2.1.1.2. Kondansatörlerin çalışma prensibi



Benzer belgeler
01 OCAK 2015 ELEKTRİK AKIMI VE LAMBA PARLAKLIĞI SALİH MERT İLİ DENİZLİ ANADOLU LİSESİ 10/A 436

9. ÜNİTE TRANSFORMATÖRLER

Ders sorumlusu - Yrd.Doç.Dr.Hilmi Ku çu. Çevre Ak mlar - 1

Atom. Atom elektronlu Na. 29 elektronlu Cu

Ders sorumlusu - Yrd.Doç.Dr.Hilmi Ku. Çevre Ak mlar - 1

6. ÜNİTE TRANSFARMATÖR VE REDRESÖR BAĞLANTILARI

Sensörler Öğr. Gör. Erhan CEMÜNAL Thomas Alva Edison

Bu konuda cevap verilecek sorular?

5. ÜNİTE KUMANDA DEVRE ŞEMALARI ÇİZİMİ

SAKARYA ÜNİVERSİTESİ TEKNOLOJİ FAKÜLTESİ MAKİNA MÜHENDİSLİĞİ BÖLÜMÜ ELEKTRONİK DEVRELER LABORATUARI

ELEKTRİK ELEKTRONİK BİLGİSİ

ASENKRON (İNDÜKSİYON)

Bu iletkenin uçları arasında gerilim oluşturmak için pil, akümülatör, jeneratör, dinamo gibi araçlar kullanılır.

Elektrik Makinaları I. Senkron Makinalar Stator Sargılarının oluşturduğu Alternatif Alan ve Döner Alan, Sargıda Endüklenen Hareket Gerilimi

AYDINLATMA DEVRELERİNDE KOMPANZASYON

T.C. MİLLÎ EĞİTİM BAKANLIĞI EĞİTİM TEKNOLOJİLERİ GENEL MÜDÜRLÜĞÜ Ölçme Değerlendirme ve Açıköğretim Kurumları Daire Başkanlığı

Bir bobinin omik direnci ile endüktif reaktansının birlikte gösterdikleri ortak etkiye empedans denir,

MALZEMELERİN FİZİKSEL ÖZELLİKLERİ

ELEZ101 Ölçme Tekniği Sunu No: 01. Öğr. Gör. Dr. Barış ERKUŞ

4. ÜNİTE DOĞRU AKIM MAKİNALARININ DEVREYE BAĞLANTI ŞEMALARI

Üç-fazlı 480 volt AC güç, normalde-açık "L1", "L2" ve "L3" olarak etiketlenmiş vida bağlantı uçları yoluyla kontaktörün tepesinde kontak hale gelir

DEVRELER VE ELEKTRONİK LABORATUVARI

MÜHENDİSLİK ve MİMARLIK FAKÜLTESİ BİLGİSAYAR MÜHENDİSLİĞİ BÖLÜMÜ ELEKTRONİK DEVRELER LABORATUVARI DENEY FÖYÜ 1

TEMEL ELEKTRONĠK DERSĠ

II. Bölüm HİDROLİK SİSTEMLERİN TANITIMI

ELK101 - ELEKTRİK ELEKTRONİK MÜHENDİSLİĞİNE GİRİŞ

İNCİRLİ MESLEKİ VE TEKNİK ANADOLU LİSESİ ELEKTRİK ELEKTRONİK TEKNOLOJİSİ ALANI UMEM ELEKTRONİK MONTÖRÜ KURSU GÜNLÜK ÇALIŞMA PLANI DERS.

JENERATÖRDE KULLANILAN ÖZET TEKNİK TERİMLER. : Sabit manyetik alana bağlı olarak periyodik sürelerde Yönünü ve alternas sayısı değişen akımdır.

