1.ELEKTRİKLENME DENEYİMLERİNDEN ATOMA:

Benzer belgeler
Dalton atom modelinde henüz keşfedilmedikleri için atomun temel tanecikleri olan proton nötron ve elektrondan bahsedilmez.

1.ÜNİTE: MODERN ATOM TEORİSİ

MALZEME BİLGİSİ. Atomların Yapısı

KİMYA. davranış. umunu, reaksiyonlar sırass. imleri (enerji. vs..) gözlem ve deneylerle inceleyen, açıklayan a

1. ATOMLA İLGİLİ DÜŞÜNCELER

Bölüm 8: Atomun Elektron Yapısı

Kimyafull Gülçin Hoca

KİMYA ADF. Atomlarla İlgili Düşünceler ve Atom Modelleri ATOMLARLA İLGİLİ DÜŞÜNCELER VE ATOM MODELLERİ MADDENİN ELEKTRİK YAPISI

TOBB Ekonomi ve Teknoloji Üniversitesi. chem.libretexts.org

KİMYA -ATOM MODELLERİ-

1.ÜNİTE MODERN ATOM TEORİSİ -2.BÖLÜM- ATOMUN KUANTUM MODELİ

DEMOKRİTOS ATOM FİKRİ M.Ö

da. Elektronlar düşük E seviyesinden daha yüksek E seviyesine inerken enerji soğurur.

Elektromanyetik Işıma Electromagnetic Radiation (EMR)

FİZİK 2 ELEKTRİK VE MANYETİZMA Elektrik yükü Elektrik alanlar Gauss Yasası Elektriksel potansiyel Kondansatör ve dielektrik Akım ve direnç Doğru akım

Bugün için Okuma: Bölüm 1.5 (3. Baskıda 1.3), Bölüm 1.6 (3. Baskıda 1.4 )

h 7.1 p dalgaboyuna sahip bir dalga karakteri de taşır. De Broglie nin varsayımı fotonlar için,

... ANADOLU L SES E T M YILI I. DÖNEM 10. SINIF K MYA DERS 1. YAZILI SINAVI SINIFI: Ö RENC NO: Ö RENC N N ADI VE SOYADI:

Bohr Atom Modeli. ( I eylemsizlik momen ) Her iki tarafı mv ye bölelim.

Modern Atom Teorisi. Ünite

Elementlerin tüm özelliğini gösteren en küçük parçasına atom denir. Atomu oluşturan parçacıklar farklı yüklere sahiptir. Atomda bulunan yükler;

Atomların Kuantumlu Yapısı

5.111 Ders Özeti #5. Ödev: Problem seti #2 (Oturum # 8 e kadar)

ALETLİ ANALİZ YÖNTEMLERİ

2. BÖLÜM: ATOMUN KUANTUM MODELİ

Kuantum Fiziğinin Gelişimi (Quantum Physics) 1900 den 1930 a

ÇALIŞMA YAPRAĞI (KONU ANLATIMI)

ELEKTRONLAR ve ATOMLAR

ATOM BİLGİSİ Atom Modelleri

Maddenin Yapısına Giriş Ders-2 DOÇ. DR. ZEYNEP GÜVEN ÖZDEMİR EKİM 2017

ATOM MODELLERİ.

Bölüm 3. Işık ve Tayf

Massachusetts Teknoloji Enstitüsü - Fizik Bölümü

2014 Fizik Olimpiyatları 4. Aşama Kuramsal Sınav

12. SINIF KONU ANLATIMLI

DEMOCRİTUS. Atom hakkında ilk görüş M.Ö. 400 lü yıllarda Yunanlı filozof Democritus tarafından ortaya konmuştur.

ATOM ATOMUN YAPISI 7. S I N I F S U N U M U. Elementlerin tüm özelliğini gösteren en küçük parçasına atom denir.

Atomun Yapısı Boşlukta yer kaplayan, hacmi, kütlesi ve eylemsizliği olan her şeye madde denir. Maddeyi (elementi) oluşturan ve maddenin (elementin)

KİMYA 10 DERS NOTLARI ATOM VE ELEKTRİK

İÇİNDEKİLER -BÖLÜM / 1- -BÖLÜM / 2- -BÖLÜM / 3- GİRİŞ... 1 ÖZEL GÖRELİLİK KUANTUM FİZİĞİ ÖNSÖZ... iii ŞEKİLLERİN LİSTESİ...

ATOM VE ELEKTRİK MADDE VE ELEKTRİK YÜKÜ

Büyük Patlama ve Evrenin Oluşumu. Test 1 in Çözümleri

GÜNEŞİN ELEKTROMANYETİK SPEKTRUMU

Atom ve Elektrik. A) Yalnız I B) Yalnız II C) I ve II. D) II ve III E) I, II ve III

8. Sınıf Fen ve Teknoloji. KONU: Sıvılarda ve Gazlarda Basınç

FİZİK 4. Ders 6: Atom Enerjisinin Kuantalanması

Atom Y Atom ap Y ısı

Yıldızlara gidemeyiz; sadece onlardan gelen ışınımı teleskopların yardımıyla gözleyebilir ve çözümleyebiliriz.

