ÇEKME DENEYİ 1. DENEYİN AMACI

Benzer belgeler
Mühendislik Mimarlık Fakültesi Makine Mühendisliği Bölümü

T.C. KAHRAMANMARAŞ SÜTÇÜ İMAM ÜNİVERSİTESİ MAKİNE MÜHENDİSLİĞİ BÖLÜMÜ M-220 ÇEKME DENEYİ

ÇEKME DENEYİ. Şekil. a) Çekme Deneyi makinesi, b) Deney esnasında deney numunesinin aldığı şekiler

STATİK-MUKAVEMET. Doç. Dr. NURHAYAT DEĞİRMENCİ

BASMA DENEYİ MALZEME MÜHENDİSLİĞİ BÖLÜMÜ. 1. Basma Deneyinin Amacı

TAHRİBATLI MALZEME MUAYENESİ DENEYİ

ÇEKME DENEYİ (1) MALZEME MÜHENDİSLİĞİ BÖLÜMÜ 1. DENEYİN AMACI:

Deneyin Amacı Çekme deneyinin incelenmesi ve metalik bir malzemeye ait çekme deneyinin yapılması.

BARTIN ÜNİVERSİTESİ MÜHENDİSLİK FAKÜLTESİ METALURJİ ve MALZEME MÜHENDİSLİĞİ BÖLÜMÜ METALİK MALZEMELERİN ÇEKME VE BASMA DENEY FÖYÜ

METALURJİ VE MALZEME MÜH. LAB VE UYG. DERSİ FÖYÜ

ÇEKME DENEYĠ. ġekil 1. Düşük karbonlu yumuşak bir çeliğin çekme diyagramı.

1. ÇEKME DENEYİ 1.1. DENEYİN AMACI

METALİK MALZEMELERİN ÇEKME DENEYİ

Malzemelerin Mekanik Özellikleri

BİLGİSAYAR DESTEKLİ TASARIM VE ANALİZ (ANSYS)


Malzemenin Mekanik Özellikleri

MEKATRONĐK EĞĐTĐMĐNDE LABORATUAR UYGULAMALARINDA KULLANILMAK ÜZERE MASAÜSTÜ ÇEKME CĐHAZI TASARIMI

BURSA TEKNİK ÜNİVERSİTESİ DOĞA BİLİMLERİ, MİMARLIK VE MÜHENDİSLİK FAKÜLTESİ MAKİNE MÜHENDİSLİĞİ BÖLÜMÜ 3 NOKTA EĞME DENEYİ FÖYÜ

T.C. BİLECİK ŞEYH EDEBALİ ÜNİVERSİTESİ MÜHENDİSLİK FAKÜLTESİ MAKİNE VE İMALAT MÜHENDİSLİĞİ BÖLÜMÜ MIM331 MÜHENDİSLİKTE DENEYSEL METODLAR DERSİ

= σ ε = Elastiklik sınırı: Elastik şekil değişiminin görüldüğü en yüksek gerilme değerine denir.

ÇEKME/EĞME DENEY FÖYÜ

FZM 220. Malzeme Bilimine Giriş

MUKAVEMET DERSİ. (Temel Kavramlar) Prof. Dr. Berna KENDİRLİ

Mekanik Davranışın Temel Kavramları. Cisimlerin uygulanan dış kuvvetlere karşı gösterdiği tepkiye mekanik davranış denir.

Burma deneyinin çekme deneyi kadar geniş bir kullanım alanı yoktur ve çekme deneyi kadar standartlaştırılmamış bir deneydir. Uygulamada malzemelerin

MALZEME BİLGİSİ DERS 7 DR. FATİH AY. fatihay@fatihay.net

MALZEME BİLGİSİ DERS 8 DR. FATİH AY. fatihay@fatihay.net

MUKAVEMET(8. Hafta) MALZEMENİN MEKANİK ÖZELLİKLERİ ÇEKME DENEYİ

BURULMA DENEYİ 2. TANIMLAMALAR:

Tablo 1 Deney esnasında kullanacağımız numunelere ait elastisite modülleri tablosu

MALZEMELERİN MEKANİK ÖZELLİKLERİ

MALZEME BİLİMİ. Mekanik Özellikler ve Davranışlar. Doç. Dr. Özkan ÖZDEMİR. (DERS NOTLARı) Bölüm 5.