EEM 334. Elektrik Makinaları Laboratuvarı

Mekatroniğe Giriş Dersi

Makine Elemanları I Prof. Dr. İrfan KAYMAZ. Temel bilgiler-flipped Classroom Bağlama Elemanları

ENERJĠ DAĞITIMI-I. Dersin Kredisi

KAPLAMA TEKNİKLERİ DERS NOTLARI

16. ÜNİTE YALITKANLIK DİRENCİNİN ÖLÇÜLMESİ

ANALOG LABORATUARI İÇİN BAZI GEREKLİ BİLGİLER

İstanbul Teknik Üniversitesi IEEE Öğrenci Kolu

ÖLÇÜ TRANSFORMATÖRLERİNİN KALİBRASYONU VE DİKKAT EDİLMESİ GEREKEN HUSUSLAR

DENEY 2: PROTOBOARD TANITIMI VE DEVRE KURMA

Fizik ve Ölçme. Fizik deneysel gözlemler ve nicel ölçümlere dayanır

Şaft: Şaft ve Mafsallar:

Döküm. Prof. Dr. Akgün ALSARAN

Haftalık Ders Saati. Okul Eğitimi Süresi

Doç. Dr. Sabri KAYA Erciyes Üni. Müh. Fak. Elektrik-Elektronik Müh. Bölümü. Ders içeriği

Demir, nikel, kobalt gibi maddeleri çekme özelliği gösteren cisimlere mıknatıs denir.

DİRENÇ NEDİR? MELEK SATILMIŞ 190 GAMZE ÖZTEKİN 12

MEKATRONİĞİN TEMELLERİ TEMEL ELEKTRONİK KAVRAMLARI

2. HAFTA BLM223 DEVRE ANALİZİ. Yrd. Doç Dr. Can Bülent FİDAN.

MAKİNE VE MOTOR DERS NOTLARI 9.HAFTA

Makine Mühendisliği İçin Elektrik-Elektronik Bilgisi. Ders Notu-4 Kondansatörler ve Bobinler

Aşağıdaki formülden bulunabilir. S16-Kesiti S1=0,20 mm²,uzunluğu L1=50 m,özdirenci φ=1,1 olan krom-nikel telin direnci kaç ohm dur? R1=?

HESAP TABLOLARI. Tablo-1h. a) Dağıtım Transformatörleri (15 kv'a kadar) (Best Trafo katalog bilgileri) KAYIPLAR BOYUTLAR AĞIRLIKLAR.

21.Bölge Müdürlü ü Test Grup Ba mühendisli i

Ankara Üniversitesi Mühendislik Fakültesi, Fizik Mühendisliği Bölümü FZM207. Temel Elektronik-I. Doç. Dr. Hüseyin Sarı

USB KVM Switch. Ses özellikli ve 2 portlu USB KVM switch. Ses özellikli ve 4 portlu USB KVM switch

Alasim Elementlerinin Celigin Yapisina Etkisi

6 MADDE VE ÖZELL KLER

TEMEL ELEKTRONİK. Kondansatör, DC akımı geçirmeyip, AC akımı geçiren devre elemanıdır.

Hızlandırıcı Fiziği-1. Veli YILDIZ (Veliko Dimov)

FİZİK ÇALIŞMA GRUBU GRUP ADI İKİZLER PROJE ADI REZİSTANS GELDİ BUZLAR GİTTİ

REAKTİF GÜÇ KOMPANZASYONU VE HARMONİKLER

YARI İLETKEN DEVRE ELEMANLARI

EEM 202 DENEY 5 SERİ RL DEVRESİ

BĐSĐKLET FREN SĐSTEMĐNDE KABLO BAĞLANTI AÇISININ MEKANĐK VERĐME ETKĐSĐNĐN ĐNCELENMESĐ

Analog Elektronik. Öğr.Gör. Emre ÖZER

FİZİKÇİ. 2. Kütlesi 1000 kg olan bir araba 20 m/sn hızla gidiyor ve 10 m bir uçurumdan aşağı düşüyor.

İÇİNDEKİLER. BÖLÜM-1-ÜÇ FAZLI ASENKRON MOTORLARIN YAPISI VE ÇALIġMA PRENSĠBĠ

Alternatif Akım Devreleri

İLERİ YAPI MALZEMELERİ DERS-6 KOMPOZİTLER

YAPILARDA DERZLER VE SIZDIRMAZLIK MALZEMELERİ

BÜLENT ECEVİT ÜNİVERSİTESİ ALAPLI MESLEK YÜKSEK OKULU

OTOMATİK TRANSMİSYONLAR

DENEY 1 Direnç Ölçümü

16. Yoğun Madde Fiziği Ankara Toplantısı, Gazi Üniversitesi, 6 Kasım 2009 ÇAĞRILI KONUŞMALAR

9- ANALOG DEVRE ELEMANLARI

ISININ YAYILMA YOLLARI

ELEKTRİK FATURALARINIZDA REAKTİF CEZA ÖDÜYORMUSUNUZ? ELEKTRİK FATURALARINIZI DÜZENLİ OLARAK KONTROL EDİYORMUSUNUZ?

