GÜÇ SİSTEMLERİNDE MEYDANA GELEN DALGA ŞEKLİ BOZUKLUKLARININ DALGACIK DÖNÜŞÜMÜ YARDIMIYLA TESPİTİ



Benzer belgeler
GÜÇ SİSTEMLERİNDE ENERJİ KALİTESİ BOZUKLUKLARININ EŞZAMANLI TESPİT EDİLMESİ

NDE MEYDANA GELEN DALGA

GERÇEK ZAMANLI GÜÇ KALİTESİ İZLEME SİSTEMLERİ İLE ELEKTRİK DAĞITIM SİSTEMLERİNDEKİ GÜÇ KALİTESİNİN İNCELENMESİ. Hüseyin ERİŞTİ 1, Yakup DEMİR 2

GENETEK Güç, Enerji, Elektrik Sistemleri Özel Eğitim ve Danışmanlık San. Tic. Ltd. Şti.

Görgül Kip Ayrışımı ve Hilbert Dönüşümü Kullanılarak Güç Kalitesi Bozukluklarının Analizi

GÜÇ SİSTEMİ HARMONİKLERİNİN UZAKTAN İZLENEBİLMESİ İÇİN LabVIEW TABANLI GÖRÜNTÜLEME SİSTEMİ GERÇEKLEŞTİRİLMESİ

ELEKTRİK ENERJİ SİSTEMLERİNDE OLUŞAN HARMONİKLERİN FİLTRELENMESİNİN BİLGİSAYAR DESTEKLİ MODELLENMESİ VE SİMÜLASYONU

Gerilim Çentiği Tesbiti İçin Yeni Bir Algoritma Tasarımı Design Of A New Algorithm To Detect Voltage Notch

ENERJĠ ANALĠZÖRLERĠNĠN ÖLÇÜM STANDARTLARINA UYGUNLUĞUNUN ĠNCELENMESĠ

Doğrultucularda ve Eviricilerde Kullanılan Pasif Filtre Türlerinin İncelenmesi ve Karşılaştırılması

Endüstriyel Isı Santrallerinde Enerji Kalitesi Ölçümü ve Değerlendirilmesi, Kahramanmaraş Sütçü İmam Üniversitesi Örneği

ENDÜSTRİYEL BİR TESİSTE DİNAMİK KOMPANZASYON UYGULAMASI

Eleco 2014 Elektrik Elektronik Bilgisayar ve Biyomedikal Mühendisliği Sempozyumu, Kasım 2014, Bursa

Murat Genç Elektrik ve Elektronik Mühendisi TÜBİTAK-UZAY

BİR FAZ BEŞ SEVİYELİ İNVERTER TASARIMI VE UYGULAMASI

ELEKTRİK ENERJİ SİSTEMLERİNDE OLUŞAN HARMONİKLERİN FİLTRELENMESİNİN BİLGİSAYAR DESTEKLİ MODELLENMESİ VE SİMÜLASYONU

ELEKTRİK MOTOR SÜRÜCÜLERİ: PWM AC KIYICILAR

GÜÇ SİSTEM HARMONİKLERİNİN AYRIK HARTLEY DÖNÜŞÜMÜ İLE İNCELENMESİ

Pasif devre elemanları (bobin, kondansatör, direnç) kullanarak, paralel kol olarak tasarlanan pasif

Elena Battini SÖNMEZ Önder ÖZBEK N. Özge ÖZBEK. 2 Şubat 2007

Enerji Verimliliği ve Tasarrufu açısından Kompanzasyon ve Enerji Kalitesi Çalışmaları

Bilecik Şeyh Edebali Üniversitesi Merkez Kampüsünde Güç Kalitesi Analizi ve Değerlendirilmesi

Akım Kontrollü Gerilim Kaynaklı Evirici İle Sürülen RL Yükü Üzerindeki Akım Harmoniklerinin İncelenmesi

EEM HABERLEŞME TEORİSİ NİĞDE ÜNİVERSİTESİ MÜHENDİSLİK FAKÜLTESİ ELEKTRİK-ELEKTRONİK MÜHENDİSLİĞİ BÖLÜMÜ

ÜÇ BOYUTLU M-BANTLI DALGACIK DÖNÜŞÜMÜ İLE TRAFİK TIKANIKLIĞININ BELİRLENMESİ

Sistem Dinamiği. Bölüm 9- Frekans Domeninde Sistem Analizi. Doç.Dr. Erhan AKDOĞAN

EEG Đşaretlerinin FFT ve Dalgacık Dönüşümü ile Analizi

Power Quality Event Classification Using Least Square-Support Vector Machine. Ferhat Uçar Fırat Üniversitesi, Elektrik Eğitimi, Elazığ

Üç Fazlı Sincap Kafesli bir Asenkron Motorun Matlab/Simulink Ortamında Dolaylı Vektör Kontrol Benzetimi

SİNYAL TEMELLERİ İÇİN BİR YAZILIMSAL EĞİTİM ARACI TASARIMI A SOFTWARE EDUCATIONAL MATERIAL ON SIGNAL FUNDAMENTALS

Anahtarlama Modlu DA-AA Evirici

Yrd.Doç. Elektrik-ElektronikMüh. Böl. Mühendislik Fakültesi Bülent Ecevit Üniversitesi Oda No: 111 İncivezMah , Merkez/Zonguldak/Türkiye

KOMPANZASYON SİSTEMLERİNDE HARMONİKLER VE ETKİLERİ

DENEY 3: DTMF İŞARETLERİN ÜRETİLMESİ VE ALGILANMASI

BİLGİSAYAR YÜKLERİNİN HARMONİK AKTİVİTE KESTİRİMİ VE HARMONİK ANALİZİ

ELEKTRİK MÜHENDİSLİĞİ MÜFREDAT REVİZYONU

EVK Enerji Verimliliği, Kalitesi Sempozyumu ve Sergisi Haziran 2015, Sakarya

EEG İşaretlerinin FFT ve Dalgacık Dönüşümü ile Analizi

SÜRÜCÜLÜ SİSTEMLERDE ENERJİ KALİTESİ PROBLEMLERİNİN İNCELENMESİ

GENİŞ SPEKTRUMLU HARMONİK FİLTRE PERFORMANSI DEĞERLENDİRMESİ

Bölüm 1 Güç Elektroniği Sistemleri

Bölüm 13 FSK Modülatörleri.

