL Anadolu Üniversitesi
İstatistiksel Süreç Kontrolu Doç.Dr.Nihal ERGİNEL Anadolu Üniversitesi İstatistiksel Süreç Kontrolü Bir üretim/ hizmet sürecinin kontrol altında olup olmadığına karar vermek için kullanılan teknikler bütünüdür.
Mühendislikte İstatistiksel Yöntemler
Mühendislikte İstatistiksel Yöntemler BÖLÜM 7 TAHMİNLER Yrd. Doç. Dr. Fatih TOSUNOĞLU 1 Tahmin (kestirim veya öngörü): Mevcut bilgi ve deneylere dayanarak olayın bütünü hakkında bir yargıya varmaktır.
ÖRNEKLEME DAĞILIŞLARI VE TAHMİNLEYİCİLERİN ÖZELLİKLERİ
ÖRNEKLEME DAĞILIŞLARI VE TAHMİNLEYİCİLERİN ÖZELLİKLERİ TEMEL KAVRAMLAR PARAMETRE: Populasyonun sayısal açıklayıcı bir ölçüsüdür ve anakütledeki tüm elemanlar dikkate alınarak hesaplanabilir. Ana kütledeki
0.04.03 Standart Hata İstatistikte hesaplanan her istatistik değerin mutlaka hatası da hesaplanmalıdır. Çünkü hesaplanan istatistikler, tahmini bir değer olduğu için mutlaka hataları da vardır. Standart
BÖLÜM 10 PUAN DÖNÜŞÜMLERİ
1 BÖLÜM 10 PUAN DÖNÜŞÜMLERİ Bir gözlem sonucunda elde edilen ve üzerinde herhangi bir düzenleme yapılmamış ölçme sonuçları 'ham veri' ya da 'ham puan' olarak isimlendirilir. Genellikle ham verilerin anlaşılması
SÜREKLİ OLASILIK DAĞILIŞLARI
SÜREKLİ OLASILIK DAĞILIŞLARI Sürekli verilerin göstermiş olduğu dağılışa sürekli olasılık dağılışı denir. Sürekli olasılık dağılışlarının fonksiyonlarına yoğunluk fonksiyonu denilmekte ve bu dağılışlarla
SİMÜLASYON ÇEŞİTLERİ HAZIRLAYAN: ÖZLEM AYDIN
SİMÜLASYON ÇEŞİTLERİ HAZIRLAYAN: ÖZLEM AYDIN SİMÜLASYON ÇEŞİTLERİ Günümüz simülasyonları gerçek sistem davranışlarını, zamanın bir fonksiyonu olduğu düşüncesine dayanan Monte Carlo yöntemine dayanır. 1.
İSTATİSTİK EXCEL UYGULAMA
İSTATİSTİK EXCEL UYGULAMA EXCEL UYGULAMA Bu bölümde Excel ile ilgili temel bilgiler sunulacak ve daha sonra İstatistiksel Uygulamalar hakkında bilgi verilecektir. İşlenecek Konular: Merkezi eğilim Ölçüleri
Gruplanmış serilerde standart sapma hesabı
Gruplanmış serilerde standart sapma hesabı Örnek: Verilen gruplanmış serinin standart sapmasını bulunuz? Sınıflar f i X X X m i f i. m i m i - (m i - ) f i.(m i - ) 0 den az 3 4 den az 7 4 6 dan az 4 6
Bekleme Hattı Teorisi
Bekleme Hattı Teorisi Sürekli Parametreli Markov Zincirleri Tanım 1. * +, durum uzayı * +olan sürekli parametreli bir süreç olsun. Aşağıdaki özellik geçerli olduğunda bu sürece sürekli parametreli Markov
H 0 : θ = θ 0 Bu sıfır hipotezi şunu ifade eder: Anakütle parametresi θ belirli bir θ 0
YTÜ-İktisat İstatistik II Hipotez Testi 1 HİPOTEZ TESTİ: AMAÇ: Örneklem bilgisinden hareketle anakütleye ilişkin olarak kurulan bir hipotezin (önsavın) geçerliliğinin test edilmesi Genel notasyon: anakütleye
İSTATİSTİK DERS NOTLARI
Balıkesir Üniversitesi İnşaat Mühendisliği Bölümü [email protected] İSTATİSTİK DERS NOTLARI Yrd. Doç. Dr. Umut OKKAN Hidrolik Anabilim Dalı Balıkesir Üniversitesi İnşaat Mühendisliği Bölümü Bölüm
Toplum ve Örnek. Temel Araştırma Düzenleri. Doç. Dr. Ertuğrul ÇOLAK. Eskişehir Osmangazi Üniversitesi Tıp Fakültesi Biyoistatistik Anabilim Dalı
Toplum ve Örnek Temel Araştırma Düzenleri Doç. Dr. Ertuğrul ÇOLAK Eskişehir Osmangazi Üniversitesi Tıp Fakültesi Biyoistatistik Anabilim Dalı Toplum ve Örnek İstatistik, toplumdan kurallara uygun olarak,
