Büyük Veri Analitiği (Big Data Analytics)
|
|
|
- Aygül Bozer
- 9 yıl önce
- İzleme sayısı:
Transkript
1 Büyük Veri Analitiği (Big Data Analytics) M. Ali Akcayol Gazi Üniversitesi Bilgisayar Mühendisliği Bölümü Bu dersin sunumları, Mining of Massive Datasets, Jure Leskovec, Anand Rajaraman, Jeffrey David Ullman, Stanford University, kitabı kullanılarak hazırlanmıştır. Konular ve Yazılım Kümesi işlemleri - Matris Çarpımı 2 1
2 MapReduce ve Yazılım Kümesi Günümüz veri madenciliği uygulamaları, çok büyük boyutlu verilerin hızlı şekilde yönetilmesini gerektirmektedir. Çoğu uygulamada, veri son derece düzgün yapıdadır ve eş zamanlı çalışmayı destekler. Web sayfalarının ranking işleminde boyutları milyarları bulan matrislerin çarpımı yapılmaktadır. Sosyal ağlarda arkadaş arama işleminde milyonlarca düğüm (node) ve milyarlarca bağlantıdan (edge) oluşan graflar kullanılır. Bu tür uygulamalar için eşzamanlı çalışmayı destekleyen programlama sistemleri geliştirilmiştir. Bu sistemler Ethernet ağı üzerinden birbirine bağlı hesaplama düğümlerinden oluşabilir ve dağıtık dosya sistemi (distributed file system) kullanırlar. 3 MapReduce ve Yazılım Kümesi Dağıtık dosya sistemleri için yüksek seviyeli programlama sistemleri geliştirilmiştir. Bu yeni programlama sistemlerinin temelinde MapReduce programları vardır. büyük ölçekli verilerde etkin hesaplamayı sağlar ve hesaplama sırasındaki donanımsal hataları tolere edebilir. programları yüksek seviyeli programlama dilleriyle oluşturulabilir. geliştirilirken SQL kullanılabilir. 4 2
3 Konular ve Yazılım Kümesi işlemleri - Matris Çarpımı 5 Dağıtık Dosya Sistemleri Çoğu işlem, bir CPU, cache ve lokal disk kullanılarak gerçekleştirilir. Geçmişte, paralel işlem uygulamaları çok işlemcili ve özel donanımlı paralel bilgisayarlarla gerçekleştirilmekteydi. Büyük ölçekli Web servislerinin yaygınlaşmasıyla birlikte, birbirine bağlı olmayan çok sayıda node üzerinde işlemler yapılmaktadır. Bu tür işlem düğümleri özel amaçlı bilgisayarlara göre çok düşük maliyete sahiptir. Bu sistemler, dağıtık ve paralel çalışmanın avantajlarına sahiptir, ancak çok sayıda bağımsız bileşenden kaynaklanan güvenilirlik (reliability) problemleriyle karşı karşıyadır. 6 3
4 Konular ve Yazılım Kümesi işlemleri - Matris Çarpımı 7 Düğümlerin fiziksel organizasyonu Cluster computing yapısında işlem node ları rack kabin üzerindedir. Rack kabin üzerindeki düğümler gigabit Ethernet ile birbirine bağlıdır. Birden fazla rack kabin birbirine anahtar (switch) ile bağlanır. 8 4
5 Düğümlerin fiziksel organizasyonu Çok sayıda düğüme sahip sistemlerde sıklıkla bir veya birkaç düğümde arıza oluşabilir. Bazen bir rack kabindeki düğümlerin tamamı çalışmayabilir. Kısa sürede tamamlanacak işlemler arızalar nedeniyle uzayabilir veya başarılı bir şekilde tamamlanamayabilir. Dosyalar fazladan kopyalar halinde saklanabilir. Böylelikle, bir dosyada sorun olursa diğer kopyası kullanılabilir. İşlemlerin tamamı görevler halinde parçalanıp düğümlere dağıtılabilir. Böylelikle, bir görev restart edilirken diğer görevler etkilenmezler. 9 Konular ve Yazılım Kümesi işlemleri - Matris Çarpımı 10 5
6 Büyük ölçekli dosya sistemi organizasyonu Cluster computing yapısında dosya sistemlerinin dağıtık (Distributed File System - DFS) olması gereklidir. Google File System (GFS) dağıtık dosya sistemidir (Google). Hadoop Distributed File System (HDFS) açık kaynak dağıtık dosya sistemidir (Apache). CloudStore, açık kaynak dağıtık dosya sistemidir (Kosmix). Dosya boyutları çok büyüktür (terabyte seviyesinde). Dosyalar nadiren güncellenir. Aralıklarla yeni veriler eklenir. Dosyalar parçalar (chunks) halinde ve birden fazla kopya olarak farklı rack kabinlerdeki düğümlerde saklanır. Dosya parçalarının bulunduğu yeri saklamak için küçük ayrı bir dosya (master node) kullanılır. 11 Konular ve Yazılım Kümesi işlemleri - Matris Çarpımı 12 6
7 MapReduce, çok sayıdaki büyük ölçekli işlemi donanım hata toleransına sahip bir şekilde gerçekleştirir. için, Map ve Reduce isimli iki fonksiyonun yazılması gereklidir. aşağıdaki işlemleri gerçekleştirir: Belirli sayıda Map görevi (task) tanımlanır. Dağıtık dosya sistemindeki parçaları sıralanmış key-value ikilisi haline dönüştürür. Giriş değerinden üretilecek key-value ikilisi Map fonksiyonu yazılırken belirlenir. Her bir Map görevinin kay-value ikilisi master controller tarafından toplanır ve key değerine göre sıralanır. Key değerleri Reduce görevlerine dağıtılır. Reduce görevleri aynı anda bir key üzerinde çalışır ve key ile ilişkili değerleri birleştirir. Birleştirme yönteminin nasıl çalışacağı Reduce fonksiyonu yazılırken belirlenir. 13 MapReduce işlemleri için şematik gösterim aşağıdadır. 14 7
8 Konular ve Yazılım Kümesi işlemleri - Matris Çarpımı 15 Map işlemleri Map görevi için giriş dosyaları herhangi bir türdeki element lerden oluşabilir. Map görevlerinin girişleri ve Reduce görevlerinin çıkışları anahtardeğer ikilisi şeklindedir. Map fonksiyonu parametre olarak bir element alır ve anahtar-değer ikilileri üretir. Buradaki anahtar, unique anahtar olmak zorunda değildir. 16 8