İŞARET ve SİSTEMLER (SIGNALS and SYSTEMS) Dr. Akif AKGÜL oda no: 303 (T4 / EEM)

Alçak Gerilimde Aktif Filtre ile Akım Harmoniklerinin Etkisinin Azaltılması

ELEKTRİK GÜÇ SİSTEMLERİNDE ENERJİ KALİTESİ

Wavelet Transform and Applications. A. Enis Çetin Bilkent Üniversitesi

The Analysis of Power System Harmonics via Hartley Transform

Darbe Geriliminden Gürültünün Dalgacık Analizi ile Ayrıştırılması Separation of Noise from Impulse Voltage with Wavelet Analysis

5. Elektriksel Büyüklüklerin Ölçülebilen Değerleri

SERAMİK MALZEME DÜZGÜNSÜZLÜKLERİNİN DARBE GÜRÜLTÜSÜ YÖNTEMİ İLE BELİRLENMESİ. Haluk KÜÇÜK (1) Tahir Çetin AKINCI (2)

Journal of Engineering and Natural Sciences Mühendislik ve Fen Bilimleri Dergisi

İşaret ve Sistemler. Ders 1: Giriş

Akreditasyon Sertifikası Eki (Sayfa 1/10) Akreditasyon Kapsamı

Güç elektroniği elektrik mühendisliğinde enerji ve elektronik bilim dalları arasında bir bilim dalıdır.

Direnç(330Ω), bobin(1mh), sığa(100nf), fonksiyon generatör, multimetre, breadboard, osiloskop. Teorik Bilgi

SERİ AKTİF GÜÇ FİLTRESİ için GELİŞTİRİLEN KASKAT BAĞLI ÇOK SEVİYELİ EVİRİCİ ve KONTROL ALGORİTMASI

Özgeçmi-CV BRAHM ALIKAN. Bülent Ecevit Üniversitesi Mühendislik Fak. Elektrik-Elektronik Müh. Böl. Oda No: 111 ncivez Mah Merkez/Zonguldak

GÜR EMRE GÜRAKSIN AFYON KOCATEPE ÜNİVERSİTESİ MÜHENDİSLİK FAKÜLTESİ / BİLGİSAYAR MÜHENDİSLİĞİ BÖLÜMÜ / AFYONKARAHİSAR

DENEY 25 HARMONİK DİSTORSİYON VE FOURIER ANALİZİ Amaçlar :

Kahramanmaras Sutcu Imam University Journal of Engineering Sciences

ÖZGEÇMİŞ ve YAYINLAR LİSTESİ

Ömer Faruk Ertuğrul Accepted: January ISSN : omerfarukertugrul@gmail.com Diyarbakir-Turkey

Sabit Mıknatıslı Senkron Motorlarda Titreşim Sinyaline Dayalı Eksenden Kaçıklık Arızasının Tespiti. Mühendisliği Bölümü 60250, TOKAT

Alternatif Akım İşaretlerinin Ayrık Değerleri ile Etkin Değerleri ve Güçleri Hesaplamayı Sağlayan Yeni Bir Yöntem

Sayısal Filtre Tasarımı

Bulanık Mantık Tabanlı Uçak Modeli Tespiti

1. YARIYIL / SEMESTER 1 2. YARIYIL / SEMESTER 2

A S T E K AKILLI ŞEBEKELER ELEKTRİK SAYAÇLARI UZAKTAN OKUMA SİSTEMİ SMART GRID SMART ENERGY SYSTEMS FOR PLANET S FUTURE

Sertaç BAYHAN YÜKSEK LİSANS TEZİ ELEKTRİK EĞİTİMİ GAZİ ÜNİVERSİTESİ FEN BİLİMLERİ ENSTİTÜSÜ ARALIK 2008 ANKARA

ELEKTRİK ENERJİ SİSTEMLERİNDE OLUŞAN HARMONİKLERİN FİLTRELENMESİNİN BİLGİSAYAR DESTEKLİ MODELLENMESİ VE SİMÜLASYONU

Kaba Küme Yaklaşımıyla Güç Kalitesindeki Bozulma Türlerinin Sınıflandırılması

Bir Boyutlu Yerel İkili Örüntüler ve Ayrık Dalgacık Dönüşümü Tabanlı Yeni Bir Güç Kalitesi Olay Sınıflandırma Yöntemi

Çok Seviyeli Evirici Tabanlı Seri Aktif Güç Filtresi için Geliştirilen Kontrol Algoritması

PARALEL REZONANSIN ENDÜSTRİDE TESPİTİ

ANALOG FİLTRELEME DENEYİ

Tek-faz Yarım Dalga Doğrultucu

Yüksek gerilimli doğru akım iletim sistemleri için aktif doğru akım filtresi tasarımı ve simülasyonu

GERİLİM DÜŞÜMÜNÜN NORMALE DÖNMESİNİN ALÇAK BASINÇLI SODYUM BUHARLI DEŞARJ LAMBASINA ETKİLERİ. Mehlika Şengül

HASAR TANILAMA ANALİZLERİNDE FREKANS-ZAMAN ÇÖZÜMLEMESİ

Elektrik Güç Sistemlerinde Kalite Pasif Filtreler. Yrd. Doç. Dr. M. Mustafa ERTAY DÜZCE ÜNİVERSİTESİ

Türkiye Elektrik İletim Şebekesinde Güç Kalitesi Parametrelerinin Yönetmelik ve Standartlar Işığında Yıllara Göre Değerlendirilmesi

Güç Kalitesi Problemleri ve Çözüm Yöntemleri

Yrd. Doç. Dr. Mustafa NİL

Tek Fazlı Tam Dalga Doğrultucularda Farklı Yük Durumlarındaki Harmoniklerin İncelenmesi

PWM Doğrultucular. AA/DA güç dönüşümü - mikroelektronik devrelerin güç kaynaklarında, - elektrikli ev aletlerinde,

GÜÇ KALİTESİ MONİTÖR ÖLÇÜMLERİ TABANLI GERİLİM ÇUKUR SIKLIK İNDEKSLERİ

BİLECİK ŞEYH EDEBALİ ÜNİVERSİTESİ AKADEMİK ÖZGEÇMİŞ FORMU

DENEY 7 Pasif Elektronik Filtreler: Direnç-Kondansatör (RC) ve Direnç-Bobin (RL) Devreleri

Güç Kalitesi Yenilenebilir Enerji Enerji Dağıtım Sistemleri Ölçüm, Analiz ve Değerlendirme Araştırma ve Geliştirme.

