Büyük Ölçekli Harita Üretiminde LiDAR ve Ortofoto

Benzer belgeler
FOTOGRAMETRİ ANABİLİM DALI. Prof. Dr. Ferruh YILDIZ

TMMOB Harita ve Kadastro Mühendisleri Odası Ulusal Coğrafi Bilgi Sistemleri Kongresi 30 Ekim 02 Kasım 2007, KTÜ, Trabzon

FOTOGRAMETRİ DAİRESİ BAŞKANLIĞI FAALIYETLERI

YOĞUN GÖRÜNTÜ EŞLEME ALGORİTMALARI İLE ÜRETİLEN YÜKSEK ÇÖZÜNÜRLÜKLÜ SAYISAL YÜZEY MODELİ ÜRETİMİNDE KALİTE DEĞERLENDİRME VE DOĞRULUK ANALİZİ

BİLGİ DAĞARCIĞI HAVADAN (AIRBORN) LİDAR NEDİR? HAVADAN (AIRBORN) LİDAR SİSTEMİ. Sistem aşağıda belirtilen ekipmanlardan oluşmaktadır.

Genel Bilgiler FLI MAP. Koridor Tipi Çalışmalar. Geniş Alan Çalışmaları

İçerik Fotogrametrik Üretim 2 Fotogrametri 2 Hava Fotogrametrisi...2 Fotogrametrik Nirengi 3 Ortofoto 4 Fotogrametrik İş Akışı 5 Sayısal Hava

M. Taner Aktaş, GISP : mtaktas@yahoo.com

Lazer-obje (hedef) etkileşimi-yüzey eğim ve pürüzlülüğü

Ormancılıkta Uzaktan Algılama. 4.Hafta (02-06 Mart 2015)

LIDAR VE YERSEL LAZER TARAYICI SİSTEMLERİ. Yersel Lazer Tarayıcı Hakkında Genel Bilgi

GeoSLAM. GPS ihtiyacı olmadan; 3D mobil veri elde etme

Eski Yunanca'dan batı dillerine giren Fotogrametri sözcüğü 3 kök sözcükten oluşur. Photos(ışık) + Grama(çizim) + Metron(ölçme)

Fotogrametride işlem adımları

Dijital (Sayısal) Fotogrametri

UYDU GÖRÜNTÜLERİ VE SAYISAL UZAKTAN ALGILAMA

HASSAS ORMANCILIK. Prof.Dr. Abdullah E. Akay. BTÜ Orman Fakültesi Orman Mühendisliği Bölümü Osmangazi-Bursa

Uzaktan Algılama Teknolojileri

25 Ekim 2016 Salı - Sistemlere Giriş ve Tanıtım

Elektromanyetik Radyasyon (Enerji) Nedir?

Veri toplama- Yersel Yöntemler Donanım

KONTROL EDEN Bilal ERKEK Şube Müdürü

Uzaktan Algılamanın. Doğal Ekosistemlerde Kullanımı PROF. DR. İ BRAHİM ÖZDEMİR SDÜ ORMAN FAKÜLTESI I S PARTA

GPS/INS Destekli Havai Nirengi

raycloud özelligi sayesinde en yüksek dogruluk ile tüm nesneleri tanımlayın ve proje doğruluğunu en üst seviyeye taşıyın.

Dijital Kameralar (Airborne Digital Cameras)

KONTROL EDEN Bilal ERKEK Şube Müdürü

EROZYONUN KANTİTATİF OLARAK BELİRLENMESİ. Dr. Şenay ÖZDEN Prof.Dr. Nuri MUNSUZ

5 İki Boyutlu Algılayıcılar

HAVADAN LAZER TARAMA ve SAYISAL GÖRÜNTÜ VERİLERİNDEN BİNA TESPİTİ VE ÇATILARIN 3 BOYUTLU MODELLENMESİ

Uzaktan Algılama Teknolojileri

TÜRKİYE CUMHURİYETİ DEVLETİNİN temellerinin atıldığı Çanakkale zaferinin 100. yılı kutlu olsun.

Yeni Nesil Şahingözü Keşif Gözetleme Sistemleri.