9 Örnek Map işlemleri Doküman topluluğundaki her bir kelimenin tekrar sayısının bulunması klasik bir örnek uygulamadır. Map fonksiyonu için giriş, doküman topluluğudur. Her bir doküman ise element i ifade eder. Map fonksiyonunda anahtar olarak kelimeler, değer olarak dokümandaki tekrar sayıları alınır. Her bir doküman için anahtar-değer ikilisi aşağıdaki gibi oluşur. Burada, w x anahtar kelimeleri ifade eder ve aynı kelime birden fazla bulunabilir. Aynı anahtara sahip olan m tane ikili (w, m) şeklinde birleştirilebilir. 17 Konular ve Yazılım Kümesi işlemleri - Matris Çarpımı 18 9
10 Anahtara göre gruplandırma Map görevleri başarılı bir şekilde sonuçlandığında aynı anahtar değerine sahip ikililer gruplandırılır. Belirlenen Reduce görev sayısına göre master controller anahtar-değer ikililerini Reduce görev girişi olan lokal dosyalara aktarır. Master controller, anahtar - lokal dosya eşleştirmesi için hash fonksiyonu kullanır. Hash fonksiyonu dışında başka eşleştirme yöntemleri kullanılabilir. Bir anahtar-değer ikilisi sadece ve sadece bir Reduce görevine atanabilir. Master controller, Map işleminin sonuçlarını anahtara göre birleştirerek ilgili Reduce görevine atar > 19 Konular ve Yazılım Kümesi işlemleri - Matris Çarpımı 20 10
11 Reduce fonksiyonunun girişi gruplandırılmış anahtar-değer listesidir. Reduce fonksiyonunun çıkışı anahtar-değer ikilileridir. Birden fazla reducer aynı anda dağıtık çalışabilir. Örnek: Reduce işlemleri Kelime sayılarını bulma uygulamasında Reduce fonksiyonu aynı değere sahip anahtarlara ait değerlerin toplamını hesaplayabilir. Reduce çıktısı ise anahtar-tekrar toplamı (w, m) olur. Burada m tüm dokümanlardaki tekrar sayısını ifade eder. 21 Konular ve Yazılım Kümesi işlemleri - Matris Çarpımı 22 11
12 Birleştiriciler Bazı uygulamalarda Reduce fonksiyonundaki işlemlerde sıralama (değer yer değişimi 3+4 = 4+3) ve önceliklendirme (öncelik değişimi (2+3)+4 = 2+(3+4)) önemli değildir. Bu durumda, bazı reducer bileşenleri Map görevlerine aktarılabilir. Örneğin, kelimelerin frekanslarının bulunmasında aynı anahtar kelimelerin değerlerinin toplamları Map fonksiyonunda yapılabilir. Map fonksiyonunda yerine (w, m) hesaplanabilir. Maksimum paralel çalışma için her anahtar için ayrı Reduce görevi kullanılabilir. Her bir Reduce görevi de ayrı bir düğümde çalışabilir. 23 Konular ve Yazılım Kümesi işlemleri - Matris Çarpımı 24 12
13 MapReduce işlemleri 25 MapReduce işlemleri Uygulama programı, bir master controller process ile belli sayıda Worker process i farklı düğümlerde başlatır. Bir Worker process, Map görevi veya Reduce görevi yapabilir. Uygulama programı giriş dosyasını belirli sayıda parçaya böler. Map görevi process i giriş dosyasından kendisine atanmış kısmı okur. Map görevi tarafından elde edilen anahtar-değer ikilileri lokal diske kaydedilir. Reduce görevi atanmış olan process, diskten anahtar-değer ikililerini okur ve gerekli işlemi (sıralama, gruplandırma) yapar. Reduce görevi çıkışını kullanıcının belirlediği dosyaya kaydeder. Tüm atama ve yönetme işlemleri master controller process tarafından yapılır
14 MapReduce işlemleri 27 MapReduce işlemleri 28 14
15 MapReduce işlemleri Map görevinde Reduce işlemi yapılıyor. 29 Konular ve Yazılım Kümesi işlemleri - Matris Çarpımı 30 15
16 Node hataları için en kötü durum master controller process in çalıştığı düğümün arızalanmasıdır. Map ve Reduce görevlerini çalıştıran diğer düğümlerdeki arızalar master controller process tarafından denetlenir ve MapReduce başarılı bir şekilde tamamlanır. Arızalanan düğümdeki Map görevleri başka bir Worker a atanır. Sonuçların bulunduğu dosyanın yeni lokasyonu ilgili Reduce görevlerine aktarılır. Arızalanan düğümdeki Reduce görevleri başka bir Worker a atanır. 31 Konular ve Yazılım Kümesi işlemleri - Matris Çarpımı 32 16
17 MapReduce - Matris Çarpımı P matrisi, M ve N matrislerinin çarpımı olsun (P = MN). m ij i.satır j.sütun elemanı, n jk j.satır k.sütun elemanı ve p ik i.satır k.sütun elemanıdır. 33 MapReduce - Matris Çarpımı Bir matris üç özelliğin ilişkisi olarak düşnülebilir: satır numarası, sütun numarası ve değer. M(I, J, V), üçlü olarak (i, j, m ij ), N(J, K, W), üçlü olarak (j, k, n jk ) gösterilir. (J ortak özelliktir.) MN birleşiminden (i, j, k, v, w) elde edilir. M den (i, j, v), N den (j, k, w) gelir. Bu beşli ile (m ij, n jk ) ikilisi ifade edilir. Çarpım sonucu m ij n jk şeklinde (i, j, k, v x w) gösterilir. Çarpma işlemi için bir MapReduce, Toplama ve birleştirme için ayrı bir MapReduce işlemi yapılabilir
18 MapReduce - Matris Çarpımı 1. Map işlemi M matrisinin her m ij elemanı için ( j, (M, i, m ij )) ikilisi elde edilir. N matrisinin her n jk elemanı için ( j, (N, k, n jk )) ikilisi elde edilir. 1. Reduce işlemi Her j elemanı için, M den gelen (M, i, m ij ) elemanı ile N den gelen (N, k, n jk ) elemanından anahtarı (i, k) olan değeri m ij n jk olan anahtar-değer ikilisi oluşturulur ((i, k), m ij n jk ). 2. Map işlemi Her (i, k) anahtarı için ((i, k), (m i1 n 1k, m i2 n 2k,, m ij n jk )) ikilisi elde edilir. 2. Reduce işlemi Her (i, k) anahtarı için ((i, k), toplam) ikilisi elde edilir. 35 Ödev optimizasyonu hakkında bir araştırma ödevi hazırlayınız
Büyük, Dağıtık, Veri Yoğunluklu Uygulamalarda Programlama Paradigmaları
Büyük, Dağıtık, Veri Yoğunluklu Uygulamalarda Programlama Paradigmaları Güven Fidan AGMLAB Bilişim Teknolojileri 18/10/11 GRID ÇALIŞTAYI 2007 1 MapReduce Nedir? Büyük data kümelerini işlemek ve oluşturmak
