PWM SİNYALİNİN DUTY CYCLE SÜRESİNİN %0 İLE %100 ARASINDA DEĞİŞİMİ İLE DC MOTORUN HASSAS KONTROLÜ ÖZET

Benzer belgeler
ELEKTRİK MOTOR SÜRÜCÜLERİ: PWM AC KIYICILAR

YILDIZ TEKNİK ÜNİVERSİTESİ MAKİNE FAKÜLTESİ MEKATRONİK MÜHENDİSLİĞİ BÖLÜMÜ MEKATRONİK MÜHENDİSLİĞİNE GİRİŞ DERSİ. Işığı Takip Eden Kafa 2 Nolu Proje

DC motorların sürülmesi ve sürücü devreleri

Bölüm 1 Güç Elektroniği Sistemleri

Şekil 3-1 Ses ve PWM işaretleri arasındaki ilişki

T.C. KOCAELİ ÜNİVERSİTESİ ELEKTRİK MÜHENDİSLİĞİ BÖLÜMÜ

Çukurova Üniversitesi Biyomedikal Mühendisliği

NES DC.DRV.200 Tanıtım Dokümanı

KARADENİZ TEKNİK ÜNİVERSİTESİ Mühendislik Fakültesi Elektrik-Elektronik Mühendisliği Bölümü Power Electronic Circuits (Güç Elektroniği Devreleri)

DENEY-2 ANİ DEĞER, ORTALAMA DEĞER VE ETKİN DEĞER

6. DİJİTAL / ANALOG VE ANALOG /DİJİTAL ÇEVİRİCİLER 1

Analog Sayısal Dönüşüm

Deney 1: Saat darbesi üretici devresi

Şekil 6.1 Faz çeviren toplama devresi

BÖLÜM X OSİLATÖRLER. e b Yükselteç. Be o Geri Besleme. Şekil 10.1 Yükselteçlerde geri besleme

SERVOMOTOR HIZ VE POZİSYON KONTROLÜ

Deney 4: 555 Entegresi Uygulamaları

Deney 10: Analog - Dijital Dönüştürücüler (Analog to Digital Converters - ADC) Giriş

ELM202 ELEKTRONİK-II DERSİ LABORATUAR FÖYÜ

ANALOG ELEKTRONİK - II. Opampla gerçekleştirilen bir türev alıcı (differantiator) çalışmasını ve özellikleri incelenecektir.

KZ MEKATRONİK. Temel Elektrik Elektronik Eğitim Seti Ana Ünite

DENEY NO 3. Alçak Frekans Osilatörleri

DENEY NO : 4 DENEY ADI : Darbe Genişlik Demodülatörleri

Şekil Sönümün Tesiri

DENEY 7 DALGALI GERİLİM ÖLÇÜMLERİ - OSİLOSKOP

Şekil-1. Doğru ve Alternatif Akım dalga şekilleri

DC DC DÖNÜŞTÜRÜCÜLER

NECMETTİN ERBAKAN ÜNİVERSİTESİ MÜHENDİSLİK MİMARLIK FAKÜLTESİ ELEKTRİK-ELEKTRONİK MÜHENDİSLİĞİ BÖLÜMÜ ELEKTRONİK-1 LABORATUVARI DENEY FÖYÜ

DENEY 9- DOĞRU AKIM DA RC DEVRE ANALİZİ

DENEY 2: DĠYOTLU KIRPICI, KENETLEME VE DOĞRULTMA DEVRELERĠ

KIRIKKALE ÜNİVERSİTESİ

Geçmiş yıllardaki vize sorularından örnekler

İşlemsel Yükselteçler

ÜÇ-FAZLI TAM DALGA YARI KONTROLLÜ DOĞRULTUCU VE ÜÇ-FAZLI EVİRİCİ

OP-AMP UYGULAMA ÖRNEKLERİ

DENEY FÖYÜ8: Lojik Kapıların Elektriksel Gerçeklenmesi

TOBB EKONOMİ VE TEKNOLOJİ ÜNİVERSİTESİ MÜHENDİSLİK FAKÜLTESİ

Multivibratörler. Monastable (Tek Kararlı) Multivibratör

YILDIZ TEKNİK ÜNİVERSİTESİ MAKİNE FAKÜLTESİ MEKATRONİK MÜHENDİSLİĞİ BÖLÜMÜ MEKATRONİK MÜHENDİSLİĞİNE GİRİŞ DERSİ. IŞIĞA DÖNEN KAFA Proje No:2