MECHANICS OF MATERIALS

2. Amaç: Çekme testi yapılarak malzemenin elastiklik modülünün bulunması

TEKNOLOJİNİN BİLİMSEL İLKELERİ. Bölüm-4 MALZEMELERDE ÇEKME-BASMA - KESME GERİLMELERİ VE YOUNG MODÜLÜ Malzemelerde Zorlanma ve Gerilme Şekilleri

BAŞKENT ÜNİVERSİTESİ MAKİNE MÜHENDİSLİĞİ BÖLÜMÜ MAK 402 MAKİNE MÜHENDİSLİĞİ LABORATUVARI DENEY 9B - BURULMA DENEYİ

PLASTİK ŞEKİLLENDİRME YÖNTEMLERİ

ÇEKME DENEYİ ve ÇEKME DAYANIMI. ÇELİĞİN σ-ε DAVRANIŞI Şekil Değiştirme sertleşmesi

BAŞKENT ÜNİVERSİTESİ MAKİNA MÜHENDİSLİĞİ BÖLÜMÜ MAK 402 MAKİNA MÜHENDİSLİĞİ LABORATUVARI DENEY - 3 ÜÇ NOKTALI EĞİLME DENEYİ

Uygulanan dış yüklemelere karşı katı cisimlerin birim alanlarında sergiledikleri tepkiye «Gerilme» denir.

BURSA TEKNĠK ÜNĠVERSĠTESĠ DOĞA BĠLĠMLERĠ, MĠMARLIK VE MÜHENDĠSLĠK FAKÜLTESĠ MAKĠNE MÜHENDĠSLĠĞĠ BÖLÜMÜ

TAHRİBATLI MALZEME MUAYENESİ

MUKAVEMET SAKARYA ÜNİVERSİTESİ MAKİNE MÜHENDİSLİĞİ BÖLÜMÜ MAKİNE ELEMANLARI-I DERS NOTU

YTÜ Makine Mühendisliği Bölümü Mekanik Anabilim Dalı Özel Laboratuvar Dersi Strain Gauge Deneyi Çalışma Notu

DENEY 2 ANKASTRE KİRİŞLERDE GERİNİM ÖLÇÜMLERİ

BURULMA DENEYİ 2. TANIMLAMALAR:

TEKNOLOJİNİN BİLİMSEL İLKELERİ. Öğr. Gör. Adem ÇALIŞKAN

DAYANIM İLE İLİŞKİLİ MALZEME ÖZELİKLERİ

FL 3 DENEY 4 MALZEMELERDE ELASTĐSĐTE VE KAYMA ELASTĐSĐTE MODÜLLERĐNĐN EĞME VE BURULMA TESTLERĐ ĐLE BELĐRLENMESĐ 1. AMAÇ

LABORATUAR DENEY ESASLARI VE KURALLARI

MAKİNE ELEMANLARI DERS SLAYTLARI

Prof.Dr.İrfan AY. Arş.Gör.T.Kerem DEMİRCİOĞLU. Öğr. Murat BOZKURT. Balıkesir

BÖLÜM 5 MALZEMELERİN MEKANİK ÖZELLİKLERİ

FZM 220. Malzeme Bilimine Giriş

BARTIN ÜNĠVERSĠTESĠ MÜHENDĠSLĠK FAKÜLTESĠ METALURJĠ VE MALZEME MÜHENDĠSLĠĞĠ

MALZEMELERİN MEKANİK ÖZELLİKLERİ

BA KENT ÜNİVERSİTESİ. Malzemeler genel olarak 4 ana sınıfa ayrılabilirler: 1. Metaller, 2. Seramikler, 3. Polimerler 4. Kompozitler.