Büyük Veri Analitiği (Big Data Analytics)
Büyük Veri Analitiği (Big Data Analytics) M. Ali Akcayol Gazi Üniversitesi Bilgisayar Mühendisliği Bölümü Bu dersin sunumları, Mining of Massive Datasets, Jure Leskovec, Anand Rajaraman, Jeffrey David
Büyük Veri Analitiği (Big Data Analytics)
Büyük Veri Analitiği (Big Data Analytics) M. Ali Akcayol Gazi Üniversitesi Bilgisayar Mühendisliği Bölümü Bu dersin sunumları, Mining of Massive Datasets, Jure Leskovec, Anand Rajaraman, Jeffrey David
Büyük Veri Analitiği (Big Data Analytics)
Büyük Veri Analitiği (Big Data Analytics) M. Ali Akcayol Gazi Üniversitesi Bilgisayar Mühendisliği Bölümü Bu dersin sunumları, Mining of Massive Datasets, Jure Leskovec, Anand Rajaraman, Jeffrey David
Büyük Veri de Türkiye den Uygulama Örnekleri Dr. Güven Fidan
Büyük Veri de Türkiye den Uygulama Örnekleri Dr. Güven Fidan ARGEDOR Bilişim Teknolojileri ARGEDOR ARGEDOR, şirketlere ve son kullanıcılara yenilikçi bilgiyi işleme çözümleriyle dünya çapında mevcut olan
Büyük Veri Analitiği (Big Data Analytics)
Büyük Veri Analitiği (Big Data Analytics) M. Ali Akcayol Gazi Üniversitesi Bilgisayar Mühendisliği Bölümü Bu dersin sunumları, Mining of Massive Datasets, Jure Leskovec, Anand Rajaraman, Jeffrey David
Büyük Veri İçin İstatistiksel Öğrenme (Statistical Learning for Big Data)
Büyük Veri İçin İstatistiksel Öğrenme (Statistical Learning for Big Data) M. Ali Akcayol Gazi Üniversitesi Bilgisayar Mühendisliği Bölümü Bu dersin sunumları, The Elements of Statistical Learning: Data
Büyük Veri Analitiği (Big Data Analytics)
Büyük Veri Analitiği (Big Data Analytics) M. Ali Akcayol Gazi Üniversitesi Bilgisayar Mühendisliği Bölümü Bu dersin sunumları, Mining of Massive Datasets, Jure Leskovec, Anand Rajaraman, Jeffrey David
BM-311 Bilgisayar Mimarisi. Hazırlayan: M.Ali Akcayol Gazi Üniversitesi Bilgisayar Mühendisliği Bölümü
BM-311 Bilgisayar Mimarisi Hazırlayan: M.Ali Akcayol Gazi Üniversitesi Bilgisayar Mühendisliği Bölümü Konular Bilgisayar Bileşenleri Bilgisayarın Fonksiyonu Instruction Cycle Kesmeler (Interrupt lar) Bus
BM-311 Bilgisayar Mimarisi
1 BM-311 Bilgisayar Mimarisi Hazırlayan: M.Ali Akcayol Gazi Üniversitesi Bilgisayar Mühendisliği Bölümü Konular Bilgisayar Bileşenleri Bilgisayarın Fonksiyonu Instruction Cycle Kesmeler (Interrupt lar)
VERİ MADENCİLİĞİ Metin Madenciliği
VERİ MADENCİLİĞİ Metin Madenciliği Yrd. Doç. Dr. Şule Gündüz Öğüdücü 1 2 Metin için Veri Madenciliği Metin Madenciliğinde Sorunlar Metin madenciliği: Veri madenciliği teknikleri ile yazılı belgeler arasındaki
MongoDB. Doğan Aydın. Eylül, 2011
MongoDB Doğan Aydın Eylül, 2011 İçindekiler 1 Giriş.................................................... 2 2 Geleneksel Veri Tabanları Ve MongoDB................................. 3 3 Doküman Odaklı.............................................
Büyük Veri İçin İstatistiksel Öğrenme (Statistical Learning for Big Data)
Büyük Veri İçin İstatistiksel Öğrenme (Statistical Learning for Big Data) M. Ali Akcayol Gazi Üniversitesi Bilgisayar Mühendisliği Bölümü Bu dersin sunumları, The Elements of Statistical Learning: Data
BİL-142 Bilgisayar Programlama II
BİL-142 Bilgisayar Programlama II (C/C++) Hazırlayan: M.Ali Akcayol Gazi Üniversitesi Bilgisayar Mühendisliği Bölümü Konular Giriş math Kütüphane Fonksiyonları Çok Parametreyle Fonksiyon Tanımı Fonksiyon
Algoritma Geliştirme ve Veri Yapıları 10 Graf Veri Modeli. Mustafa Kemal Üniversitesi
Algoritma Geliştirme ve Veri Yapıları 10 Graf Veri Modeli Graf, matematiksel anlamda, düğümler ve bu düğümler arasındaki ilişkiyi gösteren kenarlardan oluşan bir kümedir; mantıksal ilişki düğüm ile düğüm
BM-311 Bilgisayar Mimarisi
1 BM-311 Bilgisayar Mimarisi Hazırlayan: M.Ali Akcayol Gazi Üniversitesi Bilgisayar Mühendisliği Bölümü Konular Giriş Mikro işlemler Fetch cycle Indirect cycle Interrupt cycle Execute cycle Instruction
Büyük Veri Analitiği (Big Data Analytics)
Büyük Veri Analitiği (Big Data Analytics) M. Ali Akcayol Gazi Üniversitesi Bilgisayar Mühendisliği Bölümü Bu dersin sunumları, Mining of Massive Datasets, Jure Leskovec, Anand Rajaraman, Jeffrey David
Cluster i Linux'ta Kümeleme Özgür Yazılım ve Açık Kaynak G 2006 Ali Erdinç Köroğlu
Cluster i Linux'ta Kümeleme Özgür Yazılım ve Açık Kaynak G 2006 Ali Erdinç Köroğlu Kümelere giriş giriş :) :) Kümeleme nedir? Kümeleme çeşitleri ve ve amaçları RedHat Cluster'a giriş giriş RedHat Cluster
BİL-142 Bilgisayar Programlama II
BİL-142 Bilgisayar Programlama II (C/C++) Hazırlayan: M.Ali Akcayol Gazi Üniversitesi Bilgisayar Mühendisliği Bölümü Konular Giriş Sınıflar, Nesneler, Fonksiyon ve Veri Üyeleri Sınıf ve Fonksiyon Üyeleri
ALGORİTMA VE PROGRAMLAMA I
ALGORİTMA VE PROGRAMLAMA I YZM 1101 Celal Bayar Üniversitesi Hasan Ferdi Turgutlu Teknoloji Fakültesi Genel Bakış 2 Diziler Dizi Nedir? Dizilerin Bildirimi Dizilere Başlangıç Değeri Verme Dizilerde Arama
8.Konu Vektör uzayları, Alt Uzaylar
8.Konu Vektör uzayları, Alt Uzaylar 8.1. Düzlemde vektörler Düzlemdeki her noktası ile reel sayılardan oluşan ikilisini eşleştirebiliriz. Buna P noktanın koordinatları denir. y-ekseni P x y O dan P ye
Bu kısımda işlem adı verilen özel bir fonksiyon çeşidini ve işlemlerin önemli özelliklerini inceleyeceğiz.