12. SINIF KONU ANLATIMLI

Atomlar Atomlar başlıca üç temel altı parçaçıktan oluşur: Protonlar Nötronlar Elektronlar

ATOMUN YAPISI. Özhan ÇALIŞ. Bilgi İletişim ve Teknolojileri

Maddenin Tanecikli Yapısı

ATOMUN YAPISI ATOMUN ÖZELLİKLERİ

Sunum ve Sistematik. Bu başlıklar altında uygulamalar yaparak öğrenciye yorum, analiz, sentez yetisinin geliştirilmesi hedeflenmiştir.

İNSTAGRAM:kimyaci_glcn_hoca

Faraday Elektroliz Deneyi

Prof. Dr. Niyazi MERİÇ Ankara Üniversitesi Nükleer Bilimler Enstitüsü

ELEMENTLERİN SEMBOLLERİ VE ATOM

Vakum Tüpüyle Yapılan Deneylerle Katot Işınlarının Keşfi:

Maddeyi Oluşturan Tanecikler

BÖLÜM 7. ENSTRÜMENTAL ANALİZ YÖNTEMLERİ Doç.Dr. Ebru Şenel

Harici Fotoelektrik etki ve Planck sabiti deney seti

Coulomb Kuvvet Kanunu H atomunda çekirdek ve elektron arasındaki F yi tanımlar.

kimya LYS SORU BANKASI KONU ÖZETLERİ KONU ALT BÖLÜM TESTLERİ GERİ BESLEME TESTLERİ İsmail GÜRDAL Öğrenci Kitaplığı

Nötr (yüksüz) bir için, çekirdekte kaç proton varsa çekirdeğin etrafındaki yörüngelerde de o kadar elektron dolaşır.

İÇİNDEKİLER TEMEL KAVRAMLAR Atomlar, Moleküller, İyonlar Atomlar Moleküller İyonlar...37

SPEKTROSKOPİ ENSTRÜMANTAL ANALİZ. Elektromanyetik radyasyon (ışıma)

Renkler Testlerinin Çözümleri. Test 1 in Çözümleri

ATOM YAPISI ve MODELLERİ. Kimya Ders Notu

ATOMUN KUANTUM MODELİ

LYS K MYA SORU BANKASI KONU ÖZETLER KONU TESTLER

ELEMENTLER, BİLEŞİKLER ve PERİYODİK CETVEL

GENEL KİMYA. Yrd.Doç.Dr. Tuba YETİM

MALZEME BİLGİSİ. Atomlar Arası Bağlar

ATOMUN YAPISI VE PERİYODİK ÖZELLİKLER

Osiloskobun çalışma prensibi. F = q E (8.1)

10. SINIF FİZİK DERSİ 2. DÖNEM 1. YAZILIYA HAZIRLIK SORULARI

X-IŞINI OLUŞUMU (HATIRLATMA)

ÖĞRENME ALANI : FİZİKSEL OLAYLAR ÜNİTE 5 : IŞIK

7. Sınıf Maddenin Tanecikli Yapısı ve Çözünme Kazanım Kontrol Sınavı

ATOMİK YAPI. Elektron Yükü=-1,60x10-19 C Proton Yükü=+1,60x10-19 C Nötron Yükü=0

MODERN FİZİĞİN DOĞUŞUNDA MOR ÖTESİ KRİZİNİN ROLÜ

Modern Fiziğin Teknolojideki Uygulamaları

SU Lise Yaz Okulu 2. Ders, biraz (baya) fizik. Dalgalar Elektromanyetik Dalgalar Kuantum mekaniği Tayf Karacisim ışıması

TEKNOLOJİNİN BİLİMSEL İLKELERİ

ATOMİK YAPI. Elektron Yükü=-1,60x10-19 C Proton Yükü=+1,60x10-19 C Nötron Yükü=0

10. ÜNİTE DİRENÇ BAĞLANTILARI VE KİRCHOFF KANUNLARI

Bu ürünün bütün hakları. ÇÖZÜM DERGİSİ YAYINCILIK SAN. TİC. LTD. ŞTİ. ne aittir. Tamamının ya da bir kısmının ürünü yayımlayan şirketin

MADDENİN YAPISI VE ÖZELLİKLERİ

SPEKTROSKOPİ. Spektroskopi ile İlgili Terimler

ATOM NEDİR? -Atom elementin özelliğini taşıyan en küçük parçasına denir. Her canlı-cansız madde atomdan oluşmuştur.

Bazı cisimler pozitif (+) ya da negatif (-) elektrik yükü taşırlar. Her ikisi de pozitif ya da negatif yüklü iki cisim birbirini iterken, zıt yüklü

İstatistiksel Mekanik I

RÖNTGEN FİZİĞİ X-Işını oluşumu. Doç. Dr. Zafer KOÇ Başkent Üniversitesi Tıp Fak

RADYASYON FİZİĞİ 2. Prof. Dr. Kıvanç Kamburoğlu

En Küçüklerin Fiziği, CERN ve BHÇ 22 Mayıs Doç. Dr. Altuğ Özpineci ODTÜ Fizik Bölümü

Modern Fizik (Fiz 206)

Bölüm 1: Fizik ve Ölçme

ATOM MODELLERİ BERNA AKGENÇ

ALETLİ ANALİZ YÖNTEMLERİ

Transkript:

ATOMUN YAPISI ATOM VE ELEKTRİK 1.ELEKTRİKLENME DENEYİMLERİNDEN ATOMA: Antik dönemde insanlar KEHRİBAR(sarı amber) taşını kürk türünden bir hayvan postu ya da yünlü kumaşa sürtmüşler, daha sonra da bu taşı saman, saç teli, kağıt parçası, kuş tüyü gibi hafif maddelere yaklaştırdıklarında bu maddeleri çektiğini fark etmişlerdir. Sir William Gilbert (1544-1603) cam, reçine ve kükürt gibi maddelerin de kehribarla aynı özelliği taşıdığını ispatlamıştır. Gilbert bu türden çekme kuvvetine sahip olan maddeleri nitelemek için kehribar( eski Yunancada elektron) sözcüğünden elektrik sözcüğü türetmiştir. Sürtünme ile elektriklenmede iki tür yükün ( + ve yükler) olduğunu keşfeden ilk kişi Benjamin Franklin (1706-1790) dir. 2.FARADAY IN ELEKTROLİZ DENEYLERİ VE ATOM ALTI PARÇACIKLAR: İtalyan fizikçi Alessandra Volta 1800 yılında belirli sayıdaki gümüş ve çinko levhayı üst üste yerleştirerek aralarına tuz çözeltisine batırılmış bez parçalarını koymuş ve kendi adıyla anılan ilk kimyasal pili (Volta Pili) bulmuştur. Üst üste koyduğu bu gümüş ve çinko levhalara bağladığı telleri birbirine değdirerek kıvılcım çıktığını görmüş ve ilk kez sürtünme dışında bir olay ile de elektriğin oluştuğu anlaşılmıştır. Böylece kimyasal enerji elektrik enerjisine dönüşmüştür. Volta pili ile nitel olarak anlaşılan kimyasal değişim-elektrik enerjisi ilişkisi Faraday deneyleri ile nicel olarak pekişmiştir. Michael Faraday (1791-1867), bir elementin (örneğin Hg) çeşitli bileşiklerinin [ Hg(ClO 4 ) 2, Hg(NO 3 ) 2, Hg 2 (ClO 4 ) 2 ] çözeltilerini ayrı kaplara koyarak içlerinden belirli miktarda elektrik akımı geçirerek, Hg elementin her bir çözeltide serbest halde elektrotta toplandığını görmüştür (ELEKTROLİZ). Bu çözeltilerden geçen aynı miktardaki elektrik akımı sonucu ayrılan Hg miktarlarının Hg(ClO 4 ) 2 ve Hg(NO 3 ) 2 çözeltileri için aynı olduğunu, Hg 2 (ClO 4 ) 2 çözeltisinden ayrılan cıvanın ise bu miktarların iki katı olduğunu gözlemlemiştir. 3.ELEKTRONUN KEŞFİNİN TARİHSEL GELİŞİMİ: 1874 yılında Faraday ın çalışmalarına dayanarak, George Johnstone Stoney atomlarda elektrik yükü birimlerin bulunduğunu öne sürerek 1891 de de bu yüklü birimlere ELEKTRON adı verilmesini önermiştir. Elektronların varlığına dair ilk kanıt 1870 lerde İngiliz fizikçisi William Crooks tarafından bulunmuştur. Crooks geliştirdiği vakumlu tüp içerisinde gazların elektrikle etkileşim sonucu ortaya çıkan davranışlarını inceledi. Crooks tüpleri olarak da bilinen bu tüpler televizyon tüplerinin de öncüsü olmuştur. Crooks tüpünde elektrotlar arasına yüksek gerilim uygulandığında tüpün ortasındaki gölgenin görülmesinin sebebinin tüp içerisinde bazı ışınların oluşmasıdır. Bu ışınlar daha sonra KATOT IŞINI olarak adlandırılmıştır. Crooks tüpü günümüzde KATOT IŞIN TÜPÜ olarak adlandırılır. 19.yy ın sonlarında katot ışınlarının hızla hareket eden eksi yüklü tanecikler olduğu kesinleşmiştir. Bu taneciklere Stoney in önerdiği gibi ELEKTRON adı verilmiştir. 4.ELEKTRONUN KÜTLESİ VE YÜKÜNÜN BULUNMASI: Elektronun yük ve kütle gibi özellikleri, elektriksel ve manyetik kuvvetler yardımıyla ölçülür. 1858 de Julius Plücker katot tüpünün yakınına bir mıknatıs getirerek oluşan katot ışınlarını gözlemleyip bu ışınların manyetik alandaki davranışlarını ilk kez inceleyen bilim insanıdır. Joseph John Thomson 1897 de katot ışınlarının elektrik ve manyetik alanlarda sapmasını gözlemleyerek bu alanların ışınları saptırma miktarını ölçmüştür. Bu gözlemlerin sonucunda katot ışınlarının yükünün (e) kütlesine (m) oranını ( e/m ) ölçtü.thomson katot ışınları parçacıkları (elektronlar) için e/m oranını - 1,7588.10 11 C/kg bulmuştur. Katot ışınlarının özellikleri: *Negatif yüklüdür. *Tüp içinde elektriksel ve manyetik alan yokluğunda yolu çizgiseldir. *Elektrotlar arasına konan metal levhayı ısıtır. *Özellikleri elektrot olarak kullanılan maddenin ve tüp içindeki gazın cinsine bağlı değildir. *Elektriksel ve manyetik alanda sapmaya uğrar. *Katot ışınları hızlı akan elektronlardır.

