TEMEL ELEKTRONİK. Kondansatör, DC akımı geçirmeyip, AC akımı geçiren devre elemanıdır.



Benzer belgeler
Bir bobinin omik direnci ile endüktif reaktansının birlikte gösterdikleri ortak etkiye empedans denir,

DENEY 4. KONDANSATÖRLERİN SERİ VE PARALEL BAĞLANMASI. 1) Seri ve paralel bağlı kondansatör gruplarının eşdeğer sığasının belirlenmesi.

<<<< Geri ELEKTRİK AKIMI

Analog Elektronik. Öğr.Gör. Emre ÖZER

Sensörler Öğr. Gör. Erhan CEMÜNAL Thomas Alva Edison

Alternatif Akım Devreleri

KONDANSATÖRLER Farad(F)

SAKARYA ÜNİVERSİTESİ TEKNOLOJİ FAKÜLTESİ ELEKTRİK-ELEKTRONİK MÜHENDİSLİĞİ BÖLÜMÜ ELEKTRİK ELEKTRONİK MÜHENDİSLİĞİNE GİRİŞ LABORATUARI

DOĞRU AKIM DEVRE ANALİZİ Ö. ŞENYURT - R. AKDAĞ

DOĞRU AKIM Doğru Akım Kavramları Doğru Akımın Tanımı

DOĞRU AKIM Doğru Akım Kavramları Doğru Akımın Tanımı

MEKATRONİĞİN TEMELLERİ TEMEL ELEKTRONİK KAVRAMLARI

TEMEL ELEKTRONİK VE ÖLÇME -1 DERSİ 1.SINAV ÇALIŞMA NOTU

ALTERNATİF AKIMIN TEMEL ESASLARI

13. ÜNİTE AKIM VE GERİLİM ÖLÇÜLMESİ

14. SİNÜSOİDAL AKIMDA DİRENÇ, KAPASİTE, İNDÜKTANS VE ORTAK İNDÜKTANSIN ÖLÇÜLMESİ

Buna göre, bir devrede yük akışı olabilmesi için, üreteç ve pil gibi aygıtlara ihtiyaç vardır.

ÜNİTE 5 KLASİK SORU VE CEVAPLARI (TEMEL ELEKTRONİK) Transformatörün tanımını yapınız. Alternatif akımın frekansını değiştirmeden, gerilimini

Makine Mühendisliği İçin Elektrik-Elektronik Bilgisi. Ders Notu-4 Kondansatörler ve Bobinler

ÖĞRENME ALANI : FĐZĐKSEL OLAYLAR ÜNĐTE 3 : YAŞAMIMIZDAKĐ ELEKTRĐK (MEB)

Elektrik Devre Temelleri 11

F AKIM DEVRELER A. DEVRE ELEMANLARI VE TEMEL DEVRELER

TEMEL ELEKTRONİK Kaya

YAŞAMIMIZDAKİ ELEKTRİK

6. DİRENÇ ÖLÇME YÖNTEMLERİ VE WHEATSTONE KÖPRÜSÜ

Elektrik Devre Temelleri 11

A- TEMEL KAVRAMLAR 1- Elektrik Akımı: 2- Gerilim:

ELK101 - ELEKTRİK ELEKTRONİK MÜHENDİSLİĞİNE GİRİŞ

Buna göre, bir devrede yük akışı olabilmesi için, üreteç ve pil gibi aygıtlara ihtiyaç vardır.

9. Güç ve Enerji Ölçümü

Ders 2- Temel Elektriksel Büyüklükler

ELEKTRONİK DEVRE TASARIM LABORATUARI-I MOSFET YARI İLETKEN DEVRE ELEMANININ DAVRANIŞININ İNCELENMESİ

İletken, Yalıtkan ve Yarı İletken

Sensörler. Yrd.Doç.Dr. İlker ÜNAL

Temel Kavramlar. Elektrik Nedir? Elektrik nedir? Elektrikler geldi, gitti, çarpıldım derken neyi kastederiz?

