Şekil 8. Bir rüzgâr türbininin maruz kaldığı rüzgâr kanalı boyunca oluşan rüzgâr hızları. Rotor kanatlarının yakaladığı mekanik güç (Türbin gücü)

Ebat: px
Şu sayfadan göstermeyi başlat:

Download "Şekil 8. Bir rüzgâr türbininin maruz kaldığı rüzgâr kanalı boyunca oluşan rüzgâr hızları. Rotor kanatlarının yakaladığı mekanik güç (Türbin gücü)"

Transkript

1 1.5. RÜZGÂRDAN YAKALANAN GÜÇ (MEKANİK GÜÇ) Kanatları kesen rüzgârın tamamı rotorda mekaniksel güce dönüşmez. Rüzgârın kinetik enerjisinden elde edilen mekaniksel güç ifadesi için rotor verimi hesaplanmalıdır. Rotor kanatları tarafından yakalanan gerçek güç miktarı, rüzgâr kanalı girişi ile rüzgâr kanalı çıkışı hava akışları arasındaki kinetik enerjilerin farkıdır. P k P k = 1 1 = m& v ( birim zamanda akan kütle miktarı)[. v v ] ( v ) i o i o Şekil 8. Bir rüzgâr türbininin maruz kaldığı rüzgâr kanalı boyunca oluşan rüzgâr hızları Pk v i Rotor kanatlarının yakaladığı mekanik güç (Türbin gücü) Rotor kanatlarının girişindeki rüzgâr hızı v o Rotor kanatlarının çıkışındaki rüzgâr hızı v k Rotor kanatları düzlemindeki rüzgâr hızı ( v kanat ) Rüzgâr ve Güneş Enerjili Güç Sistemleri Ders Notu Sayfa 1

2 v k = v i + v o Görüldüğü gibi rüzgâr kanalı boyunca (rüzgâr hızı v den v ya) hareket ederken sürekli sabit formda değildir. Dolayısıyla dönen kanatlar boyunca hareket eden havanın kütle akış oranı (birim zamanda akan kütle miktarı) ortalama hız ile hava yoğunluğunun çarpımından elde edilebilir (veya rotor düzlemindeki rotor süpürme alanı içerisindeki hızı dikkate alınır). v b vi + vo m& = ρ. A. vk = ρ. A ifadesi güç denkleminde yerine konulursa, i o P k ( vi vo 1 vi + vo = ρ. A. ) olur. İfade düzenlenerek, v o v o 1 1 vi vi P k ρ. A. vi. = Pk = ρ. A. v 3 i. c p elde edilir. Genel olarak c p Burada = 1 c p bulmak için dc p dλ v i = v ve ( 1+ λ)( 1 λ ) v o λ = tanımlanırsa, v rotor verimi olarak bilinir. Maksimum rotor verimini c p nin λ ya göre türevi alınıp sıfıra eşitlenirse; [( 1 λ) + ( 1+ λ)( 1 )] = 0 1 = λ = 1 ( 1+ λ )( 1 3λ ) = 0 λ = v o v = 1 3, (Not: λ = -1 çözüm değil) 1 1 λ = iken rotor verimi, c max 1 p = + 1 = = = % Rüzgâr ve Güneş Enerjili Güç Sistemleri Ders Notu Sayfa

3 cp nin λ ile değişimi çizilir ise, Şekil 9. cp nin λ ile değişimi Bu durumda maksimum teorik verim %59.6 tür bu verime Betz verimi veya Betz kanunu denir. Bu değer pratikte 0.5 in altında kalır. Verilen bir rüzgâr hızı için, rotor verimi rotor dönüş oranının bir fonksiyonudur. Eğer rotor çok yavaş dönüyor ise verim düşer, çünkü kanatları etkilemeden geçen rüzgâr miktarı daha fazladır. Eğer rotor çok hızlı dönüyorsa rotor verimi yine düşer, çünkü bir kanatın neden olduğu türbülans gittikçe artan bir oranla takip eden diğer kanadı etkiler. Genel bir yöntem olarak rotor verimi kanat uçlarındaki hız oranının (tip-speed-ratio=kanat-ucu hız oranı =KHO) bir fonksiyonu olarak tanımlanır. (Not: KHO, literatürde λ olarak ta verilir.) Rüzgar türbinleri için kanat-ucu hız oranı, kanat ucu dönüş hızının gerçek rüzgar hızına oranıdır Rüzgâr ve Güneş Enerjili Güç Sistemleri Ders Notu Sayfa 3

4 RRotor Rotor yarıçapı [m] Mekanik (kanat) açısal hızı [rad/s] Rüzgar hızı [m/s] Rüzgar hızı [m/s] Dönüş frekansı [1/s, Hz] ÖRNEK: 15 m/s rüzgar hızında, kanat çapı 10m ve kanat 1 saniyede, 1 tam dönüş yapıyor ise, KHO değerini bulunuz. ÇÖÜZM: , mekaniksel açısal hızı dönüş hızının bir fonksiyonu olarak yazılabilir: Not: Burada, dev/dk Verilen bir rüzgâr hızı için Cp rotor veriminin KHO ile değişimi aşağıda verilmiştir. KHO Şekil 9. Bir rüzgâr türbini için cp nin KHO ile değişimi Rüzgâr ve Güneş Enerjili Güç Sistemleri Ders Notu Sayfa 4

5 Farklı rotor ve kanat tipleri için oldukça farklı eğriler olabilir. Genellikle ampirik bir ifade olarak maksimum güç için optimum KHO nun, Değerinde oluştuğu görülmüştür. Burada, kanat sayısı olarak verilmektedir. Değişken hızda rüzgâr türbinin optimum işletimi için KHO değeri kullanılır. KHO maksimum gücü elde edecek işletim noktasını belirler. Cp nin hangi KHO değerinde maksimum olacağını türbinin aerodinamik yapısı belirler. Genel olarak örneğin, yüksek rüzgâr hızında yüksek hızı yakalayabilmek için, rotorda yüksek hızda dönmelidir, böylece optimum bir seviyede KHO sabit tutulmuş olur. ÖRNEK: Rotor çapı 30m olan, 3 kanatlı bir rüzgâr türbini 1m/s rüzgâr hızında 50kw güç üretmektedir. Hava yoğunluğu 1,5kg/m 3 olduğuna göre; (a) KHO=4.0 iken rotor hızı kaç dev/dk dır (n =?) (b) Rotor kanat uçlarının hızı kaç m/s dır. (c) Eğer generatörün 1500 dev/dk dönme hızına ihtiyacı var ise, rotor hızını generatör hızına eşitlemek için hangi dişli oranına ihtiyaç vardır. (d) Tüm rüzgar türbinine ilişkin verimi hesaplayınız. ÇÖZÜM: Rüzgâr ve Güneş Enerjili Güç Sistemleri Ders Notu Sayfa 5

6 1.6 RÜZGÂR TÜRBİNLERİ İÇİN GENERATÖR SİSTEMLERİ Kanatların fonksiyonu, rüzgâr kinetik enerjisini dönen mil gücüne çevirerek generatörün dönmesini ve böylece elektrik gücünü üretmektedir. Akü şarjı yapan küçük rüzgâr türbinleri dc generatörleri kullanırken, şebekeye paralel çalışan rüzgar türbinlerinde ise ac generatörler (asenkron ve senkron) kullanırlar. Asenkron makinalar sabit hızlı veya değişken hızlı sistemlerde kullanılabilirken, senkron makinalar normal olarak değişken hızlı sistemlerde güç elektroniği ara yüzü ile birlikte kullanılırlar. Temel olarak enerji dönüşüm sistemlerinde kullanılan asenkron generatörler 3 çeşittir. Bunlar sincap kafesli, yuvarlak rotorlu ve çift beslemeli asenkron generatörlerdir. Sincap kafesli asenkron makine bir ac sisteme doğrudan bağlanıp sabit hızda işletilebileceği gibi güç elektroniği üniteleri ile birlikte değişken hızlarda da işletilebilir. Yuvarlak rotorlu asenkron generatörler ise kayma kontrolünü sağlayan rotor dirençleri ile birlikte bir ac sisteme doğrudan bağlanabilirler. Burada kayma kontrolü ile işletim hızı ancak belirli hız aralıklarında ayarlanabilir. Çift beslemeli asenkron generatör ise güç elektroniği dönüştürücülerinin boyutuna bağlı olarak çok daha geniş aralıklarda hız ayarlama imkanı verir DC MAKİNA İç yapıları itibari ile bütün elektrik makineleri alternatif akım makinesidir, çünkü iletkenler N-S kutupları arasındaki manyetik alan içerisinde alternatif forma döner. DC makineler AC den DC ye dönüşümü mekanik anahtarlama yoluyla yapar. Buradaki Rüzgâr ve Güneş Enerjili Güç Sistemleri Ders Notu Sayfa 6

7 komütatör, AC-DC işlemini karbon fırçaları bakır segmentler üzerinde kaydırarak gerçekleştirir. Buradaki kontaklar yüksek bakım maliyeti ve düşük güvenilirliğe sebep olurlar. Bu dezavantaja rağmen hız kontrolü kolay olduğu için geçmişte sıkça kullanılmakta idi. Klasik DC makineler doğru akım taşıyan şönt veya seri bobin aracılığı ile kendinden uyartımlı olarak (manyetik alanı üretmek için) dizayn edilirler. Günümüzde ise DC makinelerde manyetik alan, sabit mıknatıs kutupları aracılığı ile elde edilmektedir. Böylece alan akımı ihtiyacı ve komütatör ihtiyacı ortadan kalmaktadır. Sabit mıknatıs kutupları rotora yerleştirilmiş olup, statora AC akım üreten armatür sargıları yerleştirilmiştir. Daha sonra AC, güç elektroniği elemanları vasıtasıyla DC ye çevrilir. Bu şekildeki bir makine fırçalara ve komütatöre ihtiyaç duymaz, böylece güvenilirlik arttırılmış olur. Bu şekildeki sabit mıknatıs kutuplu DC makineler ancak küçük boyutlu rüzgâr türbinlerinde kullanılabilirler SENKRON MAKİNA Senkron makine belirli bir sabit frekansı üreten ve sabit hızda çalışan bir elektrik makinesidir. Bu sebepten dolayı rüzgâr santrallerinde değişken hızda işletime çok uygun değildir. Ayrıca makinenin DC uyarıma ihtiyacı olduğundan bilezikler üzerinde kayan karbon fırçalara ihtiyacı vardır. Bu durum senkron makinenin rüzgâr türbinlerinde kullanımda bir sınırlama oluşturur. Bu mukabil senkron makine şebeke ile paralel çalıştığında, asenkron makinenin şebeke ile paralel çalışmasına göre avantajı vardır. Çünkü senkron makine şebekeden gelecek reaktif güce Rüzgâr ve Güneş Enerjili Güç Sistemleri Ders Notu Sayfa 7

