Elektrik sinyallerini anlamlandırma

Benzer belgeler
Güç kalitesi verisini indirme, analiz etme ve raporlama

ARTOS7F1 ARIZA TESPİT CİHAZI VE PC OSİLOSKOP 7 FONKSİYON 1 CİHAZDA

Fluke 279 FC Termal Multimetre

Fluke Görsel IR Termometre için 15 güçlü uygulama

Fluke 500 Serisi Pil Analizörleri

Fluke 438-II Güç Kalitesi ve Motor Analizörü

Fluke 279 FC Termal Multimetre

VT04 ve VT02 Görsel IR Termometreleri

DENEY 7 DALGALI GERİLİM ÖLÇÜMLERİ - OSİLOSKOP

Fluke CNX 3000 Serisi Test Araçları Fluke Kablosuz Ekibi

6. DENEY Alternatif Akım Kaynağı ve Osiloskop Cihazlarının Kullanımı

Fluke Dijital Multimetreler Her ihtiyaca uygun çözümler

6. Osiloskop. Periyodik ve periyodik olmayan elektriksel işaretlerin gözlenmesi ve ölçülmesini sağlayan elektronik bir cihazdır.

BAŞKENT ÜNİVERSİTESİ

SAKARYA ÜNİVERSİTESİ TEKNOLOJİ FAKÜLTESİ ELEKTRİK-ELEKTRONİK MÜHENDİSLİĞİ BÖLÜMÜ ELEKTRİK ELEKTRONİK MÜHENDİSLİĞİNE GİRİŞ LABORATUARI

DY-45 OSĐLOSKOP KĐTĐ. Kullanma Kılavuzu

Fatih Üniversitesi Elektrik ve Elektronik Mühendisliği Bölümü EEM 316 Haberleşme I LAB SINAVI DARBE GENLİK MODÜLASYONU (PWM)

BEMAK OTOMASYON TIC.LTD.STI. UCEVLER MH. 56. SK. AKNIL PLAZA NO 1B NILUFER BURSA - TURKEY - PHONE: FAX:

DENEY FÖYÜ 4: Alternatif Akım ve Osiloskop

VT04 ve VT02 Görsel IR Termometreleri

DY-45 OSİLOSKOP V2.0 KİTİ

Fluke 729 Otomatik Basınç Kalibratörü

DENEYLERDE KULLANILACAK LABORATUVAR EKİPMANLARI

Deney 32 de osiloskop AC ve DC gerilimleri ölçmek için kullanıldı. Osiloskop ayni zamanda dolaylı olarak frekansı ölçmek içinde kullanılabilir.

Teknik Katalog [Osiloskop]

Fluke 1660 Serisi Çok İşlevli Tesisat Test Cihazları

SAYISAL İŞARET VE GEÇİŞ SÜRELERİNİN ÖLÇÜLMESİ

Fluke 750P Serisi Basınç Modülleri

FAZ KİLİTLEMELİ ÇEVRİM (PLL)

Fluke 712B ve 714B Sıcaklık Kalibratörleri


F SERİSİ Pens Ampermetreler kullanım kitapçığı

Leica DISTO D3a / BT Çok fonksiyonel, hassas ölçüm imkanı

İzolasyon Yalıtım Direnç Ölçer Marka/Model METREL/ 3201

Dört genel BASINÇ KALIBRASYONU SORUNU

Online teknik sayfa VICOTEC410 TÜNEL SENSÖRLERI

Şekil 3-1 Ses ve PWM işaretleri arasındaki ilişki

Teknik İş Raporu. HP Sure View. Tek tuşla iş cihazı ekranı gizliliği. Mayıs Teknik İş Raporu HP Sure View 01

kdeney NO:1 OSİLASKOP VE MULTİMETRE İLE ÖLÇME 1) Osiloskop ile Periyot, Frekans ve Gerlim Ölçme

5. Elektriksel Büyüklüklerin Ölçülebilen Değerleri

Fluke 438-II Güç Kalitesi ve Motor Analizörü

8.KISIM OSİLOSKOP-2 DC + AC ŞEKLİNDEKİ TOPLAM İŞARETLERİN ÖLÇÜMÜ

T.C. ONDOKUZ MAYIS ÜNİVERSİTESİ MÜHENDİSLİK FAKÜLTESİ ELEKTRİK-ELEKTRONİK MÜHENDİSLİĞİ BÖLÜMÜ ELEKTRONİK LABORATUVARI-II DENEY RAPORU