Chapter 12. Elektrik Devreleri. Principles of Electric Circuits, Conventional Flow, 9 th ed. Floyd

ÖLÇÜ TRANSFORMATÖRLERİ

SIĞA VE DİELEKTRİKLER

AMASYA ÜNİVERSİTESİ TEKNOLOJİ FAKÜLTESİ ELEKTRİK-ELEKTRONİK MÜHENDİSLİĞİ BÖLÜMÜ

Elektrik Müh. Temelleri

TEMEL ELEKTRİK-ELEKTRONİK DERSİ SORU BANKASI

2. HAFTA BLM223 DEVRE ANALİZİ. Yrd. Doç Dr. Can Bülent FİDAN.

T.C. ERCĠYES ÜNĠVERSĠTESĠ MÜHENDĠSLĠK FAKÜLTESĠ MEKATRONĠK MÜHENDĠSLĠĞĠ BÖLÜMÜ TEMEL ELEKTRĠK DEVRE LABORATUARI

2- Tristör ile yük akımı değiştirilerek ayarlı yükkontrolü yapılabilir.

Ders 3- Direnç Devreleri I

DİRENÇ NEDİR? MELEK SATILMIŞ 190 GAMZE ÖZTEKİN 12

İstanbul Teknik Üniversitesi IEEE Öğrenci Kolu

4. ÜNİTE ALTERNATİF AKIMDA GÜÇ

Cisimlerin değişik yöntemlerle (+)pozitif veya (-) negatif elektrik yükü kazanmalarına elektriklenme denir. Negatif yük sayısı= 5

T.C. ERCİYES ÜNİVERSİTESİ MÜHENDİSLİK FAKÜLTESİ MEKATRONİK MÜHENDİSLİĞİ BÖLÜMÜ TEMEL ELEKTRİK DEVRE LABORATUVARI TEMEL DEVRE TEOREMLERİNİN UYGULANMASI

DA DEVRE. Ege Üniversitesi Ege MYO Mekatronik Programı ANALIZI

ELK273 Elektrik ve Elektronik Mühendisliğinin Temelleri Ders 6- Kondansatör

ELEKTRİK AKIMI Elektrik Akım Şiddeti Bir İletkenin Direnci

DENEY TARİHİ RAPOR TESLİM TARİHİ NOT

Artvin Meslek Yüksekokulu

YAKLAŞIM SENSÖRLERİ (PROXIMITY) Endüktif, Kapasitif ve Optik Yaklaşım Sensörleri

Düzenlilik = ((Vçıkış(yük yokken) - Vçıkış(yük varken)) / Vçıkış(yük varken)

T.C. DÜZCE ÜNİVERSİTESİ TEKNOLOJİ FAKÜLTESİ BİLGİSAYAR MÜHENDİSLİĞİ BÖLÜMÜ BMT103 ELEKTRİK DEVRE TEMELLERİ DERSİ LABORATUVARI DENEY NO: 7

GÜNEŞ ENERJİ SİSTEMLERİ

DOĞRU AKIM DEVRE ANALİZİ Ö. ŞENYURT - R. AKDAĞ ÜÇÜNCÜ BÖLÜM: OHM KANUNU, İŞ, ENERJİ VE GÜÇ

Alternatif Akım Devre Analizi

Güç kaynağı, genel tanımıyla, bir enerji üreticisidir. Bu enerji elektrik enerjisi olduğu gibi, mekanik, ısı ve ışık enerjisi şeklinde de olabilir.

Aşağıdaki formülden bulunabilir. S16-Kesiti S1=0,20 mm²,uzunluğu L1=50 m,özdirenci φ=1,1 olan krom-nikel telin direnci kaç ohm dur? R1=?