8 ihtiyaç duymaz. Günümüzde rüzgâr santrallerinde kullanılan elektrik generatörü genel olarak asenkron makinelerdir ASENKRON MAKİNA Asenkron generatörün statoru üç faz grubundan müteşekkil birçok sarıma yataklık yapar. Bu üç grup sargı fiziksel olarak stator etrafına yayılmıştır. Bu sargılar üzerindeki akım akışından dolayı rotor etrafında, çevresinde dönen bir manyetik alan oluşur ki bu manyetik alan asenkron makinenin en önemli çalışma özelliğini oluşturur. Dönen manyetik alanın açısal hızı aynı zamanda senkron hızdır. Buradaki senkron hızı ile gösterirsek, N s 60 f N s = p f frekans p manyetik alan kutup çifti Şekilde döner manyetik alan içerisindeki sincap kafes rotorlu asenkron makine görülmektedir. Stator sargıları yüksek manyetik geçirgenliğe sahip bir nüve içerisindeki oluklara yerleştirilmiştir. Böylece yeterli miktardaki manyetik alan yoğunluğu düşük uyarma akımları ile elde edilebilir. Rotorda ise katı iletken çubuklar rotor nüvesindeki oluklara gömülmüşlerdir. Bu çubuklar her iki taraf uçları karşılıklı olarak iletken yüzükler tarafından birleştirilmişlerdir.(kısa devre edilmişlerdir) Rüzgâr ve Güneş Enerjili Güç Sistemleri Ders Notu Sayfa 8

9 Asenkron Generatörün Çalışma Prensibi Stator manyetik alanı Ns=60f/p senkron hızı ile döner. Döner manyetik alanı ile rotor arasındaki bağıl hız her bir rotor dönüşünde gerilim indükler. Çünkü stator φ akıları, rotor tarafından kesilir. İndüklenen gerilimin genliği Faraday kanununa göre e = dφ - dt Φ rotor dönüşlerini kesen manyetik alan miktarı. Bu indüklenen gerilim rotorda bir sirkülâsyon akımı oluşturur. Rotor akımı ile stator akısı arasındaki etkileşim bir momente neden olur. Bu momentin (Torque=T) genliği T = K Φ I Cos φ K oransallık katsayısı Φ Stator akı (dalgasının) genliği φ rotor akımı ile rotor gerilimi arasındaki faz açısı I rotor çubuklarındaki akımın genliği Rotor bu moment altında ivmelenecektir. Boşta çalışma durumunda (manyetik yük yok, sürtünmeler ihmal, sıfır direnç) rotor, stator döner alanı ile aynı hızda (senkron hızda) dönecektir. Bu hızda rotorda herhangi bir akım indüklenmez, dolayısı ile moment oluşturmaz. Yani bu noktada rotor dengede olup, sürekli olarak senkron hızda döner. Eğer rotor (fan gibi) mekanik bir yükü çalıştırıyor ise, yavaşlayacaktır. Fakat stator akısı her zaman senkron hızda döner ve rotora göre bağıl hız vardır. Sonuçta elektromanyetik olarak indüklenen gerilim akım ve moment rotorda üretilir. Buradaki moment (bu hızda) yükü sürmek için gerekli olan momente eşit olmak zorundadır. Makine bu durumda motor olarak çalışır. Eğer rotora bir rüzgâr türbinine bağlarsak ve senkron hızdan daha yüksek bir hızda döndürürsek, rotorda indüklenen akım ve momentin yönü motor çalışma durumuna göre ters yönde olur. Bu Rüzgâr ve Güneş Enerjili Güç Sistemleri Ders Notu Sayfa 9

10 durumda makine generatör olarak çalışır. Türbinin mekanik gücünü elektrik gücüne çevirir ve stator uçlarına bağlı yükü besler. Eğer makine şebekeye paralel olarak çalışıyor ile, şebekeye güç temin edecektir. Yani makinenin generatör olarak çalışabilmesi için senkron hızdan daha yüksek bir hızda döndürülmesi gerekir. Asenkron makinelerde stator ile rotor arasında elektriksel bir bağlantı olmayıp, tamamen elektromanyetik endüksiyon prensibine göre çalışır. Asenkron makinenin çalışma prensibini transformatöre benzetebiliriz. Statordaki yüksek gerilim sargıları kendisi üzerinde kısa devre edilmiştir. Güç her iki sargı yönünde de akabilir. Rotor ile stator döner alanı arasındaki bağıl hızda transformatör prensibine göre açıklanabilir. Bu hız kayma indisi ile ifade edilir.(rotorun senkron hızdaki döner alana göre bağıl kayması), ve s ile gösterilir. s = (Ns-Nr)/Ns = 1-Nr/Ns s Ns Nr s negatiftir. : rotorun kayması :senkron hız = 60f/p :rotor hızı : motor çalışmada pozitif, generatör çalışmada ise s büyüdükçe elektromekanik enerji dönüşümü büyür. s (kayma) büyüdükçe elektriksel kayıpta artar. Elektriksel kayıp ısı şeklinde açığa çıktığından (işletme sıcaklığı kabul edilebilir limitler içerisinde tutabilmek için) bu ısının rotordan uzaklaştırılması gerekir. Bu ısı küçük boyutlu makinelerde fan ile uzaklaştırılabilir. Büyük boyutlu makinelerde su sirkülâsyonu ile yapılır. Sürekli hal işletme şartlarında ve s kaymasında asenkron generatörde aşağıdaki hızlar tanımlanır. Stator akısı hızı : Ns Rotor mekanik hızı : Nr=(1-s).Ns Rotora göre stator akısı hızı : s.ns Statora göre rotor akısı hızı : Ns=Nr+s.Ns Rüzgâr ve Güneş Enerjili Güç Sistemleri Ders Notu Sayfa 10

11 Asenkron Makinanın Hız-Moment Karakteristiği Stator indirgenmiş asenkron makine eşdeğer devresi: I0 mıknatıslanma akımı I1 stator akımı I rotor akımı R1 stator sargı iletken direnci R rotor iletken direnci X1 stator kaçak reaktansı X rotor kaçak reaktansı Kaymaya bağlı R[(1-s)/s] direnci elektromekanik güç dönüşümünü temsil eder. Makinenin bir fazına ilişkin güç dönüşümü : I. R[(1-s)/s] 3 güç dönüşümü : Pem=3. I.R[(1-s)/s] [watt] Mekaniksel moment : Tem=Pem/ω Tem : Rotorda oluşan elektromekanik moment [Nt-m] ω : Rotorun açısal hızı=π.ns. (1-s)/60 ; Pem ve ω, Tem ifadesinde yerine yazılır ise Tem=180/(π.Ns).I.(R./s) [Nt-m] Moment-hız veya moment-kayma karakteristiği s in belirli bir aralığı için çizilir ise aşağıdaki karakteristik elde edilir Rüzgâr ve Güneş Enerjili Güç Sistemleri Ders Notu Sayfa 11

12 "S" Kayma Eğer makine s>1 bölgesinde çalışıyor ise ve o anda makine ters yönde döndürülür ise (herhangi iki fazın yerleri değiştirilir ise), makine bütün gücü absorbe eder ve bu durumda fren gibi çalışır. Bu durumda I.R kaybı rotor iletkenlerinde ısı şeklinde açığa çıkar ve bu ısı sistemden uzaklaştırılmalıdır. Eddy (girdap) akımı frenlemesi bu prensibe göre çalışır. Acil durumlarda şebekeye paralel çalışan generatör, stator uçlarındaki 3 gerilimlerinin sırası değiştirilerek fren olarak kullanılabilir. Bu işlem manyetik akı dalgasının rotora göre dönüş yönünü değiştirir. ÖRNEK: 6 kutuplu 50 Hz li asenkron motor nominal gücüne kaymanın %3 olması durumunda ulaşmaktadır. Nominal güçteki rotor hızını hesaplayınız. ÇÖZÜM : Rüzgâr ve Güneş Enerjili Güç Sistemleri Ders Notu Sayfa 1

13 Kendinden uyartımlı asenkron generatör: Eğer stator, 3 lı uyarma akım sistemi ile birlikte dizayn edilirse milli rüzgâr türbinine ve dişli kutusuna bağlı olan makine başlangıçta motor olarak çalışmaya başlayacak ve senkron hızı yakalama yönünde hızını arttıracaktır. Rüzgâr hızı generatör miline senkron hızı aşacak seviyede etki edince, asenkron makine otomatik olarak generatör çalışmaya geçecektir ve elde edilen elektriksel gücü stator sargıları üzerinden şebekeye aktarılacaktır. Fakat tüm bu süreçte 3 lı mıknatıslanma akımı nereden temin edilmektedir. Eğer makine şebeke ile paralel çalışıyor ise, bu akım şebekeden temin edilir. Bununla birlikte, makine harici bir kondansatör bağlayarak makinenin ihtiyacı olan uyarma akımı şebekeye ihtiyaç olmaksızın sağlanmış olur. Kendinden uyartımlı generatörün temel mantığı, stator uyarma sargısının sahip olduğu endüktans ile ilave edilen harici kondansatör arasında rezonans durumu oluşturmaya dayanır. Buradaki osilasyon frekans yani rotor uyarma frekansı harici kondansatör boyutuna bağlıdır. Buradaki kondansatör tek yönlü olarak rüzgâr türbin hızını kontrol imkanı verir. Şekil: Kendinden uyarımlı 1 lı asenkron generatörün L ile C belirli bir frekansta rezonansa girerek osilasyona neden olur Not: Yukarıda verilen kayma ifadesi bu makine içinde aynen geçerlidir. Örneğin senkron hızı 3000 dev/dk olan kutuplu, 50 Hz asenkron generatör NR=(1 s)ns NR=[1 ( 0,01)].3000 = 3030 dev/dk Kayma yaklaşık %1 civarındadır. Generatör modunda olduğu için ( 0,01) alınmıştır Rüzgâr ve Güneş Enerjili Güç Sistemleri Ders Notu Sayfa 13