Sabit Gerilim Regülatörü Kullanarak Ayarlanabilir Güç Kaynağı

Şekil 1. Darbe örnekleri

DENEY NO: 7 İŞLEMSEL KUVVETLENDİRİCİ VE UYGULAMALARI. Malzeme ve Cihaz Listesi:

YAPILAN İŞ: Sayfa 1. Şekil 1

ALTERNATİF AKIMIN TEMEL ESASLARI

T.C. DÜZCE ÜNİVERSİTESİ TEKNOLOJİ FAKÜLTESİ BİLGİSAYAR MÜHENDİSLİĞİ BÖLÜMÜ BMT103 ELEKTRİK DEVRE TEMELLERİ DERSİ LABORATUVARI DENEY NO: 7

YILDIZ TEKNİK ÜNİVERSİTESİ MAKİNE FAKÜLTESİ MEKATRONİK MÜHENDİSLİĞİ BÖLÜMÜ MEKATRONİK MÜHENDİSLİĞİNE GİRİŞ DERSİ. Işın Avcısı Proje 2.

İNDEKS. Cuk Türü İzolesiz Dönüştürücü, 219 Cuk Türü İzoleli Dönüştürücü, 228. Çalışma Bölgeleri, 107, 108, 109, 162, 177, 197, 200, 203, 240, 308

KARADENİZ TEKNİK ÜNİVERSİTESİ Mühendislik Fakültesi Elektrik-Elektronik Mühendisliği Bölümü ELK 2008 DEVRELER II LABORATUARI

1. RC Devresi Bir RC devresinde zaman sabiti, eşdeğer kapasitörün uçlarındaki Thevenin direnci ve eşdeğer kapasitörün çarpımıdır.

YILDIZ TEKNİK ÜNİVERSİTESİ MAKİNE FAKÜLTESİ MEKATRONİK MÜHENDİSLİĞİ BÖLÜMÜ MEKATRONİK MÜHENDİSLİĞİNE GİRİŞ DERSİ. Proje Adı Proje No

Akım Modlu Çarpıcı/Bölücü

Anahtarlama Modlu DA-AA Evirici

Robotik AKTUATÖRLER Motorlar: Çalışma prensibi

6. TRANSİSTÖRÜN İNCELENMESİ

T.C. ONDOKUZ MAYIS ÜNİVERSİTESİ MÜHENDİSLİK FAKÜLTESİ ELEKTRİK-ELEKTRONİK MÜHENDİSLİĞİ BÖLÜMÜ ELEKTRONİK LABORATUVARI-II DENEY RAPORU

SAYISAL UYGULAMALARI DEVRE. Prof. Dr. Hüseyin EKİZ Doç. Dr. Özdemir ÇETİN Arş. Gör. Ziya EKŞİ

ANALOG FİLTRELEME DENEYİ

Gerilim beslemeli invertörler, akım beslemeli invertörler / 13. Hafta. Sekil-7.7 de endüktif yükte çalışan PWM invertör görülmektedir.

DENEY NO:2 BJT Yükselticinin Darbe Cevabı lineer kuvvetlendirme Yükselme Süresi Gecikme Çınlama Darbe üst eğilmesi

Fatih Üniversitesi Elektrik ve Elektronik Mühendisliği Bölümü EEM 316 Haberleşme I LAB SINAVI DARBE GENLİK MODÜLASYONU (PWM)

ALTERNATİF AKIM (AC) II SİNÜSOİDAL DALGA; KAREKTRİSTİK ÖZELLİKLERİ

Güç elektroniği elektrik mühendisliğinde enerji ve elektronik bilim dalları arasında bir bilim dalıdır.