Bölüm 3 Gruplar Bu bölümde ilk olarak bir küme üzerinde tanımlı işlem kavramını ele alıp işlemlerin bazı özelliklerini inceleyeceğiz. Daha sonra kümeler ve üzerinde tanımlı işlemlerden oluşan cebirsel
İşletim Sistemleri (Operating Systems)
İşletim Sistemleri (Operating Systems) 1 İşletim Sistemleri (Operating Systems) Genel bilgiler Ders kitabı: Tanenbaum & Bo, Modern Operating Systems:4th ed., Prentice-Hall, Inc. 2013 Operating System Concepts,
Esnek Hesaplamaya Giriş
Esnek Hesaplamaya Giriş J E O L O J İ M Ü H E N D İ S L İ Ğ İ A. B. D. E S N E K H E S A P L A M A Y Ö N T E M L E R İ - I DOÇ. DR. ERSAN KABALCI Esnek Hesaplama Nedir? Esnek hesaplamanın temelinde yatan
Web Madenciliği (Web Mining)
Web Madenciliği (Web Mining) Hazırlayan: M. Ali Akcayol Gazi Üniversitesi Bilgisayar Mühendisliği Bölümü Konular Denetimli Öğrenmenin Temelleri Karar Ağaçları Entropi ID3 Algoritması C4.5 Algoritması Twoing
Büyük Veri İçin İstatistiksel Öğrenme (Statistical Learning for Big Data)
Büyük Veri İçin İstatistiksel Öğrenme (Statistical Learning for Big Data) M. Ali Akcayol Gazi Üniversitesi Bilgisayar Mühendisliği Bölümü Bu dersin sunumları, The Elements of Statistical Learning: Data
BSM 532 KABLOSUZ AĞLARIN MODELLEMESİ VE ANALİZİ OPNET MODELER
BSM 532 KABLOSUZ AĞLARIN MODELLEMESİ VE ANALİZİ OPNET MODELER Yazılımı ve Genel Özellikleri Doç.Dr. Cüneyt BAYILMIŞ Kablosuz Ağların Modellemesi ve Analizi 1 OPNET OPNET Modeler, iletişim sistemleri ve
Birden Çok Tabloda Sorgulama (Join)
Birden Çok Tabloda Sorgulama (Join) Join(Birleştirici), iki ya da daha fazla tabloyu aynı anda sorgulayarak bir sonuç tablosu (result table) oluşturmaya yarar. Örneğin: İki tabloyu birleştirici ile birleştirerek
Graflar bilgi parçaları arasındaki ilişkileri gösterirler.
Graflar (Graphs) Graf gösterimi Uygulama alanları Graf terminolojisi Depth first dolaşma Breadth first dolaşma Topolojik sıralama Yrd.Doç.Dr. M. Ali Akcayol Graflar Graflar bilgi parçaları arasındaki ilişkileri
BLM 210 PROGRAMLAMA LABORATUVARI II PROJELERİ
1 BLM 210 PROGRAMLAMA LABORATUVARI II PROJELERİ 1. Programlama Laboratuvarı II dersinde aşağıdaki takvimde belirtilen konularda projeler gerçekleştirilecektir. Proje takviminin telafisi olmayacaktır. Proje
BİLGİSAYAR PROGRAMLAMA DERSİ
BİLGİSAYAR PROGRAMLAMA DERSİ Yrd. Doç. Dr. Fatih TOSUNOĞLU Erzurum Teknik Üniversitesi Mühendislik Fakültesi İnşaat Mühendisliği Bölümü DERS NOTU 5 KONU: Matlab de Diziler ve Matrisler İÇ İÇE FOR DÖNGÜSÜ
Ağaç (Tree) Veri Modeli
Ağaç (Tree) Veri Modeli 1 2 Ağaç Veri Modeli Temel Kavramları Ağaç, bir kök işaretçisi, sonlu sayıda düğümleri ve onları birbirine bağlayan dalları olan bir veri modelidir; aynı aile soyağacında olduğu
Web tabanlı altyapı sayesinde her cihazdan erişilebilir ve düzenlenebilir dokümanlar oluşturulup anında paylaşılabilir.
Eğitimde Google Doküman Uygulamaları 1.1 Google Uygulamalarına Giriş Google Doküman uygulamaları, hem öğretmenler, hem öğrenciler, hem de veliler için birçok farklı özellik sağlar. Kelime işleme, elektronik
Fiziksel Veritabanı Modelleme
Fiziksel Veritabanı Modelleme Fiziksel Veritabanı VTYS, verileri yan bellekte tutar. Bu yüzden VTYS lerde sıklıkla READ (yan bellekten okuma) ve WRITE (yan belleğe yazma) işlemi meydana gelir. READ ve
Algoritma Geliştirme ve Veri Yapıları 2 Veri Modelleri. Mustafa Kemal Üniversitesi
Algoritma Geliştirme ve Veri Yapıları 2 Veri Modelleri Veri modelleri, veriler arasında ilişkisel ve sırasal düzeni gösteren kavramsal tanımlardır. Her program en azından bir veri modeline dayanır. Uygun
m=n şeklindeki matrislere kare matris adı verilir. şeklindeki matrislere ise sütun matrisi denir. şeklindeki A matrisi bir kare matristir.