KULLANIM KILAVUZU Mikroohmmetre PCE-MO 2001

Fluke ve

BMT104 ELEKTRONİK DEVRELER DERSİ LABORATUVAR UYGULAMALARI

Fluke Pens Metreler Her ihtiyaca uygun çözümler

PWM Doğrultucular. AA/DA güç dönüşümü - mikroelektronik devrelerin güç kaynaklarında, - elektrikli ev aletlerinde,

Karadeniz Teknik Üniversitesi Elektrik-Elektronik Mühendisliği Bölümü Elektronik Laboratuvarı I İŞLEMSEL YÜKSELTECİN TEMEL ÖZELLİKLERİ VE UYGULAMALARI

KOCAELİ ÜNİVERSİTESİ ELEKTRONİK VE HABERLEŞME MÜHENDİSLİĞİ ELEKTRONİK LAB 1 DERSİ İŞLEMSEL KUVVETLENDİRİCİ - 2 DENEYİ

ELEKTRONİK DEVRE ELEMANLARI

Şekil-1. Doğru ve Alternatif Akım dalga şekilleri

DÜZCE ÜNİVERSİTESİ MÜHENDİSLİK FAKÜLTESİ ELEKTRİK ELEKTRONİK MÜHENDİSLİĞİ BÖLÜMÜ TEMEL HABERLEŞME SİSTEMLERİ TEORİK VE UYGULAMA LABORATUVARI 3.

OSİLOSKOP I. KULLANIM ALANI

Tek Fazlı Tam Dalga Doğrultucularda Farklı Yük Durumlarındaki Harmoniklerin İncelenmesi

SERVOMOTOR HIZ VE POZİSYON KONTROLÜ


Ecras Elektronik Multimetre

Şekil 1: Diyot sembol ve görünüşleri

Şekil 7.1. (a) Sinüs dalga giriş sinyali, (b) yarım dalga doğrultmaç çıkışı, (c) tam dalga doğrultmaç çıkışı

BMM205 Elektrik Devreleri Laboratuvarı

ADC Devrelerinde Pratik Düşünceler

Size ayak. uydurmak için üretildi. Yüksek performanslı el tipi skoplar. Yeni 500 MHz. 20 yıllık ScopeMeter Test Araçları Yenilikleri

TANIMLAYICI İSTATİSTİKLER

Online teknik sayfa MCS100E HW-C SEOS ÇÖZÜMLERI

Yükseltici DA Kıyıcılar, Gerilim beslemeli invertörler / 12. Hafta

ANOLOG-DİJİTAL DÖNÜŞTÜRÜCÜLER

DENEY 25 HARMONİK DİSTORSİYON VE FOURIER ANALİZİ Amaçlar :

TECH 700 DA. How true pro s measure. Kullanma Kılavuzu.

Oransal Kontrol Cihazı RWF 40

Gösterge. Açıklama. Genel. Takometre. Kalibrasyon

Elektriksel ölçüm teknolojisi Yeniden keşfedildi. Daha basit ve daha güvenli: ölçüm cihazlarında yeni bir dönem

ASUS Eye Care Teknolojisi Tanıtım Bilgileri

Yüksek çözünürlüklü termal kameralar ARGE uygulamalarına gelişmiş termal ayrıntı sağlar

Online teknik sayfa MCS100FT-C SEOS ÇÖZÜMLERI

Teknik Katalog [Kızılötesi Termometre]

ALTERNATİF AKIMIN DENKLEMİ

KMU MÜHENDİSLİK FAKÜLTESİ ELEKTRİK ELEKTRONİK MÜHENDİSLİĞİ ELETRONİK LABORATUVARI DENEY 1 OSİLOSKOP KULLANIMI

MT /2 Kapasitansmetre

DENEY 1 SABİT HIZLA DÜZGÜN DOĞRUSAL HAREKET

Direnç(330Ω), bobin(1mh), sığa(100nf), fonksiyon generatör, multimetre, breadboard, osiloskop. Teorik Bilgi

Dijital Kıskaçmetre TES 3010 KULLANMA KLAVUZU

KARADENİZ TEKNİK ÜNİVERSİTESİ Mühendislik Fakültesi Elektrik-Elektronik Mühendisliği Bölümü Power Electronic Circuits (Güç Elektroniği Devreleri)

DTB B Serisi Sıcaklık Kontrol Cihazı

DENEY 9- DOĞRU AKIM DA RC DEVRE ANALİZİ

Deney 4: 555 Entegresi Uygulamaları

Online teknik sayfa. PowerCEMS50 KULLANICIYA ÖZEL TASARIMLI ANALIZ SISTEMLERI

T.V FÖYÜ. öğrenmek. Teori: Şekil 1. kullanılır.