TEMEL BİLGİLER. İletken : Elektrik yüklerinin oldukça serbest hareket ettikleri maddelerdir. Örnek olarak bakır, gümüş ve alüminyum verilebilir.

Fizik I (Fizik ve Ölçme) - Ders sorumlusu: Yrd.Doç.Dr.Hilmi Ku çu

RTX6_LRN Kod öğrenmeli Uzaktan kumanda

Resmi Gazete Tarihi: Resmi Gazete Sayısı: 24500

Accurax lineer motor Sistem konfigürasyonu

Ek 1. Fen Maddelerini Anlama Testi (FEMAT) Sevgili öğrenciler,

Şekil-1. Doğru ve Alternatif Akım dalga şekilleri

PLASTİK VAKUM TEKNOLOJİSİ DERSİ ÇALIŞMA SORULARI. b. Fanlar. c. Şartlandırıcı. d. Alt tabla. a. Rotasyon makinesi. b. Enjeksiyon makinesi

TEMİZ SU DALGIÇ POMPA

Makine Mühendisliği İçin Elektrik-Elektronik Bilgisi. Ders Notu-2 Hazırlayan: Yrd. Doç. Dr. Ahmet DUMLU

KIRILMA MEKANİĞİ Prof.Dr. İrfan AY MALZEME KUSURLARI

Dirençler. 08 Aralık 2015 Salı 1

Akımı sınırlamaya yarayan devre elemanlarına direnç denir.

İÇİNDEKİLER. 1 Projenin Amacı Giriş Yöntem Sonuçlar ve Tartışma Kaynakça... 7

Atom Y Atom ap Y ısı

DENEY DC Gerilim Ölçümü

şebekeden 10 amper çekerse gücü ne kadardır?

DAĞITIM ŞEBEKELERİNDE GERİLİM DÜŞÜMÜ HESABI Alternatif Akımda Enerji Dağıtımı Bir Fazlı Şebeke

FOTOĞRAFÇILIK HAKKINDA KISA NOTLAR

TEKNOLOJİNİN BİLİMSEL İLKELERİ. Öğr. Gör. Adem ÇALIŞKAN

ELEKTRİK TESİSLERİNDE KORUMA

Oksijen, flor ve neon elementlerinin kullanıldığı alanları araştırınız.

Deney 4: Güç Ölçümü. Şekil 4.1 : Alternatif akımda alıcıların akım ve gerilim vektörleri ile faz farkı

Şekil 5.1 de Tam silindirik kalorifer kazanı, Şekil 5.2 de Prizmatik paket kazanın şekli görülmektedir.

Transkript:

2. ELEKTRONİK i 2.1. PASİF ELEKTRONİK DEVRE ELEMANLARI Tek elementten üretilen, görevini yerine getirirken herhangi bir enerjiye ihtiyaç duymayan elemanlardır. Bu elemanlar, genel amaçlı elemanlardır. 2.1.1. KONDANSATÖRLER İki iletken ve bu iletkenler arasına yalıtkan plakalardan oluşan gerektiğinde üzerine elektrik yükü depolayabilen ve depoladığı elektrik yükünü devre şartlarına göre yeniden devreye veren kapasitif devre elamanıdır. Kondansatörlerde kullanılan iletkenler iletkenliği çok yüksekleştirilmiş ince kalay plaklardan imal edilir. Yalıtkanlar ise yalıtkanlığı çok yüksek olan mika gibi dielektrik maddeleridir. 2.1.1.1. Kondansatör çeşitleri 2.1.1.1.1. Yalıtkan maddelerine göre Seramik kondansatörler Mika kondansatörler. Plastik kondansatörler. Kâğıt kondansatörler. Elektrolitik (Kutuplu Kondansatörler) 2.1.1.1.2. Kapasitelerine göre 6 Kondansatörlerin yükleyebildiği elektrik enerjisi miktarına kapasite denir. (C) ile gösterilir. Birim farad dır. Bir voltluk gerilimin kondansatör üzerinde oluşturduğu bir coulop luk yüklemesine bir farad denir. 2.1.1.2. Kondansatörlerin çalışma prensibi Kondansatörlerde elektrik yükleri (elektronlar) bir yalıtkanla ayrılmış iki metal arasına yalıtkan konulmuş İki plakaya (ikiden fazla olabilir) biriktirilir. Kondansatör yüklü değil iken plakalar üzerindeki elektron ve proton sayısı birbirine eşittir. Plakalar bir üreteç'e bağlandığında yükleme gerçekleşir. Kondansatör yükleme esnasında üreticin artı ucuna bağlı plakada proton çokluğu negatif plakada elektron çokluğu meydana gelir. Bu arada şu kanun geçerlidir. Aynı yüklü parçacıklar birbirini iter, zıt yüklü parçacıklar birbirini çeker. Yani + + yı iter + - yi çeker. 2.1.1.3. Kondansatörlerde Yalıtkanlık Plakalar arasında yalıtkanlığı sağlamak amacıyla çeşitli dielektrik maddeleri kullanılır. Kondansatör kapasitesinin üzerinde doldurulmaya çalışılırsa plakalar birbirini aşırı çekeceğinden yalıtkanlık perdesini yırtar. Kısa devre sonucu kondansatör patlar.