26.12.2013. Farklı iki ilaç(a,b) kullanan iki grupta kan pıhtılaşma zamanları farklı mıdır?
26.2.23 Gözlem ya da deneme sonucu elde edilmiş sonuçların, raslantıya bağlı olup olmadığının incelenmesinde kullanılan istatistiksel yöntemlere HĐPOTEZ TESTLERĐ denir. Sonuçların raslantıya bağlı olup
Hipotez Testlerine Giriş. Hipotez Testlerine Giriş
Hipotez Testlerine Giriş Hipotez Testlerine Giriş Hipotez Testlerine Giriş Gözlem ya da deneme sonucu elde edilmiş sonuçların, raslantıya bağlı olup olmadığının incelenmesinde kullanılan istatistiksel
2 Hata Hesabı. Hata Nedir? Mutlak Hata. Bağıl Hata
Hata Hesabı Hata Nedir? Herhangi bir fiziksel büyüklüğün ölçülen değeri ile gerçek değeri arasındaki farka hata denir. Ölçülen bir fiziksel büyüklüğün sayısal değeri, yapılan deneysel hatalardan dolayı
BÖLÜM 1 GİRİŞ: İSTATİSTİĞİN MÜHENDİSLİKTEKİ ÖNEMİ
BÖLÜM..AMAÇ GİRİŞ: İSTATİSTİĞİ MÜHEDİSLİKTEKİ ÖEMİ Doğa bilimlerinde karşılaştığımız problemlerin birçoğunda olaydaki değişkenlerin değerleri bilindiğinde probleme kesin ve tek bir çözüm bulunabilir. Örneğin
Oluşturulan evren listesinden örnekleme birimlerinin seçkisiz olarak çekilmesidir
Bilimsel Araştırma Yöntemleri Prof. Dr. Şener Büyüköztürk Doç. Dr. Ebru Kılıç Çakmak Yrd. Doç. Dr. Özcan Erkan Akgün Doç. Dr. Şirin Karadeniz Dr. Funda Demirel Örnekleme Yöntemleri Evren Evren, araştırma
Nokta ve Aralık Tahmini Merkezi Limit Teoremi Örneklem Dağılımı Hipotez Testlerine Giriş
Nokta ve Aralık Tahmini Merkezi Limit Teoremi Örneklem Dağılımı Hipotez Testlerine Giriş Doç. Dr. Ertuğrul ÇOLAK Eskişehir Osmangazi Üniversitesi Tıp Fakültesi Biyoistatistik Anabilim Dalı Nokta Tahmini
rasgele değişkeninin olasılık yoğunluk fonksiyonu,
3.6. Bazı Sürekli Dağılımlar 3.6.1 Normal Dağılım Normal dağılım hem uygulamalı hem de teorik istatistikte kullanılan oldukça önemli bir dağılımdır. Normal dağılımın istatistikte önemli bir yerinin olmasının
İstatistik, genel olarak, rassal bir olayı (ya da deneyi) matematiksel olarak modellemek ve bu model yardımıyla, anakütlenin bilinmeyen karakteristik
6.SUNUM İstatistik, genel olarak, rassal bir olayı (ya da deneyi) matematiksel olarak modellemek ve bu model yardımıyla, anakütlenin bilinmeyen karakteristik özellikleri (ortalama, varyans v.b. gibi) hakkında
Çözüm: Çözüm: Çözüm: Elektrik Ölçme Ders Notları-Ş.Kuşdoğan&E.Kandemir Beşer 16
Soru: Elimizde 0.5 sınıfından 500V luk bir voltmetre ile 1.5 sınıfından 120V luk bir voltmetre bulunmaktadır. Değeri 1V olan bir gerilimi hangi ölçü aleti ile ölçmek daha doğru olur? Neden? Soru: Bir direncin
MIT OpenCourseWare Ekonomide İstatistiksel Yöntemlere Giriş Bahar 2009
MIT OpenCourseWare http://ocw.mit.edu 14.30 Ekonomide İstatistiksel Yöntemlere Giriş Bahar 2009 Bu materyale atıfta bulunmak ve kullanım koşulları için http://ocw.mit.edu/terms sayfasını ziyaret ediniz.