İSTANBUL MEDENİYET ÜNİVERSİTESİ MÜHENDİSLİK FAKÜLTESİ ELEKTRİK-ELEKTRONİK MÜHENDİSLİĞİ BÖLÜMÜ(TÜRKÇE) 4 YILLIK DERS PLANI

SERİ AKTİF GÜÇ FİLTRESİ için GELİŞTİRİLEN KASKAT BAĞLI ÇOK SEVİYELİ EVİRİCİ ve KONTROL ALGORİTMASI

Mustafa ŞEKKELİ* ve A. Serdar YILMAZ. Geliş Tarihi/Received : , Kabul Tarihi/Accepted :

ELEKTRİK ENERJİ SİSTEMLERİNDE OLUŞAN HARMONİKLERİN FİLTRELENMESİNİN BİLGİSAYAR DESTEKLİ MODELLENMESİ VE SİMÜLASYONU

Eleco 2014 Elektrik Elektronik Bilgisayar ve Biyomedikal Mühendisliği Sempozyumu, Kasım 2014, Bursa

Amps 0. msec. msec. 2,51 5,02 7,53 10,04 12,55 15,06 17, ,5 5, 7,5 10,01 12,51 15,01 17,

KİTAP ADI KONU YAYINEVİ SAYFA SAYI DİLİ BASIM TARİH KİTAP TÜR ISBN KONFERANS ADI KONFERANS KONUSU ÜLKE KONFERANS TÜRÜ TARİH

GÜÇ SİSTEMLERİNDE HARMONİKLER VE HARMONİKLERİN ENGELLENMESİ

DOĞU KARADENİZ BÖLGESİNDE SON YILLARDA YAPILAN PATLATMALARLA OLUŞAN DEPREMLERİN AYIRT EDİLMESİ

ISSN : mbaykara@firat.edu.tr Elazig-Turkey

Transkript:

ISSN:36-3 e-journal of New World Sciences Academy 29, Volume: 4, Number: 2, Article Number: 2A3 TECHNOLOGICAL APPLIED SCIENCES Received: December 28 Accepted: March 29 Series : 2A ISSN : 38-7223 29 www.newwsa.com Sertaç Bayhan Derya Yılmaz serbay@baskent.edu.tr University of Başkent Ankara-Türkiye GÜÇ SİSTEMLERİNDE MEYDANA GELEN DALGA ŞEKLİ BOZUKLUKLARININ DALGACIK DÖNÜŞÜMÜ YARDIMIYLA TESPİTİ ÖZET Bu çalışmada, güç sistemlerindeki akım ve gerilim dalga şekillerindeki bozukluklar, dalgacık dönüşümü yardımıyla tespit edilmeye çalışılmıştır. Gerçekleştirilen çalışmada dalgacık dönüşümü hem benzetim yoluyla üretilen dalga şekli bozukluklarına hem de gerçek sistemden ölçülen dalga şekillerine uygulanmıştır. Her iki uygulamada da akım ve gerilim dalga şekli bozuklukları, dalgacık analizi ile kolaylıkla tespit edilmiştir. Analiz sonuçları, dalgacık dönüşümünün özellikle enerji kalitesinin değerlendirildiği ve uzun süreli kayıt gerektiren güç sistemlerinde, akım ve gerilim dalga şekli bozukluklarının tespiti için yararlı sonuçlar üreten bir metot olduğunu göstermektedir. Anahtar Kelimeler: Güç Sistemleri, Dalgacık Dönüşümü, Enerji Kalitesi, Akım, Gerilim DETECTION OF THE WAVEFORM DISTURBANCES IN POWER SYSTEMS USING WAVELET TRANSFORM ABSTRACT In this study, the disturbances of voltage and current waveforms at power systems are detected by using the wavelet transform. In this realized work, the wavelet transform is applied to the waveform disturbances obtained by simulation and the waveforms measured from a real system. The disturbances of waveforms are easily detected with wavelet transform for both of applications. The results of analysis show that wavelet transform is useful method to detect the disturbances of voltage and current waveforms, especially for power systems where evaluation of power quality and long time data recordings are required. Keywords: Power Systems, Wavelet Transform, Power Quality, Current, Voltage