Malzeme yavaşça artan yükler altında denendiği zaman, belirli bir sınır gerilmede dayanımı sona erip kopmaktadır.

MMT310 Malzemelerin Mekanik Davranışı Mukavemet ve deformasyon özelliklerinin belirlenmesi - Çekme Testi

Malzeme Bilimi Ve Labaratuvarı MEKANİK ÖZELLİKLER

EKSENEL YÜKLERDEN OLUŞAN GERILME VE ŞEKİL DEĞİŞİMİ Eksenel yüklü elemanlarda meydana gelen normal gerilmelerin nasıl hesaplanacağı daha önce ele

Bu deneyler, makine elemanlarının kalite kontrolü için çok önemlidir

STRAIN GAGE DENEY FÖYÜ

Elastisite modülü çerçevesi ve deneyi: σmaks

Makine Elemanları I. Yorulma Analizi. Prof. Dr. İrfan KAYMAZ. Erzurum Teknik Üniversitesi. Mühendislik Fakültesi Makine Mühendisliği Bölümü

FZM 220. Malzeme Bilimine Giriş

MMT310 Malzemelerin Mekanik Davranışı 3 Tokluk özelliklerinin belirlenmesi Kırılma Mekaniği

İmal Usulleri. Plastik Şekil Verme

İNŞAAT MALZEME BİLGİSİ

KARADENİZ TEKNİK ÜNİVERSİTESİ MADEN MÜHENDİSLİĞİ BÖLÜMÜ MADEN İŞLETME LABORATUVARI

Şekil 1.1. Beton çekme dayanımının deneysel olarak belirlenmesi

İNŞAAT MÜHENDİSLİĞİNE GİRİŞ

STRAIN-GAGE (STRENGEÇ) ÖLÇÜMLERİ O. Sayman ve Y. Arman ! LÜTFEN DİKKAT! 1) DENEY FÖYÜNÜN TAMAMI DENEYE GELMEDEN ÖNCE OKUNMALIDIR

Standart Çekme Testi

MALZEME BİLİMİ Güz Yarıyılı Kocaeli Üniversitesi Ford Otosan Ġhsaniye Otomotiv MYO. Yrd. Doç. Dr. Egemen Avcu

YAPI MALZEMELERİ DERS NOTLARI

genel denklemin elde edilebilir. Şekil 1' den, M=P.V yazılabilir. Böylece elastik eğri denklemi

YTÜ Makine Mühendisliği Bölümü Mekanik Anabilim Dalı Genel Laboratuvar Dersi Eğilme Deneyi Çalışma Notu

Mukavemet-II. Yrd.Doç.Dr. Akın Ataş

Malzemelerin Deformasyonu

İmal Usulleri. Fatih ALİBEYOĞLU -7-

BÖLÜM 8 MEKANİK TESTLER

JFM 301 SİSMOLOJİ ELASTİSİTE TEORİSİ Elastisite teorisi yer içinde dalga yayılımını incelerken çok yararlı olmuştur.

MAK 305 MAKİNE ELEMANLARI-1

Kompozit Malzemeler ve Mekaniği. Yrd.Doç.Dr. Akın Ataş

Elastisite Teorisi Hooke Yasası Normal Gerilme-Şekil değiştirme

YTÜ Mimarlık Fakültesi Statik-Mukavemet Ders Notları

ENDİREKT (DOLAYLI) ÇEKME DAYANIMI (BRAZILIAN) DENEYİ

MALZEMELERİN MEKANİK ÖZELLİKLERİ ve MALZEME MUAYENESİ

Şekil 2.1. Yük uzama eğrisi [2].

