FARKLI TEKNİKLERLE GÜÇLENDİRİLMİŞ BETONARME KİRİŞLERİN EĞİLME DAVRANIŞI

Benzer belgeler
BETONARME KİRİŞLERİN KOMPOZİT MALZEMELER İLE GÜÇLENDİRİLMESİ. Zeki ÖZCAN 1 ozcan@sakarya.edu.tr

BETONARME KİRİŞLERİN KESME GÜÇLENDİRMESİ İÇİN KULLANILAN YÖNTEMLERİN KARŞILAŞTIRILMASI

Fiber Takviyeli Polimer (FRP) Uygulanan Betonarme Kirişlerde Moment-Eğrilik İlişkisi

Kahramanmaras Sutcu Imam University Journal of Engineering Sciences

ÇELİK PLAKA İLE GÜÇLENDİRİLEN BETONARME KİRİŞLERDE YAN PLAKALARIN ETKİSİ

BETONARME KİRİŞLERİN LİFLİ POLİMER (FRP) MALZEMELER KULLANILARAK ONARIM VE GÜÇLENDİRİLMESİ

Kesmeye Karşı Güçlendirilmiş Betonarme Kirişlerin Deprem Davranışı

KESMEDE YETERSİZ BETONARME KİRİŞLERİN CFRP İLE DAYANIM VE SÜNEKLİĞİNİN ARTIRILMASI

BETONARME KİRİŞLERİN DIŞTAN YAPIŞTIRILMIŞ KARBON KUMAŞ VE ÇELİK LEVHALARDAN OLUŞAN KOMPOZİT MALZEMEYLE GÜÇLENDİRİLMESİ

BETONARME KİRİŞLERİN ÇELİK LEVHALARLA KESMEYE KARŞI GÜÇLENDİRİLMESİ SHEAR STRENGTHENING OF REINFORCED CONCRETE BEAMS WITH STEEL PLATES

Mesnet Şartlarının Betonarme Kısa Kirişlerin Davranışına Etkisinin Deneysel ve Analitik Olarak İncelenmesi

BASİT EĞİLME ETKİSİNDEKİ BETONARME ELEMANLARIN MOMENT-EĞRİLİK VE TASARIM DEĞİŞKENLERİ ÜZERİNE ANALİTİK BİR İNCELEME

KESME YÖNÜNDEN YETERSİZ DİKDÖRTGEN KESİTLİ BETONARME KİRİŞLERİN CFRP İLE GÜÇLENDİRİLEREK KESME KAPASİTELERİNİN ARTTIRILMASI

Güçlendirme Alternatiflerinin Doğrusal Olmayan Analitik Yöntemlerle İrdelenmesi

İÇERİSİ BETON İLE DOLDURULMUŞ ÇELİK BORU YAPI ELEMANLARININ DAYANIMININ ARAŞTIRILMASI ÖZET

Etriyesiz betonarme kirişlerin CFRP levhalarla kesmeye karşı güçlendirilmesi

Betonarme Kirişlerin Karbon Elyafla Güçlendirilmesi Üzerine Deneysel Bir Araştırma

FARKLI ÇAPMA ETKİLERİNE MARUZ KALMIŞ BETONARME KİRİŞLERİN DAVRANIŞININ BELİRLENMESİ

BETONARME KESİT DAVRANIŞINDA EKSENEL YÜK, MALZEME MODELİ VE SARGI DONATISI ORANININ ETKİSİ

Betonların Güçlendirilmesinde FRP Kompozitlerin Hibrit Olarak Kullanımın etkisi

FARKLI UÇ SARGI ŞEKİLLERİNİN PERDE DUVARLARIN MOMENT EĞRİLİK DAVRANIŞI ÜZERİNDEKİ ETKİLERİNİN DOĞRUSAL OLMAYAN ANALİZİ (KURAMSAL ÇALIŞMA)

Deprem Sonrasında Hasar Görmüş veya Görmesi Muhtemel Betonarme Köprü Rehabilitasyonu İçin Öneriler *

Betonarme Kirişlerin Etkin Eğilme Rijitliği Analizi ve Yönetmeliklerle Karşılaştırması

BİLGİLENDİRME EKİ 7E. LİFLİ POLİMER İLE SARGILANAN KOLONLARDA DAYANIM VE SÜNEKLİK ARTIŞININ HESABI

Çelik Lif ile Güçlendirilmiş Betonarme Kirişlerin Sonlu Eleman Yöntemiyle Modellenmesi

BETONA YAPIŞTIRILMIŞ ANKRAJLI LİFLİ POLİMER LEVHALARIN ARAŞTIRILMASI

Sigma 2006/1 Araştırma Makalesi / Research Article THE EXPERIMENTAL INVESTIGATION OF DAMAGED BEAMS REPAIRED WITH REINFORCED JACKETTING

Prof. Dr. Cengiz DÜNDAR

MEVCUT BETONARME BİNALARDAKİ PERDE DONATI AYRINTILARI VE BİR AYRINTI İÇİN SONLU ELEMAN ANALİZİ

Beton Dayanımının Güçlendirilmiş Betonarme Kolonların Davranışına Etkisi. Effect of Concrete Quality to Response of Strengthened RC Column

YAPILARIN ONARIM VE GÜÇLENDİRİLMESİ DERS NOTU


Şekil 1.1. Beton çekme dayanımının deneysel olarak belirlenmesi

DİNAMİK BENZERİ DENEYLERLE YETERLİ DAYANIMA SAHİP BİR BETONARME ÇERÇEVENİN BİRLEŞİM BÖLGELERİNİN PERFORMANSININ İRDELENMESİ

