GEOTEKNİK DEPREM MÜHENDİSLİĞİ (Depremler-II)

Benzer belgeler
İNM Ders 1.1 Sismisite ve Depremler

DEPREMLER - 1 İNM 102: İNŞAAT MÜHENDİSLERİ İÇİN JEOLOJİ. Deprem Nedir? Oluşum Şekillerine Göre Depremler

GEOTEKNİK DEPREM MÜHENDİSLİĞİ KAYNAKLAR 1. Steven L. Kramer, Geotechnical Earthquake Engineering (Çeviri; Doç. Dr. Kamil Kayabalı) 2. Yılmaz, I.

DEPREM BİLİMİNE GİRİŞ. Yrd. Doç. Dr. Berna TUNÇ

İNM Ders 2.2 YER HAREKETİ PARAMETRELERİNİN HESAPLANMASI. Yrd. Doç. Dr. Pelin ÖZENER İnşaat Mühendisliği Bölümü Geoteknik Anabilim Dalı

GEOTEKNİK DEPREM MÜHENDİSLİĞİ (Yer Hareketi Parametreleri)

DEPREMLER - 2 İNM 102: İNŞAAT MÜHENDİSLERİ İÇİN JEOLOJİ. Deprem Nedir?

DEPREME DAYANIKLI YAPI TASARIMI

Deprem Mühendisliğine Giriş. Onur ONAT

JFM 301SİSMOLOJİ DEPREMLERİN ÖLÇEKLENDİRİLMESİ ŞİDDET ÖLÇEĞİ EŞŞİDDET HARİTASI

Depremler. 1989, Loma Prieta depremi, Mw = 7.2

ÖN SÖZ... ix BÖLÜM 1: GİRİŞ Kaynaklar...6 BÖLÜM 2: TEMEL KAVRAMLAR... 7

SAKARYA ÜNİVERSİTESİ DEPREM KAYIT İSTASYONUNUNA AİT SÜREYE BAĞLI BÜYÜKLÜK HESABI

DEPREMLERİN KAYIT EDİLMESİ - SİSMOGRAFLAR -

Deprem Mühendisliği 1

EN BÜYÜK OLASILIK YÖNTEMİ KULLANILARAK BATI ANADOLU NUN FARKLI BÖLGELERİNDE ALETSEL DÖNEM İÇİN DEPREM TEHLİKE ANALİZİ

Deprem Mühendisliğine Giriş. Yer Hareketinin Karakterizasyonu ve Temel Kavramlar

1. Giriş. 2. Model Parametreleri

İNM Ders 1.2 Türkiye nin Depremselliği

BAÜ Müh-Mim Fak. Geoteknik Deprem Mühendisliği Dersi, B. Yağcı Bölüm-5

YAPI ZEMİN ETKİLEŞİMİ. Yrd. Doç. Dr Mehmet Alpaslan KÖROĞLU

İNM Ders 2.1 Dinamik Yükler, Yer Hareketi Parametreleri ve İvme Spektrumları

T.C. BAŞBAKANLIK AFET VE ACİL DURUM YÖNETİMİ BAŞKANLIĞI DEPREM DAİRESİ BAŞKANLIĞI. BASINA VE KAMUOYUNA (Ön Bilgi Formu)

İNM Ders 2.1 Dinamik Yükler, Yer Hareketi Parametreleri ve İvme Spektrumları

Deprem Mühendisliğine Giriş. Onur ONAT

KUVVETLİ YER HAREKETİ

Aletsel Sismoloji. Deprem Parametreleri. Elçin GÖK. Aletsel Sismoloji : Sismograf

21 TEMMUZ 2017 KOS ADASI - GÖKOVA KÖRFEZİ DEPREMİ İVME KAYITLARI VE ÖZELLİKLERİ

Deprem bir doğa olayıdır. Deprem Bilimi ise bilinen ve bilinmeyen parametreleriyle, karmaşık ve karışık teoriler konseptidir

T.C. BAŞBAKANLIK AFET VE ACİL DURUM YÖNETİMİ BAŞKANLIĞI DEPREM DAİRESİ BAŞKANLIĞI. BASINA VE KAMUOYUNA (Ön Bilgi Formu)