Elektron Yükünün Bulunması: 1906-1914 yılları arasında Robert Andrews Millikan, Thomson tarafından bulunan e/m değerinden faydalanarak yaptığı deneylerle elektronun yükü ve kütlesini bulmuştur. (Millikan Yağ Damlası Deneyi) Gönderilen X-ışınları havadaki gaz taneciklerine çarparak oluşturduğu elektronlar yağ damlacıkları tarafından tutulur ve onların eksi yükle yüklenmesine neden olur. Yağ zerreciğinin kütlesi ve yağ zerreciğini dengede tutmak için levhalara uygulanan gerilim bilinirse, her damla üzerindeki yük miktarı hesaplanabilir. Deney her tekrarlanışında yükün 1,6022.10-19 coulombun katları olduğu belirlenmiştir. Elektronun yükü, e= - 1,6.10-19 coulomb dur. Bulunan değer e/m değerinde yerine yazılırsa elektronun kütlesi hesaplanabilir. Elektronun kütlesi, m e = 9,1.10-31 kg dır. 5.ATOMDA ELEKTRONUN YÜKÜ İLE POZİTİF YÜKLER ARASINDAKİ İLİŞKİ: Atomlar yüksüzdür(nötral). Atomun yapısındaki eksi yüklü elektronlar bulunduğuna göre bu elektronların yükünü dengeleyecek kadar artı yüklü bir kısmında bulunması gerekir. Kanal ışınları deneyi bu düşünceyi doğrulamıştır. Şekilde görüldüğü gibi, vakum tüpü ve bu tüpün ortasında gözenekli(delikli) bir katot vardır. Vakum tüpünün elektrotları arasına yüksek gerilim uygulanırsa; katottan çıkan ve tüpün ikinci yarısında, katot ışınlarına ters yönde yayılan, artı yüklü ışınlara rastlanır. Bu ışınlara POZİTİF IŞINLAR veya KANAL IŞINLARI denir. Kanal ışınları protonlardan ibarettir. Bu deneylerle, bütün atomların yapısında elektronlar yanında protonların da bulunduğu anlaşılmıştır. İlk olarak Eugen Goldstein tarafından 1886 da araştırılmıştır. Elektronlar gibi, protonun da e/m oranı, daha sonra da ayrı ayrı yükü ve kütlesi hesaplanmıştır. Protonun yükü= +1,6022.10-19 C, Protonun kütlesi = 1,6725.10-27 kg olarak hesaplanmıştır. 6.ATOMUN PROTON SAYILARININ DENEYSEL OLARAK BELİRLENMESİ: X-ışınları, görünür ışıktan daha yüksek enerjiye sahip elektromanyetik ışınlardır. 1913-1914 yıllarında İngiliz fizikçi Henry Gwyn Jeffreys Moseley, X-ışınlarını kullanarak değişik elementlerin farklı X-ışınları spektrumunu elde etmiştir. Moseley, 1912 de anotta çeşitli elementleri kullanarak her elementin farklı karakteristik X-ışınları spektrumu verdiğini ve elementin atom kütlesi arttıkça yayınlanan ışının frekanslarının buna paralel olarak arttığını gözlemlemiştir. Moseley, X-ışınları frekanslarının atomun çekirdeğindeki yükün karakteristiği olduğunu anlamıştır. Atom numaraları 13 ile 79 arasındaolan 38 elementin X-ışınları spektrumunu incelemiştir. Kütle Spektrometresi: Atom ve moleküllerin kütlelerinin belirlenmesi Kütle Spektrometresi ile yapılır. Kütle Spektrometresi gaz halinde örneğin, yüksek enerjili elektronlarla bombardımanı ilkesi ile çalışır.

ATOM MODELLERİNİN TARİHSEL GELİŞİMİ 1.RUTHERFORD ATOM MODELİ: Ernest Rutherford, alfa taneciklerinin (pozitif yüklü taneciklerin) ince altın levhada saçılmalarını gözlemlemiştir. Yaptığı deneyde dar bir aralıktan, paralel ve pozitif yüklü tanecikler demetini çok ince altın bir levhaya göndererek sapmaya uğrayan taneciklerin açısal dağılımını, çinko sülfür sürülmüş levha üzerinde beliren parıldamalar sayesinde belirlemiştir. Rutherford yaptığı deney sonucunda 1911 de yeni bir atom modeli geliştirmiştir. *Alfa ışınlarının çoğu ince levhadan geçtiğine göre atomda büyük boşluklar vardır. *Atom kütlesinin tamamına yakını ve pozitif yüklerin tamamı çekirdekte toplanmıştır. Çekirdeğin hacmi çok küçüktür. *Çekirdekteki (+) yükün miktarı elementten elemente değişir. Çekirdek kütlesinin yarısını protonlar oluşturur. *Çekirdeğin dışında, pozitif yüke eşit sayıda elektron bulunur. Rutherford, kütlesi yaklaşık protonun kütlesine eşit ve yüksüz bir taneciğin varlığını önermiştir. Ancak bu yüksüz taneciğin özelliklerini 1932 de James Chadwick ortaya koymuş ve nötron adını vermiştir. Çekirdekli atom modelini ilk öneren kişi Rutherdford dur. 2.ELEKTROMANYETİK IŞINLARIN DALGA MODELİYLE AÇIKLANMASI: Dalga, titreşen ve enerji transfer eden bir bozulmadır. Bir dalganın hızı, dalganın türüne ve yol aldığı ortama (hava, su veya vakum gibi) bağlıdır. Elektromanyetik ışın uzayda dalga hareketi ile ilerler. Elektromanyetik ışıma; renk, elektrik ve manyetik alanların dalgalar biçiminde bir ortam veya vakumda yayıldığı bir enerji şeklidir. Dalga boyu (λ:lamda) :Art arda gelen iki dalga üzerinde benzer noktalar arasındaki uzaklıktır. (İki max veya iki min nokta arasındaki uzaklık) Dalga sayısı : 1/ dalga boyuna dalga sayısı denir. ile gösterilir. = 1/ λ Genlik(A) :Bir dalgada max yüksekliğe veya min derinliğe denir. Dalganın yani ışımanın şiddeti, genliğin karesi (A 2 ) ile doğru orantılıdır. Frekans( : nü ) :Belli bir noktadan 1 saniyede geçen dalga sayısıdır. Birimi Hz (Hertz) dir. 1 Hz = 1/ saniye Hız (c) :Belli bir ışıma için dalga boyu ile frekansın çarpımı elektromanyetik dalgalar için ışık hızına eşittir. Boşlukta bütün dalgalar aynı hızla hareket eder. Bu hız ışık hızına eşit olup 3.10 8 m/s dir. ( c =. λ )