T.C HİTİT ÜNİVERSİTESİ ELEKTRİK-ELEKTRONİK MÜHENDİSLİĞİ DEVRE ANALİZİ 1 LAB. DENEY FÖYÜ. DENEY-1: TEMEL BİLGİLER ve KIRCHOFF YASALARI

8. ALTERNATİF AKIM VE SERİ RLC DEVRESİ

AET 113 DOĞRU AKIMI DEVRE ANALİZİ 1. HAFTA

ELEKTRİK VE ELEKTRİK DEVRELERİ 1

V R1 V R2 V R3 V R4. Hesaplanan Ölçülen

1.7 KONDANSATÖRLER (KAPASİTÖR)

DİRENÇLER, DİRENÇLERİN SERİ VE PARALEL BAĞLANMASI, OHM VE KIRCHOFF YASALARI

ERCİYES ÜNİVERSİTESİ MÜHENDİSLİK FAKÜLTESİ ENERJİ SİSTEMLERİ MÜHENDİSLİĞİ BÖLÜMÜ

Modern Fiziğin Teknolojideki Uygulamaları

ALTERNATİF AKIMDA EMPEDANS (PARALEL DEVRELER)

7. ÜNİTE AKIM, GERİLİM VE DİRENÇ

Doğru Akım Devreleri

YÜKSEK GERİLİM TEKNİĞİ BÖLÜM 7 DİELEKTRİK KAYIPLARI VE

SAKARYA ÜNİVERSİTESİ TEKNOLOJİ FAKÜLTESİ MAKİNA MÜHENDİSLİĞİ BÖLÜMÜ ELEKTRONİK DEVRELER LABORATUARI

Elektrik Nedir? Elektrik nedir? Elektrikler geldi, gitti, çarpıldım derken neyi kastederiz?

Temel Devre Elemanlarının Alternatif Gerilim Etkisi Altındaki Davranışları

T.C. DÜZCE ÜNİVERSİTESİ TEKNOLOJİ FAKÜLTESİ BİLGİSAYAR MÜHENDİSLİĞİ BÖLÜMÜ BMT103 ELEKTRİK DEVRE TEMELLERİ DERSİ LABORATUVARI DENEY NO: 7

MOSFET. MOSFET 'lerin Yapısı

Mekatronik Mühendisliği Lab1 (Elektrik-Elektronik) Ohm-Kirchoff Kanunları ve AC Bobin-Direnç-Kondansatör

T.C. YALOVA ÜNİVERSİTESİ MÜHENDİSLİK FAKÜLTESİ ENERJİ SİSTEMLERİ MÜHENDİSLİĞİ BÖLÜMÜ ESM 413 ENERJİ SİSTEMLERİ LABORATUVARI I

Makine Mühendisliği İçin Elektrik-Elektronik Bilgisi. Ders Notu-3 Doğru Akım Devreleri Hazırlayan: Yrd. Doç. Dr. Ahmet DUMLU

12. DC KÖPRÜLERİ ve UYGULAMALARI

DENEY TARİHİ RAPOR TESLİM TARİHİ NOT

DİRENÇ VE REAKTANS (OMİK DİRENÇ, BOBİN VE KONDANSATÖR)

ERCİYES ÜNİVERSİTESİ MÜHENDİSLİK FAKÜLTESİ ENERJİ SİSTEMLERİ MÜHENDİSLİĞİ BÖLÜMÜ ENERJİ SİSTEMLERİ MÜHENDİSLİĞİ LABORATUARI

TEMEL ELEKTRONĠK DERSĠ

Problem Çözmede Mühendislik Yaklaşımı İzlenecek Yollar Birimler ve ölçekleme Yük, akım, gerilim ve güç Gerilim ve akım kaynakları Ohm yasası

TEMEL BİLGİLER. İletken : Elektrik yüklerinin oldukça serbest hareket ettikleri maddelerdir. Örnek olarak bakır, gümüş ve alüminyum verilebilir.