YER HAREKETİ PARAMETRELERİ YER HAREKETİ PARAMETRELERİ. a ω. v ~ u ~ = GENLİK, SÜRE, FREKANS

İNŞAAT MÜHENDİSLİĞİNE GİRİŞ

ANKARA YÖRESİ ZAYIF VE KUVVETLİ YER HAREKETİ KAYIT AĞININ KURULMASI

21 TEMMUZ 2017 KOS ADASI - GÖKOVA KÖRFEZİ DEPREMİ İVME KAYITLARI VE ÖZELLİKLERİ

DEPREME DAYANIKLI YAPI İNŞAATI SORULAR

2.2. Deprem Dr. Murat UTKUCU, SAÜ-Jeofizik 1

TÜRKİYE NİN FARKLI BÖLGELERİ İÇİN SİSMİK HAZARD PARAMETRELERİ ARASINDAKİ İLİŞKİLER

DOĞU ANADOLU BÖLGESİ VE CİVARININ POISSON YÖNTEMİ İLE DEPREM TEHLİKE TAHMİNİ

10.SINIF FİZİK PROJE KONU: DEPREM DALGALARI

Ders. 5 Yer Tepki Analizleri

GEOTEKNĠK DEPREM MÜHENDĠSLĠĞĠ KAYNAKLAR; Steven L. Kramer, Geotechnical Earthquake Engineering (Çeviri; Doç. Dr. Kamil Kayabalı)

Deprem Kayıtlarının Seçilmesi ve Ölçeklendirilmesi

SİSMİK TEHLİKE ANALİZİ

24 MAYIS 2014 GÖKÇEADA AÇIKLARI - EGE DENİZİ DEPREMİ BASIN BÜLTENİ

Yeryüzünden kesit 11/6/2014 DEPREM HAREKETİ

DALGA YAYILMASI Sonsuz Uzun Bir Çubuktaki Boyuna Dalgalar SıkıĢma modülü M={(1- )/[(1+ )(1-2

B.Ü. KANDİLLİ RASATHANESİ ve DAE. BÖLGESEL DEPREM-TSUNAMİ İZLEME ve DEĞERLENDİRME MERKEZİ 12 HAZİRAN 2017 KARABURUN AÇIKLARI- EGE DENİZİ DEPREMİ

Deprem İstatistiği (Depremsellik ve Parametreleri)

Deprem Tehlike Yönetimi (INM 476)

Deprem Tehlike Yönetimi ( )

BÖLÜM YEDİ DEPREM TÜRLERİ

BURSA TEKNİK ÜNİVERSİTESİ DOĞA BİLİMLERİ, MİMARLIK VE MÜHENDİSLİK FAKÜLTESİ MAKİNE MÜHENDİSLİĞİ BÖLÜMÜ 3 NOKTA EĞME DENEYİ FÖYÜ

GENİŞBAND SİSMOMETRELER NEDEN CLİP OLURLAR? Elektronik ve Hab. Yük. Müh. Kandilli Rasathanesi ve Deprem Arş. Ens. Boğaziçi Üniversitesi, İstanbul

BALIKESİR BÖLGESİNİN DEPREM RİSKİ VE DEPREMSELLİK AÇISINDAN İNCELENMESİ

:51 Depremi:

DEPREM KONUMLARININ BELİRLENMESİNDE BULANIK MANTIK YAKLAŞIMI

21 NİSAN 2017, 17h12, Mw=4.9 MANİSA-ŞEHZADELER DEPREMİ SİSMOLOJİK ÖN DEĞERLENDİRME RAPORU

Yapı Sistemlerinin Hesabı İçin. Matris Metotları. Prof.Dr. Engin ORAKDÖĞEN Doç.Dr. Ercan YÜKSEL Bahar Yarıyılı

verilir. Prof.Dr.Kadir Dirik Ders Notları

II.4. DEPREMLER (EARTHQUAKES)

DBYYHY 2007 ve DEPREME KARŞI DAYANIKLI YAPI TASARIMI. Onur ONAT Tunceli Üniversitesi Mühendislik Fakültesi İnşaat Mühendisliği Bölümü, Tunceli

MAGNITÜD NEDIR? 2. Biyografiler Charles Richter Beno Gutenberg 8. Sözlük 10. Kaynaklar 11

:51 Depremi:

Neotektonik incelemelerde kullanılabilir. Deformasyon stili ve bölgesel fay davranışlarına ait. verileri tamamlayan jeolojik dataları sağlayabilir.