14 Not: Asenkron generatörün bir önemli avantajı da, ani ve sert rüzgâr değişimlerinde oluşacak şok darbeleri absorbe etme özelliği olmasıdır. Çünkü ani olarak rüzgâr hızının değişmesi, kaymanın da artması veya azalması ile neticelenir; bu özellik mekanik ekipmanlar üzerinde rüzgârın oluşturduğu şokların absorbe edilmesinde yardımcı olur. 1.7 RÜZGÂR GÜÇ SİSTEMİ TOPOLOJİLERİ ŞEBEKEYE DOĞRUDAN BAĞLI ASENKRON GENERATÖR Şebekeye doğrudan bağlı asenkron generatörler küçük ve orta ölçekli rüzgâr türbinlerinde kullanılmaktadırlar. Bir dişli kutusu rotor kanatlarının hızını ayarlar. Bu durumda asenkron generatör senkron makine da olduğu gibi şebekeyle senkronize olmak zorunda değildir. İşletim hızına ilave bir kontrole ihtiyaç duymaksızın ulaşır. Ancak generatör boyutu büyüdükçe, bu makineler şebekeye bağlantı esnasında oldukça yüksek bir başlangıç akımına neden olurlar. Moment kontrolü bu başlangıç akımını sınırlandırabilir. Şekil: Şebekeye doğrudan bağlı asenkron generatör (Not: Asenkron makineler reaktif güce ihtiyaç duyarlar. Bu ihtiyacı karşılamak amacıyla şekildeki gibi reaktif güç kompanzasyonu uygulanabilir.) Rotorda stall regülâsyonu yüksek rüzgâr hızlarındaki gücü kısıtlar. Rüzgâr hızları değiştikçe kayma değiştiğinden, bu generatörlerin hızı, rüzgâr hızı değiştikçe değişmektedir. Dolayısı ile bu makineler hızlı değişen dalgalanmaları azaltabilir. Asenkron rüzgâr generatörleri sırasal hız değişimleri arasında yaklaşık %10 luk bir değişime müsaade eder. Bununla beraber, kaymanın yükselmesi Rüzgâr ve Güneş Enerjili Güç Sistemleri Ders Notu Sayfa 14

15 ile kayıplar artacak, yani verim düşecektir. Bu nedenle modern uygulamalarda değişken kayma (s) özelliğine sahip asenkron makineler kullanılır. Bu generatörlerde sargı uçları kısa devre edilmiş kafes rotorlar kullanılmaz. Buna mukabil kontrol edilebilir değişken dirençli rotor devreleri yer alır. Rotor sargıları ya harici değişken bir dirence bilezikler vasıtasıyla bağlıdır, ya da rotor ile birlikte dönen kontrol edilebilir bir dirence bağlıdırlar. Aşağıdaki şekilde rotor sargılarına ayarlanabilen direnç bağlı bir asenkron makine ve hız-moment karakteristiklerindeki değişim verilmiştir. Şekil x: Rotor direncinin değişmesi ile kayma-moment değişimi arasındaki ilişki Maksimum moment (Mmax) direncin artması ile birlikte yüksek kayma değerlerinde oluşur. Güç ise moment ile orantılı olduğundan yüksek hızlarda güç artar ve güç dalgalanmaları azalır. Aşağıdaki şekilde rotor hızı ile rotor gücü arasındaki ilişkiyi vermektedir. πr KHO = n, formülü dikkate alındığında gücün rotor hızı ile olan ilişkisi ortaya v 1 konabilir. Not: P = ρ 3 Av c p ve c p = f (KHO) ve KHO = f ( n = dev / dk) Rüzgâr ve Güneş Enerjili Güç Sistemleri Ders Notu Sayfa 15

16 Stator frekansı ve dişli kutusu rotor hızını belirler, ve bu değer ancak kaymaya bağlı olarak değiştirilebilir (Şekil x). Aşağıdaki şekilde şebekeye doğrudan bağlı asenkron generatörlü bir rüzgâr türbininin güç-hız karakteristiği verilmiştir. v = 13m / s v = 1m / s v = 11m / s v = 11m / s Şekil xx: şebekeye doğrudan bağlı asenkron generatörlü bir rüzgâr türbininin güç-hız karakteristikleri Görüldüğü üzere, eğer rotor hızı sabit kalırsa, türbin hiçbir zaman optimal güç üretimine ulaşamaz. Bu nedenle en uygun üretim için rotor hızı (elektriksel hız) farklı rüzgâr hızları için farklı hızlarda olmalıdır HIZ KONTROLLÜ ASENKRON GENERATÖRLER Şebekeye doğrudan bağlı asenkron generatörlerde görüldüğü üzere değişken kayma özelliği generatörün hızını değiştirebilir. Ancak yüksek kayma oranı, rotorda yüksek kayıplara neden olacağından, kayma miktarının %10 seviyelerini geçmemesine dikkat edilir. Bununla birlikte rotor gücü şebekeye aktarılarak generatör hız kontrolü için kullanılabilir. Eğer generatör hızı sadece şebeke frekansından daha yüksek hızlara ulaşacak ise, bu durum için kullanılacak devre senkron üstü (oversynchronous convertor) kaskad konvertör olarak adlandırılır. Bu devrenin enbüyük dezavantajı, yüksek reaktif güç talebidir Rüzgâr ve Güneş Enerjili Güç Sistemleri Ders Notu Sayfa 16

17 Şekil xxx: Kaskad konverterli değişken hız kontrollü asenkron generatör. Senkron üstü (oversynchronous convertor) kaskad konvertör sadece rotor gücünü şebekeye aktarabilirken çift beslemeli (double-fed) asenkron generatör her iki yönde de güç transferine imkan tanır (rotordan şebekeye ve şebekeden rotora). Bu amaçla direkt olarak bağlı bir AC/AC konverter kullanılabilir (şekil 4x). Şekil 4x: çift beslemeli AC/AC konverterlü (double-fed) bir asenkron generatör Çift beslemeli bir asenkron generatör hem senkron üstü, hem de senkron altı hızda işletilebilir. Böylelikle generatörün reaktif güç ihtiyacı kontrol edilebilir. Bu sistemin dezavantajı yüksek maliyati ve nerji kalitesi ile ilgili problemlere neden olmasıdır Rüzgâr ve Güneş Enerjili Güç Sistemleri Ders Notu Sayfa 17

18 1.7.3 ŞEBEKEYE DOĞRUDAN BAĞLI SENKRON GENERATÖR Senkron makineler uyarma akımları kontrol edilmek sureti ile hem reaktif güç üreticisi hem de reaktif güç tüketicisi olabilir. Yani reaktif güç talepleri kontrol edilebilir. Senkron makineleri uyarmak için sabit mıknatıslarda kullanılabilir. Ancak bu durumda senkron makinelerin reaktif gücü kontrol edilemez. Uyarma Kanatlar ŞEBEKE Senkron Generatör Dişli Kutusu Transformatör Şekil 5x: Şebekeye doğrudan bağlı senkron generatör Asenkron generatörün aksine, senkron generatör sabit hızda işletilir. Bu durum ise rüzgâr türbinlerinde oldukça zor bir durumdur. Bu nedenle doğrudan bağlantılı senkron generatörler ada şebeke uygulamalarında bağımsız (stand-alone) uygulamalar için kullanılırlar. Bu makinenın şebekeye direkt olarak bağlanısı neticesinde oluşacak bir diğer mahsur ise şebekedeki yük değişimlerinin generatör üzerinde yüksek mekanik zorlamalar oluşturmasıdır. Bu nedenlerden ötürü senkron makineler genellikle şebekeye direkt olarak bağlanmazlar DC BARA BAĞLANTILI SENKRON GENERATÖRLER DC bara bağlantılı senkron generatörler (frekans konvertörlü senkron makinalar da denmektedir) şebekeye doğrudan bağlı senkron generatörlerin dezavantajlarını ortadan kaldırabilir Rüzgâr ve Güneş Enerjili Güç Sistemleri Ders Notu Sayfa 18

19 Şekil 6x: DC bara bağlantılı senkron generatörler Şekil 7x de görüldüğü üzere düşük ve orta hızlı tüm rüzgâr hızlarında rotor hızı değiştirilerek maksimum güç noktaları yakalanabilmektedir. Yüksek rüzgâr hızlarında ise gücü sınırlamak türbin güvenliği açısından zaten gereklidir. Frekans konvertörleri vasıtası ile şebeke frekansı yakalanabildiğinden ilave bir dişli kutusuna ihtiyaç duymazlar. Bu nedenle günümüzde bir çok makina dişli kutusu barındırmazlar. Ancak bu türbinler için üretilen senkron makinalar yüksek sayıda kutuplu yapılırlar (kutup sayısı genelde 80 ve üzeridir.) Bu makinaların belli başlı avantajları: Daha az malzeme ihtiyacı Daha düşük maliyet Daha az gürültü PWM inverterlerin kullanılması ile reaktif güç kontrolü de yapılabilmektedir Rüzgâr ve Güneş Enerjili Güç Sistemleri Ders Notu Sayfa 19

20 v = 13m / s v = 1m / s v = 11m / s v = 11m / s Şekil 7x: Sabit hızlı (1) ve DC bara bağlantılı () senkron generatörlerin çalışma noktaları Rüzgâr ve Güneş Enerjili Güç Sistemleri Ders Notu Sayfa 0

1.6. RÜZGÂR TÜRBİNLERİNDE KULLANILAN ELEKTRİK MAKİNALARI

1.6. RÜZGÂR TÜRBİNLERİNDE KULLANILAN ELEKTRİK MAKİNALARI 1.6. RÜZGÂR TÜRBİNLERİNDE KULLANILAN ELEKTRİK MAKİNALARI Kanatların fonksiyonu, rüzgâr kinetik enerjisini dönen mil gücüne çevirerek generatörün dönmesini ve böylece elektrik gücünü üretmektedir. Akü şarjı

Detaylı

SENKRON MAKİNA. Senkron generatörün rotoru yukarıda ifade edildiği gibi DC-uyartımlı elektromıknatıs olabileceği gibi sabit mıknatıslı da olabilir.