Yersel Lazer Tarayıcılar ile 3 Boyutlu Modelleme

TEMEL HARİTACILIK BİLGİLERİ. Erkan GÜLER Haziran 2018

NiK SYSTEM.. NİK Sistem

ROBONİK MEKATRONİK TEKNOLOJİLERİ HAVADAN GÖRÜNTÜLEME VE ÖLÇÜM SİSTEMLERİ

HRT 105 HARİTA MÜHENDİSLİĞİNE GİRİŞ

Web adresi : MEKANSAL VERİLER İLE ÜRETİLECEK TÜM ÇÖZÜMLER İÇİN... BİLİŞİM TEKNOLOJİLERİ LTD. ŞTİ.

NDEN BELİRLENEBİLME LME POTANSİYELİ UYDU GÖRÜNTÜLERİNDEN

Dijital (Sayısal) Fotogrametri

Dijital (Sayısal) Fotogrametri

KIYI KENAR ÇİZGİLERİNİN BELİRLENMESİ VE SAHİL BİLGİ SİSTEMİ TASARIMI 1. SAHİLLERİMİZ PLANSIZ VE SAĞLIKSIZ KULLANILMAKTADIR

CBS Veri. CBS Veri Modelleri. Prof.Dr. Emin Zeki BAŞKENT. Karadeniz Teknik Üniversitesi Orman Fakültesi 2010, EZB

Yıldız Teknik Üniversitesi İnşaat Fakültesi Harita Mühendisliği Bölümü TOPOGRAFYA (HRT3351) Yrd. Doç. Dr. Ercenk ATA

3.2. Raster Veriler. Satırlar. Sütunlar. Piksel/hücre büyüklüğü

Uzaktan Algılama Teknolojileri

Yrd. Doç. Dr. Aycan M. MARANGOZ. BEÜ MÜHENDİSLİK FAKÜLTESİ GEOMATİK MÜHENDİSLİĞİ BÖLÜMÜ JDF336 FOTOGRAMETRİ II DERSi NOTLARI

UZAKTAN ALGILAMA- UYGULAMA ALANLARI

COĞRAFİ BİLGİ SİSTEMLERİ VE UZAKTAN ALGILAMA

HACİM HESAPLAMALARINDA LASER TARAMA VE YERSEL FOTOGRAMETRİNİN KULLANILMASI

ORM 7420 USING SATELLITE IMAGES IN FOREST RESOURCE PLANNING

2014 YILINDA UYGULANACAK ÜCRET TARİFELERİ İÇİNDEKİLER

GPS ile Hassas Tarım Uygulamaları

Doğal ve doğal olmayan yapı ve tesisler, özel işaretler, çizgiler, renkler ve şekillerle gösterilmektedir.

2018 YILINDA UYGULANACAK ÜCRET TARİFELERİ İÇİNDEKİLER

Çözümleri TRAFİK ÖLÇÜM SİSTEMLERİ. İSBAK A.Ş., İstanbul Büyükşehir Belediyesi iştirakidir.

Geniş Alan Gözetleme Sistemlerinin Afet Durumunda Kullanımı ESEN SİSTEM ENTEGRASYON KASIM 2013

2019 YILINDA UYGULANACAK ÜCRET TARİFELERİ İÇİNDEKİLER

UZAKTAN ALGILAMA YÖNTEMİ MADEN ARAŞTIRMA RAPORU

TÜBİTAK BIT-MNOE

Afet Yönetiminde İleri Teknolojilerin Kullanımı AFTEK Güz Çalıştayı Dr.Müh.Alb. Ali ULUBAY Harita Genel Komutanlığı

ORTOFOTO ÜRETİMİNDE TAPU VE KADASTRO VİZYONU

İçerik. Giriş 1/23/13. Giriş Problem Tanımı Tez Çalışmasının Amacı Metodoloji Zaman Çizelgesi. Doktora Tez Önerisi

Haritacılık Bilim Tarihi

HAVA FOTOĞRAFLARININ YÖNELTİLMESİNDE GPS/IMU İLE DOĞRUDAN COĞRAFİ KONUMLANDIRMA DOĞRULUĞUNUN ARAŞTIRILMASI

Endüstriyel Fotog. (LTT) ( BYY) Endüstriyel Fotogrametri (LTT)- Doç. Dr. Fevzi Karslı Sayfa 1