Renkler arasında kırmızı en uzun dalga boyu ve en düşük frekansa; mor ise en kısa dalga boyu ve en yüksek frekansa sahiptir. Göz, ancak bu iki renk arasındaki ışınlara karşı duyarlıdır. Görünür ışık dalga boyları yaklaşık 380 nm 760 nm arasındaki ışınları içerir. Frekansı kırmızı renginkinden düşük ışınlara Kızıl ötesi (IR) Infrared; frekansı morunkinden yüksek olanlara ise Mor ötesi (UV) Ultraviyole Işınlar denir. Bütün bu frekansları kapsayan elektromanyetik ışın dizisine ELEKTROMANYETİK DALGA SPEKTRUMU denir. Spektrum, elektromanyetik ışının frekansı veya dalga boyuna göre gruplandırılır. Elektromanyetik ışımanın maddeyle (atomlar ve moleküller) etkileşmesini konu alan bilim dalına Spektroskopi, bu etkileşmenin incelendiği aletlere Spektroskop ve spektrumların kaydedildiği aletlere de Spektrometre denir. Bir ışığın cam prizmadan geçirilerek kendisini oluşturan farklı dalga boylarında ışınlara ayrışmasına Spektrum ya da tayf denir. ÖRNEK : Bir yeşil ışığın dalga boyu 500 nm dir. Bu radyasyonun frekansını hesaplayınız. (c=3.10 8 m/s) 1 nm 10-9 m λ = c / = 3.10 8 / 5.10-7 = 6.10 14 Hz 500 nm x x= 500.10-9 =5.10-7 m 3.IŞIĞIN İKİLİ DOĞASI: Işığın tanecikler halinde yayıldığını ilk olarak ortaya atan Newton dur. Işığın tanecikler halinde yayılması yansıma ve kırılma gibi bazı bilinen olayların açıklanmasını sağlıyordu. Newton hayatta iken 1678 de Hollandalı fizikçi Christian Huygens, ışık kaynaklarının çok yüksek frekanslı titreşimler meydana getirdiğini ve bu titreşimlerin, saydam ortamlarda dalgalar halinde yayıldığını ileri sürmüştür. Bu kanıya dar bir aralıktan ışık ışınları geçirerek bu ışınların önündeki ekranda karanlık ve aydınlık alanlar oluşturmasını gözlemleyerek varmıştır. Huygens in ışığın dalga hareketi şeklinde olduğu prensibini açıklayabilmek için İngiliz fizikçi Thomas Young çift aralıklı ışık girişim deneyini yapmıştır. Yarıklarda geçen iki ışının perde üzerinde aynı titreşim yaptıklarında birbirini kuvvetlendireceğini (aydınlık bölge), zıt titreşim yaptıklarında birbirini söndüreceğini (karanlık bölge) söyleyerek Young ın bu deneyi ışının dalga teorisini desteklemektedir. Yani ışın uygun koşullarda dalgalar gibi girişime uğramaktadır. Elektromanyetik Işımanın Dalga ve Parçacık Özelliği: Elektromanyetik ışımanın hem dalga hem de parçacık yapısında olma özelliği vardır. Işık, elektromanyetik ışımanın gözle görülen bölümüdür. Elektromanyetik ışımanın dalga kuramı, gözlenen pek çok özellikleri açıklar. CD üzerinde görülen gökkuşağı renkleri, elektromanyetik ışımanın dalga girişimine örnek teşkil ederken siyah cisim ışıması ve fotoelektrik olay gibi olaylar ise ışımanın parçacıklardan oluşması ile açıklanabilir. Işıma enerjisinin parçacık özelliği için Max Planck tarafından kuantum kuramı önerilmiş, enerjinin ancak belli bir büyüklük halinde alınıp verilebileceğini belirtmiştir. Belli bir büyüklük halinde alınıp verilebilen bu enerjiye KUANTUM, ışıma enerjisine ise KUANTLANMIŞ ENERJİ denir. Albert Einstein, 1905 te ışımayı oluşturduğu ve ışık hızıyla hareket ettiği kabul edilen bu kuantumları FOTON lar olarak isimlendirilmiştir. Işıma enerjisi hem ışıma dalgaları hem de foton akımlarıdır. Işıma enerjisi sürekli değil, kesikli bir biçimde, kuantumlar halinde alınıp verilebilir. Siyah Cisim Işıması: Üzerine gelen bütün ışınları soğuran cisimlere SİYAH CİSİM denir. Siyah cisim bir metalden veya kilden yapılmış, her yanı kapalı ve içi karbonla sıvanmış borunun üzerine bir delik açmakla hazırlanabilir. Siyah cisim ısıtılıp delikten çıkan ışımalar gözlendiğinde her çeşit dalga boyunda ışığın olduğu görülür. Düşük sıcaklıkta az enerjili (uzun dalga boylu) ışımalar olurken sıcaklık yükseldikçe ışıma yüksek enerjili (kısa dalga boylu) olur. Siyah cisim ısıtılıp görünür ışık yaydığında önce kırmızı renk görülür. Sıcaklık arttırılınca turuncu ve sarı ışıma mora kadar devam eder. Planck Kuantum Kuramı: 1900 yılında Max Planck, siyah cismin ışımasıyla yayılan ışının, sürekli bir elektromanyetik dalga olmadığını göstermek için, kesikli enerji paketlerinden (foton) oluştuğunu ileri sürmüştür. Buna göre enerji de madde gibi sürekli değildir. Elektromanyetik radyasyon şeklinde yayılan enerjinin en küçük birimine KUANTUM demiştir. Kuantum modeli ENERJİNİN KUANTLAŞMASI temeline dayanır.