İstatistik ve Olasılık
İstatistik ve Olasılık Örnekleme Planlar ve Dağılımları Prof. Dr. İrfan KAYMAZ Tanım İncelenen olayın ait olduğu anakütlenin bütünüyle dikkate alınması zaman, para, ekipman ve bunun gibi nedenlerden dolayı
İSTATİSTİK I. Giriş. Bölüm 1 Temel Terimler ve Tanımlar İSTATİSTİKLER
İSTATİSTİK I Bölüm 1 Temel Terimler ve Tanımlar 1 2 Giriş İSTATİSTİKLER Genel olarak araştırmalarda, büyük veri gruplarının içinden daha küçük veri grupları seçilerek büyük veri gruplarının hakkında bilgi
OLASILIK VE İSTATİSTİK
OLASILIK VE İSTATİSTİK 1 Bölüm 1 Temel Terimler ve Tanımlar 2 Giriş Genel olarak araştırmalarda, büyük veri gruplarının içinden daha küçük veri grupları seçilerek büyük veri gruplarının hakkında bilgi
BKİ farkı Standart Sapması (kg/m 2 ) A B BKİ farkı Ortalaması (kg/m 2 )
4. SUNUM 1 Gözlem ya da deneme sonucu elde edilmiş sonuçların, rastlantıya bağlı olup olmadığının incelenmesinde kullanılan istatistiksel yöntemlere HİPOTEZ TESTLERİ denir. Sonuçların rastlantıya bağlı
Ders 1 Minitab da Grafiksel Analiz-I
ENM 5210 İSTATİSTİK VE YAZILIMLA UYGULAMALARI Ders 1 Minitab da Grafiksel Analiz-I İstatistik Nedir? İstatistik kelimesi ilk olarak Almanyada devlet anlamına gelen status kelimesine dayanılarak kullanılmaya
Görev çubuğu. Ana ölçek. Şekil 1.1: Verniyeli kumpas
Deney No : M0 Deney Adı : ÖLÇME VE HATA HESABI Deneyin Amacı : Bazı uzunluk ölçü aletlerini tanımak ve ölçme hataları hakkında ön bilgiler elde etmektir. Teorik Bilgi : VERNİYELİ KUMPAS Uzunluk ölçümü
Merkezi Eğilim ve Dağılım Ölçüleri
Merkezi Eğilim ve Dağılım Ölçüleri Soru Öğrencilerin derse katılım düzeylerini ölçmek amacıyla geliştirilen 16 soruluk bir test için öğrencilerin ilk 8 ve son 8 soruluk yarılardan aldıkları puanlar arasındaki
Mühendislikte İstatistiksel Yöntemler
Mühendislikte İstatistiksel Yöntemler BÖLÜM 9 VARYANS ANALİZİ Yrd. Doç. Dr. Fatih TOSUNOĞLU 1 Varyans analizi niçin yapılır? İkiden fazla veri grubunun ortalamalarının karşılaştırılması t veya Z testi
İNŞAAT MÜHENDİSLİĞİ BÖLÜMÜ ÖĞRENCİLERİNİN BAŞARI NOTLARININ DEĞERLENDİRİLMESİ. Tamer Yılmaz, Barış Yılmaz, Halim Sezici 1 ÖZET
İNŞAAT MÜHENDİSLİĞİ BÖLÜMÜ ÖĞRENCİLERİNİN BAŞARI NOTLARININ DEĞERLENDİRİLMESİ Tamer Yılmaz, Barış Yılmaz, Halim Sezici 1 ÖZET Bu çalışmada, Celal Bayar Üniversitesi İnşaat Mühendisliği Bölümü öğrencilerinin
Dr. Mehmet AKSARAYLI
Dr. Mehmet AKSARAYLI Şans Değişkeni: Bir dağılışı olan ve bu dağılışın yapısına uygun frekansta oluşum gösteren değişkendir. Şans Değişkenleri KESİKLİ RASSAL DEĞİŞKENLER ve OLASILIK DAĞILIMLARI Kesikli
Faktöriyel: 1'den n'ye kadar olan tüm pozitif tamsayıların çarpımına, biçiminde gösterilir. Aynca; 0! = 1 ve 1!=1 1 dir. [Bunlar kabul değildir,
14. Binom ve Poisson olasılık dağılımları Faktöriyeller ve kombinasyonlar Faktöriyel: 1'den n'ye kadar olan tüm pozitif tamsayıların çarpımına, n! denir ve n! = 1.2.3...(n-2).(n-l).n biçiminde gösterilir.