Matrisler Satır ve sütunlar halinde düzenlenmiş tabloya matris denir. m satırı, n ise sütunu gösterir. a!! a!" a!! a!" a!! a!! a!! a!! a!" m=n şeklindeki matrislere kare matris adı verilir. [2 3 1] şeklinde,
Büyük Veri Analitiği (Big Data Analytics)
Büyük Veri Analitiği (Big Data Analytics) M. Ali Akcayol Gazi Üniversitesi Bilgisayar Mühendisliği Bölümü Bu dersin sunumları, Mining of Massive Datasets, Jure Leskovec, Anand Rajaraman, Jeffrey David
Arama metodlarında temel işlem anahtarları karşılaştırmaktır.
(Kırpma) Hash Fonksiyonları Selecting Digits Folding (shift folding, boundary folding) Division MidSquare Extraction Radix Transformation Çakışma (Collision) ve çözümler Linear Probing Double Quadratic
Nesne Yönelimli Programlama
1 Nesne Yönelimli Programlama Hazırlayan: M.Ali Akcayol Gazi Üniversitesi Bilgisayar Mühendisliği Bölümü Not: Bu dersin sunumları, Java Programlama Dili ve Yazılım Tasarımı, Altuğ B. Altıntaş, Papatya
11.Hafta En kısa yollar I-II-III Devam. Negatif Ağırlıklı En Kısa Yollar Doğruluk Çözümleme
11.Hafta En kısa yollar I-II-III Devam Negatif Ağırlıklı En Kısa Yollar Doğruluk Çözümleme 1 En Kısa Yollar II Bellman-Ford algoritması 2 3 Negatif Maliyetli Çember Eğer graf negatif maliyetli çember içeriyorsa,
Graf Veri Modeli. Düğümler kümesi. Kenarlar kümesi
Graf Veri Modeli Graf, bir olay veya ifadenin düğüm ve çizgiler kullanılarak gösterilme şeklidir. Fizik, Kimya gibi temel bilimlerde ve mühendislik uygulamalarında ve tıp biliminde pek çok problemin çözümü
ile LOGO Ticari Yazılım Entegrasyon Kullanım Kılavuzu
https://www.masraff.co ile LOGO Ticari Yazılım Entegrasyon Kullanım Kılavuzu MasraffToLogo entegrasyon programı https://www.masraff.co sistemi ile Logo Yazılımınız (GO3, Tiger 3, Tiger 3 Enterprise) arasında
Kullanıcılar için EGEE ve TR-Grid araçları
Kullanıcılar için EGEE ve TR-Grid araçları ULAKBIM Kullanıcı Eğitimi 2007, Ankara Emrah AKKOYUN Konu Başlığı Denetim ve Yönetim araçları GOCDB SAM GStat RTM TR-Grid PAKITI TR-Grid Ganglia TR-Grid MRTG
Temel Kavramlar. (r) Sıfırdan farklı kompleks sayılar kümesi: C. (i) Rasyonel sayılar kümesi: Q = { a b
Bölüm 1 Temel Kavramlar Bu bölümde bağıntı ve fonksiyon gibi bazı temel kavramlar üzerinde durulacak, tamsayıların bazı özellikleri ele alınacaktır. Bu çalışma boyunca kullanılacak bazı kümelerin gösterimleri
GENETİK ALGORİTMA ÖZNUR CENGİZ HİLAL KOCA
GENETİK ALGORİTMA ÖZNUR CENGİZ 201410306014 HİLAL KOCA 150306024 GENETİK ALGORİTMA Genetik Algoritma yaklaşımının ortaya çıkışı 1970 lerin başında olmuştur. 1975 te John Holland ın makine öğrenmesi üzerine
Çanakkale Onsekiz Mart Üniversitesi. Bilgisayar Mühendisliği Bölümü
Çanakkale Onsekiz Mart Üniversitesi Bilgisayar Mühendisliği Bölümü Skip List(Atlamalı Liste) Veri Yapısı Seminer-30.03.2007/SkipList 1 Temel İhtiyaçlar Nelerdir? 1. Bilgisayarda verileri belirli yapıda
Veritabanı. Ders 2 VERİTABANI
Veritabanı Veritabanı Nedir? Birbiri ile ilişkili verilerin bir arada uzun süreli bulundurulmasıdır. Veritabanı bazen Veritabanı Yönetim sistemi veya Veritabanı Sistemi yerine de kullanılır. Gerçek dünyanın
PAPERWORK TEKNİK MİMARİ
PAPERWORK ECM TEKNİK MİMARİ 1. Şekilde (1) numara ile gösterilen Content Server adı verilen Uygulama Sunucusudur. Content Server tüm iş mantığını içerir. Veri Tabanına ve arşivlenen belgelere erişim yetkisi
Bilgisayar İşletim Sistemleri BLG 312
Prosesler Bilgisayar İşletim Sistemleri BLG 312 Prosesler ve Proses Yönetimi bilgisayar sisteminde birden fazla iş aynı anda etkin olabilir kullanıcı programı diskten okuma işlemi yazıcıdan çıkış alma
ALGORİTMA VE PROGRAMLAMA I
ALGORİTMA VE PROGRAMLAMA I Yrd. Doç. Dr. Deniz KILINÇ [email protected] YZM 1101 Celal Bayar Üniversitesi Hasan Ferdi Turgutlu Teknoloji Fakültesi Genel Bakış 2 Diziler Dizi Nedir? Dizilerin Bildirimi
BM-311 Bilgisayar Mimarisi
BM-311 Bilgisayar Mimarisi Hazırlayan: M.Ali Akcayol Gazi Üniversitesi Bilgisayar Mühendisliği Bölümü Konular Adresleme modları Pentium ve PowerPC adresleme modları Komut formatları 1 Adresleme modları
Elbistan Meslek Yüksek Okulu Güz Yarıyılı
HAFTA III Bilgi iletişim sistemi : Bilgi iletişim sistemi, dağıtık sistem içerisinde düğümler arasındaki iletişimi desteklemekle yükümlüdür. İletişim sistemi, iletişim ağı ile bağlanmış herhangi bir düğümün,
ULAŞTIRMA MODELİ VE ÇEŞİTLİ ULAŞTIRMA MODELLERİ
ULAŞTIRMA MODELİ VE ÇEŞİTLİ ULAŞTIRMA MODELLERİ Özlem AYDIN Trakya Üniversitesi Bilgisayar Mühendisliği Bölümü ULAŞTIRMA MODELİNİN TANIMI Ulaştırma modeli, doğrusal programlama probleminin özel bir şeklidir.