BARTIN ÜNİVERSİTESİ MÜHENDİSLİK FAKÜLTESİ METALURJİ ve MALZEME MÜHENDİSLİĞİ BÖLÜMÜ METALİK MALZEMELERİN DARBE DENEY FÖYÜ. Arş. Gör.

BÖLÜM 7 MEKANİK TESTLER

Met.ve Malz. Müh. Giriş

MalzemelerinMekanik Özellikleri II

11/6/2014 İNŞAAT MÜHENDİSLİĞİNE GİRİŞ. MEKANİK ve MUKAVEMET BİLGİSİ MEKANİK VE MUKAVEMET BİLGİSİ

T.C. ONDOKUZ MAYIS ÜNİVERSİTESİ MÜHENDİSLİK FAKÜLTESİ MAKİNA MÜHENDİSLİĞİ BÖLÜMÜ YORULMA DENEY FÖYÜ

Doç.Dr.Salim ŞAHİN YORULMA VE AŞINMA

Bölüm 6. Tahribatlı Malzeme Muayenesi

MALZEMENİN MUAYENESİ

Transkript:

ÇEKME DENEYİ 1. DENEYİN AMACI Mühendislik malzemeleri rijit olmadığından kuvvet altında deforme olup, şekil ve boyut değişiklikleri gösterirler. Malzeme özelliklerini anlamak üzere mekanik testler yapılır. Bunlardan en önemlisi çekme deneyi dir. Çekme deneyinin amacı; malzemelerin statik yük altındaki elastik ve plastik davranışlarını belirlemektir. Bunun için boyutları standartlara uygun daire veya dikdörtgen kesitli deney parçası; çekme cihazına bağlanarak, eksenel ve değişken kuvvetler uygulanır. Çekme cihazı esas olarak; birbirine göre aşağı ve yukarı hareket edebilen, deney parçasının bağlandığı iki çene ve bunlara hareket veya kuvvet veren, bu iki büyüklüğü ölçen ünitelerden oluşur. Çenelerden birisi sabit hızda hareket ettirilerek deney parçasına değişken miktarlarda çekme kuvveti uygulanır ve bu kuvvete karşılık gelen uzama kaydedilir. Küçük kuvvet seviyelerinde uzama miktarı kuvvet ile doğru orantılıdır. Malzeme elastik davranış içindedir; yani kuvvet kaldırılınca uzama sıfırlanır. Bu karakter P noktasına kadar devam eder. Orantı limiti P den sonra lineer fonksiyon eğimini değiştirir. Ancak elastik davranış devam eder. Elastik davranış E Elastik Limiti noktasında sona erer. E den sonra kalıcı; yani plastik deformasyonlar başlar. Kuvvet azaltıldığında lineer fonksiyona paralel bir yol izler. Ancak kuvvetin sıfır olduğu yerde deformasyon artık sıfır olmaz, belirli bir plastik deformasyon kalır. Malzeme yüklenmeye devam edilirse Y noktasında akar. Akma noktasında kuvvet aynı iken büyük miktarda plastik deformasyon oluşur. Akan malzeme çalışma sertleşmesi ne uğrar ve daha mukavim hale gelerek daha fazla kuvvet alabilir hale gelir. Bu malzeme üzerindeki kuvvet daha da arttırılarak U noktasına ulaşılır. U noktası maksimum gerilme noktası olup, burada malzeme kesitinde lokal daralmalar başlar. Buna malzemenin boyun vermesi denir. Boyun verme de malzemenin çalışma sertleşmesine uğramasına sebep olur ve malzeme daha fazla gerilimler alabilir; ancak boyun bölgesinde kesit alanı daraldığından taşıdığı net kuvvet azalır. Numune genellikle kontrolsüz bir şekilde K noktasına ilerler ve orada kopar. Kuvvet-uzama eğrisinin altında kalan alan o numuneyi bozunuma uğratmak için gereken enerjiyi eşit olup; tokluk adı verilir.