DOKUMA BAZALT-CAM VE FINDIK KABUĞU TAKVİYELİ POLİMER KOMPOZİTLERİNİN EĞİLME DAYANIMI VE ISI GEÇİRGENLİKLERİNİN İNCELENMESİ

İSTANBUL TEKNİK ÜNİVERSİTESİ Yapı ve Deprem Uygulama Araştırma Merkezi

Mantolu Betonarme Kirişlerin Taşıma Gücünün Deneysel İncelenmesi

KENARA YAKIN EKİLEN KİMYASAL ANKRAJLARDA GÖÇME MODLARI FAILURE MODE OF CHEMICAL ANCHORS EMBEDDED TO NEAR EDGE

İKİ VE ÜÇ BİLEŞENLİ EPOKSİNİN ADERANS DAYANIMINA ETKİSİ

BETONARME KİRİŞLERİN PREFABRİK LEVHALARLA GÜÇLENDİRİLMESİ

Betonarme Kirişlerde Cam Elyaf Takviyeli Plastik Donatıların Kullanımının Araştırılması

Çekme Rijitleşmesinin FRP ve Çelik Donatılı Betonarme Kirişlerin Yük-Deplasman Davranışı Üzerindeki Etkisi

BURSA TEKNİK ÜNİVERSİTESİ DOĞA BİLİMLERİ, MİMARLIK VE MÜHENDİSLİK FAKÜLTESİ MAKİNE MÜHENDİSLİĞİ BÖLÜMÜ 3 NOKTA EĞME DENEYİ FÖYÜ

GÜÇLENDİRİLMİŞ BETONARME KİRİŞLERİN DEPREM DAVRANIŞI

BETONARME KENAR KOLON-KİRİŞ BİRLEŞİMLERİNİN GÜÇLENDİRİLMESİ

STRENGTHENING OF BEAMS WITH PREFABRICATED REINFORCED CONCRETE PLATES

Yüksek beton mukavemetli betonarme kirişlerde uygun sonlu eleman boyutları

BETONARME YAPI ELEMANLARINDA DONATI DÜZENLEME İLKELERİ

BETONARME-I 3. Hafta. Onur ONAT Munzur Üniversitesi Mühendislik Fakültesi İnşaat Mühendisliği Bölümü, Tunceli

RİSKLİ BİNALARIN TESPİT EDİLMESİ HAKKINDA ESASLAR 4-DBYBHY (2007)ve RBTE(2013) Karşılaştırılması

T-Kesitli Betonarme Kirişlerin Çelik Levhalar ile Güçlendirilmesi *

= ε s = 0,003*( ,3979)/185,3979 = 6,2234*10-3

BETONARME YAPI ELEMANLARINDA HASAR VE ÇATLAK. NEJAT BAYÜLKE İnş. Y. Müh.

T.C. BİLECİK ŞEYH EDEBALİ ÜNİVERSİTESİ MÜHENDİSLİK FAKÜLTESİ MAKİNE VE İMALAT MÜHENDİSLİĞİ BÖLÜMÜ MIM331 MÜHENDİSLİKTE DENEYSEL METODLAR DERSİ

RİSKLİ BİNALARIN DEĞERLENDİRİLMESİ ÜZERİNE BİR İNCELEME

Hibrit ve Çelik Kablolu Köprülerin Dinamik Davranışlarının Karşılaştırılması

KİMYASAL ANKRAJ BULONLARININ KESME DAVRANIŞI SHEAR BEHAVIOR OF CHEMICAL ANCHOR BOLTS

Journal of Engineering and Natural Sciences Mühendislik ve Fen Bilimleri Dergisi

BETONARME YAPI TASARIMI -KOLON ÖN BOYUTLANDIRILMASI-

Beton Basınç Dayanımın Yapısal Davranışa Etkisi

Behçet DÜNDAR YÜKSEK LİSANS TEZİ YAPI EĞİTİMİ GAZİ ÜNİVERSİTESİ FEN BİLİMLERİ ENSTİTÜSÜ. Haziran 2008 ANKARA

Pamukkale Üniversitesi Mühendislik Bilimleri Dergisi Pamukkale University Journal of Engineering Sciences

İnşaat Mühendisleri İster yer üstünde olsun, ister yer altında olsun her türlü yapının(betonarme, çelik, ahşap ya da farklı malzemelerden üretilmiş)

KISA KOLON HASARI OLUŞMUŞ BETONARME KOLONLARIN CFRP İLE YAPISAL ONARIMI

Journal of Engineering and Natural Sciences Mühendislik ve Fen Bilimleri Dergisi

COMPARISON OF PERFORMANCES OF DESTROYED CONCRETE BEAMS WHICH WERE STRENGTHENED VIA DIFFERENT METHODS

ÇATI KONSTRÜKSİYONLARINDA GAZBETON UYGULAMALARI Doç.Dr.Oğuz Cem Çelik İTÜ Mimarlık Fakültesi Yapı Statiği ve Betonarme Birimi

Necmettin Erbakan Üniversitesi, Meram Meslek Yüksekokulu, KONYA

Yapı Elemanlarının Davranışı

T-KESİTLİ BETONARME KİRİŞLERİN KESME-EĞİLMEYE KARŞI GÜÇLENDİRİLMESİ. Eray ÖZBEK YÜKSEK LİSANS TEZİ İNŞAAT MÜHENDİSLİĞİ

PREFABRİK KOLONLARIN GÜÇLENDİRİLMESİNDE CFRP VE İNCE MANTONUN BİRLİKTE KULLANIMI

GÜÇLENDİRİLMİŞ TUĞLA DUVAR DENEYLERİNDE YÜK DEFORMASYON ÖLÇÜMLERİNİN POTANSİYOMETRİK DEPLASMAN SENSÖRLER İLE BELİRLENMESİ