KOCAELİ ÜNİVERSİTESİ ELEKTRONİK VE HABERLEŞME MÜHENDİSLİĞİ ELEKTRONİK LAB 1 DERSİ İŞLEMSEL KUVVETLENDİRİCİ - 2 DENEYİ

Mühendislik Fakültesi Elektrik-Elektronik Mühendisliği Bölümü

DENEY 8: BOBİNLİ DEVRELERİN ANALİZİ

İçİndekİler. 1. Bölüm - Mİkro Denetleyİcİ Nedİr? 2. Bölüm - MİkroDenetleyİcİlerİ Anlamak

ĠġLEMSEL KUVVETLENDĠRĠCĠLERĠN DOĞRUSAL UYGULAMALARI. NOT: Devre elemanlarınızın yanma ihtimallerine karşın yedeklerini de temin ediniz.

DENEY FÖYÜ 7: Seri ve Paralel Rezonans Devreleri

ELEKTRİK-ELEKTRONİK MÜHENDİSLİĞİ ELEKTRİK DEVRELERİ I LABORATUVARI DENEY RAPORU. Deney No: 6 GEÇİCİ DURUM ANALİZİ

ELEKTRONİK DEVRE ELEMANLARI

A.Ü. GAMA MYO. Elektrik ve Enerji Bölümü GÜÇ ELEKTRONİĞİ 9. HAFTA

Şekil 1. Geri beslemeli yükselteçlerin genel yapısı

DENEY 5: İŞLEMSEL YÜKSELTEÇLER ve UYGULAMA DEVRELERİ

ELM 331 ELEKTRONİK II LABORATUAR DENEY FÖYÜ

Şekil1. Geri besleme eleman türleri

DÜZCE ÜNİVERSİTESİ MÜHENDİSLİK FAKÜLTESİ ELEKTRİK ELEKTRONİK MÜHENDİSLİĞİ BÖLÜMÜ TEMEL HABERLEŞME SİSTEMLERİ TEORİK VE UYGULAMA LABORATUVARI 3.

ÜNİTE 4 TEST SORU BANKASI (TEMEL ELEKTRONİK) TRANSİSTÖRÜN TANIMI Transistörlerin çalışması için, beyz ve emiterin... kollektörün ise...

YILDIZ TEKNİK ÜNİVERSİTESİ MAKİNE FAKÜLTESİ MEKATRONİK MÜHENDİSLİĞİ BÖLÜMÜ MEKATRONİK MÜHENDİSLİĞİNE GİRİŞ DERSİ. Proje Adı Proje No.

T.C. ERCİYES ÜNİVERSİTESİ MÜHENDİSLİK FAKÜLTESİ MEKATRONİK MÜHENDİSLİĞİ BÖLÜMÜ ELEKTRONİK SİSTEMLER LABORATUVARI 1 OPAMP DEVRELERİ-1


ÜNİTE 5 TEST SORU BANKASI (TEMEL ELEKTRONİK)

Bir devrede dolaşan elektrik miktarı gibi elektriksel ifadelerin büyüklüğünü bize görsel olarak veren bazı aletler kullanırız.

MÜHENDİSLİK ve MİMARLIK FAKÜLTESİ BİLGİSAYAR MÜHENDİSLİĞİ BÖLÜMÜ ELEKTRONİK DEVRELER LABORATUVARI DENEY FÖYÜ 4

DENEY in lojik iç şeması: Sekil 2

KOCAELİ ÜNİVERSİTESİ ELEKTRONİK VE HABERLEŞME MÜHENDİSLİĞİ ELEKTRONİK LAB 1 DERSİ İŞLEMSEL KUVVETLENDİRİCİ - 2 DENEYİ

BİLGİSAYARLI TASARIM VE İMALAT YÖNTEMLERİ KULLANILARAK KRANK MİLİ İMALATI ÖZET ABSTRACT

KOCAELİ ÜNİVERSİTESİ ELEKTRONİK VE HABERLEŞME MÜHENDİSLİĞİ ELEKTRONİK LAB 1 DERSİ İŞLEMSEL KUVVETLENDİRİCİ 1 DENEYİ. Amaç:

Tek kararlı(monostable) multivibratör devresi

Çizgi İzleyen Robot Yapımı

FRENIC MULTİ ÖZET KULLANIM KLAVUZU

Algılayıcılar (Sensors)