İklimlendirme Soğutma Elektriği ve Kumanda Devreleri BÖLÜM KONDANSATÖRLER

Sinüsoidal Gerilim ve Akım ALIŞTIRMALAR

T.C. YALOVA ÜNİVERSİTESİ MÜHENDİSLİK FAKÜLTESİ ENERJİ SİSTEMLERİ MÜHENDİSLİĞİ BÖLÜMÜ ESM 413 ENERJİ SİSTEMLERİ LABORATUVARI I

SAKARYA ÜNİVERSİTESİ TEKNOLOJİ FAKÜLTESİ MAKİNA MÜHENDİSLİĞİ BÖLÜMÜ ELEKTRONİK DEVRELER LABORATUARI

2. BÖLÜM AKIM, DİRENÇ, GERİLİM ELEKTRİK DEVRELERİ. Yazar: Dr. Tayfun Demirtürk E-posta:

7. DİRENÇ SIĞA (RC) DEVRELERİ AMAÇ

Elektrik Mühendisliğinin Temelleri-I EEM 113

TEMEL KAVRAMLAR BİRİM SİSTEMİ TEMEL NİCELİKLER DEVRE ELEMANLARI ÖZET

Analog Elektronik. Öğr.Gör. Emre ÖZER. Analog Devre Elemanları Dirençler

Transkript:

BÖLÜM 2 KONDANSATÖRLER Önbilgiler: Kondansatör, DC akımı geçirmeyip, AC akımı geçiren devre elemanıdır. Yapısı: Kondansatör şekil 1.6' da görüldüğü gibi, iki iletken plaka arasına yalıtkan bir maddenin yerleştirilmesi veya hiç bir yalıtkan kullanılmaksızın hava aralığı bırakılması ile oluşturulur. Kondansatörler yalıtkan maddenin cinsine göre adlandırılır. Kondansatörün sembolü: Değişik yapılı kondansatörlere göre, kondansatör sembollerinde bazı küçük değişiklikler vardır. 21

Harf Olarak " C " KONDANSATÖRÜN ÇALIŞMA PRENSİBİ: Kondansatörün bir DC kaynağına bağlanması ve şarj edilmesi: Şekil 1.17(a)' da görüldüğü gibi kondansatör bir DC kaynağına bağlanırsa, devreden Şekil 1.17(b)' de görüldüğü gibi, geçici olarak ve gittikçe azalan Ic gibi bir akım akar. Ic akımının değişimini gösteren eğriye kondansatör zaman diyagramı denir. Akımın kesilmesinden sonra kondansatörün plakaları arasında, kaynağın Vk gerilimine eşit bir Vc gerilimi oluşur. Bu olaya, kondansatörün şarj edilmesi, kondansatöre de şarjlı kondansatör denir. "Şarj" kelimesinin Türkçe karşılığı "yükleme" yada "doldurma" dır. Şekil 1.17- Kondansatörün DC kaynağına bağlanması a) Bağlantı devresi b) Zaman diyagramı c) Vc gerilim oluşumu 22

Kondansatör Devresinden Akım Nasıl Akmalıdır? Şekil 1.17(a)' daki devrede, S anahtarı kapatıldığında aynı anda kondansatör plakasındaki elektronlar, kaynağın pozitif kutbu tarafından çekilir, kaynağın negatif kutbundan çıkan elektronlar, kondansatöre doğru akmaya başlar. Bu akma işlemi, kondnsatörün plakası daha fazla elektron veremez hale gelinceye kadar devam eder. Bu elektron hareketinden dolayı devreden bir Ic akımı geçer. Ic akımının yönü elektron hareketinin tersi yönündedir. Devreden geçen Ic akımı, bir DC ampermetresi ile gözlenebilir. S anahtarı kapanınca ampermetre ibresi önce büyük bir sapma gösterir. Sonra da, ibre yavaş yavaş sıfıra gelir. Bu durum devreden herhangi bir akım geçmediğini gösterir. Ic akımına şarj akımı denir. Devre akımının kesilmesinden sonra yukarıda da belirtildiği gibi kondansatör plakaları arasında Vc=Vk oluşur. Vc gerilimine şarj gerilimi denir. Vc geriliminin kontrolü bir DC voltmetre ile de yapılabilir. Voltmetrenin "+" ucu, kondansatörün, kaynağın pozitif kutbuna bağlı olan plakasına, "-" ucu da diğer plakaya dokundurulursa Vc değerinin kaç volt olduğu okunabilir. Eğer voltmetrenin uçları yukarıda anlatılanın tersi yönde bağlanırsa voltmetrenin ibresi ters yönde sapar. KONDANSATÖRDE YÜK, ENERJİ VE KAPASİTE Şarj işlemi sonunda kondansatör, Q elektrik yüküyle yüklenmiş olur ve bir Ec enerjisi kazanır. Kondansatörün yüklenebilme özelliğine kapasite (sığa) denir. C ile gösterilir. Q, Ec, C ve uygulanan V gerilimi arsında şu bağlantı vardır. Q=C.V Ec=CV 2 /2 1) Q: Coulomb (kulomb) 2) V: Volt 3) C: Farad (F) 4) Ec: Joule (Jul) 23