MADDE DİELEKTRİK SABİT Hava ve Boşluk 1 Seramik 80 Cam 8 Mika 6 Kâğıt 5 Tablo 1:Temel Maddelerin Dielektrik sabitleri 2.1.1.4. Kondansatörde seri direnç Seri direnç kondansatörün dışarı çıkan uçları ile plakalar arsındaki toplam dirençtir. Bağlantı uçlarının gevşemesi veya oksitlenmesi seri direnç özelliğini arttırır bunun sonucunda; Şarj zorlaşır, Deşarj gecikir. Not: Kondansatörler DC gerilime zorluk AC gerilime kolaylık gösterirler. 2.1.2. BOBİNLER Bobin bir yalıtkan makara (mandren veya karkas) üzerine belirli sayıdaki sarılmış tel grubudur. Kullanım yerine göre, makara içerisi boş kalırsa havalı bobin, demir bir göbek (nüve) geçirilirse nüveli bobin adı verilir. Bobinin her bir sarımına spir denir. 2.1.2.1. Bobin çeşitleri ve Sembolleri 7 Şekil 1:Bobin sembolleri

2.1.2.2. Bobindeki Elektriksel Olaylar: Bilindiği gibi bir iletkenden akım geçirildiğinde, iletken etrafında bir magnetik alan oluşur. Bu alan kâğıt üzerinde daireler şeklindeki kuvvet çizgileri ile sembolize edilir. Bir bobinden AC akım geçirildiğinde, bobin sargılarını çevreleyen bir magnetik alan oluşur. Akım büyüyüp küçülüşüne ve yön değiştirmesine bağlı olarak bobinden geçen kuvvet çizgileri çoğalıp azalır ve yön değiştirir. Bobine bir DC gerilim uygulanırsa, magnetik alan meydana gelmeyip bobin devrede bir direnç özelliği gösterir. Şekil 2:içinden akım geçen bobindeki Magnetik alan kuvvet çizgileri 2.1.2.2.1. Zıt Elektro Motor Kuvveti (ZEMK) Bobin içerisindeki kuvvet çizgilerinin değişimi, bobinde zıt elektromotor kuvveti (Zıt EMK Ez) adı verilen bir gerilim indükler. Bu gerilimin yönü kaynak gerilimine ters yöndedir. Dolayısıyla da zıt EMK, bobinden, kaynak geriliminin oluşturduğu akıma ters yönde bir akım akıtmaya çalışır. Bu nedenledir ki, kaynak geriliminin oluşturduğu "I" devre akımı, ancak T/4 periyot zamanı kadar geç akmaya başlar. Zıt EMK 'nın işlevi, LENZ kanunu ile şöyle tanımlanmıştır. LENZ kanununa göre zıt EMK, büyümekte olan devre akımını küçültücü, küçülmekte olan devre akımını ise büyültücü yönde etki yapar. 2.1.2.2.2. Endüktif Reaktans (XL) Bobinin, içinden geçen AC akıma karşı gösterdiği dirence endüktif reaktans denir. Endüktif reaktans X L ile gösterilir. Birimi "Ohm" dur. Şöyle ifade edilir: X L = ω.l 'dir. ω = 2.π.f olup yerine konulursa, X L = 2.π.f.L ohm olur. ω : Açısal hız (Omega) f: Uygulana AC gerilimin frekansı birimi, Herzt (Hz) 'dir. L: Bobinin endüktansı olup birimi, Henry (H) 'dir. 8 Şekil 3:Zıt EMK 'nın etkisi