ARAZİ ÖLÇMELERİ. Koordinat sistemleri. Kartezyen koordinat sistemi

Drone ve Kara Tehditlerine Karşı Retinar Radar Sistemi

Dijital Fotogrametri

İnsansız Hava Araçları Lidar Etkileşimi

TEMEL GÖRÜNTÜ BİLGİSİ

DİJİTAL FOTOGRAMETRİK HARİTA ÜRETİMİ VE TAPU VE KADASTRO ÖRNEĞİ

2015 YILINDA UYGULANACAK ÜCRET TARİFELERİ İÇİNDEKİLER

BİLGİSAYAR DESTEKLİ ORMAN YOLU PLANLAMA MODELİ

SPS ZOOM D Lazer Tarayıcı SPS ZOOM 300

Uzaktan Alg ılamaya Giriş Ünite 6 - Görüntü O t r orektifikasyonu

ENERJİ AMAÇLI RÜZGAR ÖLÇÜMÜNDE İZLENECEK YOL

Bilgisayarla Fotogrametrik Görme

COĞRAFİ BİLGİ SİSTEMİ VE UZAKTAN ALGILAMA

EĞİK RESİM FOTOGMETRİSİNİN ARAZİ YÖNETİMİNDE KULLANIMI

Suya atılan küçük bir taşın su yüzeyinde oluşturduğu hareketler dalga hareketine örnek olarak verilebilir. Su yüzeyinde oluşan dalgalar suyun alt

9 HAZIRAN Trimble MX7 360 Görüntülü Mobil Haritalama Sistemi

Afet Yönetiminde İleri Teknolojiler ve TÜBİTAK UZAY ın Vizyonu

Trafik Yoğunluk Harita Görüntülerinin Görüntü İşleme Yöntemleriyle İşlenmesi

Hava Fotoğrafı Üzerindeki Bilgiler

ATIŞ, TEST VE DEĞERLENDİRME MERKEZİ Konya-Karapınar-TÜRKİYE

FOTOYORUMLAMA UZAKTAN ALGILAMA

Yürürlük Tarihi : Kodu: B091TKG TA.02 Rev. No/Tarihi : 00/- Tapu ve Kadastro. Sayfa : 1/7

TOPOĞRAFİK HARİTALAR VE KESİTLER

TEMEL GÖRÜNTÜ BİLGİSİ

IBAK Panoramo Serisi 3D Optik Boru Hattı Tarayıcılar

35 Adet Yıldırım Tespit ve Takip Sistemi (YTTS) Kuruluyor

İHA SİSTEMLERİNDE PROFESYONEL ÇÖZÜM ORTAĞINIZ. BURKUT İNSANSIZ HAVA ARACI (İHA-2)

İnşaat Mühendisliğine Giriş İNŞ-101. Yrd.Doç.Dr. Özgür Lütfi Ertuğrul

ATAY MÜHENDİSLİK İHA ÜRÜN KARALOĞU

TurkUAV Mapper İnsansız Hava Aracı Destekli Harita Çözümü

Yrd. Doç. Dr. Aycan M. MARANGOZ. BEÜ MÜHENDİSLİK FAKÜLTESİ GEOMATİK MÜHENDİSLİĞİ BÖLÜMÜ JDF329 FOTOGRAMETRİ I DERSi NOTLARI

Fotogrametri Anabilim dalında hava fotogrametrisi ve yersel fotogrametri uygulamaları yapılmakta ve eğitimleri verilmektedir.

Yrd. Doç. Dr. Aycan M. MARANGOZ. BEÜ MÜHENDİSLİK FAKÜLTESİ GEOMATİK MÜHENDİSLİĞİ BÖLÜMÜ JDF336 FOTOGRAMETRİ II DERSi NOTLARI

Transkript:

Büyük Ölçekli Harita Üretiminde LiDAR ve Ortofoto Prof. Dr. Ferruh YILDIZ Selçuk Üniversitesi

Ders İçeriği LiDAR Nedir? Kullanım Şekilleri Bileşenleri Çalışma Prensibi Özellikleri LAS Çoklu Dönüş Çoklu Sinyal İşlem Adımları Doğruluğu Elde Edilen Ürünler Kullanım Yerleri Avantaj ve Dezavantajları Tez Konusu Kapsamında Yapılması Planlananlar

LiDAR Nedir? Light Detection And Ranging Işığı Algılama ve Mesafe Ölçme Lazer Tarama ile 3B Veri (Nokta) Toplama Kısa sürede, istenilen yoğunlukta ve yüksek doğrulukta yükseklik (topoğrafya) verisi toplamak için kullanılan bir uzaktan algılama sistemidir. Hızlı ve doğru Sayısal Yükseklik Modelleri (SYM-DEM) üretmek için veri toplayan, üç teknolojinin (Lazer, GPS, IMU) birleştiği bir sistemdir.