SENKRON MAKİNA. Senkron generatörün rotoru yukarıda ifade edildiği gibi DC-uyartımlı elektromıknatıs olabileceği gibi sabit mıknatıslı da olabilir. SENKRON MAKİNA Senkron makinenin rotor sargıları (alan sargıları) harici bir kaynak vasıtası ile fırça-bilezik sistemi üzerinden DC akım uyartımına tabi tutulur. Rotor sargıları türbin kanatları tarafından

Detaylı

olarak elde edilir. NOT: Rayleigh dağılımı kullanılarak elde edilen ortalama rüzgâr gücü hesabı elde edilmiş idi.

olarak elde edilir. NOT: Rayleigh dağılımı kullanılarak elde edilen ortalama rüzgâr gücü hesabı elde edilmiş idi. NOT: Yukarıda verilen kapasite faktör yaklaşımını daha genel formatta ele alalım. Verilen bir rüzgâr rejimi için olasılık yoğunluk fonksiyonu olsun. Eğer rüzgâr gücü fonksiyonu ile tanımlı ise, bu durumda

Detaylı

KARAMANOĞLU MEHMETBEY ÜNİVERSİTESİ ELEKTRİK ELEKTRONİK MÜHENDİSLİĞİ BÖLÜMÜ

KARAMANOĞLU MEHMETBEY ÜNİVERSİTESİ ELEKTRİK ELEKTRONİK MÜHENDİSLİĞİ BÖLÜMÜ KARAMANOĞLU MEHMETBEY ÜNİVERSİTESİ ELEKTRİK ELEKTRONİK MÜHENDİSLİĞİ BÖLÜMÜ Elektrik Makinaları II Laboratuvarı DENEY 3 ASENKRON MOTOR A. Deneyin Amacı: Boşta çalışma ve kilitli rotor deneyleri yapılarak

Detaylı

ASENKRON MAKİNELER. Asenkron Motorlara Giriş

ASENKRON MAKİNELER. Asenkron Motorlara Giriş ASENKRON MAKİNELER Asenkron Motorlara Giriş İndüksiyon motor yada asenkron motor (ASM), rotor için gerekli gücü komitatör yada bileziklerden ziyade elektromanyetik indüksiyon yoluyla aktaran AC motor tipidir.

Detaylı

ANKARA ÜNİVERSİTESİ GAMA MESLEK YÜKSEKOKULU ELEKTRİK VE ENERJİ BÖLÜMÜ ALTERNATİF ENERJİ KAYNAKLARI TEKNOLOJİSİ

ANKARA ÜNİVERSİTESİ GAMA MESLEK YÜKSEKOKULU ELEKTRİK VE ENERJİ BÖLÜMÜ ALTERNATİF ENERJİ KAYNAKLARI TEKNOLOJİSİ ANKARA ÜNİVERSİTESİ GAMA MESLEK YÜKSEKOKULU ELEKTRİK VE ENERJİ BÖLÜMÜ ALTERNATİF ENERJİ KAYNAKLARI TEKNOLOJİSİ RÜZGAR GÜCÜ İLE ELEKTRİK ÜRETİMİ 4. HAFTA 1 İçindekiler Rüzgar Türbini Çalışma Karakteristiği

Detaylı

ASENKRON MOTOR ASENKRON (İNDÜKSİYON) MOTOR. Genel

ASENKRON MOTOR ASENKRON (İNDÜKSİYON) MOTOR. Genel Genel ASENKRON (İNDÜKSİYON) MOTOR Asenkron makinalar motor ve jeneratör olarak kullanılabilmekle birlikte, jeneratör olarak kullanım rüzgar santralleri haricinde yaygın değildir. Genellikle sanayide kullanılan

Detaylı

ÜÇ FAZLI ASENKRON MOTOR ÇALIŞMA PRENSİBİ

ÜÇ FAZLI ASENKRON MOTOR ÇALIŞMA PRENSİBİ 1 ÜÇ FAZLI ASENKRON MOTOR ÇALIŞMA PRENSİBİ Üç Fazlı Asenkron Motorlarda Döner Manyetik Alanın Meydana Gelişi Stator sargılarına üç fazlı alternatif gerilim uygulandığında uygulanan gerilimin frekansı ile

Detaylı

ANKARA ÜNİVERSİTESİ GAMA MESLEK YÜKSEKOKULU ELEKTRİK VE ENERJİ BÖLÜMÜ ALTERNATİF ENERJİ KAYNAKLARI TEKNOLOJİSİ

ANKARA ÜNİVERSİTESİ GAMA MESLEK YÜKSEKOKULU ELEKTRİK VE ENERJİ BÖLÜMÜ ALTERNATİF ENERJİ KAYNAKLARI TEKNOLOJİSİ ANKARA ÜNİVERSİTESİ GAMA MESLEK YÜKSEKOKULU ELEKTRİK VE ENERJİ BÖLÜMÜ ALTERNATİF ENERJİ KAYNAKLARI TEKNOLOJİSİ RÜZGAR GÜCÜ İLE ELEKTRİK ÜRETİMİ 12. HAFTA 1 İçindekiler Rüzgar Enerji Sistemlerinde Kullanılan

Detaylı

2. Bölüm: Rüzgar Enerjisi Dönüşüm Sistemleri ve Yapıları

2. Bölüm: Rüzgar Enerjisi Dönüşüm Sistemleri ve Yapıları 2. Bölüm: Rüzgar Enerjisi Dönüşüm Sistemleri ve Yapıları Doç. Dr. Ersan KABALCI AEK-204 Rüzgar Enerjisi ile Elektrik Üretimi 2.1. Rüzgar Enerjisi Dönüşüm Sistemlerine Giriş Rüzgar enerjisinin elektriksel

Detaylı

ASENKRON (İNDÜKSİYON)

ASENKRON (İNDÜKSİYON) ASENKRON (İNDÜKSİYON) Genel MOTOR Tek fazlı indüksiyon motoru Asenkron makinalar motor ve jeneratör olarak kullanılabilmekle birlikte, jeneratör olarak kullanım rüzgar santralleri haricinde yaygın değildir.

Detaylı

SENKRON MAKİNA DENEYLERİ

SENKRON MAKİNA DENEYLERİ DENEY-8 SENKRON MAKİNA DENEYLERİ Senkron Makinaların Genel Tanımı Senkron makina; stator sargılarında alternatif akım, rotor sargılarında ise doğru akım bulunan ve rotor hızı senkron devirle dönen veya

Detaylı

Asenkron Makineler (2/3)

Asenkron Makineler (2/3) Asenkron Makineler (2/3) 1) Asenkron motorun çalışma prensibi Yanıt 1: (8. Hafta web sayfası ilk animasyonu dikkatle inceleyiniz) Statora 120 derecelik aralıklarla konuşlandırılmış 3 faz sargılarına, 3

Detaylı

RÜZGÂR ENERJİSİNDE KULLANILAN ASENKRON JENERATÖRLER

RÜZGÂR ENERJİSİNDE KULLANILAN ASENKRON JENERATÖRLER RÜZGÂR ENERJİSİNDE KULLANILAN ASENKRON JENERATÖRLER 1 Meltem APAYDIN 2 Arif Kıvanç ÜSTÜN 3 Mehmet KURBAN 4 Ümmühan BAŞARAN FİLİK Anadolu Üniversitesi İki Eylül Kampüsü Mühendislik-Mimarlık Fakültesi 26555,

Detaylı

3. Bölüm: Asenkron Motorlar. Doç. Dr. Ersan KABALCI

3. Bölüm: Asenkron Motorlar. Doç. Dr. Ersan KABALCI 3. Bölüm: Asenkron Motorlar Doç. Dr. Ersan KABALCI 1 3.1. Asenkron Makinelere Giriş Düşük ve orta güç aralığında günümüzde en yaygın kullanılan motor tipidir. Yapısal olarak çeşitli çalışma koşullarında

Detaylı

ELEKTRİKSEL EYLEYİCİLER

ELEKTRİKSEL EYLEYİCİLER ELEKTRİKSEL EYLEYİCİLER Eyleyiciler (Aktuatörler) Bir cismi hareket ettiren veya kontrol eden mekanik cihazlara denir. Elektrik motorları ve elektrikli sürücüler Hidrolik sürücüler Pinomatik sürücüler

Detaylı

ELEKTRİK MOTORLARI VE SÜRÜCÜLER

ELEKTRİK MOTORLARI VE SÜRÜCÜLER BÖLÜM 4 A.A. MOTOR SÜRÜCÜLERİ 4.1.ALTERNATİF AKIM MOTORLARININ DENETİMİ Alternatif akım motorlarının, özellikle sincap kafesli ve bilezikli asenkron motorların endüstriyel uygulamalarda kullanımı son yıllarda

Detaylı

Doğru Akım (DC) Makinaları

Doğru Akım (DC) Makinaları Doğru Akım (DC) Makinaları Doğru akım makinaları motor veya jeneratör olarak kullanılabilir. Genellikle DC makinalar motor olarak kullanılır. En büyük avantajları hız ve tork ayarının kolay yapılabilmesidir.

Detaylı

Elektrik Makinaları I SENKRON MAKİNALAR

Elektrik Makinaları I SENKRON MAKİNALAR Elektrik Makinaları I SENKRON MAKİNALAR Dönen Elektrik Makinaları nın önemli bir grubunu oluştururlar. (Üretilen en büyük güç ve gövde büyüklüğüne sahip dönen makinalardır) Generatör (Alternatör) olarak

Detaylı

326 ELEKTRİK MAKİNALARI LABORATUVARI II ÜÇ-FAZ SİNCAP KAFESLİ ASENKRON (İNDÜKSİYON) MOTOR DENEY 326-04

326 ELEKTRİK MAKİNALARI LABORATUVARI II ÜÇ-FAZ SİNCAP KAFESLİ ASENKRON (İNDÜKSİYON) MOTOR DENEY 326-04 İNÖNÜ ÜNİERSİTESİ MÜHENDİSLİK FAKÜLTESİ ELEKTRİK-ELEKTRONİK MÜH. BÖL. 26 ELEKTRİK MAKİNALARI LABORATUARI II ÜÇ-FAZ SİNCAP KAFESLİ ASENKRON (İNDÜKSİYON) MOTOR DENEY 26-04. AMAÇ: Üç-faz sincap kafesli asenkron

Detaylı

Doğru Akım (DC) Makinaları

Doğru Akım (DC) Makinaları Doğru Akım (DC) Makinaları Doğru akım makinaları motor veya jeneratör olarak kullanılabilir. Genellikle DC makinalar motor olarak kullanılır. En büyük avantajları hız ve tork ayarının kolay yapılabilmesidir.

Detaylı

DC Motor ve Parçaları

DC Motor ve Parçaları DC Motor ve Parçaları DC Motor ve Parçaları Doğru akım motorları, doğru akım elektrik enerjisini dairesel mekanik enerjiye dönüştüren elektrik makineleridir. Yapıları DC generatörlere çok benzer. 1.7.1.

Detaylı

Örneğin bir önceki soruda verilen rüzgâr santralinin kapasite faktörünü bulmak istersek

Örneğin bir önceki soruda verilen rüzgâr santralinin kapasite faktörünü bulmak istersek KAPASİTE FAKTÖRÜ VE ENERJİ TAHMİNİ Kapasite faktörü (KF) bir santralin ne kadar verimli kullanıldığını gösteren bir parametredir. Santralin nominal gücü ile yıllık sağladığı enerji miktarı arasında ilişki

Detaylı

1 ALTERNATİF AKIMIN TANIMI

1 ALTERNATİF AKIMIN TANIMI 1 ALTERNATİF AKIMIN TANIMI Alternatif Akımın Tanımı Doğru gerilim kaynağının gerilim yönü ve büyüklüğü sabit olmakta; buna bağlı olarak devredeki elektrik akımı da aynı yönlü ve sabit değerde olmaktadır.