KOCAELİ ÜNİVERSİTESİ ELEKTRONİK VE HABERLEŞME MÜHENDİSLİĞİ ELEKTRONİK LAB 1 DERSİ ORTAK EMETÖRLÜ YÜKSELTEÇ DENEYİ

Karadeniz Teknik Üniversitesi Elektrik-Elektronik Mühendisliği Bölümü Elektronik Laboratuvarı I İŞLEMSEL YÜKSELTECİN TEMEL ÖZELLİKLERİ VE UYGULAMALARI

Şekil 5.1 Opamp Blok Şeması ve Eşdeğer Devresi

RF İle uzaktan PWM MOTOR KONTROL SİSTEMİ

EEM 311 KONTROL LABORATUARI

Şekil 1: Zener diyot sembol ve görünüşleri. Zener akımı. Gerilim Regülasyonu. bölgesi. Şekil 2: Zener diyotun akım-gerilim karakteristiği

ZM-2H504 İki Faz Step. Motor Sürücüsü. Özet

Bölüm 12 İşlemsel Yükselteç Uygulamaları

Elektrik Devre Lab

Transkript:

PWM SİNYALİNİN DUTY CYCLE SÜRESİNİN %0 İLE %100 ARASINDA DEĞİŞİMİ İLE DC MOTORUN HASSAS KONTROLÜ Oğuz YAZ 1, Ozan KARAKULAK 2, Erman KÖYBAŞI 3, Sabri BİCAKCI 4, Can Candan 5, Davut AKDAŞ 6 1 oguzyaz@bau.edu.tr Balıkesir Üniversitesi, Elektrik-Elektronik Mühendisliği Bölümü, Balıkesir 2 ozankarakulak@bau.edu.tr Balıkesir Üniversitesi, Elektrik-Elektronik Mühendisliği Bölümü, Balıkesir 3 koybasi@balikesir.edu.tr Balıkesir Üniversitesi, Elektrik-Elektronik Mühendisliği Bölümü, Balıkesir 4 sbicakci@balikesir.edu.tr Balıkesir Üniversitesi, Elektrik-Elektronik Mühendisliği Bölümü, Balıkesir 5 ccandan@kkk.tsk.tr 6. Ana Bakım Merkez Komutanlığı, Balıkesir 6 davut_akdas@yahoo.co.uk Balıkesir Üniversitesi, Elektrik-Elektronik Mühendisliği Bölümü, Balıkesir ÖZET Bu çalışmada, PWM (Pulse Width Modulation) sinyalinin Duty Cycle (görev süresi) zamanının %0 ile %100 arasında değişimi ile dc motorun hassas kontrolü işlemi teorik ve deneysel olarak gerçekleştirilmiştir. Yapılan kontrol devresi Ters Sarkaç Kontrol Deney Seti nde kullanılmak üzere tasarlanmıştır. İlk önce devrenin istenilen hassasiyette olabilmesi için eleman seçimine yönelik araştırma yapılmıştır. Yapılan araştırmalar sonucu kullanılacak elemanlar belirlenmiş ve devre oluşturulmuştur. Çeşitli benzetim programları kullanılarak devrenin benzetimi yapılmış ve hataları giderilmiştir. Devrenin doğru çalıştığı gözlemlendikten sonra bilgisayar yardımı ile baskı devresi çizilmiştir. Çizilen baskı devrenin imalatı yapılıp elemanları lehimleme işlemine geçilmiştir. Devre üzerine eleman yerleşimi tamamlanınca devrenin deney setine montajı yapılarak çalışması gözlemlenmiştir. Anahtar kelimeler: PWM, Duty Cycle, Dc Motor, H-Bridge. ABSTRACT In this study, precise control of dc motor with the change of Duty Cycle of PWM (Pulse Width Modulation) signal between 0% and 100% was carried out experimentally and theoretically. The control circuit is designed to be used with the Inverted Pendulum Control Experiment Set. First, component research for the circuit to be in the desired accuracy has been made. After research components to be used have been identified and the circuit was built. Simulation of the circuit was made using a variety of programs and errors were corrected. After observing the correct operation of the circuit, printed circuit board is drawn with the use of computer. Manufacturing of the printed circuit board and soldering of the components have been made. Finally when component placement is finished circuit has been installed to the experiment set and observed in action. Keywords: PWM, Duty Cycle, Dc Motor, H-Bridge. 213