Deney 3 5 Üç-Fazlı Tam Dalga Tam-Kontrollü Doğrultucu

Dell UltraSharp U2412M 61 cm (24") Geniş Ekran Monitör

MIT400/2 Serisi, MEGGER İzolasyon Test Cihazı

Montaj kılavuzu. Oda termostatı EKRTW

FRANCK HERTZ DENEYİ (CIVA TÜPLÜ 1. BİLGİSAYAR ORTAMINDA SONUÇ ALMAK İÇİN; DENEYİN YAPILIŞI:

Trend Devam Modelleri: Teknik Analiz

TEK FAZLI VE ÜÇ FAZLI KONTROLSÜZ DOĞRULTUCULAR

Teknik Katalog [Avometre]

1. Şekildeki devreyi benzetim programında kurunuz (sinyal kaynağı: 3Hz, sinüzoidal dalga: min -3V, max 3V, diyot:1n4001).

DENEY 3. Maksimum Güç Transferi

KOCAELİ ÜNİVERSİTESİ ELEKTRONİK VE HABERLEŞME MÜHENDİSLİĞİ ELEKTRONİK LAB 1 DERSİ İŞLEMSEL KUVVETLENDİRİCİ - 2 DENEYİ

EHP Sabit Devirli Hidrofor Kontrol Panosu Servis Manueli

Transkript:

UYGULAMA NOTU Elektrik sinyallerini anlamlandırma Elektrik gücünü mekanik güce çeviren cihazlar, yani pompalar, kompresörler, motorlar, konveyörler, robotlar vb. endüstri dünyasını çalıştırır. Bu elektromekanik cihazlara kumanda eden voltaj sinyalleri kritik ancak görünmeyen bir güç oluşturur. Peki bu görünmeyen gücü nasıl yakalayıp görünür yapabilirsiniz? Osikolkoplar (veya skoplar) voltaj sinyallerini test eder ve dalga biçimi (zaman içindeki voltaj değişikliklerinin görsel temsili) olarak görüntüler. Sinyaller, sinyalin nasıl değiştiğini gösteren bir grafiğe çizilir. Dikey (Y) eksen voltaj ölçümünü, yatay (X) eksen süreyi temsil eder. Günümüz osiloskoplarının çoğu dijitaldir; bu da daha ayrıntılı doğru sinyal ölçümleri ve hızlı hesaplamalar, veri depolama özellikleri ve otomatik analizler sağlar. Fluke ScopeMeter Test Araçlları gibi portatif dijital osiloskoplar, tezgah üstü modellere göre çeşitli avantajlar sağlar: Bunlar pille çalışır, elektrik yalıtımlı yüzer girdileri kullanır ve aynı zamanda osiloskop kullanımını daha kolay ve farklı çalışanlar için daha erişilebilir hale getiren tümleşik özelliklerin avantajını sunarlar. En yeni nesil ScopeMeter Portatif Osiloskoplar sahada hızlı ve kolay bir şekilde kullanılmak üzere tasarlanmıştır ve meslektaşlardan veya diğer uzmanlardan tavsiyeler almak ya da verileri ilave analizler için buluta kaydetmek üzere okumaları gerçek zamanlı olarak bir akıllı telefon üzerinden paylaşabilirler. Bu tasarımlar aynı zamanda, CAT III 1000 V ve CAT IV 600 V ortamlarında, yüksek enerjili uygulamalarda elektrikli aygıtların güvenlik sorun giderme işlemlerinde çok önemli bir ihtiyaç olan güvenlik sertifikalı ölçümleri mümkün kılar. Multimetre ve osiloskop karşılaştırması Bir osiloskop ile DMM (Dijital Multimetre) arasındaki fark en basit şekilde "resimler ve rakamların karşılaştırması" olarak belirtilebilir. DMM, farklı sinyallerin hassas ölçümlerini yapan; bir sinyalin voltajı, akımı veya frekansı için sekiz haneli çözünürlüğe kadar okumalara izin veren bir araçtır. Öte yandan, sinyal kuvvetini, dalga biçimini veya sinyalin anlık değerini ortaya çıkarmak üzere dalga biçimlerini görsel olarak tanımlayamaz. Ne de sistemin işleyişini engelleyebilecek geçici veya harmonik bir sinyali açığa çıkarabilir. Bir osiloskop, sayısal DMM okumalarına çok sayıda bilgi ekler. Bir dalganın sayısal değerlerini anlık olarak gösterirken, aynı zamanda amplitüd (voltaj) ve frekans da dahil dalganın biçimini de açığa çıkarır. Osiloskoptaki grafik önemli bilgileri açıklayabilir: Amaçlandığı gibi çalıştığında voltaj ve akım sinyalleri Sinyal anormallikleri Bir osilasyon sinyalinin hesaplanan frekansı ve frekans değişiklikleri Sinyalde parazit veya parazit değişikliklerinin olup olmadığı