Detaylı

RÜZGAR ENERJİSİ. Anahtar sözcükler: Rüzgar Enerjisi, Rüzgar Türbini, Elektriksel Dönüşüm Sistemleri, Jeneratör.

RÜZGAR ENERJİSİ. Anahtar sözcükler: Rüzgar Enerjisi, Rüzgar Türbini, Elektriksel Dönüşüm Sistemleri, Jeneratör. RÜZGAR ENERJİSİ Küçük güçlü sistemlerde eskiden çok kullanılan doğru akım (DA) jeneratörü, günümüzde yerini genellikle senkron veya asenkron jeneratörlere bırakmıştır. Bu jeneratörler, konverterler yardımıyla

Detaylı

1.8 MAKSİMUM GÜÇ İŞLETİMİ İÇİN HIZ KONTROLÜ

1.8 MAKSİMUM GÜÇ İŞLETİMİ İÇİN HIZ KONTROLÜ 1.8 MAKSİMUM GÜÇ İŞLETİMİ İÇİN HIZ KONTROLÜ Değişken rotor hızının önemi: Hatırlanacağı üzere rotor verimi cp, kanat ucu hız oranının (KHO) bir fonksiyonudur. Modern rüzgâr türbinlerinin verimli işletimleri,

Detaylı

ANKARA ÜNİVERSİTESİ GAMA MESLEK YÜKSEKOKULU ELEKTRİK VE ENERJİ BÖLÜMÜ ALTERNATİF ENERJİ KAYNAKLARI TEKNOLOJİSİ

ANKARA ÜNİVERSİTESİ GAMA MESLEK YÜKSEKOKULU ELEKTRİK VE ENERJİ BÖLÜMÜ ALTERNATİF ENERJİ KAYNAKLARI TEKNOLOJİSİ ANKARA ÜNİVERSİTESİ GAMA MESLEK YÜKSEKOKULU ELEKTRİK VE ENERJİ BÖLÜMÜ ALTERNATİF ENERJİ KAYNAKLARI TEKNOLOJİSİ ELEKTRİK MAKİNALARI 4.HAFTA 1 İçindekiler Transformatörlerde Eşdeğer Devreler Transformatör

Detaylı

DENEY-4 ASENKRON MOTORUN KISA DEVRE (KİLİTLİ ROTOR) DENEYİ

DENEY-4 ASENKRON MOTORUN KISA DEVRE (KİLİTLİ ROTOR) DENEYİ DENEY-4 ASENKRON MOTORUN KISA DEVRE (KİLİTLİ ROTOR) DENEYİ TEORİK BİLGİ ASENKRON MOTORLARDA KAYIPLAR Asenkron motordaki güç kayıplarını elektrik ve mekanik olarak iki kısımda incelemek mümkündür. Elektrik

Detaylı

DOĞRU AKIM GENERATÖRLERİ VE KARAKTERİSTİKLERİ

DOĞRU AKIM GENERATÖRLERİ VE KARAKTERİSTİKLERİ 1 DOĞRU AKIM GENERATÖRLERİ VE KARAKTERİSTİKLERİ DOĞRU AKIM GENERATÖRLERİ Tanımlar Doğru akım makinelerinin kutupları sabit veya elektromıknatıslı olmaktadır. Sabit mıknatıslar küçük güçlü generatörlerde

Detaylı

Haftanın Amacı: Asenkron motorun hız ayar ve frenleme tekniklerinin kavranmasıdır.

Haftanın Amacı: Asenkron motorun hız ayar ve frenleme tekniklerinin kavranmasıdır. ASENKRON MOTORLARDA HIZ AYARI ve FRENLEME Haftanın Amacı: Asenkron motorun hız ayar ve frenleme tekniklerinin kavranmasıdır. Giriş Bilindiği üzere asenkron motorun rotor hızı, döner alan hızını (n s )

Detaylı

ÜÇ FAZLI ASENKRON MOTORLAR

ÜÇ FAZLI ASENKRON MOTORLAR 1 ÜÇ FAZLI ASENKRON MOTORLAR Üç Fazlı Asenkron Motorlar Üç fazlı asenkron motorlar, stator sargılarına uygulanan elektrik enerjisini mekanik enerjiye çevirerek milinden yüke aktarırlar. Rotor ise gerekli

Detaylı

22. ÜNİTE SENKRON MOTORLAR

22. ÜNİTE SENKRON MOTORLAR 22. ÜNİTE SENKRON MOTORLAR KONULAR 1. YAPISI VE ÇALIŞMA PRENSİBİ 2. YOL VERME YÖNTEMLERİ 3. KULLANILDIĞI YERLER Herhangi bir yükü beslemekte olan ve birbirine paralel bağlanan iki altematörden birsinin

Detaylı

ELEKTRĐK MOTORLARI SÜRÜCÜLERĐ EELP212 DERS 05

ELEKTRĐK MOTORLARI SÜRÜCÜLERĐ EELP212 DERS 05 EELP212 DERS 05 Özer ŞENYURT Mayıs 10 1 BĐR FAZLI MOTORLAR Bir fazlı motorların çeşitleri Yardımcı sargılı motorlar Ek kutuplu motorlar Relüktans motorlar Repülsiyon motorlar Üniversal motorlar Özer ŞENYURT

Detaylı

ANKARA ÜNİVERSİTESİ GAMA MESLEK YÜKSEKOKULU ELEKTRİK VE ENERJİ BÖLÜMÜ ALTERNATİF ENERJİ KAYNAKLARI TEKNOLOJİSİ ELEKTRİK MAKİNALARI 1.

ANKARA ÜNİVERSİTESİ GAMA MESLEK YÜKSEKOKULU ELEKTRİK VE ENERJİ BÖLÜMÜ ALTERNATİF ENERJİ KAYNAKLARI TEKNOLOJİSİ ELEKTRİK MAKİNALARI 1. ANKARA ÜNİVERSİTESİ GAMA MESLEK YÜKSEKOKULU ELEKTRİK VE ENERJİ BÖLÜMÜ ALTERNATİF ENERJİ KAYNAKLARI TEKNOLOJİSİ ELEKTRİK MAKİNALARI 1. HAFTA 1 İçindekiler Elektrik Makinalarına Giriş Elektrik Makinalarının

Detaylı

AA Motorlarında Yol Verme, Motor Seçimi Yrd. Doç. Dr. Aytaç Gören

AA Motorlarında Yol Verme, Motor Seçimi Yrd. Doç. Dr. Aytaç Gören 04.12.2011 AA Motorlarında Yol Verme, Motor Seçimi Yrd. Doç. Dr. Aytaç Gören İçerik AA Motorlarının Kumanda Teknikleri Kumanda Elemanları na Yol Verme Uygulama Soruları 25.11.2011 2 http://people.deu.edu.tr/aytac.goren

Detaylı

DOĞRU AKIM MAKİNELERİNDE KAYIPLAR

DOĞRU AKIM MAKİNELERİNDE KAYIPLAR 1 DOĞRU AKIM MAKİNELERİNDE KAYIPLAR Doğru Akım Makinelerinde Kayıplar Doğru akım makinelerinde kayıplar üç grupta toplanır. Mekanik kayıplar, Manyetik kayıplar, Bakır kayıplar. Bu üç grup kayıptan başka

Detaylı

Elektromekanik Kumanda Sistemleri / Ders Notları

Elektromekanik Kumanda Sistemleri / Ders Notları İkincisinde ise; stator düşük devir kutup sayısına göre sarılır ve her faz bobinleri 2 gruba bölünerek düşük devirde seri- üçgen olarak bağlanır. Yüksek devirde ise paralel- yıldız olarak bağlanır. Bu

Detaylı

Şekil-1. Doğru ve Alternatif Akım dalga şekilleri

Şekil-1. Doğru ve Alternatif Akım dalga şekilleri 2. Alternatif Akım =AC (Alternating Current) Değeri ve yönü zamana göre belirli bir düzen içerisinde değişen akıma AC denir. En çok bilinen AC dalga biçimi Sinüs dalgasıdır. Bununla birlikte farklı uygulamalarda

Detaylı

Öğrencinin Adı - Soyadı Numarası Grubu İmza DENEY NO 1 ÖN HAZIRLIK RAPORU DENEYİN ADI SERBEST UYARMALI D.A. GENERATÖRÜ KARAKTERİSTİKLERİ a) Boşta Çalışma Karakteristiği b) Dış karakteristik c) Ayar karakteristik

Detaylı

İngiliz Bilim Müzesinde gösterimde olan orijinal AC Tesla İndüksiyon Motorlarından biri.

İngiliz Bilim Müzesinde gösterimde olan orijinal AC Tesla İndüksiyon Motorlarından biri. Levent ÖZDEN ASENKRON MOTORLARA GENEL BİR BAKIŞ Alternatif akım makinelerinin isimlendirilmesi ürettikleri döner manyetik alanın (stator manyetik alanı), döner mekanik kısım (rotor) ile eş zamanlı oluşu

Detaylı

ELEKTRİK MAKİNELERİ (MEP 112) (ELP211) Yazar: Yrd. Doç. Dr. Mustafa Turan S1

ELEKTRİK MAKİNELERİ (MEP 112) (ELP211) Yazar: Yrd. Doç. Dr. Mustafa Turan S1 ELEKTRİK MAKİNELERİ (MEP 112) Yazar: Yrd. Doç. Dr. Mustafa Turan S1 SAKARYA ÜNİVERSİTESİ Adapazarı Meslek Yüksekokulu Bu ders içeriğinin basım, yayım ve satış hakları Sakarya Üniversitesi ne aittir. "Uzaktan

Detaylı

ELEKTRİK MAKİNALARI LABORATUVARI FİNAL/BÜTÜNLEME SORULARI İÇİN ÖRNEKLER (Bunlardan farklı sorular da çıkabilir.)