İŞLETİM SİSTEMLERİNE GİRİŞ. Modern bilgisayar çalışma prensipleri, Von Neumann ın 1945 de geliştirdiği
İŞLETİM SİSTEMLERİNE GİRİŞ Von Neumann Mimarisi Modern bilgisayar çalışma prensipleri, Von Neumann ın 1945 de geliştirdiği mimariyi temel almaktadır. Merkezi İşlem Birimi Aritmetik ve Mantık Birimi Kontrol
Tarih Saat Modül Adı Öğretim Üyesi. 01/05/2018 Salı 3 Bilgisayar Bilimlerine Giriş Doç. Dr. Hacer Karacan
BİLGİ TEKNOLOJİLERİ YÖNETİMİ EĞİTİM MODÜLLERİ Tarih Saat Modül Adı Öğretim Üyesi 01/05/2018 Salı Bilgisayar Bilimlerine Giriş Doç. Dr. Hacer Karacan Bu dersin amacı, bilgisayar bilimlerinin temel kavramlarını
HASTANE OTOMASYONU VERİ TABANI YÖNETİM SİSTEMLERİ TEMEL VERİTABANI KAVRAMLARI
VERİ TABANI YÖNETİM SİSTEMLERİ HASTANE OTOMASYONU Öğr. Gör. Handan ÇETİNKAYA İstanbul Gelişim Üniversitesi Günümüzde en basitinden en karmaşığına kadar pek çok veritabanı mevcuttur. En basiti Microsoft
2.3. MATRİSLER Matris Tanımlama
2.3. MATRİSLER 2.3.1. Matris Tanımlama Matrisler girilirken köşeli parantez kullanılarak ( [ ] ) ve aşağıdaki yollardan biri kullanılarak girilir: 1. Elemanları bir tam liste olarak girmek Buna göre matris
MATLAB a GİRİŞ. Doç. Dr. Mehmet İTİK. Karadeniz Teknik Üniversitesi Makine Mühendisliği Bölümü
MATLAB a GİRİŞ Doç. Dr. Mehmet İTİK Karadeniz Teknik Üniversitesi Makine Mühendisliği Bölümü İçerik: MATLAB nedir? MATLAB arayüzü ve Bileşenleri (Toolbox) Değişkenler, Matris ve Vektörler Aritmetik işlemler
.:: BÖLÜM I ::. MATRİS ve DETERMİNANT
SAKARYA ÜNİVERSİTESİ İŞLETME FAKÜLTESİ İŞLETME BÖLÜMÜ.:: BÖLÜM I ::. MATRİS ve DETERMİNANT Halil İbrahim CEBECİ BÖLÜM I 1. Matris Cebirine Giriş MATRİS VE DETERMİNANT Sayıların, değişkenlerin veya parametrelerin
Web Madenciliği (Web Mining)
Web Madenciliği (Web Mining) Hazırlayan: M. Ali Akcayol Gazi Üniversitesi Bilgisayar Mühendisliği Bölümü Konular Sınıflandırıcıların Değerlendirilmesi Skorlar Karışıklık matrisi Accuracy Precision Recall
Web Madenciliği (Web Mining)
Web Madenciliği (Web Mining) Hazırlayan: M. Ali Akcayol Gazi Üniversitesi Bilgisayar Mühendisliği Bölümü Konular Denetimsiz Öğrenmenin Temelleri Kümeleme Uzaklık Fonksiyonları Öklid Uzaklığı Manhattan
Data Science Boot Camp
Data Science Boot Camp Eğitim Detayları Eğitim Süresi : 3 Gün Kontenjan : 12 Ön Koşullar : Eğitim Hakkında Data Science Boot Camp Sertifikasyon Programı Introductory Python, Data Science with Python: Data
Bilgisayar İşletim Sistemleri BLG 312
Giriş Bilgisayar İşletim Sistemleri BLG 312 İplikler geleneksel işletim sistemlerinde her prosesin özel adres uzayı ve tek akış kontrolü vardır bazı durumlarda, aynı adres uzayında birden fazla akış kontrolü
BM208- Nesneye Dayalı Analiz ve Tasarım. Sunum 7
BM208- Nesneye Dayalı Analiz ve Tasarım Sunum 7 Component(Bileşen) Diyagramları Sistemin fiziksel yapısını modellemede kullanılır. Bu fiziksel yapıdan kasıt gömülü kontroller, portlar, arayüzlerin yanı
VERİ MADENCİLİĞİ (Web Madenciliği)
VERİ MADENCİLİĞİ (Web Madenciliği) Yrd.Doç.Dr. Kadriye ERGÜN [email protected] Kaynak: M. Ali Akcayol, Gazi Üniversitesi, Bilgisayar Mühendisliği Bölümü Ders Notları İçerik İnternet World Wide Web
YIĞINLAR YIĞINLAR. Yığın İşlemleri Postfix, Prefix, Infix. G. Ü. Bilgisayar Mühendisliği Bölümü
Yığın İşlemleri Postfix, Prefix, Infix Yrd.Doç.Dr. M. Ali Akcayol 1 Yığındaki elemanlardan sadece en son eklenene erişim yapılır. Yığına ilk eklenen eleman en son elde edilir. FILO (First-in-Last-out)
YZM VERİ YAPILARI DERS#9: HASH FONKSİYONLARI
YZM 2116- VERİ YAPILARI DERS#9: HASH FONKSİYONLARI İÇERİK Bu bölümde, Giriş Hash Tabloları Hash Fonksiyonu Çakışma (Collision) Ayrık Zincirleme Çözümü Linear Probing Çözümü Quadratic Probing Çözümü konusuna
GENETİK ALGORİTMALAR BÜŞRA GÜRACAR
GENETİK ALGORİTMALAR BÜŞRA GÜRACAR 201420404036 İÇERİK Genetik Algoritmanın, Amacı Kullanım Alanları Kavramları Uygulama Adımları Parametreler Genetik Algoritma Kodlama Türleri Genetik Algoritma Genetik
VERİ TABANI YÖNETİM SİSTEMLERİ Melih BÖLÜKBAŞI
VERİ TABANI YÖNETİM SİSTEMLERİ Melih BÖLÜKBAŞI Dersin Hedefleri Veri Tabanı Kullanıcıları Veri Modelleri Veri Tabanı Tasarımı İlişkisel VT Kavramsal Tasarımı (Entity- Relationship, ER) Modeli VT KULLANICILARI
2 İlişkisel Veritabanı Tasarımı. Veritabanı 1
