Güncel sorunlar ve çözüm arayışı. Sezen Sekmen CERN Türk Öğretmen Çalıştayı 5 Şubat 2016

Benzer belgeler
Güncel sorunlar ve çözüm arayışı. Sezen Sekmen CERN CERN Türk Öğretmenler Programı Şubat 2014

Güncel sorunlar ve çözüm arayışı. Sezen Sekmen CERN Türk Öğretmenler Çalıştayı Ocak 2015

Güncel sorunlar ve çözüm arayışı. Sezen Sekmen CERN Türk Öğretmenler Çalıştayı 4 Temmuz 2015

Güncel sorunlar ve çözüm arayışı. G. Ünel CERN Türk Öğretmenler Çalıştayı 8 Ocak 2018

STANDART MODEL ÖTESİ YENİ FİZİK

STANDART MODEL VE ÖTESİ. Güncel sorunlar ve çözüm arayışı. A. Zorluer Türk Öğretmen Çalıştayı 8 Ocak 2018

Doğayı anlamak için, Parçacıkları, Kuvvetleri ve Kuralları Bilmemiz gerekir. Gordon Kane,Süpersimetri

CERN VE HİGGS HİGGS PARÇACIĞI NEDİR? Tuba KÖYLÜ Bilişim Teknolojileri Öğretmeni Şanlıurfa İl Milli Eğitim Müdürlüğü 27 Haziran 2017

ATLAS Dünyası. Standart Model. ATLAS ağ sayfası Karşımadde

Maddenin içine yaptığımız yolculukta...

Parçacıkların Standart Modeli ve BHÇ

ATLAS Higgs Araştırmalarında En Yeni Sonuçlar

STANDART MODEL VE ÖTESİ. : Özge Biltekin

LHC Run2 Beklentileri

Higgs ve Higgs Buluşu. Sezen Sekmen CERN Türk Öğretmenler Çalıştayı 26 Haziran 1 Temmuz 2016

Parçacık Fiziği Söyleşisi

FİZ314 Fizikte Güncel Konular

Higgs ve Higgs Buluşu. Sezen Sekmen CERN Türk Öğretmenler Çalıştayı Ocak 2015

Hazırlayan: Ayten İLHAN Branşı: Bilişim Teknolojileri Görev Yaptığı Okul: EMİNE ÖZCAN ANADOLU LİSESİ

125 GeV Kütleli Yeni bir Parçacığın Gözlenmesi

Murat ŞENER Bursa Sınav Fen Lisesi

Parçacık Fiziği. Dr. Bora Akgün / Rice Üniversitesi CERN Türkiye Öğretmenleri Programı Temmuz 2015

HİGGS HAKKINDA NAZLI FANUS FEN BİLİMLERİ ÖĞRETMENİ ULUPAMİR ORTAOKULU (CERN TÜRK ÖĞRETMEN ÇALIŞTAYI-7)

Uluslararası Lineer Çarpıştırıcı'da (ILC) Ayar Aracı Bozonları ile Süpersimetri Kırılması

PARÇACIK FİZİĞİ SÖYLEŞİ. Sezen Sekmen Kyungpook Na0onal University HPFBUIV, Eskisehir, 1-8 Subat 2015

Herbir kuarkın ters işaretli yük ve acayipliğe sahip bir anti kuarkı vardır: TİP (ÇEŞNİ,flavor) YÜK ACAYİPLİK. u (up, yukarı) 2/3 0

Vektör Bozon Saçılması

Temel Parçacık Dinamikleri. Sunum İçeriği

HİGGS??? STANDART MODEL HIGGS BOZONU ve ALANI HIGGS İ BULMAK İÇİN: HIZLANDIRICILAR PEKİ YA SONRA?

SU Lise Yaz Okulu. Evrenin Başlangıcı ve Enflasyon Teorisi

Mezon Molekülleri ve X(3872)

, (Compton Saçılması) e e, (Çift Yokoluşu) OMÜ_FEN

CERN'deki Büyük Hadron Çarpıştırıcısı ve LCG (LHC Computing Grid) Projesi

Büyük Patlama ve Evrenin Oluşumu. Test 1 in Çözümleri

İçindekiler: CERN Globe Binası ve Micro Cosmos Müzesi

CERN NEDİR? NE ZAMAN VE NİÇİN KURULDU?