11/10/2013 İNŞAAT MÜHENDİSLİĞİNE GİRİŞ BETONARME YAPILAR BETONARME YAPILAR

TDY-2007 YE GÖRE LİFLİ POLİMER KOMPOZİTLER İLE GÜÇLENDİRME TASARIMINDA MEVCUT MALZEME DAYANIMLARIN ETKİSİNİN ARAŞTIRILMASI

BÖLÜM 7 MEVCUT BİNALARIN DEĞERLENDİRİLMESİ VE GÜÇLENDİRİLMESİ. sorular

FRP Donatı Çekme Testlerinde Numune Başlık Özeliklerinin Çekme Test Sonuçlarına Etkilerinin Araştırılması

ÇELİK LİF KULLANIMININ YÜKSEK PERFORMANSLI BETONLARIN SÜNEKLİK ÖZELLİĞİNE ETKİSİ

İSTANBUL TEKNİK ÜNİVERSİTESİ FEN BİLİMLERİ ENSTİTÜSÜ DÜŞÜK DAYANIMLI BETON PANELLERİN İLERİ TEKNOLOJİ MALZEMELER İLE GÜÇLENDİRİLMESİ

BETONARME KOLONLARIN ETKİN KESİT RİJİTLİKLERİ ÜZERİNE YÖNETMELİKLERİN YAKLAŞIMLARI

Çelik Lif Katkılı Betonarme Kirişlerin Taşıma Gücünün Deneysel İncelenmesi

Journal of Engineering and Natural Sciences Mühendislik ve Fen Bilimleri Dergisi

Güçlendirilmiş Betonarme Binaların Deprem Güvenliği

SÜNEK OLMAYAN B/A ÇERÇEVELERİN, ÇELİK ÇAPRAZLARLA, B/A DOLGU DUVARLARLA ve ÇELİK LEVHALAR ile GÜÇLENDİRİLMESİ.

Bazalt Lifli Donatının Yüksek Dayanımlı Betondaki Aderans Performansı

BURSA TEKNĠK ÜNĠVERSĠTESĠ DOĞA BĠLĠMLERĠ, MĠMARLIK VE MÜHENDĠSLĠK FAKÜLTESĠ MAKĠNE MÜHENDĠSLĠĞĠ BÖLÜMÜ

Geçmiş depremlerde gözlenen hasarlar Güncellenen deprem yönetmelikleri Tipik bir binada depremsellik incelemesi

FARKLI PARAMETERLERİN CFRP ŞERİTLERLE DOLGU DUVAR GÜÇLENDİRMESİ ÜZERİNDEKİ ETKİLERİ

Tarihi Tuğla Duvarların Tekstil Donatılı Harç (TRM) ile Güçlendirilmesi

Betonların Güçlendirilmesinde Karbon Fiber Takviyeli Polimer Yerine Cam Fiber Takviyeli Polimer Kullanılması

İTME ANALİZİ KULLANILARAK YÜKSEK RİSKLİ DEPREM BÖLGESİNDEKİ BİR PREFABRİK YAPININ SİSMİK KAPASİTESİNİN İNCELENMESİ

BETONARME ÇERÇEVELERİN DÜŞEY BAĞ KİRİŞLİ DIŞMERKEZ ÇAPRAZLARLA GÜÇLENDİRİLMESİ

YAPILARIN ÇİMENTO ESASLI KOMPOZİT PANALLERLE GÜÇLENDİRİLMESİ

ISSN : senyilmaz@dicle.edu.tr Diyarbakir-Turkey CFRP İLE GÜÇLENDİRİLMİŞ KESİTLERİN EKSENEL YÜK ALTINDAKİ DAVRANIŞI

Yığma yapı elemanları ve bu elemanlardan temel taşıyıcı olan yığma duvarlar ve malzeme karakteristiklerinin araştırılması

ÇELİK LEVHA VE KARBON KUMAŞLARLA GÜÇLENDİRİLMİŞ BETONARME KİRİŞLERİN DAVRANIŞ VE DAYANIMI. Deniz ACAR YÜKSEK LİSANS TEZİ İNŞAAT MÜHENDİSLİĞİ

CS MÜHENDİSLİK PROJE YAZILIM HİZMETLERİ EUROCODE-2'ye GÖRE MOMENT YENİDEN DAĞILIM

Malzemelerin Mekanik Özellikleri

BETONARME-II (KOLONLAR)

BOŞLUKLU TUĞLA DUVARLARIN LİFLİ POLİMER İLE GÜÇLENDİRİLMESİ VE DAVRANIŞTA HARÇ ETKİSİ. YÜKSEK LİSANS TEZİ Berk ÖZSAYIN

PERDELERDEKİ BOŞLUKLARIN YATAY ÖTELENMEYE ETKİSİ. Ayşe Elif ÖZSOY 1, Kaya ÖZGEN 2 elifozsoy@hotmail.com

Transkript:

ÖZET: FARKLI TEKNİKLERLE GÜÇLENDİRİLMİŞ BETONARME KİRİŞLERİN EĞİLME DAVRANIŞI İ. Dalyan. 1, B. Doran 2, S. Aktan 3 ve H.O. Köksal 4 1 İnş. Yük. Müh., Deprem Dairesi, T.C. Başbakanlık Afet ve Acil Durum Yönetimi Başkanlığı, Ankara 2 Doç. Dr., İnşaat Müh. Bölümü, Yıldız Teknik Üniversitesi, İstanbul 3 Yrd. Doç. Dr., İnşaat Müh. Bölümü, Çanakkale Onsekiz Mart Üniversitesi, Çanakkale 4 Prof. Dr., İnşaat Müh. Bölümü, Çanakkale Onsekiz Mart Üniversitesi, Çanakkale Email: ilknur.dalyan@afad.gov.tr Yapıların güçlendirilmesinde, geleneksel tekniklere ek olarak yeni teknikler geliştirilmekte ve yapı sektöründe yaygın olarak kullanılmaktadır. Lifli polimer (LP) malzemeler ile güçlendirme de bu alandaki yeni teknikler arasında yer almaktadır. Bu çalışmada betonarme kirişlerin eğilme dayanımını arttırmak için bir tür güçlendirme tekniği olan karbon lifli polimer (KLP) ile güçlendirme tekniği araştırılmıştır. Bu amaçla 8 adet betonarme kirişin 4 noktalı eğilme testleri gerçekleştirilmiştir. İki kiriş kontrol kirişi olarak bırakılırken KLP ile kısmi sargılama şu şekilde yapılmıştır: a) sadece kirişin alt yüzeyine, b) kirişin alt yüzeyine ve eğilme donatısı ve net beton örtüsünü içine alacak şekilde iki yan yüzeye 50 ve 70 mm uzunlukta, c) U şeklinde. Kirişlerin boyutları 150 250 2600 mm olup 1.nci grup ve 2.nci grup deney kirişlerinin net beton örtüleri sırasıyla 20 mm ve 40 mm dir. Sonuç olarak, kirişlere ait yük-yer değiştirme davranışları ile göçme mekanizmaları tartışılmış, farklı örtü betonunun deney kirişlerinin eğilme davranışına etkisi irdelenmiştir. ANAHTAR KELİMELER: Betonarme Kirişler, Güçlendirme, Karbon Lifli Polimer ABSTRACT: FLEXURAL BEHAVIOUR OF REINFORCED CONCRETE BEAMS STRENGTHENED WITH DIFFERENT TECHNIQUES In addition to traditional strengthening of constructions, new technologies in construction sector are being developed and applied in a widespread manner. Strengthening with fiber reinforced polymer (FRP) materials is among the new techniques in this field. In this study, reinforced technique as a methodology for strengthening technique with carbon fiber reinforced polymer (CFRP) sheets to increase the flexural resistance of reinforced concrete beams has been investigated. For this purpose, four-point bending tests on eight reinforced concrete beams were conducted. Two beams was un-retrofitted and used as the control specimen, while partial CFRP wrapping was applied to the remaining specimens as follows: a) applied only to the bottom surface area of the beam, b) applied to the bottom surface and lateral sides surfaces area together with 50 and 70 mm height including the tensile reinforcement and the concrete cover, c) U-wrapping. The dimensions are, 150 250 2600 mm and concrete cover of first and second group test beams are 20 mm, 40 mm, respectively. Finally, load-displacement behavior with the failure mechanism of the test beams have been discussed and the effect of different concrete cover on the flexural behavior has been investigated. KEYWORDS: RC Beams, Strengthening, Carbon Fiber Reinforced Polymer

1.GİRİŞ Deprem etkisi altında gerekli dayanım, süneklik ve rijitlik koşullarını sağlayamayan betonarme yapılar çeşitli yöntemlerle güçlendirilmektedir. Güçlendirme yöntemlerinin genel amacı eleman ya da sistemin dayanımını, sünekliğini ve rijitliğini istenilen düzeye getirmektir (Tanarslan, 2007). Yapıların güçlendirilmesinde, geleneksel tekniklere ek olarak yeni teknikler geliştirilmekte ve yapı sektöründe yaygın olarak kullanılmaktadır. Karbon lifli polimer (KLP) malzemeler ile güçlendirme de bu yeni teknikler arasında yer almaktadır. KLP malzeme, uygulamasının kolay olması, ağırlığının hafif olması, korozyona karşı dayanıklı olması gibi nedenlerden dolayı betonarme ve yığma yapı elemanlarının güçlendirilmesi amacıyla geniş kullanım alanına sahiptir(dündar, 2008). Betonarme ve yığma yapı elemanlarında yük taşıma kapasitesini büyük oranda arttıran bu malzeme, Türkiye de mevcut Deprem Yönetmeliği nde (DBYBHY-2007) uygulanabilir güçlendirme yöntemi olarak gösterilmektedir Kirişlere dıştan yapıştırılan KLP malzemelerin kirişlerin eğilme ve/veya kesme kapasitesini arttırdığı birçok araştırmacı tarafından deneysel ve sayısal çalışmalarla incelenmiştir (Karakoç vd., 2013; Kim vd., 2015; Mostofinejad ve Khozaei, 2015; Khalifa ve Nanni, 2000; Sayed vd., 2014). ACI Committee 440.2R-08 (2008) kılavuzunda lifli polimer (LP) ile güçlendirilmiş betonarme kesitlerde araştırılması tavsiye edilen göçme biçimleri verilmiştir. Donatının akmasından önce basınç bölgesindeki betonun ezilmesi, lifli polimer tabakanın kopmasını takiben çekmede donatının akması, betonun ezilmesini takiben çekmedeki donatının akması, pas payındaki kesme ve çekme tabakalanması (örtü tabakalanması) ve lifli polimer malzemenin beton yüzeyden sıyrılması, anılan göçme biçimlerine örnek olarak verilebilir. Literatürde yer alan çalışmalar incelendiğinde betonarme kirişlerin güçlendirilmesi amacıyla dıştan yapıştırılan karbon lifli polimer tabakaların kirişin dayanım, rijitlik, süneklik ve sismik performansını etkilediği görülmüştür. Çalışmalar incelendiğinde kiriş yüzeyine yapıştırılarak yapılan güçlendirmede KLP tabakaların beton yüzeyinden sıyrılması ve KLP nin kopması, KLP tabakalarda görülen göçme mekanizmalarıdır. KLP nin beton yüzeyden sıyrılması iki şekilde olmaktadır. Bunlar orta açıklıktaki sıyrılma ve tabaka sonundaki sıyrılmadır (Aram vd., 2008; Ha vd., 2015; Niu ve Wu, 2005; Wang vd., 2013). Bu çalışmada kiriş yüzeyine dıştan farklı biçimlerde yapıştırılan KLP nin betonarme kirişlerin eğilme performansına olan etkileri deneysel olarak incelenmiştir. Kirişlere ait yük-yer değiştirme davranışları ile göçme mekanizmaları tartışılmış ve kiriş davranışında etkili olduğu düşünülen farklı kalınlıklı örtü betonunun deney kirişlerinin eğilme davranışına etkisi irdelenmiştir. 2. DENEYSEL ÇALIŞMA Deneysel çalışmada 20 mm ve 40 mm net beton örtüsüne sahip 8 adet betonarme kiriş test edilmiştir. Kirişlerin geometrik boyutları ve donatı detayları Şekil 1 de verilmiştir. Kiriş numunelerinde C20 beton ve S420 donatı sınıfı kullanılmıştır. KLP kumaşın yapıştırılacağı yüzeyde mekanik taşlama ile düzeltme ve pürüzlendirme yapıldıktan sonra yapışma yüzeyleri temizlenmiştir. Daha sonra yüzeye astar sürülmüş, astar prizini aldıktan sonra epoksi sürülerek KLP kumaş yapıştırılmıştır. Deneysel çalışmada kullanılan astar, epoksi ve KLP nin özellikleri Tablo 1 de verilmiştir. Toplam 8 adet dikdörtgen kesitli betonarme kiriş numunesi her grupta güçlendirilmeyen 1 adet referans kirişi ve KLP nin dıştan üç farklı biçimde yapıştırılmasıyla güçlendirilmiş 3 adet numune olmak üzere 2 gruba ayrılarak test edilmiştir. Deney numunelerinin güçlendirme biçimleri Şekil 2 de görülmektedir. Her iki grupta da güçlendirme biçimlerinin ilkinde kirişin sadece eğilme (alt) yüzeyine KLP kumaş yapıştırılmıştır (150x2600 mm) (Şekil 2(a)). Bu yöntem, kirişlerin eğilme kapasitesinin KLP malzeme ile iyileştirilmesinde en çok kullanılan yöntemlerinden biridir.