Kullanım Şekilleri Havadan (Airborne) Tarama Uçak veya helikoptere monte edilerek geniş alanlar ve koridorlar kolayca taranarak SYM leri toplanır. Topoğrafik Batimetrik Geniş Alan Koridor Haritalama Yersel (Terrestial) Tarama Bina röleve alımları, restorasyon, arkeoloji, çevre düzenleme, madencilik gibi alanlarda total station cihazı gibi (sabit olarak) kullanılır. Mobil Tarama Kara ve deniz araçları üzerine monte edilerek hareketli lazer taraması ile çevre düzenleme, bina alımı, tünel, nehir yatağı gibi alanlarda kullanılır.

Kullanım Şekilleri

Kullanım Şekilleri Geniş Alan Sistemi Sabit Kanatlı Uçak Daha yüksekten veri toplama (2000-3000 m.) Geniş şerit genişliği Daha az nokta yoğunluğu (m² de 2) Daha düşük doğruluk seviyeleri Düşük sinyal oranı Daha fazla yer kontrol noktası Daha pahalı Daha az detaylı topoğrafya ve detay bilgisi Koridor Haritalama Sistemi Helikopter Daha alçaktan veri toplama (< 1000 m.) Dar şerit genişliği Daha çok nokta yoğunluğu (m² 10) Daha yüksek doğruluk seviyeleri Yüksek sinyal oranı Daha az yer kontrol noktası Daha ucuz Daha detaylı topoğrafya ve detay bilgisi

Bileşenleri TARAYICI Veri toplar/tarar GPS GPS uydu triangülasyonu ile uçağın konumu 0.1 sn. de bire kadar ölçülür. IMU Her 0.002 sn.de bire kadar uçağın konumu ve dönüklük açıları da ölçülür. Yer kontrol noktası (GPS) Konumu bilinen yer noktasına bağlı olarak uçağın konumu 0.1 sn. de bire kadar ölçülür.

Bileşenleri Lazer Tarayıcı Mesafe Ölçümü Sinyal Gönderme ve Alıcı Birimi Dönen ayna GPS Konumlama ve zaman bilgisi Platformda ve yer kontrol noktasında IMU (Ataletsel Ölçü Birimi) Açısal Ölçüm (Dönüklükler ve Eğiklik) Konumlama Platform Uçak-Helikopter Hareketli bir araç

Bileşenleri Yazılım Planlama Uçuş Yönetim Sistemi Veri İşleme Bilgisayar ve Depolama Birimi Sistemin Kontrolü İlave Sensör (opsiyonel) Sayısal Kamera - Fotoğraf * Dik * Eğik - Video * Normal görüntü * Kızıl ötesi

Çalışma Prensibi Lazer bir optik sinyal (ışın, pulse) üretir ve bunu gönderir. Sinyal bir nesneye çarparak geri yansır ve alıcıya geri döner. Bazı sinyaller için birden fazla dönüş olur. Dönen her sinyalin şiddeti (intensity, nesnenin sinyali ne kadar geri yansıttığı) kaydedilir. Alıcı sinyalin seyahat süresini hassas bir şekilde ölçer. Işığın hızı bilindiğinden seyahat süresi mesafeye çevrilir.

Çalışma Prensibi Mesafe, lazerin tarama açısı, lazerin konumu (GPS) ve yöneltmesi (IMU) bilindiğinden, her bir lazer sinyali için doğru x,y,z yer koordinatları (nokta bulutu) hesaplanır. Bu arada eğer isteniliyorsa, proje alanının sayısal fotoğrafı veya video görüntüsü de çekilir. Ofiste veri işleme yazılımları ile nokta bulutu bir takım işlemlerden geçirilerek kaba hatalar ayıklanır ve filtreleme gibi işlemlerle veri kıymetlendirilerek istenilen sonuç ürün elde edilir. GPS Uyduları GPS Baz İstasyonu

Özellikleri x,y ve z koordinatları oldukça doğru (dm. seviyesinde) olarak bilinen, çok sayıda nokta elde edilir. Aktif sistemdir. Çalışmak için güneş ışığına ihtiyaç duymadığından gece de veri toplanabilmektedir. Ancak sistem kötü hava koşullarından (bulut, yağmur, sis vb.) etkilenmektedir. Veri toplama sırasında sayısal fotoğraf veya video çekimi yapılabilmektedir. Böylece aynı anda bölgeye ait ortofoto üretme imkanına da sahip olunmaktadır. Ayrıca çekilen görüntüler verilerin işlenmesi esnasında yardımcı kaynak olarak da kullanılmaktadır.