Technological Applied Sciences, 2A3, 4, (2), -62.. GİRİŞ (INTRODUCTION) Son yıllarda enerji kalitesi kavramı hem elektrik enerjisi üreticileri hem de tüketicileri açısından önemli bir konu başlığı haline gelmiştir. Enerji kalitesi problemlerinden biri olan dalga şekli bozukluğu, temel frekanstaki gerilim veya akımın tam sinüsoidaldan uzaklaşması veya dalga şekli üzerinde istenmeyen gürültülerin bulunması olarak tanımlanmaktadır. Dalga şeklinin sinüsoidaldan uzaklaşması, doğrusal olmayan yüklerin elektrik iletim sisteminden çektikleri akımın sinüsoidal olmamasından kaynaklanmaktadır. Özellikle son yıllarda modern ve hassas yüklerin üretim ve tüketim süreçlerinde kullanımının artmasına paralel olarak, dalga şeklinde yaşanan bu bozulmaların sistemler üzerindeki etkisi artmıştır. IEEE 9-99 standardında dalga şekli bozuklukları ve sınır değerleri tanımlanmış ve sınıflandırılmıştır []. Bu standarda göre dalga şekli bozuklukları Tablo de verilmiştir. Tablo. IEEE 9-99 standardına göre dalga şekli bozuklukları (Table. Waveform disturbances according to IEEE 9-99 standard) Kategori Tipik Spektral Gerilim Süresi Özellik Büyüklüğü DA Bileşeni Kalıcı durum -.% Harmonikler - khz Kalıcı durum -2% Ara Harmonikler -6 khz Kalıcı durum -2% Çentik etkisi Kalıcı durum Gürültü geniş band Kalıcı durum -% Tablo incelendiğinde güç sistemlerinde bulunan dalga şekli bozuklukları beş kategoriye ayrılmaktadır. İlk sırada yer alan doğru akım bileşeni, yarım dalga doğrultucular gibi yüklerin şebekeye bağlanması sonucu oluşmaktadır ve transformatörlerin normal çalışma durumlarında doyuma ulaşmalarına neden olmaktadır. Bu da normalin üstünde ısınmaya dolayısıyla da transformatör kayıplarının artmasına ve ömürlerinin azalmasına neden olmaktadır. İkinci sırada yer alan harmonikler ise şebeke frekansının tam katı değerinde frekansa sahip sinüs biçimindeki akım ve gerilimlerdir. Harmonikler, güç sistemine bağlanan doğrusal olmayan yüklerin şebekeden doğrusal olmayan akım çekmelerinden kaynaklanmaktadır ve dalga şeklinin sinüsoidalden uzaklaşmasına neden olmaktadır. Üçüncü sırada yer alan ara harmonikler, şebeke frekansının tam katları olmayan frekans dağılımına sahip akım ve gerilimlerdir. Ara harmoniklerin temel kaynağı statik frekans çeviricileri ve ark fırınlarıdır. Dördüncü sırada yer alan çentik etkisi, güç elektroniği elemanlarının normal çalışma durumunda bir fazdan diğerine geçmeleri sırasında oluşan periyodik gerilim bozulmalarıdır. Son sırada yer alan gürültüler, güç sistemlerinde bulunan 2 khz den küçük bir frekans dağılımına sahip işaretler olarak tanımlanmaktadır. Güç sistemlerindeki gürültüler, güç elektroniği elemanları ve kontrol devrelerinden kaynaklanabilmektedir. Yukarıda sayılan dalga şekli bozuklukları; özellikle hassas yüklerin arızalanmasına, transformatör ve motorlar üzerindeki enerji kayıplarının artmasına ve devre koruma elemanlarının yanlış çalışmasına neden olmaktadır. Gerekli önlemler alınmadan önce, bu tür bozulmaların kaynakları ve sebepleri belirlenmelidir. Özellikle bozulmanın türü doğru şekilde sınıflandırılırsa, bozulmanın etkileri tanımlanabilir, bozulmanın kaynağı analiz edilebilir ve böylece uygun çözüm yöntemleri geliştirilebilir. Literatür incelendiğinde, işaret işleme yöntemlerindeki gelişmelere paralel olarak, enerji kalitesi bozulmalarının tespitinde de farklı yöntemler önerilmeye başlanmıştır [2-]. Bu yöntemlerden 2

Technological Applied Sciences, 2A3, 4, (2), -62. hızlı Fourier dönüşümü ve ayrık Fourier dönüşümü bazı çalışmalarda harmoniklerin analizi için önerilirken [6-], özellikle son yıllarda dalgacık dönüşümü birçok enerji kalitesi probleminin analizi için yeni bir zaman-frekans dönüşüm yöntemi olarak önerilmiştir [2-23]. Yapılan çalışmalar incelendiğinde dalgacık dönüşümü: Güç sistemlerinde yaşanan geçici olayların tespitinde [2] Enerji kalitesi bozulmalarının tespitinde veri sıkıştırma yöntemi olarak [3] Enerji kalitesi bozulmalarının eşzamanlı tespiti için hazırlanan yazılımlarda [4 ve ] Enerji kalitesi bozulmalarının tespiti ve sınıflandırılmasında [6, 7, 8 ve 9] Güç sistemlerinde meydana gelen harmoniklerin analizinde [2, 2 ve 22] Güç sistemlerinde meydana gelen fliker olayının analizinde [23] kullanılmaktadır. 2. ÇALIŞMANIN ÖNEMİ (RESEARCH SIGNIFICANCE) Gerçekleştirilen bu çalışmada akım ve gerilim dalga şekli bozuklukları dalgacık dönüşüm yöntemi yardımıyla tespit edilmiştir. Bugüne kadar yapılan çalışmalar incelendiğinde, bunların güç sistemlerinde bulunan harmonikler ve geçici durumların tespiti üzerinde yoğunlaştıkları görülmektedir. Bu çalışmalarda, analizi gerçekleştirilen sinyaller ya benzetim tekniği ile elde edilmiş ya da gerçek sistemlerden ölçülen sinyaller kullanılmıştır. Bu çalışmada ise iki farklı veri yapısı üzerinden inceleme gerçekleştirilerek dalgacık dönüşümünün başarısı incelenmiştir. Bunlardan ilkinde, Matlab&Simulink ortamında benzetim tekniği ile elde edilen değişik güç sistemlerinin akım ve gerilim dalga şekilleri kaydedilmiş ve yine Matlab ortamında analiz edilmiştir. İkincisinde ise, değişik yükleri besleyen bir dağıtım panosundan, akım ve gerilim verileri tasarlanan bir ölçme kartı yardımıyla okunmuş ve bir veri toplama kartı aracılığıyla bilgisayara kaydedilmiştir. Kaydedilen bu verilerin daha sonra Matlab ortamında analizi gerçekleştirilmiştir. Her iki veri yapısı üzerinde gerçekleştirilen analiz sonuçlarından, dalgacık dönüşüm yönteminin güç sistemlerinde meydana gelen dalga şekli bozukluklarının tespitinde başarılı olduğu görülmüştür. 3. DALGACIK DÖNÜŞÜMÜ (WAVELET TRANSFORM) Fourier dönüşümü; zaman içinde durağan kabul edilen sinyallerin analizleri için uygunken, Dalgacık dönüşümü; durağan olmayan sinyallerin analizinde kullanılan ve bir sinyali farklı ölçeklerdeki çözünürlük seviyelerinde tek bir fonksiyona genişleterek ayrıştıran önemli bir matematiksel yöntemdir [24]. Fourier dönüşümü bir sinyalin harmonik bileşenleri hakkında bilgi verirken herhangi bir zaman bilgisi içermemektedir. Dolayısıyla herhangi bir anda meydana gelen özel durumları gözlemlemek mümkün değildir [2]. Dalgacık dönüşümünde ise verilen bir sinyalin aynı anda hem zaman hem de frekans bilgisi elde edilmekte ve bunun sonucu olarak frekansı zamanla değişen sistemlerin analizi ve geçici durum analizleri oldukça hassas bir şekilde yapılmaktadır. Bu nedenle dalgacık dönüşümünün enerji kalitesindeki bozulmaları belirleyebilme ve onlara ait özellikleri çıkarmada önemli üstünlükleri vardır. Dalgacık dönüşümü sürekli ve ayrık olmak üzere iki farklı şekilde incelenebilir. Sürekli dalgacık dönüşümü, sinyalle ilgili birçok detay verdiğinden ve hesaplamada bütün ölçekleri kullandığından hesaplama zamanını büyütmektedir. Ayrık dalgacık dönüşümünde ise bütün ölçekler yerine ayrık zaman aralıkları ve ölçekleri için dalgacık 3