Klasik fizik ile Planck ın kuantum modeli arasındaki temel fark şudur: klasik fizik bir sistemin sahip olabileceği enerjiye bir sınırlama getirmezken kuantum modelli bu enerjiyi belli değerlerdeki özel paketler halinde sınırlamıştır. Max Planck, herhangi bir frekansında salınan enerji miktarının belirli bir E değerinden küçük olmayacağını kabul etmiştir. Siyah cisimden salınacak en küçük enerji değerinin titreşim frekansına oranının sabit olduğunu göstermiştir. Kendi adıyla anılan bu sabit h ile gösterilmiştir. Her kuantum enerjisi, ışımanın frekansı ile doğru orantılıdır. Planck bir kuantumun taşıdığı enerji için; E=h. bağıntısını kullanmıştır. Planck sabiti (h) değeri 6,626196.10-34 J.s dir. Fotoelektrik Olay: 1905 te Albert Einstein, kuantum kuramını kullanarak fotoelektrik olayını çözmüştür. Fotoelektrik Olay, bir metal yüzeyine ışık tutulduğu zaman elektronların kopması olayıdır. Einstein, Planck ın ortaya attığı kesikli ve belli büyüklükteki enerji kuantumlarının (fotonların) metal elektronları ile etkileşmesinin fotoelektrik olaya yol açtığını söylemiştir. Bir foton bir metal atomuna çarptığı zaman tüm enerjisini elektronlara verir. Bir elektron koparmak için minimum enerjiye sahip olması gerekir. ( E o = h. o ) Belli frekansta bir ışımanın şiddetinin artırılması fotonların sayısını artıracak ama enerjilerini değiştirmeyecektir. Işımanın enerjisi artarsa elektronun hızı da buna bağlı olarak artmaktadır. Işın kuantumlarının (fotonların) enerjisi ile dalga nicelikleri arasındaki ilişki: c E=h. = h. λ ÖRNEK: Dalga boyu 4.10 5 nm olan bir fotonun enerjisini Joule cinsinden hesaplayınız. (c=3.10 8 m/s) (h=6,63.10-34 J.s) c 3.10 8 1 nm 10-9 m E=h. = h = 6,63.10-34. = 4,97.10-22 J 4.10 5 nm x λ 4.10-4 x= 4.10 5.10-9 =4.10-4 m 4.ATOM SPEKTRUMLARI: Atom spektrumlarının incelenmesi elementlerde elektron düzenini bulmak için kullanılan en iyi yöntemdir. Beyaz ışık (güneş ışığı) önce dar bir demet yapıcı yarıktan ve daha sonra prizmadan geçirilirse görünür bölgede mordan kırmızıya kadar değişen bütün renkleri içeren KESİKSİZ (SÜREKLİ) SPEKTRUM elde edilir. Elementler, gaz veya buhar halinde gerekli yüksek sıcaklığa kadar ısıtılırsa bir ışıma yayımlar. Işımanın prizmadan geçirilmesi bir KESİKLİ (ÇİZGİ) SPEKTRUM verir. Çizgi spektrumunda elementler (atomlar) görünür bölgenin değişik kesimlerinde parlak çizgiler oluşturur. Oluşan bu çizgi spektrumlarının nedeni maddelerin enerji (ısı, elektrik) aldıklarında kendine özgü dalga boylarında ışık yayımlamasıdır. Her elementin kendine özgü belirgin yayınma (emisyon) çizgi spektrumu vardır. Güneş ışığının kesiksiz spektrumunda soğurma (absorpsiyon) dalga boyları siyah çizgiler şeklinde görülür. Bunlara Fraunhofer Çizgileri denir. Bu çizgiler, güneş yüzeyindeki gaz elementlerin ışığın bazı dalga boylarını soğurmaları nedeniyle oluşur. Hidrojenin yayınma (emisyon) spektrumu: Emisyon spektrumu, madde örneğinin ısı ve ışık gibi enerji türleriyle etkileşmesinden sonra gözlenebilir. Atomik hidrojenin görünür bölgedeki spektrumu 4 çizgiden oluşur. En parlak çizgi 656 nm dalga boyu ile kırmızıdır. Bu değer hidrojenin yayınma spektrumunun görünür bölgedeki dalga boylarına karşılık gelir. Bu eşitlikle bulunan spektrum çizgileri dalga boylarına BALMER SERİSİ denir.