Özellikleri Nesnelerden aynı sinyal için Çok Sayıda Geri Dönüş (multiple returns) alınabilmektedir. Böylece daha detaylı veri toplanmaktadır. Çok Sayıda Sinyal (Multiple Pulse in the Air, MPiA) özelliği bulunmaktadır. Piyasada mevcut sistemler; - 200-5.000 m. arasında değişen uçuş yüksekliklerinden, - Saniyede 20.000-500.000 sinyal yayarak, - 0.1-5 m. arası değişen nokta sıklığında, - 1-75 tarama açısı ile ve - dm. seviyesinde mutlak yatay ve düşey doğruluklarda veri toplayabilmektedir.

Özellikleri LiDAR ile toplanan veriler, LAS veya ASCII formatındaki dosyalarda depolanırlar ve transfer edilirler. RADAR sistemi ile benzer özellikte olup, farklı olarak elektromanyetik spektrumun kızıl ötesi (infra-red, 1064 nm) bölümü kullanılmaktadır. Farklı yüzeyler, kızıl ötesi ışınları farklı şekilde emdiklerinden, alıcının kaydettiği şiddet değerinden yüzeyin tipi veya kimyasal yapısı da belirlenebilmektedir.

Özellikleri Sistem denizlerde 50m ye kadar su altı topoğrafyası (marine DEM) üretimi için kullanılabilmektedir (Batimetrik LiDAR). Ancak bu durumda yer için kullanılan LiDAR teknolojisinin farklı bir versiyonu (kullanılan dalga boyu, frekansı vb.) kullanılmaktadır. Geliştirilen algoritmalar ile veri işleme için otomatik çözümler sağlanmaktadır. Pek çok uygulama için, geleneksel arazi çalışmaları ve klasik fotogrametrinin yerini alacak bir sistemdir.

Özellikleri Münhanilerden üretilen 10 m. çözünürlüklü SAM LiDAR verisinden üretilen 3.6 m. çözünürlüklü SAM LiDAR verisinden üretilen 0.6 m aralıklı münhani 30 m SAM dan üretilen 3 m aralıklı münhani

Özellikleri 2 m. çözünürlüklü LiDAR SYM 1 m. çözünürlüklü LiDAR SYM 50 cm. çözünürlüklü LiDAR SYM 25 cm. çözünürlüklü LiDAR SYM

Veri Doğruluğu LiDAR dan elde edilecek sonuç ürün doğruluğunu etkileyen faktörler: GPS, IMU ve lazerin doğası gereği bulunan doğruluk sınırlamaları Kullanılan sistemin doğruluğu Uçuş planlama ve uçuş koşulları (Uçuş hızı, yüksekliği, tarama açısı, sinyal frekansı) Atmosferik etkiler Arazinin engebeliği Bitki örtüsü Yer Kontrol Noktası Sayısı ve Dağılımı

Veri Doğruluğu Literatürde geçen, yapılan çeşitli çalışmalar sonucunda elde edilen örnek doğruluk değerleri: Mutlak Düşey Doğruluk: +/- 0.15 m, Sert yüzeyler ve açık düzgün arazi için +/- 0.25 m, Yumuşak/Bitki örtülü yüzeyler (düz veya eğimli arazi)için +/- 0.30-0.50 m, Yumuşak/Bitki örtülü yüzeyler (tepelik arazi) için Mutlak Yatay Doğruluk: +/- 0.50-0.75 m, Aşırı derecede tepelik arazi için

LAS LiDAR ham verisini (nokta bulutu) depolama ve değişim formatı; Log ASCII Standart (LAS) dosya formatıdır. LAS binary ve açık bir endüstriyel formattır. Veri değişimi için ASCII format da kullanılmaktadır. Ancak LAS formatı standart bir format iken veri değişimi için tanımlanmış standart bir ASCII format yoktur. Bir dosya milyonlarca kayıt içerebildiğinden dosya boyutu çok büyük olur. 1 km² lik alan için 1 m. çözünürlüklü ham veri içeren dosya ~ 30 MB.