Yukarıdaki bağlantıdan da anlaşıldığı gibi, C kapasitesi ve uygulanan V gerilimi ne kadar büyük ise Q elektrik yükü ve buna bağlı olarak devreden akan Ic akımı da o kadar büyük olur. Kondansatörün kapasite formülü: 0: (Epsilon 0): Boşluğun dielektrik katsayısı ( 0=8.854.10 12 ) r: (Epsilon r): Plakalar arsında kullanılan yalıtkan maddenin İZAFİ 1 dielektrik (yalıtkanlık) sabiti.(tablo 1.6) 1) A: Plaka alanı 2) d: Plakalar arası uzaklık A ve d değerleri METRİK sistemde (MKS) ifade edilirse, yani, "A" alanı (m) ve "d" uzaklığı, metre (m 2 ) cinsinden yazılırsa, C' nin değeri FARAD olarak çıkar. Örneğin: Kare şeklindeki plakasının her bir kenarı 3 cm ve plakalar arası 2 mm olan, hava aralıklı kondansatörün kapasitesini hesaplayalım. A ve d değerleri MKS' de şöyle yazılacaktır: A=0,03*0,03=0,0009m 2 = 9.10-4 m 2 d=2mm=2.10-3 m 0 = 8,854.10-12 Hava için r=1 olup, değerler yerlerine konulursa: C=8,854.10-12.4,5.10-1 =39,843.10-13 F=3,9PF (Piko Farad) 1 olur. NOT: 1 İZAFİ kelimesi, yalıtkan maddenin yalıtkanlık özelliğinin boşluğunkinden olan farkını göstermesi nedeniyle kullanılmaktadır. İzafinin, öz türkçesi, "göreceli" dir. 24

Tablo 1.6. Bazı yalıtkan maddelerin r sabitleri CİNSİ İzafi Yalıtkanlı k Katsayısı ( r) CİNSİ İzafi Yalıtkanlı k Katsayısı ( r) Hava 1 Mika 5-7 Lastik 2-3 Porselen 6-7 Kağıt 2-3 Bakalit 4-6 Seramik 3-7 Cam 4-7 AC DEVREDE KONDANSATÖR: Yukarıda DC devrede açıklanan akım olayı, AC devrede iki yönlü olarak tekrarlanır. Dolayısıyla da, AC devredeki kondansatör, akım akışına karşı bir engel teşkil etmemektedir. Ancak bir direnç gösterir. Kondansatörün gösterdiği dirence kapasitif reaktans denir. Kapasitif reaktans, Xc ile gösterilir. Birimi Ohm(W) dur. 1) Xc = Kapasitif reaktans (W) 2) = Açısal hız (Omega) 3) f = Frekans (Hz) 4) C = Kapasite (Farad) 'Ohm olarak hesaplanır. Yukarıdaki bağlantıdan da anlaşıldığı gibi, kondansatörün Xc kapasitif reaktansı; C kapasitesi ve f frekansı ile ters orantılıdır. Yani kondansatörün kapasitesi ve çalışma frekansı arttıkça kapasitif reaktansı, diğer bir deyimle direnci azalır. 25