2010 DARFIELD VE 2011 CHRISTCHURCH DEPREMLERİ VE SONUÇLARI

Deprem Tehlike Analizi Nedir? Ne Zaman Gerekir? Nasıl Yapılır? Naz Topkara Özcan

Mwp BÜYÜKLÜĞÜ NÜN 23 EKİM 2011 VAN,TÜRKİYE DEPREMİNE UYGULANMASI. Application of Mwp Magnitude to the October 23, 2011 Van, Turkey Earthquake

KONU: KOMİTE RAPORU TAKDİMİ SUNUM YAPAN: SALİH BİLGİN AKMAN, İNŞ. YÜK. MÜH. ESPROJE GENEL MÜDÜRÜ

SİSMİK PROSPEKSİYON DERS-2 DOÇ.DR.HÜSEYİN TUR

MARMARA BÖLGESİNİN KUVVETLİ YER HAREKETİ AZALIM İLİŞKİSİ MODELİ STRONG GROUND MOTION ATTENUATION RELATIONSHIP MODEL FOR MARMARA REGION

DEPREMLER BÖLÜM 18 DEPREMLER

B.Ü. KANDİLLİ RASATHANESİ ve DAE. BÖLGESEL DEPREM-TSUNAMİ İZLEME ve DEĞERLENDİRME MERKEZİ

DEPREM HESABI. Doç. Dr. Mustafa ZORBOZAN

INS13204 GENEL JEOFİZİK VE JEOLOJİ

TÜRKİYE DE ÇEŞİTLİ TAŞ OCAĞI PATLATMA ALANLARININ SPEKTRUM ÖZELLİKLERİ SPECTRUM CHARACTERISTICS OF SEVERAL QUARRY BLAST AREAS IN TURKEY

24/05/2014 GÖKÇEADA AÇIKLARI EGE DENİZİ DEPREMİ Mw:6.5

İZMİR METROPOL ALANINDA MÜHENDİSLİK ANA KAYASININ JEOFİZİK ÇALIŞMALARLA ARAŞTIRILMASI

7. Self-Potansiyel (SP) Yöntemi Giriş...126

GEOTEKNİK DEPREM MÜHENDİSLİĞİ

PATLATMA KAYNAKLI YER SARSINTILARININ DEPREM VERİLERİNDEN AYRILMASI

e) Aşağıdaki fiziksel niceliklerin SI birimlerini ve boyutlarını yazınız (Write the SI (mks) units and dimensions of given quantities)

Ölçme Bilgisi Jeofizik Mühendisliği Bölümü

DEPREM TEHLİKE VE RİSK ÇALIŞMALARINDA SİSMOLOJİK GÖZLEM AĞLARININ ÖNEMİ: TÜRKİYE ULUSAL SİSMOLOJİK GÖZLEM AĞINDAKİ SON GELİŞMELER, 2011

DEPREMLER (Yerkabuğu Hareketleri)

2. BÖLÜM DEPREM PARAMETRELERİ VE TANIMLARI

ULUSAL KUVVETLİ YER HAREKETLERİ KAYIT ŞEBEKESİ NATIONAL STRONG GROUND MOTION NETWORK

DİNAMİK - 7. Yrd. Doç. Dr. Mehmet Ali Dayıoğlu Ankara Üniversitesi Ziraat Fakültesi. Tarım Makinaları ve Teknolojileri Mühendisliği Bölümü

Ulusal Kuvvetli Yer Hareketi Kayıt Şebekesi Veri Tabanının Uluslararası Ölçütlere Göre Derlenmesi

Bursa İl Sınırları İçerisinde Kalan Alanların Zemin Sınıflaması ve Sismik Değerlendirme Projesi

ELASTİK DALGA YAYINIMI

YER KABUĞUNUN HAREKETLERİ. Yer kabuğu, dış şeklini ve iç yapısını değiştiren çeşitli kuvvetlerin etkisi altındadır.