2 İlişkisel Veritabanı Tasarımı Veritabanı 1 Veritabanı Tasarımı Tasarım yapılırken izlenecek adımlar; Oluşturulacak sistemin nelerden oluşması gerektiği ve hangi işlemlerin hangi aşamalarda yapıldığı
Optik Sürücüler CD/CD-ROM DVD HD-DVD/BLU-RAY DİSK Disket Monitör LCD LED Projeksiyon Klavye Mouse Mikrofon Tarayıcı
1 Donanım Bileşenleri ve Çalışma Prensipleri Anakart (Mainboard) İşlemci (Cpu) Ekran Kartı Bellekler Ram Rom Ses Kartı Ağ Kartı TV Kartı Sabit Diskler HDD HHD SSD Optik Sürücüler CD/CD-ROM DVD HD-DVD/BLU-RAY
Chapter 8 Yazılım Testi. Lecture 1. Chapter 8 Software testing
Chapter 8 Yazılım Testi Lecture 1 1 Konular Geliştirme testi Test tabanlı geliştirme Sürüm testi Kullanıcı testi 2 Programı test etmek Test etmek, bir programın yapması gereken şeyi yaptığını doğrulamak
İçerik. Apache Hadoop Project
Apache Hadoop Project İçerik Apache Hadoop Project Hadoop Kullanıcıları Yahoo Alt Projeler Hadoop Cluster Topoloji HDFS HDFS Toplojisi HDFS Veri Modeli ve Akışları (Okuma/Yazma) HDFS e Erişim Hadoop MapReduce
10.Konu Tam sayıların inşası
10.Konu Tam sayıların inşası 1. Tam sayılar kümesi 2. Tam sayılar kümesinde toplama ve çarpma 3. Pozitif ve negatif tam sayılar 4. Tam sayılar kümesinde çıkarma 5. Tam sayılar kümesinde sıralama 6. Bir
18.034 İleri Diferansiyel Denklemler
MIT AçıkDersSistemi http://ocw.mit.edu 18.034 İleri Diferansiyel Denklemler 2009 Bahar Bu bilgilere atıfta bulunmak veya kullanım koşulları hakkında bilgi için http://ocw.mit.edu/terms web sitesini ziyaret
ENF102 TEMEL BİLGİSAYAR BİLİMLERİ VE C/ C++ PROGRAMLAMA DİLİ. Gazi Üniversitesi Mühendislik Fakültesi Bilgisayar Mühendisliği Bölümü
ENF102 TEMEL BİLGİSAYAR BİLİMLERİ VE C/ C++ PROGRAMLAMA DİLİ Gazi Üniversitesi Mühendislik Fakültesi Bilgisayar Mühendisliği Bölümü Konular Giriş math Kütüphane Fonksiyonları Çok Parametreyle Fonksiyon
İki Boyutlu Yapılar için Doğrudan Rijitlik Metodu (Direct Stiffness Method) (İleri Yapı Statiği II. Kısım)
İki Boyutlu Yapılar için Doğrudan Rijitlik Metodu (Direct Stiffness Method) (İleri Yapı Statiği II. Kısım) Doç. Dr. Özgür Özçelik Dokuz Eylül Üniversitesi, Müh. Fak., İnşaat Müh. Böl. Genel Genel Genel
DOSYA ORGANİZASYONU. Doğrudan erişimli dosya organizasyonu ÖZLEM AYDIN TRAKYA ÜNİVERSİTESİ BİLGİSAYAR MÜHENDİSLİĞİ BÖLÜMÜ
DOSYA ORGANİZASYONU ÖZLEM AYDIN TRAKYA ÜNİVERSİTESİ BİLGİSAYAR MÜHENDİSLİĞİ BÖLÜMÜ Doğrudan erişimli dosya organizasyonu Sunum planı Doğrudan erişimli dosyalar Anahtar değerin tek adres olması durumu Anahtar
İletişim Ağları Communication Networks
İletişim Ağları Communication Networks Hazırlayan: M. Ali Akcayol Gazi Üniversitesi Bilgisayar Mühendisliği Bölümü Bu dersin sunumları, Behrouz A. Forouzan, Data Communications and Networking 4/E, McGraw-Hill,
NX Motion Simulation:
NX Motion Simulation: Mekanizma Hareket Analizi UNIGRAPHICS NX yazılımının modüllerinden biri olan NX Motion Simulation, NX Dijital Ürün Tasarımı ailesinin mühendislik bileşenlerinden birisidir. Motion
BİL-142 Bilgisayar Programlama II
BİL-142 Bilgisayar Programlama II (C/C++) Hazırlayan: M.Ali Akcayol Gazi Üniversitesi Bilgisayar Mühendisliği Bölümü Konular Giriş Kontrol Yapıları if Seçme Deyimi if... else Seçme Deyimi while Tekrar
Dr. Fatih AY Tel: 0 388 225 22 55 [email protected] www.fatihay.net
Bilgisayar Programlama Ders 1 Dr. Fatih AY Tel: 0 388 225 22 55 [email protected] www.fatihay.net Bilgisayar Programlamaya C ile Programlamaya Yazılım: Bilgisayarın işlemler yapması ve karar vermesi
KABA KÜME TEORİSİ (Rough Set Theory) Dr. Sedat TELÇEKEN
KABA KÜME TEORİSİ (Rough Set Theory) Dr. Sedat TELÇEKEN Giriş Bilgi teknolojisindeki gelişmeler ve verilerin dijital ortamda saklanmaya başlanması ile yeryüzündeki bilgi miktarı her 20 ayda iki katına
NESNE TABANLI PROGRAMLAMA Final Sınavı Cevapları
Sayfa1 NESNE TABANLI PROGRAMLAMA 25.01.2011 Final Sınavı Cevapları CEVAPLAR 1. A ve C 3x3 boyutlu kare matrislerdir. Bu matrisler için, iken, işlemini gerçekleştirerek C matrisini oluşturan bir C++ programı
Sabit ve Taşınabilir Diskler BÖLÜM-2 Pata Diskler İçin Master-Slave Ayarları Disk Biçimlendirme Harici Diskler Olası Sabit Disk Arızaları RAID
Sabit ve Taşınabilir Diskler BÖLÜM-2 Pata Diskler İçin Master-Slave Ayarları Disk Biçimlendirme Harici Diskler Olası Sabit Disk Arızaları RAID (Redundant Array Of Independent Dısk) RAID Seviyeleri NAS
08225 AĞ TEMELLERĠ. Elbistan Meslek Yüksek Okulu GÜZ Yarıyılı. Öğr. Gör. Murat KEÇECĠOĞLU. 20 EKi Salı, Çarşamba