Bobinin sarım sayısı ve kesit alanı ne kadar büyük olursa, "L" o kadar büyük olur. Dolayısıyla AC akıma gösterdiği dirençte o oranda büyür."l" nin birimi yukarıda da belirtildiği gibi Henry (H) 'dir. Ancak genellikle değerler çok küçük olduğundan "Henry" olarak yazımda çok küsurlu sayı çıkar. Bunun için milihenry (mh) ve mikrohenry (µh) değerleri kullanılır. Henry, milihenry ve mikrohenry arasında şu bağıntı vardır. MiliHenry (mh) :1mH = 10-3 H veya 1H = 10 3 mh MikroHenry (µh) : 1µH = 10-6 H veya 1H = 10 6 µh 'dir. 2.1.2.2.3. Karşılıklı Endüktans (M) Aynı nüve üzerine sarılı iki bobinin birinden akım geçirildiğinde, bunun nüvede oluşturduğu kuvvet çizgileri diğer sargıyı da etkileyerek, bu sargının iki ucu arasında bir gerilim oluşturur. Bu gerilime endüksiyon gerilimi denir. Bu şekilde iletişim, karşılıklı (ortak) endüktans denen belirli bir değere göre olmaktadır. Karşılıklı endüktans (M) ile gösterilir ve şu şekilde ifade edilir: M= L1.L2 L1 ve L2, iki bobinin self endüktansıdır. M 'in birimi de Henry(H) 'dir. Şöyle tanımlanır: Aynı nüve üzerindeki iki bobinin birincisinden geçen 1 amperlik AC akım 1 saniyede, ikinci bobinde 1V 'luk bir gerilim endükliyorsa iki bobin arasındaki karşılıklı endüktans M=1 Henry 'dir. Bobinler seri bağlanırsa toplam endüktans: L=L1+L2+L3+... olur. Aynı nüve üzerindeki iki bobin seri bağlanırsa: L=L1+L2±2M olur. 2.1.2.3. Bobinin Kullanım Alanları Bobinin Otomotiv, elektrik ve elektronikte yaygın bir kullanım alanı vardır. Bunlar kullanım alanlarına göre şöyle sıralanabilir. 2.1.2.3.1. Elektrikte: 9 Doğrultucular da şok bobini Transformatör Isıtıcı v.b. Elektromıknatıs (zil, elektro magnetik vinç) 2.1.2.3.2. Elektronikte: Osilatör Radyolarda ferrit anten elemanı (Uzun, orta, kısa dalga bobini) Telekomünikasyonda frekans ayarı (ayarlı göbekli bobin) Telekomünikasyonda röle Yüksek frekans devrelerinde (havalı bobin) Özellikle de radyo alıcı ve vericilerinde de anten ile bağlantıda değişik frekansların (U.D,O.D,KD) alımı ve gönderiminde aynı ferrit nüveyi kullanan değişik bobinler ve bunlara paralel bağlı kondansatörlerden yararlanır.