Şekil 1. Geometrik boyutlar ve donatı detayı Tablo 1. Astar, epoksi ve CFRP malzemenin özellikleri Astar Malzemesi (MasterBrace P 3500) Epoksi Malzemesi (MasterBrace SAT 4500) Özellik Değer Çekme Özellikleri Kalınlık 0.075 mm Özellik Değer Çekme Özellikleri Akma Dayanımı 54 MPa Özellik Değer Elastisite Modülü 3034 MPa Akma Dayanımı 14.5 MPa En Büyük Dayanım 55.2 MPa Elastisite Modülü 717 MPa Poisson oranı 0.40 En Büyük Dayanım 17.2 MPa KLP Malzeme (MasterBrace FIB 300/50 CFS) Özellik Değer Toplam Lif Ağırlığı 300 g/m 2 Tasarım Kesit Kalınlığı 0.166 mm Lif Çekme Dayanımı 4900 MPa Elastisite Modülü 230.000 MPa *Bu değerler BASF Türk Kimya San. ve Tic. Ltd. Şti. den temin edilmiştir. İkinci uygulama biçiminde ise, KLP kumaş, kirişin alt yüzeyi ile birlikte çekme donatılarını içine alacak şekilde iki yan yüzeye yapıştırılmıştır. 1. grup deney numunesinde yan yüzeylerde 50 mm lik bir kısımda 2. grup deney numunesinde ise 70 mm lik bir kısımda bu uygulama yapılmıştır (250x2600; 290x2600) (Şekil 2 (b)). Üçüncü uygulama biçiminde ise, KLP kumaş kirişin alt yüzeyle birlikte yan yüzeylerinin büyük bir kısmına yapıştırılmıştır (500x2600mm) (Şekil 2 (c)). Kirişin yan yüzeylerinde basınç bölgesinde yapılacak güçlendirmenin eğilme performansına etkisinin fazla olmayacağı dikkate alındığında, deneylerde yapılan bu uygulama biçiminin eğilme performansının incelenmesinde gerçekçi bir uygulama olduğu kabul edilebilir. Ayrıca, genişliği 500 mm olan KLP kumaşın ayrı parçalar halinde kullanılması durumunda malzemede kopmalar olabileceği ve tek parça davranışı gösteremeyeceği olasılığı da bu uygulamayla önlenmiştir. KLP malzemenin kirişin yan yüzeylerinin bir kısmına yapıştırılmasıyla yapılan güçlendirme yöntemi, yan yüzeylerinin tamamına yapıştırılmasıyla yapılan güçlendirme yöntemi ile karşılaştırıldığında kullanılan malzeme miktarında önemli bir azalma söz konusudur. KLP malzeme ve malzemeyi kiriş yüzeyine yapıştırmak için gerekli

olan yapıştırıcı malzemenin maliyeti de dikkate alındığında ikinci yöntemin ekonomik olarak avantajlı olduğu söylenebilir. a) Deney numunesi K20KG00 ve K40KG00 b) Deney numunesi K20KG50 ve K40KG70 c) Deney numunesi K20KGU ve K40KGU Şekil 2. Deney numunelerinin güçlendirme biçimleri