1. GİRİŞ Hassas işlemler yapan cihazlar için konum kontrolünün önemi büyüktür. Endüstride en yaygın olarak kullanılan motor türlerinden biri DC motorlardır. DC motorlar genellikle PWM metodu ile sürülürler. Motorun gideceği konumu küçük hatalar ile takip etmesi bu PWM sinyalinin çözünürlüğüne yani ne kadar hassas değerler alabilmesine bağlıdır. Tabi kullanılacak DC motorun da bu hassas sinyal değerlerine cevap verebilecek nitelik ve kalitede olması gerekir. Piyasada bulunan birçok mikro denetleyici ve mikroişlemciler kendi bünyelerinde PWM sinyali üretmektedirler. Fakat bu PWM sinyali istenildiği gibi hassas olamamaktadır, yani Duty Cycle süresi tam olarak %0 ve %100 olamamaktadır. Yapmış olduğumuz devre analog olarak çalıştığı için bu Duty Cycle değerlerine ulaşabilmektedir. Böylece mikro denetleyici ve mikroişlemcilerin yapamayacağı kadar hassas işlemleri, tasarlamış olduğumuz devre kolaylıkla yapabilmektedir. 2.DARBE GENİŞLİK MODÜLASYONU (PULSE WIDTH MODULATION PWM) PWM (Darbe Genişlik Modülasyonu), üretilecek olan darbelerin, genişliklerini kontrol ederek, çıkışta üretilmek istenen analog elektriksel değerin veya sinyalin elde edilmesi tekniğidir. PWM elektrik ve elektronikte birçok alanda, farklı amaçlar için kullanılmaktadır. Telekomünikasyon, güç, voltaj düzenleyiciler, ses üreticileri veya yükselteçler gibi çeşitli uygulama alanları ve farklı uygulamaları bulunmaktadır. Herhalde günümüzde PWM in en çok kullanıldığı yer, güç kaynaklarıdır. SMPS (Switched mode power supply) [1], güç kaynakları, düzenlenecek olan çıkış voltajını bu teknikten yararlanarak elde etmektedirler. Bu sayede, yüksek akım ve düşük voltajlı güç edinmeleri için, transformatörlerden çok daha etkin ve çok daha küçüklerdir. Bilgisayarınızın kasasındaki güç kaynağını düşündüğünüzde, 350 Wattlık çıkış gücüne sahip olan bir güç kaynağının nasıl bu kadar küçük ve etkin tasarlandığının cevabı SMPS olmasıdır. 2.1 Temelleri Üretilen kare dalga darbe sinyallerinin genişliklerinin ortalaması, çıkışta üretilecek olan analog değerin elde edilmesini sağlar. Şekil 1 de kare dalga gösterilmiştir. Bu şekil üzerinden açıklamak istersek; Ortalama sinyal, (1) f(t) y min y max D : Kare Dalganın Frekansı (Hz) : En düşük genliğin değeri : En yüksek genliğin değeri : Sinyal Oranı (Duty Cycle) 214

Şekil 1. Kare dalga f(t) kare dalga olduğundan f(t), y max için (2) ve y min için (3) değerlerini alabilir. Buradan, (4) elde edilir. Yukarıda verilen formül genellikle y min = 0 iken olarak kullanılır. Görüldüğü gibi elde edilecek ortalama değer direk sinyal oranına (duty cycle) bağlıdır [2]. 2.2 Sayısal Kontrol PWM tekniği, motor sürücülerde, voltaj düzenleyicilerde, telekominikasyon kodlama ve çözme teknikleri gibi birçok alanda kullanılmaktadır. PWM analog devrelerin sayısal çıkışlarla kontrol edilmelerinde kullanılan en güçlü tekniktir. Piyasada bulunan bir çok farklı mikrodenetleyici pwm modülü içermektedir. Bu PWM modülü, frekans ve sinyal oranı programlanarak çalıştırıılabilir. PWM ile üretilebilecek çeşitli oranlar Şekil 2 de verilmiştir. Burada en üstte verilen grafik, Duty Cycle %10, ortadaki %50, alttaki ise %90 için çizilmiştir. Bu oranlarla üretilecek olan analog sinyal değeri, örneğin 9 V giriş değerinde %10 için 0.9V, %50 için 4.5V ve %90 için 8.1 V olacaktır. Elbette üretilen sinyalin frekansı da göz ardı edilmemelidir. Çok düşük bir frekans ile üretilen darbe sinyalleri ve bunlarla kontrol edilen bir anahtar ile kontrol edilen bir lambada, lambanın yanma ve (5) 215