ELEKTRİK MAKİNALARI LABORATUVARI FİNAL/BÜTÜNLEME SORULARI İÇİN ÖRNEKLER (Bunlardan farklı sorular da çıkabilir.) ELEKTRİK MAKİNALARI LABORATUVARI FİNAL/BÜTÜNLEME SORULARI İÇİN ÖRNEKLER (Bunlardan farklı sorular da çıkabilir.) 1) Etiketinde 4,5 kw ve Y 380V 5A 0V 8,7A yazan üç fazlı bir asenkron motorun, fazlar arası

Detaylı

ÜÇ FAZLI ASENKRON MOTORLAR

ÜÇ FAZLI ASENKRON MOTORLAR 1 ÜÇ FAZLI ASENKRON MOTORLAR Üç Fazlı Asenkron Motorlar Üç Fazlı Asenkron Motorlar Üç fazlı asenkron motorlar, stator sargılarına uygulanan elektrik enerjisini mekanik enerjiye çevirerek milinden yüke

Detaylı

Anma güçleri 3 kw tan büyük olan motorların üç fazlı şebekelere bağlanabilmeleri için üç fazlı olmaları gerekir.

Anma güçleri 3 kw tan büyük olan motorların üç fazlı şebekelere bağlanabilmeleri için üç fazlı olmaları gerekir. Elektrik motorlarında yol verme işlemi Motorun rotor hızının sıfırdan anma hızına hızına ulaşması için yapılan işlemdir. Durmakta olan motorun stator sargılarına gerilim uygulandığında endüklenen zıt emk

Detaylı

Alternatif Akım Devreleri

Alternatif Akım Devreleri Alternatif akım sürekli yönü ve şiddeti değişen bir akımdır. Alternatif akımda bazı devre elemanları (bobin, kapasitör, yarı iletken devre elemanları) doğruakım devrelerinde olduğundan farklı davranırlar.

Detaylı

Elektrik Makinaları I. Yuvarlak rotorlu makinada endüvi (armatür) reaksiyonu, eşdeğer devre,senkron reaktans

Elektrik Makinaları I. Yuvarlak rotorlu makinada endüvi (armatür) reaksiyonu, eşdeğer devre,senkron reaktans Elektrik Makinaları I Yuvarlak rotorlu makinada endüvi (armatür) reaksiyonu, eşdeğer devre,senkron reaktans Stator sargıları açık devre şekilde, rotoru sabit hızla döndürülen bir senkron makinada sinüs

Detaylı

3 FAZLI ASENKRON MOTORLAR

3 FAZLI ASENKRON MOTORLAR 3 FAZLI ASENKRON MOTORLAR 3 FAZLI ASENKRON MOTORLAR Üç fazlı AC makinelerde üretilen üç fazlı gerilim, endüstride R-S-T (L1-L2- L3) olarak bilinir. R-S-T gerilimleri, aralarında 120 şer derece faz farkı

Detaylı

Elektromekanik Kumanda Sistemleri / Ders Notları

Elektromekanik Kumanda Sistemleri / Ders Notları 10. MOTORLARIN FRENLENMESİ Durdurulacak motoru daha kısa sürede durdurmada veya yükün yer çekimi nedeniyle motor devrinin artmasına sebep olduğu durumlarda elektriksel frenleme yapılır. Kumanda devrelerinde

Detaylı

3. ELEKTRİK MOTORLARI

3. ELEKTRİK MOTORLARI 3. ELEKTRİK MOTORLARI Elektrik enerjisini mekanik enerjiye dönüştüren makinalardır. Her elektrik motoru biri sabit (Stator, Endüktör) ve diğeri kendi çevresinde dönen (Rotor, Endüvi) iki ana parçadan oluşur.

Detaylı

ÜÇ FAZ ASENKRON MOTORDA FAZ DİRENÇLERİNİ ÖLÇME

ÜÇ FAZ ASENKRON MOTORDA FAZ DİRENÇLERİNİ ÖLÇME DENEY-1 ÜÇ FAZ ASENKRON MOTORDA FAZ DİRENÇLERİNİ ÖLÇME Kapaksız raporlar değerlendirilmeyecektir. 1. Teorik Bilgi Asenkron Motorların Genel Tanımı Asenkron makinalar motor ve jeneratör olarak kullanılabilmekle

Detaylı

2- Tristör ile yük akımı değiştirilerek ayarlı yükkontrolü yapılabilir.

2- Tristör ile yük akımı değiştirilerek ayarlı yükkontrolü yapılabilir. Tristörlü Redresörler ( Doğrultmaçlar ) : Alternatif akımı doğru akıma çeviren sistemlere redresör denir. Redresörler sanayi için gerekli olan DC gerilimin elde edilmesini sağlar. Büyük akım ve gerilimlerin

Detaylı

ÜÇ-FAZ SENKRON JENERATÖRÜN AÇIK DEVRE VE KISA DEVRE KARAKTERİSTİKLERİ DENEY 324-04

ÜÇ-FAZ SENKRON JENERATÖRÜN AÇIK DEVRE VE KISA DEVRE KARAKTERİSTİKLERİ DENEY 324-04 ĐNÖNÜ ÜNĐERSĐTESĐ MÜHENDĐSĐK FAKÜTESĐ EEKTRĐK-EEKTRONĐK MÜH. BÖ. ÜÇ-FAZ SENKRON JENERATÖRÜN AÇIK DERE E KISA DERE KARAKTERİSTİKERİ DENEY 4-04. AMAÇ: Senkron jeneratör olarak çalışan üç faz senkron makinanın

Detaylı

Robotik AKTUATÖRLER Motorlar: Çalışma prensibi

Robotik AKTUATÖRLER Motorlar: Çalışma prensibi Robotik AKTUATÖRLER Motorlar: Çalışma prensibi 1 Motorlar: Çalışma prensibi Motorlar: Çalışma prensibi 2 Motorlar: Çalışma prensibi AC sinyal kutupları ters çevirir + - AC Motor AC motorun hızı üç değişkene

Detaylı

ÜÇ FAZLI ASENKRON MOTORDA KAYMANIN BULUNMASI

ÜÇ FAZLI ASENKRON MOTORDA KAYMANIN BULUNMASI DENEY-2 Kapaksız raporlar değerlendirilmeyecektir. ÜÇ FAZLI ASENKRON MOTORDA KAYMANIN BULUNMASI 1. Teorik Bilgi Asenkron Motorların Çalışma Prensibi Asenkron motorların çalışması şu üç prensibe dayanır:

Detaylı

EVK Enerji Verimliliği, Kalitesi Sempozyumu ve Sergisi Haziran 2015, Sakarya

EVK Enerji Verimliliği, Kalitesi Sempozyumu ve Sergisi Haziran 2015, Sakarya 6. Enerji Verimliliği, Kalitesi Sempozyumu ve Sergisi 04-06 Haziran 2015, Sakarya KÜÇÜK RÜZGAR TÜRBİNLERİ İÇİN ŞEBEKE BAĞLANTILI 3-FAZLI 3-SEVİYELİ T-TİPİ DÖNÜŞTÜRÜCÜ DENETİMİ İbrahim Günesen gunesen_81@hotmail.com

Detaylı

YENİLENEBİLİR ENERJİ KAYNAKLARI RÜZGAR ENERJİSİ SİSTEMLERİ Eğitim Merkezi Projesi

YENİLENEBİLİR ENERJİ KAYNAKLARI RÜZGAR ENERJİSİ SİSTEMLERİ Eğitim Merkezi Projesi YENİLENEBİLİR ENERJİ KAYNAKLARI RÜZGAR ENERJİSİ SİSTEMLERİ Eğitim Merkezi Projesi Konu Başlıkları Enerjide değişim Enerji sistemleri mühendisliği Rüzgar enerjisi Rüzgar enerjisi eğitim müfredatı Eğitim

Detaylı

ELEKTRİK MAKİNELERİ (MEP 112) Yazar: Yrd. Doç. Dr. Mustafa Turan S1

ELEKTRİK MAKİNELERİ (MEP 112) Yazar: Yrd. Doç. Dr. Mustafa Turan S1 ELEKTRİK MAKİNELERİ (MEP 112) Yazar: Yrd. Doç. Dr. Mustafa Turan S1 SAKARYA ÜNİVERSİTESİ Adapazarı Meslek Yüksekokulu Bu ders içeriğinin basım, yayım ve satış hakları Sakarya Üniversitesi ne aittir. "Uzaktan

Detaylı

Bölüm 1 Güç Elektroniği Sistemleri

Bölüm 1 Güç Elektroniği Sistemleri Bölüm 1 Güç Elektroniği Sistemleri Elektrik gücünü yüksek verimli bir biçimde kontrol etmek ve formunu değiştirmek (dönüştürmek) için oluşturlan devrelere denir. Şekil 1 de güç girişi 1 veya 3 fazlı AA

Detaylı

ASENKRON MOTORLARA YOL VERME METODLARI

ASENKRON MOTORLARA YOL VERME METODLARI DENEY-6 ASENKRON MOTORLARA YOL VERME METODLARI TEORİK BİLGİ KALKINMA AKIMININ ETKİLERİ Asenkron motorların çalışmaya başladıkları ilk anda şebekeden çektiği akıma kalkınma akımı, yol alma akımı veya kalkış

Detaylı

ALTERNATİF AKIMIN TEMEL ESASLARI

ALTERNATİF AKIMIN TEMEL ESASLARI ELEKTRİK-ELEKTRONİK MÜHENDİSLİĞİ BÖLÜMÜ ELEKTRİK-ELEKTRONİK MÜHENDİSLİĞİNE GİRİŞ DERSİ ALTERNATİF AKIMIN TEMEL ESASLARI Dr. Öğr. Üyesi Ahmet ÇİFCİ Elektrik enerjisi, alternatif akım ve doğru akım olarak

Detaylı

ÜÇ FAZLI ASENKRON MOTOR ÇALIŞMA PRENSİBİ

ÜÇ FAZLI ASENKRON MOTOR ÇALIŞMA PRENSİBİ 1 ÜÇ FAZLI ASENKRON MOTOR ÇALIŞMA PRENSİBİ Buna göre bir iletkende gerilim indüklenebilmesi için; Bir manyetik alan olmalıdır. (Sabit mıknatıs yada elektromıknatıs ile elde edilir.) İletken manyetik alan

Detaylı

ELEKTRİK MAKİNALARI I DR. ÖĞR. ÜYESİ ENGİN HÜNER

ELEKTRİK MAKİNALARI I DR. ÖĞR. ÜYESİ ENGİN HÜNER ELEKTRİK MAKİNALARI I DR. ÖĞR. ÜYESİ ENGİN HÜNER DOĞRU AKIM MAKİNALARI Doğru akım makinaları genel olarak aşağıdaki sınıflara ayrılır. 1-) Doğru akım generatörleri (dinamo) 2-) Doğru akım motorları 3-)

Detaylı

Endüstriyel Sensörler ve Uygulama Alanları Kalite kontrol amaçlı ölçme sistemleri, üretim ve montaj hatlarında imalat sürecinin en önemli aşamalarındandır. Günümüz teknolojisi mükemmelliği ve üretimdeki