PARÇACIK FİZİĞİ, HIZLANDIRICILAR ve DEDEKTÖRLER

HIGGS HAKKINDA. STANDART MODEL HIGGS BOZONU ve ALANI HIGGS İ BULMAK İÇİN: HIZLANDIRICILAR PEKİ YA SONRA?

Bhabha Saçılması (Çift yokoluş ve Çift oluşumu. Moller Saçılması (Coulomb Saçılması) OMÜ_FEN

CMS Deneyinde Ek Boyutlu Kara Delik Üre6m ve Bozunumu

Parçacık Fiziği: Söyleşi

Temel Sabitler ve Birimler

Evrenimizdeki karanlık maddenin 3 boyutlu olarak modellenmesi Karanlık maddenin evrende ne şekilde dağıldığı hala cevabı bulunmamış sorulardan

ATLAS DENEYİ BOYAMA KİTABI

Madde Dünya. Molekül Atom. Atomlar Elektron. Kuark

Boğaziçi Üniversitesi. 20 Temmuz CERN Türk Öğretmen Çalıştayı 4

TURKFAB Tesisinin Araş0rma Potansiyeli, Kullanıcı Profili ve Üreteceği Katma Değer

Simetri ve Süpersimetri. Spot: Kerem Cankoçak. Simetri nedir?

RADYASYON FİZİĞİ 1. Prof. Dr. Kıvanç Kamburoğlu

Kadri Yakut

YEN FZE DORU. Yüksek Enerji Fizii ndeki son gelimeler Fizik Bilimi nin gelecei

Higgs bozonu nedir? Hasan AVCU

ALIfiTIRMALARIN ÇÖZÜMÜ

IceCube Deneyinde Gözlemlenen PeV Enerjili Olayların Renk Sekizlisi Nötrino Yorumu

Radyoaktivite - Büyük Patlama ve Evrenin Oluşumu

Temel Sabitler ve Birimler

Ç.Ü Fen ve Mühendislik Bilimleri Dergisi Yıl:2012 Cilt:28-2

YEN FZE DORU. Yüksek Enerji Fizii ndeki son gelimeler Fizik Bilimi nin gelecei

CMS DENEYİNDEKİ SÜPERSİMETRİ ARAŞTIRMALARI * Supersymmetry Searches in Cms Experiment

Theory Tajik (Tajikistan)

Newton ve Einstein nin Evren Anlayışları

Parçacık Fiziğinde Korunum Yasaları

BÖLÜM 3: (6,67x10 Nm kg )(1,67x10 kg)»10 36 F (9x10 Nm C )(1,6x10 C) NÜKLEONLAR ARASI KUVVET- NÜKLEER KUVVET

Hızlandırıcılar ve Çarpıştırıcılar

Şekil: LHC hızlandırıcısında hızlandırılan protonların CMS deneyinde çarpışması sonucu gözlemlenen olaylar

Doğanın Geometrisi: Herşeyin Kuramına doğru

CMS DENEYİNDEKİ HADRONİK KALORİMETREDE KAYIP DİK ENERJİNİN ÖLÇÜMÜ. Missing Transverse Energy Measurement in Hadronic Calorimeter of CMS

Boğaziçi Üniversitesi. 21 Temmuz CERN Türk Öğretmen Çalıştayı 4

Çözümleme Kavramları. Sezen Sekmen / Kyungpook Nat. U. Gökhan Ünel / UC Irvine HPFBUIV- Şubat 2015

Higgs keşfedildi, şimdi ne olacak? Evren hakkında bütün gizemler

NÜKLEER FİSYON Doç. Dr. Turan OLĞAR

Parçacık Fabrikalarında Fizik: B-Kuarklı ve C-Kuarklı Mezonlar Çalıştayı, Mart 2012, HTE, Ankara

FİZ314 Fizikte Güncel Konular

Başka Boyutlar Arayışı-2:

Fizik bilimi nedir? Fizik Bilimi nedir? Fizik biliminin uğraşı alanları nelerdir? On5yirmi5.com. Fizik Bilimi nedir?

Bugün Evreni oluşturan tüm enerji toplu iğne ucu büyüklüğünden LHC. Zaman, uzay ve madde Büyük Patlama sırasında ortaya çıktı.