sönme zamanları hissedilebilcektir. Bu durum size ışığın şiddetinin değişikliğinden öte, titretme şeklinde görülecektir. Bunu engellemek için anahtarlama frekansı yükseltilmelidir. Genellikle uygulamalarda, 1Khz-200 Khz arasındaki frekanslarda çalışılır. Şekil 2. Farklı duty cycle (Görev Süresi) süreleri Şekil 3. Duty cycle ın değişmesinin ortalama gerilime etkisi Şekil 3 de PWM sinyalimizin değişen Duty Cycle (Kullanım Oranı) a göre ortalama gerilimdeki değişimi görülmektedir. 3. PWM DALGASI ÜRETİMİ Yapmış olduğumuz devre analog giriş kısmından verilen voltaja göre Duty Cycle süresi %0 ile %100 arasında değişebilen hassas PWM sinyalleri üretmektedir. Devrede çok küçük miktarlarda 216

gerilim değişimlerini algılayıp işlem yapabilen özel op-amplar kullanılmıştır. Linear Technology firmasına ait LTspice IV [3] benzetim programı kullanılarak devrenin benzetimi yapılmıştır. Şekil 4 de bu çizim gösterilmektedir. Devrenin burada doğru çalıştığı gözlemlenince baskı devresini oluşturmak için Proteus [4] programı ile çizime geçilmiştir. Şekil 4. LTspice IV Programı ile Devrenin Simule Edilmesi İlk olarak besleme girişine uygulanan 12V, 7805 [5] entegresi ile 5V a düşürülmüştür. Şekil 5 de bu bağlantı gösterilmektedir. Şekil 5. Besleme Voltajının 5V a düşürülmesi Devremizde bulunan analog giriş kısmına uygulanan sinyalin LT1079 [6] op-amp ı ile mutlak değeri alınmıştır[7]. Mutlak değeri alınan bu sinyalimiz gerilim izleyici op-amp devresi ile izole edilmiştir. Bu gerilim izleyici devresinin özelliği, yüksek giriş empedansından dolayı devreden akım çekmeden, sinyali daha kararlı hale getirmesidir. Gerilim izleyici devresinden sonra dirençlerden oluşan gerilim bölme devresi ile sinyalimiz 5V seviyesine indirilmiştir. Bu aşamadan sonra sinyal tekrar gerilim izleyici devresine girilerek izole edilmiştir. 217

Elde edilen bu sinyal LTC6992-1 [8] entegresine girilerek yüksek hassasiyetli PWM sinyali oluşturulmuştur. LTC6992-1 entegresinin yüksek hassasiyette sinyal üretmesi için özel bağlantı şekli oluşturulmuş ve özel dirençler kullanılmıştır. Bu bağlantı Şekil 6 da gösterilmektedir. Şekil 6. PWM in Oluşturulması Oluşturulan yüksek hassasiyetli PWM sinyalinin Duty Cycle süresinin girişten verilen analog sinyale göre %0, ara değerlerde ve %100 değerinde olması Şekil 7, Şekil 8 ve Şekil 9 da verilmiştir. Şekil 7. Duty Cycle ın girişteki değerin minimum noktasında %0 olması Şekil 8. Duty Cycle ın ara değerler alması 218