Technological Applied Sciences, 2A3, 4, (2), -62. katsayıları hesaplanmakta, bu sayede sürekli dalgacık dönüşümüne göre daha az zaman harcanmaktadır. Buna karşın detay kaybı fazla değildir. Bu nedenle hesaplama süresinin önemli olduğu ve çok fazla detaya ihtiyaç olmayan sinyaller için ayrık dalgacık dönüşümü tercih edilmektedir. Verilen bir f(t) sinyalinin K seviye ayrık dalgacık dönüşümü, hem ölçek hem de dalgacık fonksiyonu terimleriyle aşağıdaki gibi tanımlanabilir: ck ( n) ( t n) + = k / 2 k f ( t) = ϕ d ( n)2 ψ (2 t n) () n n K k k Burada c K, K seviye ölçekleme katsayısını, d k, k seviye dalgacık katsayısını, φ(t), ölçek fonksiyonunu, ψ(t) dalgacık fonksiyonunu, K dalgacık dönüşümünün en yüksek seviyesini ve t zamanı temsil etmektedir. Ölçek fonksiyonu ve dalgacık fonksiyonu, çok çözünürlük ayrışımında farklı çözünürlük seviyelerinde işareti ayrıştırmak için kullanılmaktadır. Ayrıştırılmış sinyalin dalgacık fonksiyonu detay katsayılarını (d k ), ölçek fonksiyonu ise yaklaşım katsayılarını (c k ) oluşturmaktadır. c = k + ( n) h( m 2n) ck ( n) (2) m d = k + ( n) g( m 2n) ck ( n) (3) m Burada h ve g sırasıyla alçak geçiren ve yüksek geçiren filtre katsayılarıdır. Şekil, bir sinyalin 3 seviyeli çok çözünürlük ayrışımını göstermektedir. Burada c 3, en düşük frekans bandının yaklaşım katsayısını ve d -d 3 ise yüksek frekans bantlarının detay katsayılarını temsil etmektedir. Sinyalin bu şekilde farklı ölçeklere ayrılması ile her frekans bandı ayrı bir şekilde analiz edilebilmektedir. Ayrıca ayrık dalgacık dönüşümü sonucunda elde edilen yaklaşım ve detay katsayıları, yeniden birleştirilerek ana sinyal elde edilebilmektedir. Bu işlem ters dalgacık dönüşümü olarak adlandırılmaktadır [26]. Şekil. Üç seviyeli çok çözünürlük ayrışımı (Figure. Three-level multi-resolution decomposition) 4. DENEYSEL ÇALIŞMALAR (EXPERIMENTAL STUDIES) Deneysel çalışmalar benzetim uygulaması ve gerçek uygulama olmak üzere iki ayrı veri yapısı üzerinde test edilmiş ve dalgacık dönüşüm tekniğinin her iki veri yapısı üzerinde uygulanabilirliği incelenmiştir. 4

Technological Applied Sciences, 2A3, 4, (2), -62. 4.. Benzetim Uygulaması (Simulation Application) Gerçekleştirilen benzetim uygulamasında Matlab&Simulink ortamında değişik elektriksel sistemler benzetim tekniği ile oluşturulmuş ve bu sistemler üzerinde çeşitli dalga şekli bozuklukları meydana getirilmiştir. Dalga şekli bozukluğu meydana getirilen akım ve gerilim dalga şekilleri sabit diske kaydedilmiş ve sonradan yine Matlab programı yardımıyla analizi gerçekleştirilmiştir. Elde edilen işaretlerin örnekleme frekansı.6 khz ve benzetim süresi 2 sn olarak belirlenmiştir. Dalga şekli bozukluklarının dalgacık analizleri, türüne göre 2 veya 3 seviye db4 dalgacığı ile ayrıştırılarak gerçekleştirilmiştir. Şekil 2 de kısa süreli bir kapasitör bankının anahtarlanması sonucu oluşan dalga şekli bozukluğu görülmektedir. Orijinal sinyal için örnek sayısının beş yüze yaklaştığı bir anda meydana gelen bozulma iki seviye db4 dalgacık filtresi kullanılarak ayrıştırılmış ve o andaki bozulma d ve d 2 detay katsayılarında rahatlıkla görülmüştür. f(t) d d2 c2 2-2 8 6 24 32-4 8 2 6 2-2 2 4 6 8-2 4 6 8 Örnek Sayısı Şekil 2. Bir kapasitör bankının anahtarlanması sonucu meydana gelen dalga şekli bozukluğu ve ayrık dalgacık dönüşümü sonuçları (Figure 2. Waveform disturbances and the results of discrete wavelet transform after a capacitor bank switching) Burada meydana gelen bozulma orijinal işarette de fark edilmektedir. Ancak enerji kalitesi uygulamalarında yapılan ölçüm ve analizlerin güvenilir olması, kullanılan ölçüm cihazlarının ve analiz yönteminin kaliteli ve doğru olmasının yanında, ölçüm ve analizin sürekliliğini de gerektirmektedir. Bu nedenle, ölçüm yapılan sistem sürekli olarak gözlem altında tutulduğu için enerji kalitesi uygulamalarında kaydedilen veriler büyük boyutlarda olmaktadır. Kaydedilen verinin büyük boyutlu olması meydana gelen bu bozulmaların orijinal işaret üzerinden göz ile takibini zorlaştırmaktadır. Ayrık dalgacık dönüşümü kullanılarak, gerçek zamanda yapılan uygulamalarda dalga şeklinde yaşanan bu bozulmalar anlık olarak rahatlıkla tespit edilebilir. Şekil 3 te benzetim tekniği ile elde edilen üç faz altı darbeli bir doğrultucunun şebeke gerilimi üzerindeki çentik etkisi görülmektedir. Bu sinyal iki seviye db4 dalgacık filtresi kullanılarak ayrıştırılmıştır. Sinyalin d ve d 2 detay katsayıları, çentik etkisi sebebiyle oluşan bu yüksek frekanslı bozulmaları rahatlıkla tespit