SABİT KONDANSATÖR: Sabit kondansatörler kapasitif değeri değişmeyen kondansatörlerdir. Yapısı ve Çeşitleri: Kondansatörler, yalıtkan maddesine göre adlandırılmaktadırlar. Sabit kondansatörler aşağıdaki gibi gruplandırılır: 1) Kağıtlı Kondansatör 2) Plastik Film Kondansatör 3) Mikalı Kondansatör 4) Seramik Kondansatör 5) Elektrolitik Kondansatör KAĞITLI KONDANSATÖR Kondansatörlerin kapasitesini arttırmak için levha yüzeylerinin büyük ve levhalar arasında bulunan yalıtkan madde kalınlığının az olması gerekir. Bu şartları gerçekleştirirken de kondansatörün boyutunun mümkün olduğunca küçük olması istenir. Bu bakımdan en uygun kondansatörler kağıtlı kondansatörlerdir. Çok yaygın bir kullanım alanı vardır. Şekil 1.18 'de görüldüğü gibi bir kağıt, bir folyo ve yine bir kağıt bir folyo gelecek şekilde üst üste konur. Sonra da bu şerit grubu silindir şeklinde sarılır. Bağlantı uçları (elektrotlar) yine şekil 1.18 'de görüldüğü gibi, aliminyum folyolara lehimlenir. Oluşturulan silindir, izole edilmiş olan metal bir gövdeye konarak ağzı mumla kapatılır. Yada üzeri reçine veya lak ile kaplanır. Şekil 1.22 'de kağıtlı kondansatörlerin dış görüntüleri verilmiştir. 26

Şekil 1.18 - Kağıtlı kondansatör PLASTİK FİLM KONDANSATÖR Plastik film kondansatörlerde kağıt yerine plastik bir madde kullanılmaktadır. Bu plastik maddeler: Polistren, poliyester, polipropilen olabilmektedir. Hassas kapasiteli olarak üretimi yapılabilmektedir. Yaygın olarak filtre devrelerin de kullanılır. Üretim şekli kağıt kondansatörlerin aynısıdır. 27

MİKALIK KONDANSATÖR Mika, " r" yalıtkanlık sabiti çok yüksek olan ve çok az kayıplı bir elemandır. Bu özelliklerinden dolayı da, yüksek frekans devrelerinde kullanılmaya uygundur. Mika tabiatta 0.025 mm 'ye kadar ince tabakalar halinde bulunur. Kondansatör üretiminde de bu mikalardan yararlanılır. İki tür mikalı kondansatör vardır: 1) Gümüş kapalnmış mikalı kondansatör. 2) Aliminyum folyolu kaplanmış mikalı kondansatör. GÜMÜŞ KAPLANMIŞ MİKALIK KONDANSATÖR Bu tür kondansatörlerde mikanın iki yüzüne gümüş üskürtülmektedir. Oluşturulan kondansatöre dış bağlantı elektrotları lehimlenerek mum veya reçine gövde içerisine yerleştirilir. ALÜMİNYUM FOLYO KAPLANMIŞ MİKALIK KONDANSATÖR Gümüş kaplama çok ince olduğundan, bu şekilde üretilen kondansatör büyük akımlara dayanamamaktadır. Büyük akımlı devreler için, mika üzerine alüminyum folyo kaplanan kondansatörler üretilmektedir. Mikalı kondansatör ayarlı (trimmer) olarak ta üretilmektedir. SERAMİK KONDANSATÖR Seramiğin yalıtkanlık sabiti çok büyüktür. Bu nedenle, küçük hacimli büyük kapasiteli seramik kodansatörler üretilebilmektedir. Ancak, seramik kondansatörlerin kapasitesi, sıcaklık, frekans ve gerilim ile %20 'ye kadar değiştiğinden, sabit kapasite gerektiren çalışmalarda kullanılamaz. Fakat, frekens hassasiyetinin önemli olmadığı kuplaj, dekuplaj (by-pass) kondansatörü olarak ve sıcak ortamlarda kullanılmaya uygundur. 28

ELEKTROLİTİK KONDANSATÖR Elektrolitik kondansatörler büyük kapasiteli kondansatörlerdir. Yaygın bir kullanım alananı vardır. Özellikle, doğrultucu filtre devrelerinde, gerili 29