Şekil 9. Duty Cycle ın girişteki değerin maksimum noktasında %100 olması Analog girişten gelen sinyal yine op-amp kullanılarak motorun yönünün tayin edilmesinde kullanılmıştır. İlk olarak bu analog sinyal op-amp a girilerek izole edilmiştir. Elde edilen sinyal transistöre ve AND kapısına [9] dağıtılmıştır. Daha önceden üretmiş olduğumuz PWM sinyali de bu AND kapılarına girilerek buradan elde edilen çıkış sinyali motora yön bilgisi olarak gönderilmiştir. AND kapısı olarak 74LS08 [10] entegresi kullanılmıştır. Transistörün buradaki kullanılma sebebi yükseltmek değil yön tayin etmektir. Yani transistör sayesinde iki AND kapısı aynı anda aktif olmamaktadır. Eğer aynı anda iki AND kapısı da aktif olursa bu kapılardan çıkacak olan yön sinyalleri mosfetleri süreceği için mosfetlerin yanmasına ve devrenin kısa devre olmasına neden olur. Bu tehlikeli duruma dikkat edilmelidir. AND kapıları ile yönün belirlenmesi Şekil 9 da gösterilmektedir. Şekil 9. AND kapıları ile motorun yönünün belirlenmesi Üretmiş olduğumuz PWM sinyalinin frekansı 10 KHz dir. Bu değerin seçilmesinde çeşitli etkenler mevcuttur. 219

2 * * f * L >> R (6) F = Frekans (Hz) L = Motor İndüktansı (H) R = Motor İç Direnci (R) Denklemde de ifade edildiği gibi frekans ile motor indüktansı ve pi sayısının çarpımı motor iç direncinden büyük olmalıdır. Bu büyüklük 10 kat seviyesinde idealdir. Bizim devremizde frekans 10kHz dir. Bu frekans değerinden daha az değerde sinyal uyguladığımızda motorumuzdan manyetik çıktığını gözlemledik. Daha yüksek frekanslar ise motorun gücünü düşürme, ısı kayıplarını artırma gibi kötü sonuçlar doğurmaktadır. Bu yüzden 10 khz değerinde karar kıldık. 4. H-BRİDGE MOTOR SÜRÜCÜ DC motorun uçlarını bir gerilim kaynağına bağlarsak, motor bir yönde dönmeye başlar, DC motorun uçlarını gerilim kaynağına ters olarak bağladığımız da ise motorun ters yöne hareket ettiğini görürüz. DC motorun yön kontrolünü sağlayabilmek için H-Bridge (H-Köprü) denilen bir yöntem geliştirilmiştir. Devre görüntü olarak H harfine benzediği için H-Bridge denmiştir. H-Bridge genel olarak 4 adet transistör, diyot ya da MOSFET ile gerçekleştirilen, motorun iki yönlü dönebilmesini sağlayan bir yöntemdir. Şekil 7. H-Bridge Yapısı Yukarıdaki şekilde 4 adet transistörle yapılmış bir H-Bridge devresi görülmektedir. Bu devrede 2 adet PNP ve 2 adet NPN transistör kullanılmıştır. Bu devrede A=1, D=1, B=0ve C=0 yapıldığında motor sağa doğru dönecektir. Tersi durumda A=0, D=0, B=1 ve C=1 yapıldığında ise motor sola doğru dönecektir. A=0, D=1, B=0, C=1 ve A=1, D=0, B=1, C=0 durumlarında ise motor fren yapacaktır. A=1, D=0, B=0, C=1 ve A=0, D=1, B=1, C=0 durumlarında ise 12V ile toprak kısa devre olduklarından böyle bir durum devre için çok sakıncalıdır. H-Bridge yöntemi kullanılırken hiçbir şekilde bu iki durumun oluşmasına fırsat verilmemelidir. Tablo 1 de H-Bridge yön tanımlamaları verilmiştir. Tasarlanan devrede 2 adet PNP IRF4905 [11] ve 2 adet NPN IRF1405 [12] mosfetleri kullanılmıştır. Daha önceden üretmiş olduğumuz yön sinyallerini transistör ile sürerek mosfetlere uygulandı. Şekil 8 de tasarlamış olduğumuz devre gösterilmektedir. 220