Technological Applied Sciences, 2A3, 4, (2), -62. edebilmektedir. Burada iki seviye kullanılmakla birlikte, tek seviyeli ayrıştırmanın da bu tür bozulmaların tespitinde yeterli olacağı görülmektedir. f(t) - 8 6 24 32 2 d -2 4 8 2 6 d2-2 4 6 8 c2-2 4 6 8 Örnek Sayısı Şekil 3. Üç faz altı darbeli doğrultucunun şebeke gerilimi üzerindeki etkisi ve ayrık dalgacık dönüşümü sonuçları (Figure 3. Effect of three phase six pulse rectifier on network voltage and wavelet transform results) Şekil 4 te bir fazlı, doğrusal olmayan bir güç sisteminin benzetimi sonucu elde edilen gerilim dalga şekli görülmektedir. Görüldüğü üzere gerilim dalga şekli, temel bileşen ile harmonik bileşenlerin toplamından oluşmaktadır. Bunun sonucunda gerilim dalga şekli tam sinüsoidalden uzaklaşmıştır. Harmonikler orijinal sinyalin tam katı frekansa sahip sinyal bileşenleri olduğundan, değişik frekanslara sahiptirler. Burada yapılan 2 seviyeli ayrıştırma ile sadece harmoniklerin güç sistemlerindeki varlığı tespit edilmiştir. Ancak bir güç sisteminde harmoniklerin ölçümü gerçekleştirilecekse daha çok seviyeli ayrıştırma tercih edilmelidir ki farklı frekanslara sahip harmonik bileşenleri elde edilebilsin. Şekil de gürültü bindirilmiş bir gerilim dalga şekli görülmektedir. Bu dalga şekli üç seviye db4 dalgacık filtresi kullanılarak ayrıştırılmış ve orijinal sinyal üzerindeki gürültüler tespit edilmiştir. Gürültü çok geniş bir frekans spektrumuna sahiptir. Dalgacık analizi yalnızca gürültünün varlığını belirlemekle kalmaz, istenirse gürültüyü bastırmak amacıyla da kullanılabilir. Gürültü bastırma amacıyla yapılmış olan birçok dalgacık uygulamasında sinyalin birinci detay katsayısı (d ) sinyalden çıkarılarak gürültüyü gösteren yüksek frekanslı kısım kaldırılmış olur. Şekil de sinyalin birinci detay katsayısı (d ) sinyal üzerindeki gürültünün neredeyse tamamını oluşturmaktadır. Daha düşük frekans bantlarındaki gürültü ise (d 2, d 3 ) daha düşük genlikli olarak yer almaktadır. Buradaki uygulamada sinyal üzerindeki gürültünün varlığının tespiti amaçlanmıştır. Eğer kaynağı belli olan, belirli bir frekansa sahip bir gürültü bileşeni araştırılacak olunursa, ayrıştırma seviyesi ilgilenilen frekansın bulunduğu aralığın elde edilmesini sağlamak üzere artırılabilir. 6

Technological Applied Sciences, 2A3, 4, (2), -62. 2 f(t) -2 8 6 24 32 d - 4 8 2 6 d2-2 4 6 8 c2-2 4 6 8 Örnek Sayısı Şekil 4. Bir fazlı doğrusal olmayan güç sistemlerindeki gerilim dalga şekli ve ayrık dalgacık dönüşümü sonuçları (Figure 4. Voltage waveform of one phase non-linear power systems and wavelet transform results) f(t) - 8 6 24 32 d - 4 8 2 6 2 d2-2 2 4 6 8 d3-2 3 4 c3-2 3 4 Örnek Sayısı Şekil. Gürültü bindirilmiş gerilim dalga şekli ve ayrık dalgacık dönüşümü sonuçları (Figure. Voltage waveform with noise and discrete wavelet transform results) 4.2. Gerçek Uygulama (Real Application) Gerçekleştirilen bu çalışmada bir dağıtım panosundan alınan akım ve gerilim bilgileri, tasarlanan bir ölçme kartı aracılığıyla okunmuştur. Tasarlanan ölçme kartı Şekil 6 da görülmektedir. Ölçme kartının görevi gerilim ve akım sinyallerini veri toplama kartının girişine uygun düzeye dönüştürmektir. Bu amaçla akım bilgisi : 7