Kuvvet-uzama eğrisi daha sonra yeniden ölçeklendirilir. Uzamalar malzemenin ilk uzunluğuna bölünerek birim-uzama ya çevrilir. Aynı şekilde kuvvet numunenin ilk kesit alanına bölünerek gerilim hesaplanır ve dikey eksen tekrar ölçeklendirilir. Malzeme kopana kadar önemli miktarda deformasyona uğradıysa sünek, az deforme olmuşsa gevrek yapıya sahiptir. 2. TANIMLAMALAR ve TEORİK BİLGİ Gerilme (σ): Birim alana etkiyen yük anlamına gelir ve aşağıdaki formülle hesaplanır. P A Birim Şekil Değiştirme (ε): Malzemeye kuvvet uygulandığı zaman oluşan boy değişiminin kuvvet uygulanmadan önceki ilk boya oranı. L L Elastisite Modülü (E): Malzemenin dayanımının (mukavemetinin) ölçüsüdür. Birim uzama ile normal gerilme (çekme ya da basma gerilmesi) arasındaki doğrusal ilişkinin bir sonucu olup birim uzama başına gerilme olarak tanımlanır. Birim uzama ile normal gerilme (çekme ya da basma gerilmesi) arasındaki doğrusal ilişki şöyle tanımlanabilir: E Malzemeye kuvvet uygulandığında, malzemede meydana gelen uzamalar elastik sınırlar içinde gerilmelerle orantılıdır. Buna Hooke Kanunu adı verilmektedir. Elastisite modülü malzemeye ait karakteristik bir özelliktir. Akma dayanımı ( a ): Uygulanan çekme kuvvetinin yaklaşık olarak sabit kalmasına karşın, plastik şekil değiştirmenin önemli ölçüde arttığı ve çekme diyagramının düzgünsüzlük gösterdiği kısma karşı gelen gerilme değeridir, Şekil 1. a P a A Çekme dayanımı ( ç ): Bir malzemenin kopuncaya veya kırılıncaya kadar dayanabileceği en yüksek çekme gerilmesi olarak tanımlanır. Bu gerilme, çekme diyagramındaki en yüksek gerilme değeri olup, aşağıdaki formül ile bulunur. ç P max A

Kopma Gerilmesi (σ K ): Numunenin koptuğu andaki gerilme değeridir. K P K A Şekil 1. Düşük karbonlu yumuşak bir çeliğin çekme diyagramı Yüzde Kopma uzaması (KU): Çekme numunesinin boyunda meydana gelen en yüksek yüzde plastik uzama oranı olarak tanımlanır. Çekme deneyine tabi tutulan numunenin kopan kısımlarının bir araya getirilmesi ile son boy ölçülür ve boyda meydana gelen uzama L Lk L bağıntısı ile bulunur. Burada L o numunenin ilk ölçü uzunluğunu, L k ise numunenin kırılma anındaki boyunu gösterir. Kopma uzaması ise; L KU (%) x1 L bağıntısı yardımıyla belirlenir. Bu değer malzemenin sünekliğini gösterir. Yüzde Kesit Daralması (KD): Çekme numunesinin kesit alanında meydana gelen en büyük yüzde daralma veya büzülme oranı olup; A AK KD(%) x1 A bağıntısı ile hesaplanır. Burada A deney numunesinin ilk kesit alanını, A k ise kırılma anındaki kesit alanını veya kırılma yüzeyinin alanını gösterir. A k nın hesaplanması isçin hacmin sabit kalacağı ifadesi kullanılır. V VK A L AK LK AK A L LK Kesit daralması, kopma uzaması gibi sünekliğin bir göstergesidir. Sünek malzemelerde belirgin bir büzülme veya boyun verme meydana gelirken, gevrek malzemeler büzülme göstermezler. Şekil 2 de gevrek ve sünek malzemelerin kırılma davranışları şematik olarak gösterilmiştir.