Hidrojen atomu spektrumunda gözlenen seriler: n=1 Lyman Serisi Mor ötesi (UV) n=2 Balmer Serisi Görünür bölge n=3 Paschen Serisi Kırmızı ötesi (IR) n=4 Brackett Serisi Kırmızı ötesi (IR) n=5 Pfund Serisi Kırmızı ötesi (IR) Hidrojenin soğurma (absorpsiyon) spektrumu: Elementlerin emisyon (yayınma) spektrumları olduğu gibi bir de soğurma (absorpsiyon) spektrumları vardır. Bunun nedeni hangi dalga boylarında ışıma yapıyorlarsa o dalga boylarındaki ışımayı soğurabilir. Her element atomunun kendine özgü bir absorpsiyon ve emisyon spektrumları vardır. Ayırt edici bir özelliktir. Hidrojenin görünür bölge soğurma (absorbsiyon) çizgi spektrumu Hidrojenin görünürbölge çizgi spektrumu J.Balmer ve J.Rydberg hidrojenin görünür bölge yayınma spektrumundaki en uzun dalga boylu üç çizginin (kırmızı, yeşil, mavi) dalga boylarını hesaplamaya yarayan bir eşitlik geliştirmişlerdir. Bu eşitlik Rydberg eşitliği olarak bilinir. 1 1 1 Rydberg eşitliği; = R. - Rydberg sabiti; R= 1,0974.10 7 1/m dir. λ 2 2 n 2 5.BOHR ATOM MODELİ VE VARSAYIMLARI: Hollandalı fizikçi Niels Henrik David Bohr, atomların spektrumları ile Planck ve Einstein in kuantum düşüncelerinden yaralanmıştır. Atomun elektron yapısını açıklayabilmek için Boht; atomun bir çekirdek ile çevresindeki elektronlardan oluştuğunu ve elektronların çekirdek üzerine düşmediği gerçeğinden yola çıkarak basit bir atom modeli önermiştir. Hidrojenin çizgi spektrumu ışımanın belli miktarlar (kuantumlar) halinde yayıldığını gösterir. Hidrojenin elektronunun enerjisi kuantlanmıştır. Elektron, yüksek enerjili bir düzeyden daha düşük olan düzeye geçerken enerji farkı, ışıma kuantumu olarak yayılmakta ve yayınma spektrumundaki bir çizgiye karşılık gelmektedir. Bohr atom modeline göre; 1.Bir atomda bulunan her elektron çekirdekten ancak belirli uzaklıklarda küresel yörüngelerde bulunabilir. Her yörünge belirli enerjiye sahiptir. Bu yörüngelere ENERJİ DÜZEYİ denir. Yörüngelerin ortak merkezi çekirdek olup yörüngeler K, L, M, N,O gibi harflerle gösterildiği gibi 1, 2, 3, 4, 5 gibi rakamlarla bir n değeri ile belirtilir. 2.Bir atomun elektronları en düşük enerji düzeyinde bulunmak ister. Bu düzeye TEMEL HÂL DÜZEYİ denir. Madde ısıtıldığında atomlarındaki elektronlar daha yüksek enerji düzeyine geçer. Bu durumdaki atomlara UYARILMIŞ HÂL denir. Uyarılmış atom yüksek enerjili olduğundan kararsızdır. 3.Yüksek enerji düzeyinde bulunan elektron düşük enerji düzeyine inerse aradaki enerji farkına eşit enerjide ışın yayılır. Bir dış yörüngedeki (n d ) elektronun enerjisine E d ve bir iç yörüngedeki (n i ) elektronunun enerjisine de E i diyelim. Elektron dış yörüngeden iç yörüngeye geçtiğinde (E d -E i ) kadar enerji bir ışık fotonu şeklinde yayılır. -2,18.10-18. Z 2 İyonlar için çekirdek yükü enerji düzeyi denklemi; E A = (Z=atom numarası, n=enerji düzeyi) n 2