2.1.2.3.3. Otomotivde Otomotiv ateşleme sistemlerinde kullanılan yüksek voltajın elde edilmesi için endüksiyon bobini olarak kullanılır. Elektro kontrol sistemlerinde elektromıknatıs olarak kullanılır. 2.1.2.4. Endüksiyon bobini Esas itibariyle 6 24 voltluk akü voltajını 12 48 bin voltluk yüksek voltaja çeviren bir yükseltici transformatörlerdir. Bobin bir metal dış gövde ve bu gövdeyi içeriden saran metal plakalardan ibarettir. Bu plakalar manyetik alanın tamamlanmasını sağlarlar. Merkezde, oluşabilecek zararlı fuko akımlarını engellemek amacıyla çoğu defa üst üste dizilmiş yumuşak demir plakalardan oluşan bir çekirdek vardır. Demir çekirdeğin hemen üzerinde çok ince bakır telden ve 200000 sarımlı Sekonder sargı bulunur. Sekonder sargı, sarım bölgesinde daha dışarıdan primer sargı ile çevrelenir. Primer sargı daha kalın bakır telden olup yaklaşık 100 200 sarımdan ibarettir. Bu iki sargı sarım bölgesinde yalıtkan kâğıtla birbirlerinden yalıtılmışlardır. Demir çekirdeğe yüksek gerilim uygulandığından, izolasyon yukarıdan bir izolasyon kapağı ve aşağıdan da bir izolasyon ayağı ile tamamlanır. Primer sargı ile dış kısımdaki metal plakalar arasındaki boşluk ise asfalt veya yağ ile doldurularak tam bir elektriksel izolasyon sağlanır ve sargılar havanın rutubetinden korunur. Elektriksel fonksiyon bakımından bobinin performansı primer ve Sekonder devre sarım sayıları, primer devre akımı, sargıların endüktans ve kapasiteleri ile ilgilidir. Özellikle bujilerin kirli (kurum bağlamış) ve nemli olduğu durumlarda iç direnç önemlidir. 2.1.3. DİRENÇLER Elektrik ve elektronik devrelerde akım ve gerilim azaltmak veya ayarlamak için kullanılan devre elemanlarına direnç denir. Devrelerde dirençleri belirtmek için R veya r harfi kullanılır, birimi ohm (Ω) dur. Direnç seçiminde değeri ve gücü önemlidir. Direncin değeri kullanılan malzemenin cinsine ve karışımına bağlıdır. Gücü ise fiziksel boyutlarına bağlıdır. 2.1.3.1. Çeşitleri ve Yapıları 10 2.1.3.1.1. Sabit Dirençler Şekil 4:Sabit direnç sembolleri Devredeki direncin sabit kalması isteniyorsa bu tip dirençlere sabit direnç denir. Yapıldıkları malzemeye göre 3 e ayrılır. 2.1.3.1.1.1. Karbon Dirençler Toz karbon malzemesi özel reçine ile karıştırılmıştır.

2.1.3.1.1.2. Telli Dirençler Seramik veya porselen bir parça üzerine krom, nikel, tungsten. Bu tip dirençlere termik dirençte denir. Tel lehimi üzerinden normalin üzerinde akım geçtiğinde sigorta gibi görev yapar. Örneğin; otomobillerde kullanılan sigortalar. 2.1.3.1.1.3. Film Dirençler Bu devrelerde porselen veya seramiğin üzerine ince film şeridi halinde direnç tabakası sarılır. Film dirençler 5 e ayrılır. Karbon film dirençler Metal oksit film dirençler Metal cam karışımı film dirençler Cermet film dirençler Metal yüzeyli film dirençler 2.1.3.1.1.4. Ayarlı Dirençler Devredeki direnci istenilen değerde değiştirerek akım veya gerilim kontrolü yapan devre elemanlarıdır. 2.1.3.1.1.4.1. Potansiyometre 11 Devrelerde gerilimi kontrol etmeye yarar. Şekil 5:Potansiyometrenin gösterilişi Devrelerde akım ayarlamak için kullanılır. 2.1.3.1.1.4.2. Reosta (ayarlı direnç) 2.1.3.1.1.5. Gerilim Bölücü Dirençler Şekil 6:Reostanın değişik gösterimleri Eğer bir devreye birden fazla direnç seri olarak bağlanırsa devreye uygulanan gerilim bu dirençler üzerinde bulunur. Dirençlerin uçlarında oluşan gerilimlerin toplamı toplam gerilime eşittir. Devrelerde reosta (ayarlı direnç) ve Potansiyometre gerilim bölücü olarak kullanılır. Örneğin; bir Potansiyometrenin üst ucu ile alt ucu arasına 5 voltluk bir gerilim uygulansın. Potansiyometre ayarlanarak orta uç ile alt uçtan 0 ila 5 voltluk değer elde edilebilir.