6.HAFTA BÖLÜM 3: ÇEKİRDEK KUVVETLERİ VE ÇEKİRDEK MODELLERİ

Yapıtaşları: Kuarklar ve Leptonlar örn: u,d,.. Elektron(e)..

STANDART MODEL in SON PARÇASI: Higgs Parçacığı Ege Üniversitesi Fizik Bölümü Nasuf Sönmez

UBT Foton Algılayıcıları Ara Sınav Cevap Anahtarı Tarih: 22 Nisan 2015 Süre: 90 dk. İsim:

KİM-117 TEMEL KİMYA Prof. Dr. Zeliha HAYVALI Ankara Üniversitesi Kimya Bölümü

Büyük Hadron Çarpıştırıcısı nda HZZ Bağlaşımlarının Ölçümü

BİYOLOJİK MOLEKÜLLERDEKİ

Fen ve Mühendislik Bilimleri için Fizik

Var Olabilen Şeyler ve Var Olması Gereken Şeyler

CMS'DEKİ ZDC DEDEKTÖRÜ İCİN AKIM AYIRICI DEVRE. Current Splitter for ZDC Dedector in the Cms

Fen ve Mühendislik Bilimleri için Fizik

ATOMİK YAPI. Elektron Yükü=-1,60x10-19 C Proton Yükü=+1,60x10-19 C Nötron Yükü=0

Maddenin Yapısı ve Higgs Bozonu

Büyük Patlama kuramları ve Yaradılışçılık. Kerem Cankoçak (İTÜ Fizik)

ATOMİK YAPI. Elektron Yükü=-1,60x10-19 C Proton Yükü=+1,60x10-19 C Nötron Yükü=0

Güray Erkol Özyeğin Üniversitesi

TÖÇ-6. Parçacık Fiziğine giriş. Gökhan ÜNEL / UCI - Haziran 2016

Doç. Dr. Orhan ÇAKIR Ankara Üniversitesi, Ankara

Nötronlar kinetik enerjilerine göre aşağıdaki gibi sınıflandırılırlar

TR RARE B -> VVY DECAY AND NEW PHYSICS EFFECTS

Çekirdek Modelleri. Alfa Bozunumu. Nükleer Fizikte Kullanışlı Birimler Çekirdeğin Yapısı ve Etkileşmeler. Çekirdeğin Sıvı Damlası Modeli

J.J. Thomson (Ġngiliz fizikçi, ), 1897 de elektronu keģfetti ve kütle/yük oranını belirledi da Nobel Ödülü nü kazandı.

ÖZGEÇMİŞ KİŞİSEL BİLGİLER. Soyadı, Adı: Doğum Tarihi: Doğum Yeri: Selbuz, Levent 1 Ocak 1976 Kartal, İstanbul

Transkript:

? Güncel sorunlar ve çözüm arayışı Sezen Sekmen CERN Türk Öğretmen Çalıştayı 5 Şubat 2016 1

Maddenin en küçük öğesi bulunmadan insan evreni asla anlayamaz. Plato 2

Büyük Patlama dan hemen sonra evrenimiz bir parçacık kadar küçüktü. 3

ve evrenimizin gelişimi parçacıklarla ve onların etkileşimiyle doğrudan bağlantılıdır. 4

Atomun içine yolculuk Temel parçacık 1897 çekirdek 1808 (Dalton) A New System of Chemical Philosophy 1911 1918 (1932) 1964 Temel parçacık 5

Sonra tuhaf parçacıklar görünmeye başladı Pozitronlar (positif elektronlar) Muonlar (daha ağır elektronlar Nötrinolar (yüksüz elektronlar) Çeşitli mezonlar (2 kuarktan oluşur) ve baryonlar (3 kuarktan oluşur) Ve bu tuhaf parçacıklar bize Standart Model I getirdi. 6

STANDART MODEL temel parçacıklar ve etkileşimler hakkındaki bütün bilgimizi içeren bir kuramlar bütünüdür. Her kuarktan 3 renk. Her parçacık için bir karşıparçacık Etkileşimler kuvvet taşıyıcı parçacıklarla yönlendirilirler Toplamda 60 parçacık (LHC öncesinde) Standart Model doğrudur, ancak eksikleri vardır. 7

Ya SM ile uyuşmayan beklenmedik bir gözlem yapacağız ve gözleme göre yeni bir kuram oluşturacağız Ya da SMin eksiklerinden çıkıp yeni kuramlar bularak onların izlerini araştıracağız. 8