BÖLÜM 7. KALĐTE DENETĐMĐ
BÖLÜM 7. KALĐTE DENETĐMĐ 7.1 YALIN BETONDA KALĐTE DENETĐMĐ 7.1.1 Giriş Yalın betonda kalite denetimi; agrega, çimento, su ve katkı maddelerinin denetimi ile başlar. Bu bileşenlerden oluşan betonun kalitesi
İstatistik ve Olasılık
İstatistik ve Olasılık Ders 10: Prof. Dr. İrfan KAYMAZ Tanım Varyans analizi niçin yapılır? İkiden fazla veri grubunun ortalamalarının karşılaştırılması t veya Z testi ile yapılabilir. Ancak karşılaştırılacak
NORMAL DAĞILIM. 2., anakütle sayısı ile Poisson dağılımına uyan rassal bir değişkense ve 'a gidiyorsa,
NORMAL DAĞILIM TEORİK 1., ortalaması, standart sapması olan bir normal dağılıma uyan rassal bir değişkense, bir sabitken nin beklem üreten fonksiyonunu bulun. 2., anakütle sayısı ile Poisson dağılımına
Malzemelerin Mekanik Özellikleri
Malzemelerin Mekanik Özellikleri Bölüm Hedefleri Deneysel olarak gerilme ve birim şekil değiştirmenin belirlenmesi Malzeme davranışı ile gerilme-birim şekil değiştirme diyagramının ilişkilendirilmesi ÇEKME
İSTATİSTİKSEL TAHMİNLEME. Örneklem istatistiklerinden hareketle ana kütle parametreleri hakkında genelleme yapmaya istatistiksel tahminleme denir.
İSTATİSTİKSEL TAHMİNLEME Örneklem istatistiklerinden hareketle ana kütle parametreleri hakkında genelleme yapmaya istatistiksel tahminleme denir. 1 ŞEKİL: Evren uzay-örneklem uzay İstatistiksel tahmin
İstatistik Nedir? Ders 1 Minitab da Grafiksel Analiz-I ENM 5210 İSTATİSTİK VE YAZILIMLA UYGULAMALARI. İstatistiğin Konusu Olan Olaylar
ENM 5210 İSTATİSTİK VE YAZILIMLA UYGULAMALARI İstatistik Nedir? İstatistik kelimesi ilk olarak Almanyada devlet anlamına gelen status kelimesine dayanılarak kullanılmaya başlanmıştır. Ders 1 Minitab da
ÜNİTE:1. İstatistiğin Tanımı, Temel Kavramlar ve İstatistik Eğitimi ÜNİTE:2. Veri Derleme, Düzenleme ve Grafiksel Çözümleme ÜNİTE:3
ÜNİTE:1 İstatistiğin Tanımı, Temel Kavramlar ve İstatistik Eğitimi ÜNİTE:2 Veri Derleme, Düzenleme ve Grafiksel Çözümleme ÜNİTE:3 Ortalamalar, Değişkenlik ve Dağılma Ölçüleri ÜNİTE:4 Endeksler ÜNİTE:5
BAŞKENT ÜNİVERSİTESİ MAKİNA MÜHENDİSLİĞİ BÖLÜMÜ MAK 402 MAKİNA MÜHENDİSLİĞİ LABORATUVARI DENEY - 3 ÜÇ NOKTALI EĞİLME DENEYİ