LAS LAS dosya içeriği 3 bölümden oluşur: Başlık Bloğu Değişken Uzunluklu Kayıtlar Noktalara Ait Veriler; - nokta koordinatları (x,y,z), - dönen sinyalin şiddeti (intensity), - dönüş sayısı ve kaçıncı dönüş olduğu, - LiDAR a özgü diğer öznitelikler (uçuş hattı, yüzey kategorisi vb.)

Sinyal Şiddet Görüntüsü (Intensity Image) LiDAR da alıcı birim, dönen sinyalin dönüş zamanı ile birlikte, sinyalin şiddetini (intensity) de kaydeder. Bu değer sinyalin geri yansıdığı nesnenin, sinyali ne kadar geri yansıttığını (örn, karanlık yüzeyler daha az), yani yüzeyin ışığı ne kadar emdiğini gösterir. Bu veri, nesne yüzeyinin özelliğini ayırt etmede kullanılabilecek bir bilgidir. Sinyalin şiddet değerinden yararla, düşük çözünürlüklü siyah-beyaz hava fotoğrafı görünümünde gri tonlamalı görüntüler elde edilir. Konumlandırılmış sinyal şiddet görüntüleri; - veri işlemede yardımcı kaynak, - stereo çiftler oluşturularak, üzerinden kırıklık hatları ve planimetrik detay toplama (Lidargrammetry) - LiDAR verisinin kalite kontrolü - yüzeylerin kimyasal özelliklerini tespit etme

Çok Sayıda Dönüş (Multiple Returns) Lazer altimetresinin eski versiyonlarında, sinyalin ilk çarptığı nesneye olan mesafe ölçülmekteydi. Son çıkan sistemlerle birlikte, her bir sinyalin eğer varsa 1., 2., 3. ve son olarak da 4. dönüşü yakalanmaktadır. Bu sistemlerde lazer sinyalinin çapı büyütülmüştür. Eğer bu geniş sinyal birden fazla nesneden geriye yansırsa, bu nesnelerin hepsine birden olan mesafeler kaydedilir. Çok sayıda dönüş, yer üstünde bulunan nesneleri (ağaç, bina vb.) tespit etme ve SYM-SAM üretimi çalışmalarında faydalıdır. Bu uygulama çoğunlukla bitki örtüsü ile ilgili çalışmalarda kendini göstermektedir.

Çok Sayıda Dönüş ilk alınan sinyal son alınan sinyal

Çok Sayıda Dönüş Full Vegetated 12 st 3 nd rd Filtered 4th Returns Ground ROW Set

Çok Sayıda Dönüş Yoğun ormanlık alanda, SAM İlk dönüşler İlk ve son dönüşler

Çok Sayıda Sinyal (Multi Pulse in Air, MPiA) Yüksek sinyal oranlarında (örn. 500 khz.) veri toplamak istendiğinde, ışığın hızından dolayı max. uçuş yüksekliği sınırlanır. Bu soruna çözüm olarak son çıkan sensörlerde MPiA teknolojisi bulunmaktadır. MPiA ile sensörden birden fazla sinyal yayılmasına olanak sağlanarak, yüksek irtifalarda yüksek sinyal oranlarında veri toplanabilmektedir. Tek Sinyal (single pulse) yerine, çift sinyal (örn. 2x250 khz.) gönderilmekte, böylece sn. de yayılan sinyal sayısı örneğin iki kat artmaktadır. Bu durumda objeden yansıyan sinyal geri gelmeden ikinci sinyal gönderilir.