BAŞKENT ÜNİVERSİTESİ MAKİNA MÜHENDİSLİĞİ BÖLÜMÜ MAK 402 MAKİNA MÜHENDİSLİĞİ LABORATUVARI DENEY - 3 ÜÇ NOKTALI EĞİLME DENEYİ

İSTANBUL İÇİN TASARIM ESASLI KUVVETLİ YER HAREKETİ DALGA FORMLARININ ZAMAN ORTAMINDA TÜRETİLMESİ

'Marmara Depremi'nin 10.Yılında...

JEOFİZİK MÜHENDİSLİĞİ BÖLÜM LABORATUVARLARINDA DÖNER SERMAYE KAPSAMINDA YAPILAN İŞLERİN GÜNCEL FİYAT LİSTESİ

GERÇEK ZAMANLI YAPI SAĞLIĞI İZLEME SİSTEMLERİ

SİSMİK DALGALAR. Doç.Dr. Eşref YALÇINKAYA (4. Ders) Sismogramlar üzerinde gözlenebilen dalgalar sismik dalgalar olarak adlandırılır.

KAYMA GERİLMESİ (ENİNE KESME)

JFM 301 SİSMOLOJİ 1.TOPĞRAFYADA DEĞİŞİMLER DEPREMLERİN YERYÜZÜNDEKİ ETKİLERİ

Mühendislik Mekaniği Statik. Yrd.Doç.Dr. Akın Ataş

Transkript:

GEOTEKNİK DEPREM MÜHENDİSLİĞİ (Depremler-II) KAYNAKLAR 1. Steven L. Kramer, Geotechnical Earthquake Engineering (Çeviri; Doç. Dr. Kamil Kayabalı) 2. Yılmaz, I., Mühendislik Jeolojisi: İlkeler ve Temel Kavramlar 3. Tarbuck, Lutgens, Tasa,Earth Science, 13 th Edition,Prentice Hall 4. Ersoy,H., Hacettepe Üniversitesi Mühendislik Jeolojisi Ders Notları 5. Dirik,.K. Hacettepe Üniversitesi Jeoloji Ders Notları

Dersin Amacı I. Deprem kayıt aletlerinin çalışma prensipleri ve çeşitleri II. Deprem şiddet-büyüklük (magnitüd) ilişkisi III. Richter Büyüklüğü IV. Yüzey Dalgası Büyüklüğü V. Cisim Dalgası Büyüklüğü VI. Moment Büyüklüğü VII. Büyüklükler arası İlişkiler VIII.Magnitüd-Fay İlişkileri IX. Deprem Enerjisi X. Deprem çeşitleri (özet)

Depremlerin Kaydedilmesi Deprem tarafından üretilen sismik dalgalar nedeniyle yer yüzeyi hareketini zamanın bir fonksiyonu olarak kaydeden alete sismograf denir

Sismometre-İvmeölçer Sismograf ya da sismometre İvme Ölçer

Depremlerin Kaydedilmesi

Analog Sismometre Analog seismometers can be understood by a simple mass-spring-dashpot system where the base is connected to the ground surface. This is an analog type of seismometer because it is directly measuring the amplitude of the incoming waves.

Tek Dereceli Sistemlerin Dinamik Davranışı ve Analitik Çözümü

Tek Dereceli Sistemlerin Dinamik Davranışı ve Analitik Çözümü

Modern Sismograflar Electronic transducer (seismometer) senses motion and records digital electrical signal that is recorded for subsequent processing. Types: (1) Servo (force balanced) uses a suspended mass to which a displacement transducer is attached. Signal is produced by the relative displacement between the housing and the suspended mass. The resisting force is measured electronically. This type has good accuracies for the range of frequencies of interest in earthquake engineering. (2) Piezoelectric uses a piezoelectric material (e.g., quartz, tourmaline, ferroelectric ceramic) to sense acceleration. The piezoelectric material acts as a spring in the SDOF system with negligible damping. When accelerated, inertial force strains the material which develops an electrical charge. The resulting voltage is proportional to the inertial force. This type is good for high frequency measurement because of the stiff piezoelectric material. (3) Geophones uses velocity transducers to measure velocity of waves. Used in geophysical surveys. (4) Seismoscope uses conical pendulum with metal stylus attached to a suspend mass which inscribes a record of ground motion on smoked glass plate, producing 2D record of movement.