Detaylı

Elektrik. Alternatif Akım Motorlarının Kumanda Teknikleri Kumanda Elemanları

Elektrik. Alternatif Akım Motorlarının Kumanda Teknikleri Kumanda Elemanları Elektrik Alternatif Akım Motorlarının Kumanda Teknikleri Kumanda Elemanları 24.12.2013 Dr. Levent Çetin 2 24.12.2013 Dr. Levent Çetin 3 Buton/Anahtar / Limit Anahtarı Kalıcı butona basıldığında, buton

Detaylı

RÜZGÂR TÜRBİNLERİNDE MİL MOMENTİ VE GÜÇ

RÜZGÂR TÜRBİNLERİNDE MİL MOMENTİ VE GÜÇ 1 RÜZGÂR TÜRBİNLERİNDE MİL MOMENTİ VE GÜÇ Rüzgâr türbin kanatları elektrik generatörüne ya doğrudan bağlıdır veya bir dişli ünitesi üzerinden bağlıdır. Burada dönen milin momenti gücün açısal hıza bölümüne

Detaylı

DENEY 4 DC ŞÖNT ve SERİ MOTORUN YÜKLEME KARAKTERİSTİKLERİ

DENEY 4 DC ŞÖNT ve SERİ MOTORUN YÜKLEME KARAKTERİSTİKLERİ DENEY 4 DC ŞÖNT ve SERİ MOTORUN YÜKLEME KARAKTERİSTİKLERİ 1. Temel Teori (Şönt Uyarmalı Motor) DC şönt motorlar hızdaki iyi kararlılıkları dolayısıyla yaygın kullanılan motorlardır. Bu motor tipi seri

Detaylı

Yüksek Gerilim Tekniği İÇ AŞIRI GERİLİMLER

Yüksek Gerilim Tekniği İÇ AŞIRI GERİLİMLER İÇ AŞIRI GERİLİMLER n Sistemin kendi iç yapısındaki değişikliklerden kaynaklanır. n U < 220 kv : Dış aşırı gerilimler n U > 220kV : İç aşırı gerilimler enerji sistemi açısından önem taşırlar. 1. Senkron

Detaylı

Bilezikli Asenkron Motora Yol Verilmesi

Bilezikli Asenkron Motora Yol Verilmesi Bilezikli Asenkron Motora Yol Verilmesi 1. GİRİŞ Bilezikli asenkron motor, sincap kafesli asenkron motordan farklı olarak, rotor sargıları dışarı çıkarılmış ve kömür fırçaları yardımıyla elektriksel bağlantı

Detaylı

Güç elektroniği elektrik mühendisliğinde enerji ve elektronik bilim dalları arasında bir bilim dalıdır.

Güç elektroniği elektrik mühendisliğinde enerji ve elektronik bilim dalları arasında bir bilim dalıdır. 3. Bölüm Güç Elektroniğinde Temel Kavramlar ve Devre Türleri Doç. Dr. Ersan KABALC AEK-207 GÜNEŞ ENERJİSİ İLE ELEKTRİK ÜRETİMİ Güç Elektroniğine Giriş Güç elektroniği elektrik mühendisliğinde enerji ve

Detaylı

Yumuşak Yol Vericiler - TEORİ

Yumuşak Yol Vericiler - TEORİ Yumuşak Yol Vericiler - TEORİ 1. Gerilimi Düşürerek Yolverme Alternatif akım endüksiyon motorları, şebeke gerilimine direkt olarak bağlandıklarında, yol alma başlangıcında şebekeden Kilitli Rotor Akımı

Detaylı

Alternatif Akım; Zaman içerisinde yönü ve şiddeti belli bir düzen içerisinde değişen akıma alternatif akım denir.

Alternatif Akım; Zaman içerisinde yönü ve şiddeti belli bir düzen içerisinde değişen akıma alternatif akım denir. ALTERNATiF AKIM Alternatif Akım; Zaman içerisinde yönü ve şiddeti belli bir düzen içerisinde değişen akıma alternatif akım denir. Doğru akım ve alternatif akım devrelerinde akım yönleri şekilde görüldüğü

Detaylı

AKTÜATÖRLER Elektromekanik Aktüatörler

AKTÜATÖRLER Elektromekanik Aktüatörler AKTÜATÖRLER Bir sitemi kontrol için, elektriksel, termal yada hidrolik, pnömatik gibi mekanik büyüklükleri harekete dönüştüren elemanlardır. Elektromekanik aktüatörler, Hidromekanik aktüatörler ve pnömatik

Detaylı

ANKARA ÜNİVERSİTESİ GAMA MESLEK YÜKSEKOKULU ELEKTRİK VE ENERJİ BÖLÜMÜ ALTERNATİF ENERJİ KAYNAKLARI TEKNOLOJİSİ

ANKARA ÜNİVERSİTESİ GAMA MESLEK YÜKSEKOKULU ELEKTRİK VE ENERJİ BÖLÜMÜ ALTERNATİF ENERJİ KAYNAKLARI TEKNOLOJİSİ ANKARA ÜNİVERSİTESİ GAMA MESLEK YÜKSEKOKULU ELEKTRİK VE ENERJİ BÖLÜMÜ ALTERNATİF ENERJİ KAYNAKLARI TEKNOLOJİSİ ELEKTRİK MAKİNALARI 10. HAFTA 1 İçindekiler Doğru Akım Generatörleri 2 Doğru akım makinelerinin

Detaylı

ELEKTRİK MAKİNALARI I DR. ÖĞR. ÜYESİ ENGİN HÜNER

ELEKTRİK MAKİNALARI I DR. ÖĞR. ÜYESİ ENGİN HÜNER ELEKTRİK MAKİNALARI I DR. ÖĞR. ÜYESİ ENGİN HÜNER DOĞRU AKIM MAKİNALARI Doğru akım makinaları genel olarak aşağıdaki sınıflara ayrılır. 1-) Doğru akım generatörleri (dinamo) 2-) Doğru akım motorları 3-)

Detaylı

BÖLÜM 2. FOTOVOLTAİK GÜNEŞ ENERJİ SİSTEMLERİ (PV)

BÖLÜM 2. FOTOVOLTAİK GÜNEŞ ENERJİ SİSTEMLERİ (PV) BÖLÜM 2. FOTOOLTAİK GÜNEŞ ENERJİ SİSTEMLERİ (P) Fotovoltaik Etki: Fotovoltaik etki birbirinden farklı iki malzemenin ortak temas bölgesinin (common junction) foton radyasyonu ile aydınlatılması durumunda

Detaylı

MA İNAL NA ARI A NDA ELE E K LE TRİK

MA İNAL NA ARI A NDA ELE E K LE TRİK 3.0.01 KALDIRMA MAKİNALARINDA ELEKTRİK DONANIMI VE ELEKTRİK MOTORU SEÇİMİ Günümüzde transport makinalarının bir çoğunda güç sistemi olarak elektrik tahrikli donanımlar kullanılmaktadır. 1 ELEKTRİK TAHRİKİNİN

Detaylı

ELEKTRİK ELEKTRONİK MÜHENDİSLİĞİNE GİRİŞ

ELEKTRİK ELEKTRONİK MÜHENDİSLİĞİNE GİRİŞ Giresun Üniversitesi Mühendislik Fakültesi Elektrik Elektronik Mühendisliği Bölümü Bölüm Başkanı Bölümün tanıtılması Elektrik Elektronik Mühendisliğinin tanıtılması Mühendislik Etiği Birim Sistemleri Direnç,

Detaylı

Şekilde görüldüğü gibi Gerilim/akım yoğunluğu karakteristik eğrisi dört nedenden dolayi meydana gelir.

Şekilde görüldüğü gibi Gerilim/akım yoğunluğu karakteristik eğrisi dört nedenden dolayi meydana gelir. Bir fuel cell in teorik açık devre gerilimi: Formülüne göre 100 oc altinda yaklaşık 1.2 V dur. Fakat gerçekte bu değere hiçbir zaman ulaşılamaz. Şekil 3.1 de normal hava basıncında ve yaklaşık 70 oc da

Detaylı

Manyetik devredeki relüktanslar için de elektrik devresindeki dirençlere uygulanan kurallar geçerlidir. Seri manyetik devrenin eşdeğer relüktansı:

Manyetik devredeki relüktanslar için de elektrik devresindeki dirençlere uygulanan kurallar geçerlidir. Seri manyetik devrenin eşdeğer relüktansı: DENEY-2 TRANSFORMATÖRLERDE POLARİTE TAYİNİ MANYETİK DEVRELER Bir elektromanyetik devrede manyetik akı, nüveye sarılı sargıdan geçen akım tarafından üretilir. Bu olay elektrik devresinde gerilimin devreden

Detaylı

DOĞRU AKIM MOTORLARI VE KARAKTERİSTİKLERİ

DOĞRU AKIM MOTORLARI VE KARAKTERİSTİKLERİ 1 DOĞRU AKIM MOTORLARI VE KARAKTERİSTİKLERİ Doğru Akım Motor Çeşitleri Motorlar; herhangi bir enerjiyi yararlı mekanik enerjiye dönüştürür. Doğru akım motoru, doğru akım elektrik enerjisini mekanik enerjiye

Detaylı

MOTOR KORUMA RÖLELERİ. Motorların şebekeden aşırı akım çekme nedenleri

MOTOR KORUMA RÖLELERİ. Motorların şebekeden aşırı akım çekme nedenleri MOTOR KORUMA RÖLELERİ Motorlar herhangi bir nedenle normal değerlerinin üzerinde akım çektiğinde sargılarının ve devre elemanlarının zarar görmemesi için en kısa sürede enerjilerinin kesilmesi gerekir.