BAŞKENT ÜNİVERSİTESİ MAKİNA MÜHENDİSLİĞİ BÖLÜMÜ MAK 402 MAKİNA MÜHENDİSLİĞİ LABORATUVARI DENEY - 3 ÜÇ NOKTALI EĞİLME DENEYİ GİRİŞ Yapılan herhangi bir mekanik tasarımda kullanılacak malzemelerin belirlenmesi
ÖRNEKLEME TEORİSİ. Prof.Dr.A.KARACABEY Doç.Dr.F.GÖKGÖZ
ÖRNEKLEME TEORİSİ 1 Bir popülasyonu istatistiksel açıdan incelemek ve işlemler yapabilmek için popülasyon içerisinden seçilen örneklemlerden yararlandığımızı söylemiştik. Peki popülasyonun istatistiksel
Appendix C: İstatistiksel Çıkarsama
Yıldız Teknik Üniversitesi İktisat Bölümü Ekonometri I Ders Notları Ders Kitabı: J.M. Wooldridge, Introductory Econometrics A Modern Approach, 2nd. edition, Thomson Learning Appendix C: İstatistiksel Çıkarsama
NİCELİKSEL KONTROL GRAFİKLERİ
NİCELİKSEL KONTROL GRAFİKLERİ Prof. Dr. Nihal ERGİNEL Anadolu Üniversitesi X BİRİMLER VE HAREKETLİ DEĞİŞİM ARALIĞI KONTROL GRAFİĞİ X- Birimler Kontrol Grafiği n= birimlik örnekler alınır. Üretim hızı oldukça
Nicel / Nitel Verilerde Konum ve Değişim Ölçüleri. BBY606 Araştırma Yöntemleri 2013-2014 Bahar Dönemi 13 Mart 2014
Nicel / Nitel Verilerde Konum ve Değişim Ölçüleri BBY606 Araştırma Yöntemleri 2013-2014 Bahar Dönemi 13 Mart 2014 1 Konum ölçüleri Merkezi eğilim ölçüleri Verilerin ortalamaya göre olan gruplanması nasıl?
YTÜ İktisat Bölümü EKONOMETRİ I Ders Notları
Yıldız Teknik Üniversitesi İktisat Bölümü Ekonometri I Ders Kitabı: J.M. Wooldridge, Introductory Econometrics A Modern Approach, 2nd. edition, Thomson Learning Appendix C: İstatistiksel Çıkarsama Doç.
Copyright 2004 Pearson Education, Inc. Slide 1
Slide 1 Bölüm 2 Verileri Betimleme, Keşfetme, ve Karşılaştırma 2-1 Genel Bakış 2-2 Sıklık Dağılımları 2-3 Verilerin Görselleştirilmesi 2-4 Merkezi Eğilim Ölçüleri 2-5 Değişimin Ölçülmesi 2-6 Nispi Sabitlerin
MATE211 BİYOİSTATİSTİK
MATE211 BİYOİSTATİSTİK ÇALIŞMA SORULARININ ÇÖZÜM VE CEVAPLARI Yapılan bir araştırmada, 136 erişkin kişinin kanlarındaki kolesterol düzeyleri gr/dl cinsinden aşağıda verilmiştir: 180 230 190 186 220 191
BURSA TEKNİK ÜNİVERSİTESİ DOĞA BİLİMLERİ, MİMARLIK VE MÜHENDİSLİK FAKÜLTESİ MAKİNE MÜHENDİSLİĞİ BÖLÜMÜ 3 NOKTA EĞME DENEYİ FÖYÜ
BURSA TEKNİK ÜNİVERSİTESİ DOĞA BİLİMLERİ, MİMARLIK VE MÜHENDİSLİK FAKÜLTESİ MAKİNE MÜHENDİSLİĞİ BÖLÜMÜ 3 NOKTA EĞME DENEYİ FÖYÜ BURSA - 2016 1. GİRİŞ Eğilme deneyi malzemenin mukavemeti hakkında tasarım