Kullanımı Projeden beklenen veri doğruluğu, veri sıklığı (ayrıntı) ve istenen sonuç ürün, hangi tip LiDAR sistemi ile veri toplanacağını belirler. Bir LiDAR projesinden beklenen amaca maliyet etkin şekilde ulaşabilmek için, aşağıdaki parametreleri en optimum şekilde belirlemek gerekir. Sonuçta ne az sayıda ne de gereksiz olarak fazla sayıda nokta elde etmek gerekir: Uçuş yüksekliği ve hızı Sinyal oranı (tarama frekansı) Tarama açısı Sinyal dönüş sayısı Uçuş hatlarının bindirme oranı Nokta yoğunluğu (m² nokta sayısı)

Kullanımı Sinyal frekansı Uçuş yüksekliği Tarama açısı Uçuş yüksekliği Sinyal frekansı Daha yüksekten uçtukça; - sinyal frekansı azalır - tarama açısı artar - nokta yoğunluğu azalır - doğruluk değerleri düşer Dağlık bir arazide LiDAR gölgelemesini en aza indirgemek için dar tarama açısı tercih edilir.

LiDAR ile Elde Edilen Ürünler Nokta Bulutundan yararla; Sayısal Arazi Modeli (DTM) Sayısal Yüzey Modeli (DSM) 3-B detay (bina, tel, ağaç vb.) çıkarımı Sinyal Şiddet Görüntüsü (Intensity Image) Arazi Kullanım/Arazi Örtüsü Haritası TIN Eş Yükselti Eğrileri (Contours) Kırıklık Hatları (Breaklines) Denizaltı Topoğrafyası (Batimetry)

Kullanım Yerleri Geniş alanlar için hassas SAM ve SYM üretimi Koridor Haritalama (ENH, boru hattı vb. güzergahı) Arazi Kullanım/Örtüsü Haritası (Sınıflandırma) Doğal kaynakların yönetimi Ormancılık Şehir modelleme Ortofoto üretimi Taşkın/sel riski haritalama Yol, demiryolu vb. inşa projeleri Yerleşim yeri planlama, altyapı ve kalkınma projeleri Sahil bölgesi/kıyı haritalama ve izleme Batimetri, gemi enkazı bulma, denizaltına kablo döşeme Afet önleme ve değerlendirme, Değişikliklerin Tespiti, vb. LiDAR geleneksel harita üretim tekniklerinin yerini almaz, onları bütünler, tamamlar!

LiDAR İşlem Adımları Planlama - Uçuş Hatları, Uçuş Yüksekliği ve Hızı - Bindirme Oranları - Lazer Tarama Parametreleri - Arazi Yüksekliği, Bitki Örtüsü, Uygulama Amacı Veri Toplama - Sistemin Kalibrasyonu - Yer Kontrol Noktası(ları) - Uçuş Veri İşleme (Process) - Ön-işlemler - Filtreleme - Akıllı/Otomatik ve Manuel Editleme - SYM ve SAM üretme - İstenilen bilgileri (bina, ağaç vb.) veriden çıkarma/toplama Kalite Kontrol

Veri İşleme Ham LiDAR verisinde (nokta bulutu) düzensiz aralıklı, milyonlarca nokta (X,Y,Z) vardır. Veri içerisinde hatalı geri yansıma değerleri bulunmakta, kullanıcının sonuç üründe olmasını istemediği nesneler yer almakta, yer noktaları ile yerde olmayan noktaların (nesnelerin) çok sayıda dönüşleri birlikte yer almaktadır. Bu verinin ticari CBS yazılımlarında doğrudan analiz amaçlı kullanımı uygun olmadığından veri toplamanın ardından, verilerin işlenmesi gerekmektedir. Veri işleme nokta bulutu içerisinden istenilen yararlı bilgileri elde etmek için de gerekmektedir. Veri işleme zaman, iş gücü, tecrübe ve güçlü bilgisayarlara ihtiyaç gösteren zor bir iştir. Günümüzde bu işlemleri hızlı bir şekilde otomatik olarak yapan algoritmalar geliştirilmektedir.

Veri İşleme Ön İşlemler LiDAR Nokta bulutu veri işleme için hazırlanır. Genelde veri sağlayıcı tarafından yapılır: - GPS ve IMU ölçümlerinden yararla gerçek dünya koordinatlarına dönüşüm/konumlandırma - Uçuş hatlarındaki bindirmelerin kaldırılması - Gürültü filtreleme - Bölümleme (tiling) YAZILIMI Veri İşleme SAM, SYM ve istenilen bilgiler elde edilir. - Filtreleme (Yerden ve yerden olmayan dönüşlerin ayrılması) Otomatik (algoritmalarla) Manuel editleme - SAM ve SYM üretimi (enterpolasyon) - Yararlı bilgilerin (ağaç, bina vb.) çıkarılması - Format dönüşümü