Standart Model doğrudur doğruluğu deneylerce kanıtlandı. Ancak SM eksiktir. Açıklayamadığı şeyler vardır. Dünya düzdür. Dünya yuvarlaktır. Bakış açımızı genişletmemiz gerekiyor. Bu konuda Standart Model in eksikleri bize yardımcı olacak! 9

SM eksikleri: Kütle sorunu Parçacıklara kütlesini veren nedir? Neden farklı parçacıklar farklı kütlelere sahiptirler? Çözüm: 10

SM eksikleri: Çeşni sorunu Neden herşeyi aynı, ancak sadece kütleleri farklı olan 3 parçacık ailesi vardır? 11

SM eksikleri: Kuvvetler farklılığı Neden kütleçekim kuvveti diğerlerinden farklıdır? Tüm kuvvetleri anlatacak olan birleşik tek kuram nedir? Elektromanyetik Zayıf Güçlü ElektroZayıf Kütleçekim elektromanyetizmadan 10 40 kadar güçsüz. 12

SM eksikleri: Madde- karşımadde asimetrisi Evrenin başlangıcında madde ve karşımadde eşit miktarlarda üretilmişlerdi. Fakat daha sonra maddenin karşımaddeye tercih edilmesini saplayan bir olay gerçeklesti. Sonra madde ve karşımadde birbirini yoketti. Geriye biraz madde kaldı. Neden? Kalan madde bizleri oluşturdu. 13

SM eksikleri: Karanlık madde ve karanlık enerji nedir? Neden yapılmışlardır? Evrenin içeriği: %4.9 görünen madde %26.8 karanlık madde %68.3 karanlık enerji 14

SM eksikleri: Karanlık madde Karanlık maddenin varolduğuna dair dolaylı deneysel kanıta sahibiz, ancak karanlık maddenin doğasını henüz bilmiyoruz. Karanlık madde büyük olasılıkla parçacıklardan oluşmaktadır. 15

SM eksikleri: Karanlık enerji Karanlık enerji evrendeki vakumla bağlantılı bir enerji formudur. Evrende homojen olarak dağılmıştır ve evrenin ivmelenerek genişlemesinden sorumludur. 16

Ne yapıyoruz? Standart Model I kapsayan, ancak eksiklerine de tamamlayıcı çözümler öneren yeni fizik kuramları oluşturuyoruz. Bu kuramlar çoğunlukla yeni parçacıkların varlığını öngörüyor. Öngörülen parçacıkları BHÇ verilerinde arıyoruz. 17

Sorunlar ve çözüm adayları BBK BBK Ek boyutlar Sicim kuramı BBK BBK Çeşni sorunu 3 kuvvetin birleşmesi Yerçekiminin güçsüzlüğü 4 kuvvetin birleşmesi madde- karşıt madde asimetrisi karanlık madde sorunu karanlık enerji sorunu Süpersimetri Süpersimetri Süpersimetri Süpersimetri 18

Aday kuram: Süpersimetri Süpersimetri (SUSY) fermionlar ve bozonlar arasında ya da madde ve kuvvet arasında bir simetridir. Yeni parçacıkların varlığını öngörür. Bilinen her SM parçacık için spini farklı ve daha ağır bir s(üper)parçacık bulunduğunu söyler. 19

Aday kuram: Ek boyutlar Uzayda 3ten fazla boyut olabilir. Ek boyutlar küçük ve kıvrılmış olabilirler. Bu tür boyutların varlığı parçacıkların etkileşimlerini değiştirebilir. Mesela ek boyutların içerisine girildiğinde kütleçekim kuvveti artar. 20

F i z i k t e K u r a m l a r ı n B i r l e ş m e s i Elektrik Işık 1861 Elektromanyetizma Manyetik 1900 Beta Bozunumu Nötrino Etkileşimi 1930 Proton 1815 Nötron 1932 Piyon 1947 1933 Zayıf Etkileşim ~1MeV 1961 Güçlü Etkileşim ~10GeV 1968 ElektroZayıf Etkileşimler ~100GeV 197x Standart Model ~TeV 2??? Büyük Birleşik Kuram???on 20?? ~1600 Mekanik Göksel ~1500 1687 Evrensel Çekim 1915 Genel Görecelik 2??? Herşeyin Kuramı Uzay- ~1850 Zaman 21