Modern Sismograflar

Modern Sismograflar

DEPREMİN YERİ

Deprem Yerinin Belirlenmesi

Daire yöntemi 1.Olası episantrı çevreleyen 3 kayıt istasyonu belirle 2.Her bir istasyon kayıdından P ve S dalgası varış zamanları arasındaki farkı oku 3.Okunan t S - t P farklarını kullanarak zaman-uzaklık grafiklerinden her bir istasyon için uzaklık belirle 4.Her bir istasyon merkez olmak üzere belirlenen uzaklıkları yarıçap olan daireleri çiz. 5.Üç dairenin kesişim yeri (veya kirişlerin kesişim yeri) episantrın yerini gösterir.

Seismogram 1 Seismogram 2 Seismogram 3

DEPREMLERİN BÜYÜKLÜĞÜ Ve ŞİDDETİ Bir depremin gücünü ölçmek için iki temel yol vardır. Depremin enerjisine göre değerlendirme Oluşan hasara göre değerlendirme 20.yüzyıla kadar depremin büyüklüğünü ölçmek için kullanılabilecek bir aygıt geliştirilemediği için deprem, yeryüzünde sebep olduğu hasara bakılarak tanımlanmaya çalışılmıştır. Depremin insanlar, doğa ve yapılar üzerindeki etkileri, depremin büyüklüğü, odak derinliği, uzaklığı yapıların depreme karşı gösterdiği performansa yerel zemin koşullarına göre değişik olabilmektedir. Şiddet depremin kaynağındaki büyüklüğü hakkında doğru bilgi vermemekle beraber, deprem dolayısıyla oluşan hasarı yukarıda belirtilen etkenlere bağlı olarak yansıtır.

DEPREMLERİN BÜYÜKLÜĞÜ

MERCALLİ ŞİDDET ÖLÇEĞİ

MERCALLİ ŞİDDET ÖLÇEĞİ

Deprem büyüklüğü (magnitüd) Büyüklük (magnitüd) için literatürde çeşitli tanımlamalar mevcuttur. En yaygın olarak kullanılanlar arasında P ve S dalgalarının maksimum genliklerinden yararlanılarak hesaplanan M L (Richter magnitüdü) Yüzey dalgalarının maksimum genliklerinden yararlanılarak hesaplanan M s (Yüzey magnitüdü) Açığa çıkan enerjinin büyüklüğünü bir fay boyunca yırtılmaya neden olan faktörlerin doğrudan bir ölçüsü olarak tanımlayan sismik momente (M o ) göre belirlenen Moment magnitüdü (M w ) sayılabilir (Kramer,1996). Farklı tanımlamalar nedeniyle, deprem sonrası farklı magnitüd değerleri verilebilmektedir.

Deprem büyüklüğü (magnitüd) Yüzey dalgaları magnitüdü cinsinden her iki depremde aynı büyüklükte olmasına karşılık, moment magnitüd ölçeği ile yansıtılabilen, ortaya çıkan enerji miktarı çok farklıdır Bolt un önerisine göre; M L veya mb ; sığ depremlerde 3-7 magnitüd aralığı için M S ; magnitüd aralığı 5-7,5 olan depremler için M W ; 7,5danbüyük magnitüdlü depremler için kullanılabilir.

Deprem büyüklüğü- Richter büyüklüğü Richter, günümüzde yerel magnitüd olarak bilinen büyüklüğü, deprem dışmerkezinden 100 km uzaktaki bir Wood-Anderson sismometresinde (mikron cinsinden) kaydedilmiş maksimum genliğin (10 tabanına göre) logaritması yerel (lokal) magnitüd (M L ) olarak tanımlamıştır (Richter 1958, Bath 1973). Bu yöntem (Richter yerel magnitüd tanımlaması), M < 6,0 ve 600 km'den daha yakın mesafede oluşan depremlerin büyüklüğünü belirlemek için kullanılır. Richter büyüklüğü (M L ) (Richter, 1935) Sığ ve yerel depremler için geliştirilmiştir. Episantırdan 100 km uzakta bulunan bir standart Wood- Anderson sismometresinin kaydettiği S dalgasına ait en büyük amplitüdün logaritmasıdır. A=0.8 s lik doğal periyotta, %80 lik bir sönümleme faktörüne ve 2800 kat statik bir büyütmeye sahip standart bir Wood-Anderson sismografının mm olarak kaydettiği maksimum iz genliğidir. A 0 =0.001mm