Şekil 8. Tasarlamış Olduğumuz H-Bridge Tablo 1. H-Bridge Yön Tanımlamaları A B C D Fonksiyon 1 0 0 1 İleri Dönme 0 1 1 0 Geri Dönme 1 1 0 0 Fren 0 0 1 1 Fren 1 0 1 0 Kısa Devre (!) 0 1 0 1 Kısa Devre (!) Motorda açma ve kapama anlarında indüklenecek gerilim çoğu zaman besleme geriliminin bile üzerine çıkabileceğinden böyle bir durumda mosfetlerin üzerinden ters akım geçecek ve mosfetler yanacaktır. Bu durumdan korunmak için mosfetlere hızlı koruma diyotları bağlanmıştır. Devrelerin simülasyonu yapılıp hataları giderildikten sonra yine Proteus programının Ares modülü ile devrenin baskı devresi çizilmiştir. Devrenin elemanları lehimlendikten sonra devrenin Ters Sarkac Denet Seti ne montajı yapılmıştır. Yapılan ilk denemelerde devrede birkaç hata gözlemlenmiştir. Yapılan çeşitli analizlerden sonra bu hataların motorun ani yön değişimlerinde meydana getirdiği manyetik alandan kaynaklandığı belirlenmiştir. Motorun uçlarına yüksek kapasitede elektrolitik kondansatör bağlanarak bu sorun çözülmüştür. 221

Devremizin dış etkenler tarafından oluşturulan manyetik alandan da etkilenmemesi için Faraday Kafesi [13] yapılmıştır. Böylece devre tam korunaklı hale getirilmiştir. 5. SONUÇ Sonuç olarak 170 Amperlik çok yüksek hassasiyette konum kontrolü yapabilen bir devre meydana getirilmiştir. Sistem çok hassas olarak çalışmasına karşın, yüksek amperli motorlar ile de çalışabilecek kapasitede tasarlanmıştır. Birçok DC motorda çok başarılı bir şekilde devre kullanılmıştır. Analog sinyal kullanılması ile istenilen hassasiyeti sağlayabilmektedir. Ayrıca sistem analog olarak çalıştığı için manyetik gürültüden etkilenmesi dijital sistemlere göre daha azdır. Piyasadaki mevcut olan aynı görevi yapan pahalı devrelere nazaran, maliyeti çok düşük bir devre uygulamaya konmuştur. En ufak denge kayıplarını bile algılayıp dengeyi sağlayacak yönde motoru döndürmesi devrenin başarılı bir çalışma olduğunun göstergesidir. 6. KAYNAKÇA [1] ÖZTÜRK, F., Anahtarlamalı Güç Kaynakları, Yüksek Lisans Tezi, Kocaeli Üniversitesi, Fen Bilimleri Enstitüsü, Kocaeli, (2009). [2] http://www.antrak.org.tr/gazete/022007/tolga-tastan.html (Erişim Tarihi : 16.05.2012) [3] http://www.linear.com/designtools/software/#ltspice (Erişim Tarihi : 01.10.2012) [4] http://www.labcenter.com/index.cfm (Erişim Tarihi : 20.11.2011) [5] http://search.datasheetcatalog.net/key/7805 (Erişim Tarihi : 05.12.2011) [6] http://cds.linear.com/docs/datasheet/10789fe.pdf (Erişim Tarihi : 21.02.2012) [7] http://circuits.linear.com/457 (Erişim Tarihi : 16.05.2012) [8] http://cds.linear.com/docs/datasheet/69921234fc.pdf (Erişim Tarihi : 21.02.2012) [9] T.C. Milli Eğitim Bakanlığı, MEGEP, Elektrik Elektronik Teknolojisi, Lojik Devreler, 38, Ankara, (2007). [10] http://search.datasheetcatalog.net/key/74ls08 (Erişim Tarihi : 21.02.2012) [11] http://search.datasheetcatalog.net/key/irf4905 (Erişim Tarihi : 22.02.2012) [12] http://search.datasheetcatalog.net/key/irf1405 (Erişim Tarihi : 22.02.2012) [13] http://tr.wikipedia.org/wiki/faraday_kafesi (Erişim Tarihi : 08.03.2012) 222