Şekil 3 de görüleceği üzere kiriş numuneleri mesnet noktalarından 0.375L=900 mm kadar uzaklıkta etkiyen simetrik iki tekil yük altında test edilmiştir. Yükleme monotonik olarak göçme meydana gelene kadar artırılarak uygulanmıştır. Yükleme 400 kn kapasiteli bir hidrolik pompa aracılığı ile uygulanmış ve 400 kn kapasiteli bir yük hücresi ile yük değerleri ölçülmüştür. Yükleme 2mm/dak hızında uygulanmıştır. Kirişin orta noktasındaki, yükün uygulandığı noktalardaki ve mesnetlerdeki düşey yer değiştirmeler LVDT ile ölçülmüştür. Şekil 3. Deney düzeneği 2.1. Deney numunelerinin betonarme kesit hesabı Basit eğilme etkisindeki bir betonarme kirişin davranışını ifade etmekte kullanılan bağıntı gruplarından birincisi çekme ve basınç donatılarındaki birim şekil değiştirmelerin uygunluk bağıntıları yardımıyla hesaplamalarını içermektedir: 0.003.(d x) εs (1) x Bu denklemde x tarafsız eksen derinliğini ve d etkili derinliği göstermektedir. Diğer bağıntı grubu ise kesit boyunca oluşacak iç gerilme ve kuvvetlerin dengesidir: Burada A s toplam çekme donatısı alanını, f ' ' k.x A.f 0.85.f.b. +A.σ (2) s yd cd w 1 s s ' A s basınç donatısı miktarını, kiriş genişliğini, cd ise beton basınç dayanımını göstermektedir. ' s basınç donatısındaki gerilmeyi, b w Net beton örtüsü 20 mm ve 40 mm olan referans kirişlerde εs değerleri sırasıyla 0.0125 ve 0.0098 olarak hesaplanmıştır. Net beton örtüsü 20 mm ve 40 mm olan KLP malzemeyle güçlendirilmiş kirişlerde ise εs değerleri sırasıyla 0.0075 ve 0.0058 olarak hesaplanmıştır. Bu değerler, ε sd =0.0021 değerinden büyük olduğu için kirişler denge altı bir davranış sergileyerek göçmektedir.

3. DENEY SONUÇLARI Deney numunelerinin yük-orta nokta yer değiştirme grafikleri Şekil 4 ve Şekil 5 te verilmiştir. Grafikler incelendiğinde 1. grup kiriş numunelerinde 45 kn yük düzeyine kadar; 2. grup kiriş numunelerinde ise 40 kn yük düzeyine kadar tüm deney numunelerinin yaklaşık aynı yer değiştirmeyi yaptığı gözlenmiştir. Deney elemanlarında bu yük düzeylerine kadar kiriş yüzeyinde oluşan kılcal çatlaklar bu yük düzeyinden sonra genişlemeye başlamıştır. Deney elemanlarının maksimum yük kapasiteleri KLP kumaşın uygulanma biçimine göre değişiklik göstermektedir. Şekil 4 ve Şekil 5 te görüldüğü gibi deneylerde kirişin alt yüzeyi ile çekme donatısını içine alacak şekilde KLP malzeme ile yapılan güçlendirmede, sadece kirişin alt yüzeyine yapıştırılan KLP malzeme ile yapılan güçlendirme yöntemine göre yük taşıma kapasitesi artmıştır. Deney sonuçları Tablo 2 de sunulmuştur. Grup No 1 2 Numune Numarası Tablo 2. Deney sonuçları Özellik Maksimum Yük (kn) Göçme Mekanizması K20R Referans numunesi 1 51.97 Eğilme göçmesi ve betonun ezilmesi K20KG00 Güçlendirilmiş 2 80.43 KLP nin sıyrılması ve kopması K20KG50 Güçlendirilmiş 3 93.56 KLP nin sıyrılması ve kopması K20KGU Güçlendirilmiş 4 108.19 KLP nin sıyrılması ve kopması K40R Referans numunesi 1 45.87 Eğilme göçmesi ve betonun ezilmesi K40KG00 Güçlendirilmiş 2 76.78 KLP nin sıyrılması ve kopması K40KG70 Güçlendirilmiş 3 91.43 KLP nin sıyrılması ve kopması K40KGU Güçlendirilmiş 4 98.95 KLP nin sıyrılması ve kopması 1 Herhangi bir güçlendirme yapılmamış referans numunesidir. 2 Kirişin sadece alt yüzeyine KLP kumaş yapıştırılarak güçlendirilmiştir. 3 KLP kumaşın, kirişin alt yüzeyi ile birlikte çekme donatılarını içine alacak şekilde yapıştırılması ile güçlendirilmiştir. 4 KLP kumaşın, kirişin alt yüzeyi ile birlikte yan yüzeylerinin büyük bir kısmına yapıştırılması ile güçlendirilmiştir. 3.1. 1. grup deney numune deney sonuçları Deney sırasında 1. gruptaki referans deney numunesi (K20R), 51.97 kn maksimum yük seviyesinde 99.76 mm yer değiştirme yapmıştır. Kirişin taşıdığı yük yaklaşık bu değerde sabit kalırken yer değiştirme artarak maksimum 139.35 mm olmuştur. Numune yükün uygulandığı noktalarda meydana gelen eğilme çatlaklarının genişlemesi ile eğilme kırılması sergileyerek göçmüştür. Deney esnasında yük altındaki kirişte eğilme çatlaklarının genişliği artarken, basınç bölgesindeki betonda ezilme gözlemlenmiştir. Deney numunesi K20KG00, 80.43 kn maksimum yük seviyesinde 35.72 mm yer değiştirme yapmıştır. Kirişin taşıdığı yük miktarında azalma olurken, yer değiştirme artarak maksimum 36.93 mm olmuştur. Deney numunesi K20KG50, 93.56 kn maksimum yük seviyesinde 33.88 mm yer değiştirme yapmıştır. Kirişin taşıdığı yük miktarında azalma olurken, yer değiştirme artarak maksimum 39.15 mm olmuştur. Deney numunesi K20KG00 nin maksimum yük kapasitesi referans deney kirişinden %54.8 ve deney numunesi K20KG50 ün maksimum yük taşıma kapasitesi referans deney kirişinden %80.0 daha fazladır. Deney numunesi K20KGU referans deney numunesinin iki katı daha fazla yük taşıyarak maksimum 108.19 kn yük değerine ulaşmıştır. Deney numunesi K20KGU nun bu yük seviyesinde 43.15 mm yer değiştirme yaptığı gözlenmiştir. Kirişin taşıdığı yük miktarında azalma olurken yer değiştirme artarak maksimum 63.07 mm olmuştur. Deney kirişi K20KG00, K20KG50 ve K20KGU da KLP tabaka yüzeyden sıyrılmış ve kopmuştur.