KUANTUM (DALGA) MEKANİĞİNİN TARİHSEL GELİŞİMİ 1.ATOM ALTI PARÇACIKLARININ DALGA ÖZELLİĞİ: Bohr atom modeli; H, He + ve Li +2 vb. gibi tek elektronlu türlerin spektrumlarını başarıyla açıkladığı halde birden fazla elektron içeren türlerin spektrumlarını açıklamada yetersiz kalmıştır. Bohr un hidrojen üzerinde yaptığı çalışmalardan on yıl sonra elektronlar için ortaya atılan iki temel kavram (tanecik ve dalga) kuantumun yeniden gözden geçirilmesine sebep olmuştur. Dalga Tanecik İkiliği: Louis de Broglie ve Schrödinger ışığın dalge ve tanecik teorilerini birleştirerek bugünkü dalga mekaniğinin temelini oluşturdular. De Broglie bir fotonun enerjisini hesaplayabilmek için Planck bağıntısını ve Einstein enerji eşitliğini birlikte kullanmıştır. h Planck bağıntısı; E=h. = c/λ yerine konularak; λ= Einstein eşitliği; E=m.c 2 m.c eşitliği bulunur. De Broglie X-ışınları kırınımından yola çıkarak hareket eden maddesel parçacıkların dalga gibi davranabileceğini söylemiştir. De Broglie eşitliği; λ= h şeklinde yazılır. m.v De Broglie, maddesel taneciklerle bir arada kabul edilen dalgalara MADDE DALGALARI adını vermiştir. Küçük tanecikler için madde dalgaları varsa elektron gibi taneciklerin demetleri de dalgaların özelliklerini taşımalıdır. Eğer dalgaların dağıldığı nesneler arasındaki uzaklık, ışımanın dalga boyuna eşitse kırılma gerçekleşir. Elektronun Dalga Özelliği: Fotonlar gibi davrana ışık dalgacıklarından hareketle, de Broglie elektronların da dalga özelliği gösterebileceğini fikrini ileri sürmüştür. Bu fikre göre elektron duran bir dalga gibi davranmaktadır. Elektronun Dalga Özelliğine Deneysel Kanıt: De Broglie nin önerdiği madde dalgalarının ilk denel doğrulaması C.Davisson ve L.H.Germer ile George Paget Thomson tarafından kanıtlanmıştır. Elektronun tıpkı X-ışınları gibi kristalde kırınıma uğradığını gösterdiler ve elektronların dalga boylarını ölçmeyi başarmışlardır. G.P.Thomson şekilde olduğu gibi çok ince metal levhadan elektronları geçirerek Davisson ve Germer gibi girişim ve kırınım desenlerini gözlemlemiştir. İnce alüminyum levhanın elektron kırınımı görüntüsünü incelediğimizde Young ın ışıkla yaptığı deneydeki görüntüsüne benzemektedir. Bu görüntüde de ışık deneyinde olduğu gibi aydınlık ve karanlık bölgeler görünmektedir. Young ın deneyi, ışığın (elektromanyetik dalga) karakterinde olduğunu göstermektedir. Elektronda aynı görüntüyü (kırınımı) oluşturuyor ise elektron da dalga özelliği gösterir sonucuna ulaşılır. Başka madde atomları için de X-ışınları ile benzer şekilde aynı görünüm gözlenmiştir. 2.HEISENBERG BELİRSİZLİK İLKESİ: 1920 yıllarında Niels Bohr ve Werner Heisenberg atomlardan daha küçük taneciklerin örneğin elektronun davranışlarının nereye kadar belirlenebileceğini görebilmek için deneyler tasarlamışlardır. Bunun için taneciğin (elektronun) konumu (X) ve hızı (V) gibi iki değişkenin ölçülmesi gerekir. Heisenberg in ulaştığı sonuca göre ölçümlerde daima bir belirsizlikle karşılaşılmaktadır. Bu belirsizlik, h (ΔX).(ΔV) şeklinde olmalıdır. ( ΔX=konum, ΔV=hızdaki değişim ) 4.π.m ΔX konumdaki değişimi ölçmeye çalıştığımızda eşitsizliği sağlamak için hızdaki değişim de ΔV farklılaşarak belirsiz hale gelecektir. HEISENBERG BELİRSİZLİK İLKESİ: Bir taneciğin aynı anda hem hızı hem de konumu saptanamaz. Heisenberg e göre, elektronları çekirdek etrafında belli yörüngelerde dolaşan parçacıklar olarak düşünmek yanlıştır.

ATOMUN KUANTUM MODELİ 1.ATOMUN KUANTUM MODELİ: 1926 yıllarında Erwin Schrödinger Heisenberg den bağımsız olarak de Broglie nin hipotezinden ilham alarak tüm parçacıkların hareketinin hesaplanabileceği bir dalga mekaniği oluşturmuştur. Schrödinger bir kuvvet etkisi altında olan dalgaların nasıl oluşacağını ve gelişeceğini açıklamıştır. Bu açıklama tanecik yoğunluğunun dalga fonksiyonunun karesi ( ψ 2 ) ile doğru orantılı olduğu yönündedir. Fotonun bulunma ihtimalinin en yüksek olduğu yerin dalga fonksiyonunun karesinin değer olarak en yüksek olduğu yer olarak açıklamasıdır. Hidrojen atomunun elektronunun bulunabileceği enerji düzeyi ve dalga fonksiyonları Schrödinger denklemi ile açıklanabilir. Enerji düzeyleri ve dalga fonksiyonları kuantum sayıları ile ifade edilir. Bohr atom modelinde elektronun bulunduğu yer için yörünge tanımlaması kullanılırken kuantum mekaniğinde bunun yerine orbital tanımlaması kullanılır. Orbital, elektronun kuantum sayıları ile belirlenen dalga fonksiyonudur. Orbital bir matematik fonksiyonudur ve bu fonksiyondan hareketle elektronun yerinin kesin olarak hesaplanması mümkün değildir. Ancak, elektronun belirli bir uzay bölgesinde bulunma olasılığı hesaplanabilir. Schrödinger, dalga fonksiyonlarını hidrojen benzeri atomlar ve iyonlar için matematiksel yöntemlerle bularak, her sistem için birden çok fonksiyon elde etmiştir. Bu fonksiyonlar n,l ve m l kuantum sayıları ile karakterize edilir. n, l ve m l ile karakterize edilen dalga fonksiyonlarının birden çok olması aynı sistemdeki tek elektronunun, çok sayıda enerji düzeylerinde bulunabileceği anlamına gelir.