Aday kuram: Büyük Birleşme Kuramı Gözlemlediğimiz ElektroZayıf ve Güçlü kuvvetler aynı kuvvetin farklı bakış açılarına göre izdüşümleri olabilir. SM, daha yüksek enerjide ortaya çıkacak olan büyük bir kuramın düşük enerjideki hali mi? Lepton sayısını 4 QCD rengi olarak düşünebilir miyiz? patti - salam 1975 Bu kuram E6 birleşimi olabilir mi? gürsey 1976 Yeni fermiyon ve bozonlar 22

LHC de yeni fizik arıyoruz ama ufak bir sorun var: Bir çok olası adaydan hangisi doğru? 23

LHC de yeni fizik nasıl ararız? Aday kuramdan bağımsız aramalar: Öncelikle SMnin baskın olduğu son durumlarda ölçümler yaparak SMi doğrularız. Veride SM öngörüsüne göre bir fark olup olmadığına bakarız. Şimdiye kadar fark görmedik. Çok sayıda farklı son duruma aynı anda kabaca bakarız ve SMden bir farklılık ararız. Aday kurama bağlı aramalar: Yeni fizik kuramları arasından sevdiğimiz birini alırız. Aday kuramın genel karakteristiklerini belirleriz, ve bu karakteristikler arasında SMden ayırt edici olanları buluruz. BHÇ verilerı arasından bu karakteristiklere sahip olan olayları seçeriz. Seçimden kaç tane SM olay geçmiş olabileceğini hesaplarız. Hesaplanan SM miktarını seçilmiş verilerle karşılaştırırız ve fark çıksın diye umut ederiz. Eğer fark çıkarsa değişik kanallarda ölçüm yaparak yeni parçacığı tanımaya çalışırız. Eğer fark çıkmazsa veride fazlalık öngören yeni kuramları dıştalarız. 24

LHC de ne kadar SM oluşur? Bunların yanısıra 10 7 pb ile QCD ardalan var. QCD de 2 ya da fazla jet oluşuyor. 25

LHC de ne kadar yeni fizik oluşması beklenir? 26

Yeni fiziği heryerde aramak Yeni fizik kuramlarından herhangi birine odaklanmayı tercih etmiyorsak SM ötesi herhangi bir sinyal yakalamak için genel arama yaparız. BHÇde gözlemlenecek parçacıkların olası tüm kombinasyonlarını ele alırız (örneğin 1 elektron + 3 jet, 2 muon + 2 jet, vs.). Her kombinasyon için BHÇ verilerini SM beklentisi ile karşılaştırıp farklılık ararız. Bu yöntem SM ötesi kuramların karakteristiklerine yönelik arama yapmadığı için çok duyarlı değildir, ancak yönlendiricidir. ATLAS- CONF- 2014-006 ATLAS 697 farklı kombinasyonda yeni fizik aramış, ancak sinyale rastlamamıştır. 27

Rezonanslar - I Eğer ağır bir parçacığın bozunduğu tüm parçacıkları algıçta gözleyebiliyorsak ağır parçacığı tanımlayabiliriz ve değişmez kütlesini hesaplayabiliriz (tıpkı Higgs te olduğu gibi) SM ötesi parçacıklardan birçoğu SM parçacıklara bozunur ve BHÇ de varlıkları araştırılabilir. Örneğin ağır parçacıklar jj, ll, VV, VH, γγ çiftlerine bozunur. BHÇ de 2 jetlı, jj, ll, VV, VH, γγ çiftli olayları inceleyip 2 parçacık değişmez kütle dağılımında SM ile uyuşmazlık ararız. SMden bazı farklılıklar gözlemledik, ama yeterli istatistiksel belirginlikte değil WH WZ WW 28

Rezonanslar - II Aralik 2015te ATLAS ve CMS birlikte 2 foton kanalında ~750 GeV de bir tepecik gördüklerini açıkladılar. Ancak henüz yeterli istatistik belirginliğe sahip olmadığımız için keşif ilan edemeyiz. Daha çok veri toplayıp istatistik kesinliği arttırmamız gerek. Yeni verilerle yazın çıkacak sonuçları bekliyoruz. 29