Veri İşleme Bölümleme SYM SAM

Lidargrammetry Lidargrammetry veri toplama maliyetlerini azaltmak ve üretilen verilerin doğruluğunu arttırmak için ortaya çıkmıştır. Amaç, başka bir görüntüye ihtiyaç duymadan stereo olarak mevcut fotogrametrik sistemlerde veri toplamaktır. Lidargrammetry; - Daha hassas ve doğru sonuç ürünler elde etmek, - Lidar verisinin kalite kontrolünü yapmak, - Stereo ortamda arazi kırıklık hatları ve planimetrik detay toplamak üzere kullanılır.

Lidargrammetry Bunun için klasik fotogrametride yapılanın tersine; nokta bulutunun (X,Y,Z ve şiddet değerleri) ilk sınıflandırmasının ardından 2 boyutlu sinyal şiddet görüntüleri oluşturulmakta, bu görüntülerden istifade ile elde edilen yapay stereo çiftleri mevcut fotogrametrik kıymetlendirme bilgisayarlarında stereo görüşle kıymetlendirilmektedir. Böylece ilave hava fotoğrafı çekimine gerek kalmadan, LiDAR verilerinden stereo ortamda detay toplanabilmektedir. Bu konuda GeoCue firmasının geliştirdiği bir yazılım bulunmaktadır.

LiDAR Avantajları Hızlı, verimli ve maliyet-etkin bir sistemdir. Çok daha doğru ve detaylı/ayrıntılı yükseklik modeli elde edilir. Kullanıcıya esneklik sağlar. LiDAR ile toplanan veri çok yönlüdür. Çok sayıda ve çeşitlikte kullanım alanı bulunmaktadır. Gece veri toplama olanağı olduğundan 24 saat çalışabilir. Gölgeden etkilenmez. Bulutlu havalarda, eğer çekim bulutların altından yapılırsa bir sorun yaşanmaz. Çekim esnasında çeşitli sensörlerle birlikte kullanılarak aynı anda farklı görüntüler (fotoğraf, video vb.) de elde edilebilmektedir.

LiDAR Avantajları Veri toplamanın çok zor olduğu bölgeler (özellikle sık ormanlar, yerleşim alanı, sarp kayalık arazi, detayın çok az olduğu yerler vb.) için kolaylık sağlamaktadır. Koridor haritalama, bitki örtüsü, değişim izleme, risk analizi, kıyı şeridi belirleme çalışmaları için idealdir. Uçuş öncesi yer kontrol noktası tesisine (veya fazla sayıda) ihtiyaç yoktur. Göze zararlı değildir ve çevre dostu bir teknolojidir.

LiDAR Avantajları Geleneksel fotogrametri ve arazi çalışmalarına göre DAHA; Doğru Detaylı Hızlı Esnek/Çeşitli kullanım alanları Ekonomik (belli koşullar için) Çok çeşitli koşullarda veri toplama

LiDAR Dezavantajları Toplanan verinin boyutu çok büyüktür. Veriyi editleme/işlemden geçirme zorunluluğu (1 uçuş günü için 3-6 gün editleme süresi) vardır. Çünkü ham veri düzensiz aralıklıdır ve hem yerin (ground) hem de nesnelerin (non-ground) koordinatlarını içerir. Veri işleme için her ne kadar otomatik algoritmalar geliştirilse de, veriyi manuel editleme (işgücü ve tecrübe gerektirir) zorunluluğu bulunmaktadır. Lazer sinyali doğadaki her şeyden geri yansıyacağı için, ham veri istenmeyen detaylardan (araba, kuş vb.) da geri yansıma değerleri içermektedir.

LiDAR Dezavantajları Veri işlenirken zaman zaman yardımcı görüntülere ihtiyaç duyulmaktadır. Geniş alanları çalışmak, zaman ve veri boyutu açısından zordur. Kötü hava koşullarında uygun çalışmaz. İyi sonuç için gökyüzünün temiz olması (bulut, yağmur, kar, sis, duman, pus, toz vb. den etkilenir) gerekmektedir. Bazı materyaller/yüzeyler (asfalt, su vb.) kızılötesi dalga boyunu emdiğinden sinyali geriye iyi yansıtmamaktadır.

Uygulama Sunu Sonu