2.1.3.1.2. Ortam Etkili Dirençler 2.1.3.1.2.1. Işık değişimi Işık değişimi ile çalışan dirençler (Foto direnç) devrelerde (LDR) olarak gösterilir. Direnç değeri üzerine düşen ışık şiddeti ile ters orantılı olarak değişen dirençlere foto direnç denir. Şekil 7:Foto direnç (LDR) nin gösterimi 2.1.3.1.2.2. Isı değişimi ile çalışan dirençler(termistörler) Sıcaklık değeri ile değişen dirençlere termistör denir. İkiye ayrılır. 2.1.3.1.2.2.1. Negatif sıcaklık katsayı termistörleri(ntc) Dirençleri sıcaklık değişimi ile ters orantılı olarak değişir. Yani ısı arttıkça direnç azalır ısı azaldıkça direnç artar. 2.1.3.1.2.2.2. Pozitif sıcaklık katsayısı Termistörler(TC) Direnç değeri sıcaklık miktarı ile doğru orantılıdır. Sıcaklık arttıkça direnci de artar. Sıcaklık azaldıkça dirençte azalır. 12 2.1.3.1.2.3. Voltaj değişimi ile çalışan dirençler Varistörler ( VDR ) Gerilim ile ters orantılı olarak dirençleri değişen devre elemanlarıdır. Düşük gerilimlerde dirençleri yüksektir. Voltaj arttıkça direnç azalır. Şekil 8: VDR nin gösterimi VDR ler gerilimden korunmak istenen devrelerde kullanılır. Gerilim regülâsyonu yapar. Koruyacağı devre veya elemana paralel olarak bağlanır.

2.1.3.2. Direnç Değerleri Ve Renk Bantları Karbon, film ve tel dirençlerde direnç değerleri rakamsal olarak veya çoğunlukla renk bantlarıyla belirtilir. RENK 1.BANT 2.BANT 3.BANT ÇARPAN TÖLERANS Siyah 0 0 0 1 Ω Yok Kahverengi 1 1 1 10*10 Ω +/- %1 Kırmızı 2 2 2 10*100 Ω +/- %2 Turuncu 3 3 3 10*1000 Ω Yok Sarı 4 4 4 10*10.000 Yok Yeşil 5 5 5 Ω 10*100.000 +/- %0,5 Mavi 6 6 6 Ω 10*1.000.000 +/- %0,25 Mor 7 7 7 Ω 10*10.000.000 +/- %0,10 Gri 8 8 8 Ω 10*100.000.000 +/- %0,05 Beyaz 9 9 9 Ω 10*1.000.000.000 Yok Altın ---- ---- ---- Ω ---- +/- %5 Gümüş ---- ---- ---- ---- +/- %10 Tablo 2:Direnç renk kodları 2.1.3.2.1. Renk Kodları Okunurken Dikkat Edilecek Hususlar 13 Şekil 9: Direnç renk kodları 1.bant hiçbir zaman siyah olmaz. Altın yaldız, gümüş yaldızda olmaz. Genellikle kenara en yakın rengin bulunduğu kısım baş taraftır. 4 bantlı dirençlerde 1. ve 2. bant rakam değerini 3. bant çarpanı 4. bant toleransıdır. 5 bantlı dirençlerde ise 1 2 ve 3 rakam değeri 4. bant çarpan 5. bant ise tolerans dır. 6 bantlılarda fark olarak 6. bant direncin çalışma sıcaklığı değerini gösterir.

2.1.4. MEKANİK BAĞLANTI ELEMANLARI 2.1.4.1. ANAHTARLAR (Dual-In-hat-PACKAGE anahtarı) bir devre kartı üzerine doğrudan monte edilmişlerdir. Yerleşik minik geçiş anahtarları kümesi çok küçük olduklarından bir kalem veya kurşun kalem ucuyla devreyi açma ve devreyi kapatma veya çevirmek için kullanılmaktadır. Her bağlantı numaralı olduğu için karıştırılma olasılığı azdır. Gelişmiş olanlarda programlanabilir özelliği olanları da vardır. 14 2.1.4.2. FİŞLER Elektronik devrelerinin ve elemanlarının birbirlerine olan bağlantılarının çabuk yapılmasını ve sökülmesini sağlamak amacıyla kullanılmaktadır.

2.1.4.3. YUVALAR Elektronik devrelerinin ve elemanlarının birbirlerine olan bağlantılarının çabuk yapılmasını ve sökülmesini sağlamak amacıyla kullanılmaktadır. 2.1.4.4. PANEL KONTROLLER Elektronik devrelerinin ve devre elemanlarının birbirine bağlantılarının yapıldığı ve toplandığı nokta olarak görev yapmaktadır. 15 i http://www.formistan.com/elektronik/297367-elektronigin-tarihcesi.html (14.02.2013 22:43:50)