08225 AĞ TEMELLERĠ Elbistan Meslek Yüksek Okulu 2014 2015 GÜZ Yarıyılı 20 EKi. 2014 Salı, Çarşamba Öğr. Gör. Murat KEÇECĠOĞLU Bilgi iletişim sistemi, dağıtık sistem içerisinde düğümler arasındaki iletişimi
Büyük Veri. Yrd. Doç. Dr. Özgür Yılmazel Gökhan Çapan Anadolu Üniversitesi
Büyük Veri Yrd. Doç. Dr. Özgür Yılmazel Gökhan Çapan Anadolu Üniversitesi Büyük Veri Nedir? Büyük veriler her yerde Bilimsel hesaplamalar Medikal görseller Web Sunucu log dosyaları Ama büyük veri ne kadar
Anahtar Kelimeler: Hadoop, Map Reduce, Hdfs, Map Reduce Performans Parametreleri,
1246 Hadoop MapReduce Algoritmasının Analizi ile Performansa Etki Eden Parametrelerin Tespiti ve Optimize Edilmiş Parametreler ile Hadoop Üzerinde Başarım Artımı 1 Hüseyin Şarkışla ve 1 Hayrettin Evirgen
YZM ALGORİTMA ANALİZİ VE TASARIM DERS#3: ALGORİTMA ANALİZİ#2
YZM 3207- ALGORİTMA ANALİZİ VE TASARIM DERS#3: ALGORİTMA ANALİZİ#2 Özyineli Olmayan (Nonrecursive) Algoritmaların Matematiksel Analizi En büyük elemanı bulma problemi En Büyük Elemanı Bulma Problemi Girdi
BİLGİSAYAR UYGULAMALARI Şırnak Üniversitesi Mühendislik Fakültesi Güz Dönemi Arş.Gör. Eren DEMİR ve Arş.Gör. Veysel KIŞ (
BİLGİSAYAR UYGULAMALARI Şırnak Üniversitesi Mühendislik Fakültesi 2018-19 Güz Dönemi Arş.Gör. Eren DEMİR ve Arş.Gör. Veysel KIŞ (e-mail: [email protected] ) 04.10.2018 1 MATLAB da Workspace ve Workspace
Veri Yönetiminde Son Nokta. Sedat Zencirci, Teknoloji Satış Danışmanlığı Direktörü, Orta Asya ve Türkiye
Veri Yönetiminde Son Nokta Sedat Zencirci, Teknoloji Satış Danışmanlığı Direktörü, Orta Asya ve Türkiye Oracle Veri Tabanı 11g & Oracle Exadata Geçen seneden bu yana neler değiģti? Aralık 2010 Oracle Exadata
Bir özvektörün sıfırdan farklı herhangi bri sabitle çarpımı yine bir özvektördür.
ÖZDEĞER VE ÖZVEKTÖRLER A n n tipinde bir matris olsun. AX = λx (1.1) olmak üzere n 1 tipinde bileşenleri sıfırdan farklı bir X matrisi için λ sayıları için bu denklemi sağlayan bileşenleri sıfırdan farklı
Büyük Veri Yolculuğu. Tayfun YALÇINKAYA Kadir Has Üniversitesi Mühendislik ve Doğa Bilimleri Fakültesi Bilgisayar Mühendisliği
Büyük Veri Yolculuğu Tayfun YALÇINKAYA Kadir Has Üniversitesi Mühendislik ve Doğa Bilimleri Fakültesi Bilgisayar Mühendisliği [email protected] Prof. Dr. Hasan DAĞ Kadir Has Üniversitesi Mühendislik
BÜYÜK VERİ. Abdulkadir ŞAN Proje Yöneticisi 7/1/2014 VERİ SİSTEMLERİ. Anayurt Güvenliği Md. Yrd. Metin Madenciliği ve Kaynaştırma Sistemleri
BÜYÜK VERİ Abdulkadir ŞAN Proje Yöneticisi 1 VERİ SİSTEMLERİ Relational Database DataWarehouse 2 1 VERİ TÜRLERİ 3 BÜYÜK VERİ NEDİR? Verinin çok büyük bir kısmı YAPISAL OLMAYAN veridir ve şimdi bu veriyi
Sembolik Programlama1. Gün. Sembolik Programlama. 20 Eylül 2011
Sembolik Programlama 1. Gün Şenol Pişkin 20 Eylül 2011 Sunum Kapsamı MuPAD İçerik Başlangıç 1. Bölüm: Cebirsel işlemler 2. Bölüm: Denklem çözümleri MuPAD Kısaca MuPAD Bilgisi ve Tarihçesi MuPAD Diğer Araçlar
Görsel Programlama DERS 04. Görsel Programlama - Ders04/ 1
Görsel Programlama DERS 04 Görsel Programlama - Ders04/ 1 Diziler ve Kolleksiyonlar(Collections) Diziler aynı tipli değişkenleri tutmak için kullanılan veri yapılarıdır. Diziler sabit uzunlukludur. Birkez
III. ULAKNET Eğitim Çalıştayı. Üniversiteler Arası Yüksek Erişilebilirlik. Ali Erdinç Köroğlu Necdet Yücel 02.06.2009
III. ULAKNET Eğitim Çalıştayı Üniversiteler Arası Yüksek Erişilebilirlik Ali Erdinç Köroğlu Necdet Yücel 02.06.2009 Küme nedir? Kümeleme çeşitleri ve amaçları Kümelemeye giriş Ethernet channel bonding
Web Madenciliği (Web Mining)
Web Madenciliği (Web Mining) Hazırlayan: M. Ali Akcayol Gazi Üniversitesi Bilgisayar Mühendisliği Bölümü Konular Giriş Bilgi Erişiminde Temel Yaklaşımlar Bilgi Erişim Modelleri Boolean model Vector space
Algoritma Geliştirme ve Veri Yapıları 9 Ağaç Veri Modeli ve Uygulaması. Mustafa Kemal Üniversitesi
Algoritma Geliştirme ve Veri Yapıları 9 Ağaç Veri Modeli ve Uygulaması Ağaç, verilerin birbirine sanki bir ağaç yapısı oluşturuyormuş gibi sanal olarak bağlanmasıyla elde edilen hiyararşik yapıya sahip
BTP 209 SİSTEM ANALİZİ VE TASARIMI
BTP 209 SİSTEM ANALİZİ VE TASARIMI BİLGİSAYARA DAYALI BİLGİ SİSTEMLERİ Dr. Önder EYECİOĞLU 2012 BİLGİSAYARA DAYALI BİLGİ SİSTEMLERİ(BDBS-CBIS) Bir BSBS şu bileşenlerden oluşur; Donanım Yazılım Veri tabanı