t Örnekleme ve interpolasyon: örnekleme noktalarla belirtilirken, interpolasyon siyah çizgi olarak gösterilir. Bu tür görsel bilgilerle, sistem için tehdit oluşturan bir geçici sinyal görüntülenebilir, ölçülebilir ve yalıtılabilir. Hem kantitatif hem kalitatif ölçümler almak istiyorsanız bir osiloskop kullanın. Voltaj, akım, direnç ve diğer elektriksel parametrelerin yüksek hassasiyetli kontrollerini gerçekleştirmek için bir DMM kullanın. ScopeMeter Portatif Osiloskop işlevleri Örnekleme Örnekleme, bir giriş sinyalinin bir bölümünü, depolama, işleme ve görüntüleme amaçlarıyla belirli sayıda farklı elektriksel değere dönüştürme sürecidir. Her bir örnekleme noktasının büyüklüğü, sinyalin örneklendiği andaki giriş sinyalinin amplitüdüne eşittir. Giriş dalga biçimi, ekranda bir dizi nokta olarak görüntülenir. Noktalar arasındaki mesafe büyükse ve bunları dalga biçimi olarak yorumlamak güçse, interpolasyon adı verilen, çizgiler veya vektörlerle noktaları birleştiren bir işlem kullanılarak noktalar birbirine bağlanabilir. Tetikleme Tetikleme denetimleri, tekrarlayan bir dalga biçimini stabilize etmenizi ve görüntülemenizi sağlar. Kenar tetikleme, en yaygın tetikleme biçimidir. Bu modda, tetikleme seviyesi ve eğim denetimleri temel tetikleme noktası tanımını sağlar. Eğim denetimi, tetikleme noktasının bir sinyalin yükselen kenarında mı alçalan kenarında mı olduğunu belirlerken, seviye denetimi tetikleme noktasının kenarın neresinde olduğunu belirler. Atım dizisi gibi karmaşık sinyallerle çalışırken, atım genişliği tetiklemesi gerekli olabilir. Bu teknikle, hem tetikleme seviyesi ayarı hem de sinyalin sonraki alçalan kenarı belirli bir zaman süresi içinde gerçekleşmelidir. Bu iki şart yerine getirildiğinde, osiloskop tetiklenir. Diğer bir teknik ise tek atışlı tetiklemedir. Burada osiloskop, sadece giriş sinyali belirlenen tetikleme koşullarını yerine getirdiğinde bir izi gösterir. Tetikleme koşulları yerine getirildikten sonra, osiloskop görüntüyü alır ve ekranı günceller, ardından izi tutmak için ekranı dondurur. Bir sinyali ekrana alma Bir osiloskopta bilinmeyen bir dalga biçiminin yakalanması ve analizi rutin olarak yapılabilir veya karanlıkta çekim yapmak gibi görünebilir. Çoğu durumda osiloskopu ayarlamak için metodik bir yaklaşım izlendiğinde stabil bir dalga biçimi yakalanır veya bu yaklaşım, dalga biçimini yakalayabilmeniz için skop denetimlerinin nasıl ayarlanacağını belirlemenize yardım eder. Bir sinyalin osiloskopta düzgün şekilde görüntülenmesini sağlamanın geleneksel yöntemi, optimum bir ayar noktası elde etmek için (genellikle doğru değişkenleri bilmeksizin) üç kilit parametreyi elle ayarlamaktır. Dikey hassasiyet. Dikey amplitüd yaklaşık üç ila altı bölüme yayılacak şekilde dikey hassasiyeti ayarlar. 3-6 dikey bölüm için bilinmeyen iz ayarlanır. 2 Fluke Corporation Elektrik sinyallerini anlamlandırma