Deprem büyüklüğü- Yüzey Dalgası büyüklüğü Yüzey dalgaları yakın istasyonlarda iyi gelişmezler. Depremin kaynağından yaklaşık 500-600 km veya uzak mesafelerde çok iyi gelişirler. Uzak (600-2000 km arası) mesafelerde özellikle cisim dalgalan sönümlenmekte ve saçılmaktadır. Bu durumda, yer hareketinde yüzey dalgalan daha baskın olmaktadır. Dolayısıyla, farklı bir magnitüd ölçeğine ihtiyaç duyulmuştur. Yüzey dalgası magnitüdü, genellikle derinliği 70 km'den daha sığ, uzak (yaklaşık 1000 km'den fazla), orta ve büyük ölçekteki depremlerin boyutunu tanımlamada kullanılır. Periyodu yaklaşık olarak 20 saniye olan Rayleigh dalgalarının yatay bileşenlerinin mikron cinsinden en büyük değerinin logaritması alınarak ''yüzey dalgası magnitüdü" tanımlanmıştır (Gutenberg ve Richter 1936). Bu tür dalgalar yeryüzünde kaynaktan itibaren çok uzak mesafelere yayılabildiği için; uzak mesafelerde yapılan ölçümlerde daha güvenilir ve hassastır. Bu yöntem, M >= 6,0 olan (bazı araştırmacılara göre M >=5,5 olan) depremleri ölçmek için geliştirilmiştir.

Deprem büyüklüğü- Yüzey Dalgası büyüklüğü Yüzey dalgası büyüklüğü (Ms) (Guttenberg ve Richter 1936) Burada; M: Depremin büyüklüğü, a: Rayleigh yüzey dalgasının yatay bileşeninin genliği, T: Periyod (10-30 s aralığında) ve Δ : Oluşan depremin mesafesi (odak uzaklığı-derece olarak)' dır. (yerin çevresi 360 C ye karşılık gelir).

Deprem büyüklüğü- Cisim Dalgası büyüklüğü Derin odaklı depremlerin yüzey dalgalan çoğu zaman bunların yüzey dalgası magnitüdü ile değerlendirilmesine imkan vermeyecek kadar küçük olmaktadır. Cisim dalgası magnitüdü (Gutenberg, 1945) P dalgalarının odak derinliğinden fazla etkilenmeyen ilk birkaç devrinin genliğine dayalı, dünyanın her tarafında kullanılanbir magnitüd ölçeğidir (Bolt, 1989). Cisim dalgası magnitüdü, Burada, A: mikron cinsinden P dalgası genliği ve T: P dalgasının periyodudur (genellikle yaklaşık olarak bir saniye). Δ :Oluşan depremin mesafesi (odak uzaklığı-derece olarak)' dır. (yerin çevresi 360 C ye karşılık gelir).

Deprem büyüklüğü- Sismik Moment (M o ) Depremde oluşan sismik momentin şiddetini ifade etmek üzere geliştirilmiş ölçektir. Moment büyüklük hesabında ilk adım olarak, sismik moment M 0 hesaplanır. M 0 fay yer değiştirmelerinden elde edilebilir. M 0 =μ.a f.d M 0 = Sismik moment (N.m) veya (dyne.cm) (dyne=10-5 N) μ =Yerkabuğu katmanının rijitliği, G=3.10 6 ton/m 2 veya 3x10 10 N/m 2, 2x10 11 (dyn/cm 2 ) (1 kg/cm 2 =10 6 dyn/cm 2 ) A f =Fayın yırtılma alanı (fayın uzunluğu,l x fayın genişliği, W) D=Fayın yırtılan parçasının ortalama yer değiştirmesi (m) (fay atımı)

Deprem büyüklüğü- Moment büyüklüğü (M w ) M w sismik moment ve fay uzunluğu ile ilişkili olarak hesaplanır. Diğer magnitüdlerde fay uzunluğu ile ilişki yoktur. Fay yüzey alanı, sismik moment (M o ) ve M w aşağıdaki gibi belirlenir:

Deprem büyüklüğü- Moment büyüklüğü (M w ) Bu büyüklük türü, diğer ölçeklere göre en güvenilir olanıdır. Bilim dünyasında, eğer bir deprem için moment büyüklüğü hesaplanabilmişse, diğer büyüklük türlerine gerek kalmadığı düşünülür. Belirleme açısından hepsinden çok daha karmaşıktır. Esas olarak depremin oluşumunun matematiksel bir modelinin yapılmasına karşılık gelir. Uygulamada, sadece belli bir büyüklüğün üzerindeki depremler için (M > 4.0) Moment büyüklüğü hesaplanabilir (KOERI, 2006). Deprem sonucu oluşan bir fayın boyutu, depremde açığa çıkan enerjiyle, dolayısıyla depremin büyüklüğü ile ilişkilidir. Bir depremde açığa çıkan enerji miktarı artarken yer sarsıntısının özellikleri her zaman aynı oranda artmamakta ve/veya cilıaz ölçürulerine birebir yansımanıaktadır. Örnek: 1960 San Francisco ve 1960 Şili depremleri (Coduto, 1998). Her iki depremin yüzey dalgası magnitüdü Ms 8.3 olarak hesaplanmasına rağmen Şili depreminin yüzey kırığı, San Francisco depreminden daha büyük boyutta bir yırtılma gerçekleşmiştir. Dolayısıyla, açığa çıkan enerji miktarları da farklı olmuştur. Açığa çıkan enerji miktarlarına göre, San Francisco depremi Mw=7.9, Şili depremi ise, Mw = 9.5 olarak hesaplanmıştır (Boore, 1977). Bu örnekte görüldüğü üzere, bazı magnitüd türleri açığa çıkan enerjiyi tam olarak yansıtamamaktadır.

MAGNİTÜD SATÜRASYONU (DOYGUNLUK) İlk kez Kanomori (1977) tarafından belirtilen magnitüd satürasyonu (doygunluğu) görüşüne göre, klasik olarak genlik ve süre okumalarından saptanan magnitüd ölçekleri ancak fay boyunun 5-50 km olduğu depremlerde gerçek büyüklüğü temsil edebilir. Fay boyunun, magnitüdü belirlerken kullanılan genliğe ait dalga boyunu aştığı hallerde, bu ölçekler doygunluğa ulaşarak temsil özelliklerini yitirirler (Kanamori,1977). Richter: 6-7 arasında M s (yüzey dalgası): 8 civarında doygunluğa ulaşır. Doygunluk sorunu olmayan tek büyüklük ölçeği M w

Deprem Enerjisi (Guttenberg ve Richter 1956) Ms büyüklüğündeki bir birim artış enerjide 32 birim artışa tekabül eder.

Fay atımı- magnitüd ilişkisi Fay kırığı boyunca oluşan maksimum yer değiştirme (MD)

Maksimum yüzey yerdeğiştirmesi-magnitüd ilişkisi

Yüzey fayı uzunluğu, SRL

Maksimum yüzey fayı uzunluğu-magnitüd ilişkisi

Fay genişliği, RW

Fayın yırtılma (kırılma) alanı, RA

Magnitüd ve Şiddet Arasındaki Fark Magnitüd, depremin kaynağında açığa çıkan enerjinin bir ölçüsü; şiddet ise depremin yapılar, insanlar ve çevre üzerindeki etkilerinin bir ölçüsüdür. Magnitüd matematiksel, şiddet ise gözlemsel bir ölçüm şeklidir. Bir örnek vermek gerekirse, 17 Austos 1999 da Marmara Bölgesi nde meydana gelen deprem, 7.4 büyüklüğünde (magnitüd) ve XI şiddetindedir.

Magnitüd ve Şiddet Ampirik İlişki

Deprem Büyüklükleri Depremin kuvvetli yer hareketinin süresi uzun ise, şiddeti de büyür ve ivmenin en büyük değeri şiddete göre değişir. İnsanların hissettiği en küçük ivme 1 cm/s 2 dir. Yapılarda ise, hasarı başlatan ivme 100 cm/s 2 (0.1 g) kadardır. Depremin magnitüdü ile merkezine çok yakın yerlerde oluşan yer hareketinin en büyük ivmeleri yaklaşık olarak şöyledir;

Kökenlerine göre depremler (Özet)

Derinliklerine göre depremler (Özet)

Uzaklıklarına göre depremler (Özet)