(a) (b) Şekil 4. (a)1. Grup deney numunelerinin yük-orta nokta yer değiştirme grafiği (b) Kirişlerin göçme biçimleri 3.1. 2. grup deney numune deney sonuçları Deney esnasında 2. grup referans deney kirişi (K40R), 45.87 kn maksimum yük seviyesinde 79.32 mm yer değiştirme yapmıştır. Kirişin taşıdığı yük yaklaşık olarak bu değerde sabit kalırken yer değiştirme 117.13 mm olmuştur. Numune yükün uygulandığı noktalarda meydana gelen eğilme çatlaklarının genişlemesi ile eğilme kırılması sergileyerek göçmüştür. Deney esnasında yük altındaki kirişte eğilme çatlaklarının genişliği artarken, basınç bölgesindeki betonda ezilme gözlemlenmiştir. (a) (b) Şekil 5. (a) 2. grup deney numunelerinin yük-orta nokta yer değiştirme grafiği (b) Kiriş göçme biçimleri Deney numunesi K40KG00, 76.78 kn maksimum yük seviyesinde 34.63 mm yer değiştirme yapmıştır. Kirişin taşıdığı yük miktarında azalma olurken, yer değiştirme artarak maksimum 36.51 mm olmuştur. Deney numunesi

K40KG70, 91.43 kn maksimum yük seviyesinde 33.82 mm yer değiştirme yapmıştır. Kirişin taşıdığı yük miktarında azalma olurken, yer değiştirme artarak maksimum 34.56 mm olmuştur. Deney numunesi K40KG00 ın maksimum yük kapasitesi referans deney kirişinden % 67.4 ve deney numunesi K40KG70 in maksimum yük taşıma kapasitesi referans deney kirişinin yaklaşık iki katıdır. Deney numunesi K40KGU referans deney numunesinin iki katı daha fazla yük taşıyarak 98.95 kn yük değerinde ulaşmıştır. Deney numunesi K40KGU ün bu yük seviyesinde 40.04 mm yer değiştirme yaptığı gözlenmiştir. Kirişin taşıdığı yük miktarında azalma olurken yer değiştirme miktarı artarak maksimum 41.82 mm olmuştur. Deney kirişi K40KG00, K40KG70 ve K40KGU da KLP tabaka yüzeyden sıyrılmış ve kopmuştur. 4. SONUÇLAR Yapılan deneysel çalışmada aşağıdaki sonuçlara ulaşılmıştır. Betonarme kirişlerin eğilme davranışını iyileştirmek için kullanılan LP kumaşların kirişe dıştan yapıştırılması sonucunda; kirişlerde ölçüm yapılan açıklık ortasında maksimum yer değiştirmelerde referans kirişlere oranla kayda değer bir azalma meydana gelmiştir. Bu oran K20KG00, K20KG50 ve K20KGU kirişlerinde sırasıyla %73.5, %71.9 ve %54.7, K40KG00, K40KG70 ve K40KGU kirişinde ise sırasıyla %68.8, %70.5 ve %64.3 dür. Ancak kirişlerin yük taşıma kapasiteleri söz konusu olduğunda, referans kirişlere oranla kayda değer bir artış meydana gelmiştir. Bu oran K20KG00, K20KG50 ve K20KGU kirişlerinde sırasıyla %54.8, %80.0 ve %108.2, K40KG00, K40KG70 ve K40KGU kirişinde ise sırasıyla %67.4, %99.3 ve %115.7 dir. Bu sonuçlar sadece LP nin kiriş alt yüzeyine yapıştırılmasıyla yapılan güçlendirme biçimine göre diğer iki güçlendirme biçiminin taşıma gücü açısından son derece etkin olduğunu göstermektedir. Net beton örtüsü 20 mm ve 40 mm olan referans kirişlerin taşıdığı maksimum yüklerin oranı (K20R, K20KG00, K20KG50 ve K20KGU kirişlerinin K40R, K40KG00, K40KG70 ve K40KGU kirişlerine oranı) sırasıyla %11.7, %4.5, %2.3 ve % 8.5 dur. Yalın kirişler için gözlenen %10 luk fark, 216 mm ve 196 mm olarak seçilen etkili derinlik değerlerindeki farklılıktan kaynaklanmaktadır. Aynı kirişlerin sadece alt ve çekme donatısı üzerine kadar yapılan sargılama durumlarında ise bu farklılığın önemli oranda ortadan kalktığı gözlenmiştir. Alt yüzeye LP yapıştırılarak yapılan güçlendirme ve sargılama, kirişin eğilme momenti taşıma gücünü artıracaktır. Nitekim yaklaşık olarak düşey yükün 30 kn civarında arttığı deneysel olarak belirlenmiştir. Ek olarak donatı altında kalan zayıf beton örtüsünün sargılanması durumunda ise yalın kirişe oranla artışın 40 ila 45 kn arasında olduğu saptanmıştır. Bunun en önemli nedeni, daha önceki bir çalışmada irdelendiği üzere (Köksal vd., 2017) alt yüzeye yapıştırılan LP nin kapasitesinin artması olduğu belirlenmiştir. Bu ise zayıf beton örtüsü boyunca yapılan sargılamanın LP sargının betondan sıyrılmasını önemli oranda geciktirmiş olmasıdır. Bu noktadan yola çıkılarak, beton örtüsünü içine alan sargılamanın depreme karşı güçlendirilecek olan kirişler için etkin ve başarılı bir yöntem olacağı sonucuna ulaşılmıştır. Bu şekilde maliyeti yüksek olan LP sargılama da etkin kullanım ve ekonomik açıdan optimum bir çözüm seçilmiş olacaktır. Süneklik ve yer değiştirmeler açısından ise neredeyse hiçbir fark gözlenmemiştir. Deprem Bölgelerinde Yapılacak Binalar Hakkında Yönetmelik kapsamında depreme dayanıklı betonarme bina tasarımında genellikle süneklik düzeyi yüksek kirişlerin tasarlandığı göz önüne alındığında kirişlerin çekme bölgesinde kullanılan LP malzeme miktarına sınır getirilmesinin uygun olacağı düşünülmektedir. Getirilecek sınır konusunda deneysel verilerin çoğalması ve daha ileri düzeyde analitik çalışma yapılması gerekmektedir.