Technological Applied Sciences, 2A3, 4, (2), -62. dönüştürme oranına sahip akım transformatörü ile gerilim bilgisi ise akım transformatörünün bağlı olduğu faza bağlanan 2/3. V gerilim transformatörü yardımıyla okunmaktadır. Şekil 6. Tasarlanan ölçme kartının fotoğrafı (Figure 6. Photograph of the measurement board designed) Ölçme kartının çıkışından elde edilen düşük seviyeli akım ve gerilim sinyalleri veri toplama kartının analog giriş kanallarına uygulanmıştır. Veri toplama kartı olarak National Instruments firmasına ait 67E model veri toplama kartı kullanılmıştır. Veri toplama kartı yardımıyla ölçme kartından okunan veriler eş zamanlı olarak bilgisayara aktarılmıştır. Veri toplama kartı yardımıyla 2 örnek/saniye/kanal örnekleme hızıyla okunan veriler, bilgisayarda LabVIEW programı ile hazırlanan bir yazılım sayesinde sabit diske kaydedilmiştir. Kaydedilen akım ve gerilim dalga şekilleri daha sonra Matlab programı yardımıyla analiz edilmiştir. Şekil 7 de bir dağıtım panosundan ölçülen gerilim dalga şekli görülmektedir. Dalgacık dönüşümün benzetim çalışmasındaki başarısı gerçek sistemler üzerinde de tespit edilmiştir. Uzun süreli kayıt yapılan güç sistemlerinde bu tür bozulmaların orijinal sinyal üzerinden takibi neredeyse imkansızdır. Çünkü kaydedilen verinin uzun olması güç sistemlerinde yaşanan bozulmaların tespitinin kullanıcı tarafından yapılmasını hem zorlaştıracak hem de teknik personelin uzun süre bu işle meşgul olmasına neden olacaktır. Şekil 7 de görüleceği üzere dalgacık dönüşümü sayesinde bu bozulmalar kolaylıkla zamana göre tespit edilebilmekte ve bu sayede güç sisteminde yaşanan olumsuz durumlar teknik personel tarafından rahatlıkla izlenebilmektedir. 8

Technological Applied Sciences, 2A3, 4, (2), -62. Şekil 7. Gerilim dalga şekli bozukluğunun ayrık dalgacık dönüşümü yardımıyla tespit edilmesi (Figure 7. Detection of voltage waveform disturbances using discrete wavelet transform) Orjinal sinyalde yaşanan bozulmalardan biri Şekil 8 de ayrıntılı olarak görülmektedir. Görüldüğü üzere bu tür uzun süre kayıt gerektiren güç sistemlerinde dalgacık dönüşümü bozulma anını uzun veri kümeleri arasından çok açık bir şekilde tespit edebilmektedir. Bu yöntem kullanılarak geliştirilecek algoritmalar yardımıyla yalnızca bozulmanın olduğu sinyal bölgeleri kaydedilerek uzun süreli veri kaydının yarattığı olumsuz durumlar ortadan kaldırılabilir. Ayrıca bozulmanın tespiti ile birlikte uyarı verebilecek çeşitli izleme sistemlerinin tasarlanması da mümkündür. Güç sisteminde araştırılmak istenen bozulmanın sahip olduğu frekansa göre dalgacık dönüşümünde kullanılan ayrıştırma seviyesi sayısı değiştirilebilir. Örneğin Şekil 9 da doğrusal olmayan bir yükün şebekeden çektiği akım dalga şekli görülmektedir. Akım dalga şeklinin frekansı temel dalganın frekansından daha büyük olmakla birlikte aynı zamanda birden çok ve faklı frekans bileşenine sahiptir. Bu tür durumlarda bozulmanın sahip olduğu tüm frekansları inceleyebilmek için ayrıştırma seviyesi artırılabilir. Dalgacık dönüşümü dinamik yapısı sebebiyle buna kolaylıkla izin vermektedir. Bu çalışmanın konusuna uygun olarak, sadece ölçüm yapılan güç sisteminde harmoniklerin varlığı tespit edildiği için Şekil 9 da verilen akım dalga şekli iki seviye db4 dalgacık filtresi kullanılarak ayrıştırılmıştır. Ayrıştırma sonucunda d ve d 2 detay katsayıları incelendiğinde orijinal sinyal üzerinde farklı frekans bandındaki sinyallerin varlığı kolaylıkla tespit edilmiştir. 9

Technological Applied Sciences, 2A3, 4, (2), -62. f(t) -.9.92.94.96.98 2 2.2 2.4 2.6 2.8 2. x 4 2 d -2.9.96.97.98.99..2.3.4. x 4 d2-47 48 48 49 49 2 2 c2-47 48 48 49 49 2 2 Örnek Sayısı Şekil 8. Gerilim dalga şekli bozukluğunun detaylı şekilde görüntülenmesi (Figure 8. Detailed monitoring of voltage waveform disturbances) f(t) - 32 64 96 28 6 92 224 26 288 32 2 d -2 6 32 48 64 8 96 2 28 44 6 d2-6 32 48 64 8 c2-6 32 48 64 8 Örnek Sayısı Şekil 9. Akım dalga şekli bozukluğunun ayrık dalgacık dönüşümü yardımıyla tespit edilmesi (Figure 9. Detection of current waveform disturbances using discrete wavelet transform). SONUÇ VE DEĞERLENDİRME (RESULT AND CONCLUSION) Bu çalışmada, güç sistemlerinde bulunan harmonikler, ara harmonikler, çentik etkisi ve gürültü bozulmalarına sahip akım ve gerilim dalga şekilleri dalgacık dönüşümü ile incelenmiştir. Tüm bu 6