Detaylı

Elektrik Makinaları I

Elektrik Makinaları I Elektrik Makinaları I Yuvarlak rotorlu makina, fazör diyagramları, şebekeye paralel çalışma,reaktif-aktif güç ayarı,gerilim regülasyonu,motor çalışma Generatör çalışması için indüklenen gerilim E a, uç

Detaylı

BÖLÜM X OSİLATÖRLER. e b Yükselteç. Be o Geri Besleme. Şekil 10.1 Yükselteçlerde geri besleme

BÖLÜM X OSİLATÖRLER. e b Yükselteç. Be o Geri Besleme. Şekil 10.1 Yükselteçlerde geri besleme BÖLÜM X OSİLATÖRLER 0. OSİLATÖRE GİRİŞ Kendi kendine sinyal üreten devrelere osilatör denir. Böyle devrelere dışarıdan herhangi bir sinyal uygulanmaz. Çıkışlarında sinüsoidal, kare, dikdörtgen ve testere

Detaylı

DENEY-3 BİR FAZLI TRANSFORMATÖRÜN BOŞ ÇALIŞMASI VE DÖNÜŞTÜRME ORANININ BULUNMASI

DENEY-3 BİR FAZLI TRANSFORMATÖRÜN BOŞ ÇALIŞMASI VE DÖNÜŞTÜRME ORANININ BULUNMASI DENEY-3 BİR FAZLI TRANSFORMATÖRÜN BOŞ ÇALIŞMASI VE DÖNÜŞTÜRME ORANININ BULUNMASI TRANSFORMATÖRLER Bir elektromanyetik endüksiyon yolu ile akımı veya gerilimi frekansı değiştirmeden yükselten veya düşüren,

Detaylı

İÇİNDEKİLER. BÖLÜM-1-ÜÇ FAZLI ASENKRON MOTORLARIN YAPISI VE ÇALIġMA PRENSĠBĠ

İÇİNDEKİLER. BÖLÜM-1-ÜÇ FAZLI ASENKRON MOTORLARIN YAPISI VE ÇALIġMA PRENSĠBĠ İÇİNDEKİLER BÖLÜM-1-ÜÇ FAZLI ASENKRON MOTORLARIN YAPISI VE ÇALIġMA PRENSĠBĠ Asenkron motorların endüstrideki önemi Turmetre ile asenkron motorun devrinin ölçülmesi ve kayma deneyi Senkron hız, Asenkron

Detaylı

ELEKTRİK MOTORLARI VE SÜRÜCÜLER ELEKTRİK MOTORLARINDA DENETİM PRENSİPLERİ

ELEKTRİK MOTORLARI VE SÜRÜCÜLER ELEKTRİK MOTORLARINDA DENETİM PRENSİPLERİ BÖLÜM 2 ELEKTRİK MOTORLARINDA DENETİM PRENSİPLERİ 2.1.OTOMATİK KONTROL SİSTEMLERİNE GİRİŞ Otomatik kontrol sistemleri, günün teknolojik gelişmesine paralel olarak üzerinde en çok çalışılan bir konu olmuştur.

Detaylı

ELEKTRİK MAKİNELERİ (MEP 112) Yazar: Yrd. Doç. Dr. Mustafa Turan S1

ELEKTRİK MAKİNELERİ (MEP 112) Yazar: Yrd. Doç. Dr. Mustafa Turan S1 ELEKTRİK MAKİNELERİ (MEP 112) Yazar: Yrd. Doç. Dr. Mustafa Turan S1 SAKARYA ÜNİVERSİTESİ Adapazarı Meslek Yüksekokulu Bu ders içeriğinin basım, yayım ve satış hakları Sakarya Üniversitesi ne aittir. "Uzaktan

Detaylı

TEKNOLOJİ FAKÜLTESİ Elektrik Elektronik Mühendisliği Bölümü ELEKTRİK MAKİNALARI LABORAT UARI II

TEKNOLOJİ FAKÜLTESİ Elektrik Elektronik Mühendisliği Bölümü ELEKTRİK MAKİNALARI LABORAT UARI II TEKNOLOJİ FAKÜLTESİ Elektrik Elektronik Mühendisliği Bölümü ELEKTİK MAKİNALAI LABOAT UAI II Öğretim Üyesi : Pro. Dr. Güngör BAL Deneyin Adı : Senkron Makina Deneyleri Öğrencinin Adı Soyadı : Numarası :

Detaylı

9. Güç ve Enerji Ölçümü

9. Güç ve Enerji Ölçümü 9. Güç ve Enerji Ölçümü Güç ve Güç Ölçümü: Doğru akım devrelerinde, sürekli halde sadece direnç etkisi mevcuttur. Bu yüzden doğru akım devrelerinde sadece dirence ait olan güçten bahsedilir. Sürekli halde

Detaylı

BÖLÜM VI DENGELENMİŞ ÜÇ FAZLI DEVRELER (3 )

BÖLÜM VI DENGELENMİŞ ÜÇ FAZLI DEVRELER (3 ) BÖLÜM VI DENGELENMİŞ ÜÇ FAZLI DEVRELER (3 ) Elektriğin üretim, iletimi ve dağıtımı genelde 3 devrelerde gerçekleştirilir. Detaylı analizi güç sistem uzmanlarının konusu olmakla birlikte, dengelenmiş 3

Detaylı

A.Ü. GAMA MYO. Elektrik ve Enerji Bölümü GÜÇ ELEKTRONİĞİ 9. HAFTA

A.Ü. GAMA MYO. Elektrik ve Enerji Bölümü GÜÇ ELEKTRONİĞİ 9. HAFTA A.Ü. GAMA MYO. Elektrik ve Enerji Bölümü GÜÇ ELEKTRONİĞİ 9. HAFTA 1 İçindekiler DC/AC İnvertör Devreleri 2 Güç elektroniğinin temel devrelerinden sonuncusu olan Đnvertörler, herhangi bir DC kaynaktan aldığı

Detaylı

ASENKRON MOTORLARIN KISA TANITIMI. Bu bölümde kısaca motorlar ve kullanılan terimler tanıtılacaktır.

ASENKRON MOTORLARIN KISA TANITIMI. Bu bölümde kısaca motorlar ve kullanılan terimler tanıtılacaktır. ASENKRON MOTORLARIN KISA TANITIMI Bu bölümde kısaca motorlar ve kullanılan terimler tanıtılacaktır. MOTOR PARÇALARI 1. Motor Gövdesi 2. Stator 3. Stator sargısı 4. Mil 5. Aluminyum kafesli rotor 6.

Detaylı

Bölüm 9 ELEKTROMANYETİK İNDÜKSİYON. Copyright 2008 Pearson Education Inc., publishing as Pearson Addison-Wesley

Bölüm 9 ELEKTROMANYETİK İNDÜKSİYON. Copyright 2008 Pearson Education Inc., publishing as Pearson Addison-Wesley Bölüm 9 ELEKTROMANYETİK İNDÜKSİYON Hedef Öğretiler Faraday Kanunu Lenz kanunu Hareke bağlı EMK İndüksiyon Elektrik Alan Maxwell denklemleri ve uygulamaları Giriş Pratikte Mıknatısın hareketi akım oluşmasına

Detaylı

KARADENİZ TEKNİK ÜNİVERSİTESİ Of Teknoloji Fakültesi Enerji Sistemleri Mühendisliği Bölümü. Doğru Akım Makinaları - I

KARADENİZ TEKNİK ÜNİVERSİTESİ Of Teknoloji Fakültesi Enerji Sistemleri Mühendisliği Bölümü. Doğru Akım Makinaları - I KARADENİZ TEKNİK ÜNİVERSİTESİ Of Teknoloji Fakültesi Enerji Sistemleri Mühendisliği Bölümü 1. Deneyin Adı Doğru Akım Makinaları 2. Deneyi Amacı Doğru akım motorunun yük eğrilerinin elde edilmesi 3. Deneye

Detaylı

Alternatif Akım Devre Analizi

Alternatif Akım Devre Analizi Alternatif Akım Devre Analizi Öğr.Gör. Emre ÖZER Alternatif Akımın Tanımı Zamaniçerisindeyönüveşiddeti belli bir düzen içerisinde (periyodik) değişen akıma alternatif akımdenir. En bilinen alternatif akım

Detaylı

DANIŞMAN Mustafa TURAN. HAZIRLAYAN İbrahim Bahadır BAŞYİĞİT T.C. SAKARYA ÜNİVERSİTESİ HERHANGİ BİR ELEKTRİKLİ CİHAZIN ÇALIŞMA PRENSİBİ

DANIŞMAN Mustafa TURAN. HAZIRLAYAN İbrahim Bahadır BAŞYİĞİT T.C. SAKARYA ÜNİVERSİTESİ HERHANGİ BİR ELEKTRİKLİ CİHAZIN ÇALIŞMA PRENSİBİ T.C. SAKARYA ÜNİVERSİTESİ MÜHENDİSLİK FAKÜLTESİ ELEKTRİK ELEKTRONİK MÜHENDİSLİĞİ BÖLÜMÜ HERHANGİ BİR ELEKTRİKLİ CİHAZIN ÇALIŞMA PRENSİBİ DANIŞMAN Mustafa TURAN HAZIRLAYAN İbrahim Bahadır BAŞYİĞİT 0101.00001

Detaylı

Elektrik. Rüzgardan ve Sudan Elektrik eldesinde Kullanılan Sistemler

Elektrik. Rüzgardan ve Sudan Elektrik eldesinde Kullanılan Sistemler Elektrik Rüzgardan ve Sudan Elektrik eldesinde Kullanılan Sistemler Rüzgar enerjisi değişime uğramış güneş enerjisidir: Güneş enerjisinin karalan, denizleri ve atmosferi her yerde özdeş ısıtmamasından

Detaylı

REZONANS DEVRELERİ. Seri rezonans devreleri bir bobinle bir kondansatörün seri bağlanmasından elde edilir. RL C Rc

REZONANS DEVRELERİ. Seri rezonans devreleri bir bobinle bir kondansatörün seri bağlanmasından elde edilir. RL C Rc KTÜ, Elektrik Elektronik Müh. Böl. Temel Elektrik aboratuarı. Giriş EZONNS DEVEEİ Bir kondansatöre bir selften oluşan devrelere rezonans devresi denir. Bu devre tipinde selfin manyetik enerisi periyodik

Detaylı

İNDEKS. Cuk Türü İzolesiz Dönüştürücü, 219 Cuk Türü İzoleli Dönüştürücü, 228. Çalışma Bölgeleri, 107, 108, 109, 162, 177, 197, 200, 203, 240, 308

İNDEKS. Cuk Türü İzolesiz Dönüştürücü, 219 Cuk Türü İzoleli Dönüştürücü, 228. Çalışma Bölgeleri, 107, 108, 109, 162, 177, 197, 200, 203, 240, 308 İNDEKS A AC Bileşen, 186 AC Gerilim Ayarlayıcı, 8, 131, 161 AC Kıyıcı, 8, 43, 50, 51, 54, 62, 131, 132, 133, 138, 139, 140, 141, 142, 144, 145, 146, 147, 148, 149, 150, 151, 152, 153, 154, 155, 156, 157,

Detaylı

ALTERNATİF AKIMDA GÜÇ

ALTERNATİF AKIMDA GÜÇ 1 ALTERNATİF AKIMDA GÜÇ Elektrik gücü bir elektrik devresi ile transfer edilen yada dönüştürülen elektrik enerjisinin oranıdır. Gücün SI birimi Watt (W) tır. Doğru akım devrelerinde elektrik gücü Joule

Detaylı