Teşekkür : Bu çalışma, Yıldız Teknik Üniversitesi Bilimsel Araştırma Projeleri Koordinasyon Birimince desteklenmiştir. Proje numarası: 2016-05-01-DOP06. Ayrıca yazarlar, projede kullanılan KLP kumaş, epoksi ve astar malzemelerin tedarik edilmiş olduğu OTS İnşaat Mühendislik Mimarlık Danışmanlık Ar-Ge Yazılım San. Tic. Ltd. Şti. ne teşekkürü bir borç bilir. KAYNAKLAR ACI Committee 440.2R-08 (2008). Guide for the Design and Construction of Externally Bonded FRP Systems for Strengthening Concrete Structures. American Concrete Institute, Detroit, Michigan. Aram, M.R., Czaderski, C., Motavalli, M., (2008). Debonding failure modes of flexural FRP-strengthened RC beams. Composites:Part B, 826-841. (DBYBHY 2007). Deprem Bölgelerinde Yapılacak Binalar Hakkında Yönetmelik, Bayındırlık ve İskan Bakanlığı. Dündar B. (2008). Kesme Yönünden Yetersiz Dikdörtgen Kesitli Betonarme Kirişlerin CFRP ile Güçlendirilerek Kesme Kapasitelerinin Arttırılması. Yüksek Lisans Tezi, Yapı Eğitimi, Gazi Üniversitesi, Ankara. Ha, S.K., Khalid, H.R., Park, S.M., Lee, H.K., (2015). Interfacial crack-induced debonding behavior of sprayed FRP laminate bonded to RC beams. Composite Structures 128, 176-187. Karakoç, C., Aktan, S., Doran, B., Köksal, H.O., (2013). Nonlinear Behaviour of RC Beams Wrapped with FRP Composites. Vienna Congress on Recent Advances in Earthquake Engineering and Structural Dynamics, Austria. Kim, N., Shin, Y.S., Choi, E., Kim, H.S., (2015). Relationships between interfacial shear stresses and moment capacities of RC beams strengthened with various types of FRP sheets. Construction and Building Materials 93, 1170-1179. Khalifa, A. ve Nanni, A., (2000). Improving shear capacity of existing RC T-section beams using CFRP composites. Cement And Concrete Composites 22, 165-174. Köksal, H.O., Altınsoy, F., Aktan, S., Karahan, Ş., Çankaya, R., (2017). Efficient Use of Carbon Fiber Reinforced Polimer for Reinforced Concrete Beams in Three-Point Bending. Çanakkale Onsekiz Mart Üniversitesi Fen Bilimleri Enstitüsü Dergisi (basıma kabul edildi). Mostofinejad D. ve Khozaei K., (2015). Effect of GM patterns on ductility and debonding control of FRP sheets in RC strengthened beams. Construction and Building Materials 93, 110-120. Niu, H. ve Wu, Z., (2005). Numerical Analysis of Debonding Mechanisms in FRP-Strengthened RC Beams. Computer Aided Civil and Infrastructure Engineering 20, 354-368 Sayed, A.M., Wang, X., Wu, Z., (2014).Finite element modeling of the shear capacity of FC beams strengthened with FRP sheets by considering different failure modes. Construction and Building Materials 59, 169-179. Tanarslan, H.M. (2007). CFRP Şeritlerle Kesmeye Karşı Güçlendirilmiş Betonarme Kirişlerin Tersinir-Tekrarlı Yükler Altında Davranışı. Doktora Tezi, Fen Bilimleri Enstitüsü, Dokuz Eylül Üniversitesi, İzmir. Wang, W., Dai, J. ve Harries K.A., (2013). Intermediate crack-induced debonding in RC beams externally strengthened with prestressed FRP laminates. Journal of Reinforced Plastics&Composites 32(23) 1842 185.