Süpersimetri araştırmaları SUSY 100ün üzerinde serbest parametresi olan bir kuramdır. Çok farklı şekillerde ortaya çıkabilir: farklı süperparçacık kütleleri, farklı tesir kesitleri, farklı dallanma oranları Böylece SUSY BHÇ de çok çeşitli şekillerde görülebilir. Ağır sparçacıklar daha hafif sparçacıklara + SM parçacıklara bozunabilir ve çok miktarda ve çeşitlilikte parçacıklar görülebilir. Çok jetli, çok b kuarklı, çok t kuarklı, çok leptonlu son durumların herhangi birinde SUSY izlerine rastlayabiliriz. Klasik SUSYnin en belirgin özelliği ağır, kararlı, yüksüz ve algıçta gözlenemeyen parçacıklara sahip olmasıdır. Her SUSY olayında bu parçacıklardan mutlaka bulunur. Bu parçacıklar karanlık madde adayıdır. Görünmeyen parçacıkları görmeye çalışırız. 30

Kayıp dikey enerji (missing transverse energy) Bazı parçacıklar algıç ile etkileşmeden algıçtan çıkarlar. Bu parçacıkların varlığını kayıp enerjiden anlarız. Enerji/momentum korunumu yasasına göre ne kadar enerji/momentum ile başlamışsak sonuçta o kadar enerji/momentum görmemiz gerekir. Eğer denklik bozulmuşsa algıçtan kaçan parçacıklar olduğunu anlarız. FAKAT proton yönünde ne kadar enerji olduğunu bilemeyiz, çünkü etkileşimi gerçekleştiren kuark ve gluonlar proton enerjisinin sadece bir kısmını taşırlar. Ancak çarpışmaya dik düzlemde başlangıçta toplam E, p sıfırdır ve sonuçta da sıfır olması gerekir. Olayda gözlemlediğimiz tüm parçacıkların momentumlarından farkı hesaplayabiliriz: 31

Kayıp dikey enerji (missing transverse energy) FAKAT kayıp enerji görmemiz mutlaka kaçak parçacık var demek değildir. Algıçtaki ölçüm belirsizlikleri de kayıp enerjiye sebep olur. Biz de gerçek kayıp enerjiyi çakma kayıp enerjiden ayırt edecek yöntemler buluruz. 32

Doğrudan karanlık madde aramak SUSY ya da diğer kuramlara göre LHCde doğrudan da karanlık madde üretebiliriz: Bu görünmez olayı kuarktan ışınan bir gluon jeti ile görünür yapabiliriz. BHÇde tek jetli olaylar fazlalığı görmek görünmez parçacıkların doğrudan oluştuğuna işaret edebilir. 33

Ağır, yüklü, uzun ömürlü parçacıklar Bazı kuramlar ağır, elektrik yüklü ve uzun ömürlü parçacıklar öngörür. Bu parçacıkar bozunmadan algıçtan geçebilir, ve yüklü oldukları için muon odalarında görülebilirler. Parçacıklar ağır oldukları için ışık hızından düşük hızlarla yol alırlar. Muon algıcındaki saatleri kullanarak parçacığın geçiş hızını ölçebiliriz, ve momentum bilgisini de kullanarak parçacığın kütlesini hesaplarız. = c/v 34

BHÇ de SM ötesi parçacıklar adına ne bulduk? 35

36

AMA yine de ilginç şeyler öğreniyoruz. Yeni fizik sinyalinin yokluğunu kullanarak hangi kuramların daha az olası olduğunu araştırıyoruz. 37

38

AMA yine de ilginç şeyler öğreniyoruz. Yeni fizik sinyalinin yokluğunu kullanarak hangi kuramların daha az olası olduğunu araştırıyoruz. Ve bu bilginin ışığında yeni veri için yeni analizler tasarlıyoruz. LHC 2016 Nisan ayında 13 TeV enerji ile tekrar veri almaya başlayacak. 2016 yılında 30fb-1 veri bekleniyor. 39

KEEP CALM Ağır ve karanlık SUSY parçacıklar bükük ek boyutlardaki saklı kapıdan göründüler! Aman efendim, bunlar sadece Standart Model parçacıkları! AND SEARCH ON Bundan&sonrasında&bize&hem&Don&Quixote un&hayal&gücü,& hem&de&sancho nun&becerikli&gerçekçiliği&lazım. 40 A.#Pich,#ICHEP2014# Kuramsal#Özet #konuşmasından#(ç)aldım.