Technological Applied Sciences, 2A3, 4, (2), -62. bozulmalar hem benzetim yoluyla elde edilen hem de gerçek sistemden ölçülmüş olan veriler üzerinden kolaylıkla tespit edilebilmiştir. Bu çalışma incelediği bozulma türlerinin sayısı, içeriği ve de hem benzetim hem de gerçek sistemler üzerinden yapılan ölçüm verilerini kullanması sebebiyle bu güne kadar yapılmış olan çalışmalardan farklıdır. Çalışmanın sonuçları dalgacık dönüşümünün, zaman ve frekans bilgisini bir arada vermesi ve yazılımının oluşturulmasında sağladığı kolaylıklar sebebiyle güç sistemlerindeki bozulmaların tespitinde oldukça yararlı bir teknik olduğunu göstermiştir. Bu tespit yöntemi, özellikle uzun süreli kayıtların alındığı, enerji kalitesinin belirlenmesine yönelik ölçümlerin yapıldığı sistemlerde kullanılabilir. Ayrıca geliştirilecek yazılımlar sayesinde bozulmaların sınıflandırılması ve bozulma anlarının kullanıcıya bir uyarı şeklinde yansıtılması sağlanabilir. KAYNAKLAR (REFERENCES). IEEE Recommended Practices and Requirements for Harmonic Control in Electrical Power Systems. IEEE Standard 9-99. 2. Poisson, O., Rioual, P., and Meunier, M., (999). New Signal Processing Tools Applied to Power Quality Analysis. IEEE Transactions on Power Delivery, 4(2), 6-66. 3. Vega, Y.,T., Roig, F.,V., and Segundo, H., (27). Evolution of Signal Processing Techniques in Power Quality. 9 th International Conference Electrical Power Quality and Utilisation, Barcelona. 4. Katsaprakakis, D., Christakis D., Zervos, A., and Voutsinas, S., (28). A Power-Quality Measure. IEEE Transactions on Power Delivery, 23(2), 3-6.. Shin, Y., Powers, E., Grady, M., and Arapostathis, A., (26). Power Quality Indices for Transient Disturbances. IEEE Transactions on Power Delivery, 2(), 23-26. 6. Demirbaş, Ş. ve Bayhan S., (29). Güç Sistemi Harmoniklerinin Uzaktan İzlenebilmesi için LabVIEW Tabanlı Görüntüleme Sistemi Gerçekleştirilmesi. e-journal of New World Sciences Academy, Technological Applied Sciences, 4(), -66. 7. Boyrazoğlu, B., Ünsar, Ö. ve Polat, B., (27). Elektrik İletim Sisteminde Akım ve Gerilimdeki Harmonik Bileşenlerin Gerçek Zamanlı Ölçülmesi. II.Enerji Verimliliği ve Kalitesi Sempozyumu, Kocaeli, 43-47. 8. Haliloğlu, B., Buhan, S. ve Boyrazoğlu, B., (27). Elektrik İletim Sisteminde Güç Kalitesi Bozulmalarının Tespiti ve Ölçülmesi. II.Enerji Verimliliği ve Kalitesi Sempozyumu, Kocaeli, 334-339. 9. Lin, H., (24). Remote Power System Harmonics Measurement and Monitor via the Internet. IEEE Conference on Cybernetics and Intelligent Systems, Singapure, 474-479.. Lin, H., (26) An Internet-Based Graphical Programming Tool for Teaching Power System Harmonic Measurement, IEEE Transactions on Education, 49(3),44-44.. Sutherland, P., (99). Harmonic Measurements in Industrial Power Systems. IEEE Transactions on Industry Applications, 3(), 7-83. 2. Wilkinson, W.A. and Cox, M.D., (996). Discrete Wavelet Analysis of Power System Transients. IEEE Transactions on Power Delivery, (4), 238-244. 3. Santoso, S., Powers, E., and Grady, W., (997). Power Quality Disturbance Data Compression using Wavelet Transform Methods. IEEE Transactions on Power Delivery, 2(3),2-27. 6

Technological Applied Sciences, 2A3, 4, (2), -62. 4. Karimi, M., Mokhtari, H., and Iravani, M., (2). Wavelet Based On-Line Disturbance Detection for Power Quality Applications, IEEE Transactions on Power Delivery, (4), 22-22.. Radil, T., Matz, V., Janeiro, F., Ramos, P., and Serra, A., (27). On-line Detection and Classification of Power Quality Disturbances in a Single-phase Power System. POWERENG, Portugal, 73-78. 6. Hu, G., Xie, J., and Zhu, F., (2). Classification of Power Quality Disturbances Using Wavelet and Fuzzy Support Vector Machines. Proceedings of the Fourth International Conference on Machine Learning and Cybernetics, Guangzhou, 398-3984. 7. Hua, L., Yuguo, W., and Wei, Z., (27). Power Quality Disturbances Detection and Classification Using Complex Wavelet Transformation and Artificial Neural Network. Proceedings of the 26 th Chinese Control Conference, China, 28-22. 8. Poisson, O., Rioual, P., and Meunier, M., (998). Detection and Measurement of Power Quality Disturbances Using Wavelet Transform. 8 th International Conference on Harmonics and Quality of Power, Greece 2-3. 9. Gaouda, A., Salana, M., Sultan, M., and Chikhani, A., (999). Power Quality Detection and Classification Using Wavelet- Multiresolution Signal Decomposition. IEEE Transactions on Power Delivery, 4(4), 469-476. 2. Diego, R. and Barros J., (26). A Two-Stage Method for Harmonic Measurement Using the Wavelet-Packet Transform. Electrotechnical Conference 26, Spain, 83-8. 2. Barros, J. and Diego, R., (28). Analysis of Harmonic in Power Systems Using the Wavelet-Packet Transform. IEEE Transactions on Instrumentation and Measurement, 7(), 63-69. 22. Eren, L., Unal, M., and Devaney, M., (27). Harmonic Analysis Via Wavelet Packet Decomposition Using Special Elliptic Half- Band Filters. IEEE Transactions on Instrumentation and Measurement. 6(6), 2289-2293. 23. Wen, X. and Chen, Y., (27). Measurement of Voltage Fluctuation and Flicker in Electric Power System Based on Wavelet Transform. Proceedings of the 27 International Conference on Wavelet Analysis and Pattern Recognition, China, 822-826. 24. Uyar, M., Yıldırım, S. ve Gençoğlu, M.T., (27). Güç Kalitesi Bozulmalarının Sınıflandırılmasında Dalgacık Dönüşümüyle Enerji Dağılımına Dayalı Özelliklerin İncelenmesi. 2. Elektrik, Elektronik, Bilgisayar, Biyomedikal Mühendisliği Ulusal Kongresi, Eskişehir, 96-6. 2. Özgenel, O., Önbilgin, G. ve Kocaman, Ç., (24). Wavelets and Its Applications of Power System Protection. G.Ü. Fen Bilimleri Dergisi, 7(2), 77-9. 26. Bayhan, S. ve Yılmaz D., (28). Güç Sistemlerindeki Dalga Şekli Bozukluklarının Tespiti. Elektrik Elektronik-Bilgisayar Mühendisliği Sempozyumu. Bursa/Türkiye, 2-24. 62