Şekil 2. (a) Gevrek malzemenin kırılma şekli (b)sünek malzemenin kırılma şekli. VİDEO EKSTENSOMETRE Ekstensometre, bir cismin uzunluğundaki küçük/büyük değişimleri ölçmek için kullanılan cihazdır. Bu cihaz gerilme-birim şekil değiştirme ve çekme testlerinde kullanılır. Bir çok malzemem için birim şekil değiştirme, numune üzerine tutturulan mekanik ekstensometreler veya numuneye bağlanan strain gaugesler kullanılarak ölçülebilir. Fakat fiber, köpük veya yumuşak plastikler gibi hassas malzemelerin testinde bu cihazlar genellikle uygun değildir. Bunun nedeni bu cihazların ağırlık ve bağlanma yöntemi gibi parametrelerinin her ikisinin de malzeme için sonuçları ve kopma noktasını etkilemesidir. Bu problemlerin çözülmesi için günümüzde numuneye temas etmeden ölçüm yapan lazer ve video ekstensometre gibi sistemler kullanılmaktadır. Şekil 3. Video ekstensometre Video ekstensometre cihazı, test esnasında bilgisayara bağlı dijital video kameralar vasıtasıyla numune üzerinden sürekli görüntü alarak malzemelerin gerilme/birim şekil değiştirme ölçümlerini yapmayı sağlar. Teste tabi tutulan malzemeye ait numuneler genellikle belirli bir şekilde kesilir ve özel işaretleyicilerle (kaydedilen görüntülerde işareti numune renginden ve dokusundan ayıran genellikle özel etiketler veya kalemler) işaretlenir. Teste tabi tutulan numune çekme/basma durumundayken kaydedilen görüntülerde bu işaretler arasındaki piksel mesafesi, sabit bir şekilde video kamera tarafından takip edilir. Piksel mesafeleri ölçülerek doğru bir birim şekil değiştirme ölçümü değeri alınır. Doğru bir kalibrasyon ve iyi bir görüntü algoritması ile bir mikrometreden (μm) çok daha düşük seviyede çözünürlük elde edilebilir.

3. DENEYİN YAPILIŞI Çekme deneyi için önce test edilecek malzemeden standartlara uygun bir çekme numunesi hazırlanır (Şekil 4). Bu numune üzerine işaretler konur. Çekme deney makinesinin çeneleri arasına düzgün ve ortalayacak bir şekilde sıkıştırılan bu numune gittikçe artan bir yükle kopuncaya kadar çekilir. Bu esnada uygulanan F yükü ile buna karşı malzemenin gösterdiği uzamalar (ΔL) cihaz ve video ekstensometre ile ölçülür. Deney sonucu elde edilen yük ( F ) ve uzama (ΔL) değerlerinden yararlanarak (F ΔL) diyagramı elde edilir. Bu diyagrama çekme diyagramı da denir. Şekil 5 de de yumuşak bir çeliğin çekme deneyi sonucu elde edilecek çekme diyagramı görülmektedir. Şekil 4. Standart çekme/basma numuneleri F ΔL diyagramındaki değerlerden yararlanılarak her nokta için σ ve ε değerleri hesaplanır ve mühendislik açısından büyük önem taşıyan gerilme uzama diyagramı çizilir. Şekil 5. Yumuşak çeliğe ait F ΔL diyagramı

4. İSTENENLER Kuvvet ile cihaz ve video ekstensometreden alınan uzama verileri kullanılarak her ikisi için ayrı ayrı gerilme şekil değiştirme diyagramının elde edilmesi. Gerilme şekil değiştirme diyagramlarından elastisite modüllerinin hesaplanması. Gerilme şekil değiştirme diyagramlarından akma gerilmesi, çekme dayanımı ve kopma gerilmelerinin hesaplanması Yüzde kopma uzaması ve yüzde kesit daralmalarının hesaplanması. Bulunan değerlerin karşılaştırılarak yorumlanması.