Bu işlev ekranı hemen tüm dalga biçimlerinde optimize ve stabilize eder. Sinyal değişirse, kurulum bu değişiklikleri izler. AUTO düğmesine bastığınızda, Connect-And-View teknolojisini etkinleştirirsiniz. Bu noktada 1) ekranın dikey çizgisinde yer alan, 2) bir dalga biçiminin en az üç periyodunu gösteren ve 3) dalga biçiminin genel özelliklerini tanımanıza olanak tanıyacak kadar stabil bir iz görürsünüz. Daha sonra ince ayar yapmaya başlayabilirsiniz. 3-4 yatay nokta için bilinmeyen iz ayarlanır. Yatay zamanlama. Bölüm başına yatay süreyi ayarlar; böylece ekran genişliği boyunca üç ila dört dalga biçimi periyodu olur. Tetikleme konumu. Tetikleme konumunu bir dikey amplitüd konumuna ayarlar. Sinyal özelliklerine bağlı olarak, bu işlem sabit bir ekranla sonuçlanabilir veya sonuçlanmayabilir. Tetikleme seviyesi, ikinci periyoddaki aberasyonun dışında, benzersiz bir tekrarlama konumuna ayarlanır. Tetikleme noktası bir noktaya ayarlanır; ancak ikindi periyodun ön ucundaki sapma edeniyle, ilave bir tetikleme stabil olmayan bir ekranla sonuçlanır. Düzgün şekilde ayarlandığında, bu üç parametre simetrik bir "iz" (dalga biçiminin görsel tanımını oluşturmak için sinyal örneklerini birbirine bağlayan çizgi) gösterir. Dalga biçimleri, sıfır ekseni noktasında ideal olarak pozitif ve negatif arasında yansıtma yapan en yaygın sine dalgasından veya elektronik atımların tipik tek yönlü kare dalgasından ve hatta köpekbalığı dişi formundan sınırsız biçimde farklılık gösterebilir. Manuel kurulum yöntemi genellikle, dalga biçimini analiz edebilmek için okunabilir yapmak üzere ayarları yoğun bir biçimde düzenlemeyi gerektirir. Otomasyon kurulumu Buna karşın, Fluke ScopeMeter Portatif Osiloskoplar, sinyalin net bir resmini görebilmek için analog dalga biçimini sayısallaştırma sürecini otomatik hale getiren Connect-and- View adı verilen bir teknoloji içerir. Connect-and-View teknolojisi dikey ve yatay zamanlamayı ve tetikleme konumunu sizin için ayarlar; bilinmeyen karmaşık sinyalleri göstermek için uzaktan çalıştırmayı mümkün kılar. Dalga biçimlerini anlama ve okuma Karşılaşılan elektrik dalga biçimlerinin büyük bir kısmı periyodik ve tekrarlayıcıdır ve bilinen bir şekle uyarlar. Ancak gözünüzü farklı boyutlara bakmak için eğitmek amacıyla dikkate almanız gereken çeşitli dalga özellikleri mevcuttur. Bazı Fluke ScopeMeter Test Araçları, dalga biçimi analizine yardımcı olmak için IntellaSet adı verilen, tescilli bir tümleşik algoritma sunarlar. Dalga biçimi ekranda gösterildikten sonra, eğer başlatılmış ise, yeni IntellaSet teknolojisi sinyali ve ilgili dalga biçimini bilinen dalga biçimlerinden oluşan bir veritabanıyla karşılaştırarak değerlendirir. Daha sonra ScopeMeter Test Aracı, potansiyel ilgi alanlarının belirlenebilmesi için bilinmeyen sinyali karakterize etmek üzere akıllı bir şekilde kritik ölçümler önerir. Örneğin, ölçülen dalga biçimi bir hat gerilimi sinyali olduğunda, V ac + dc ve Hz okuma değerleri otomatik olarak görüntülenir. Akıllı programlar dalga biçimlerini dikkatle incelemek için gereken süreyi en aza indirmeye yardımcı olurken, osiloskop kullanırken nelere dikkat edileceğini bilmek önemlidir. 3 Fluke Corporation Elektrik sinyallerini anlamlandırma

Dalga biçimlerini analiz ederken dikkate alınacak faktörler: Şekil. Tekrarlayan dalga biçimleri simetrik olmalıdır. Yani izleri yazdırıp iki benzer boyutlu parçaya kestiğinizde, iki taraf özdeş olmalıdır. Görülen bir farklılık soruna işaret edebilir. Yükselen ve alçalan kenarlar. Özellikle kare dalgalar ve atımlar söz konusu olduğunda, dalga biçiminin yükselen ve alçalan kenarları dijital devrelerdeki zamanlamayı büyük ölçüde etkileyebilir. Kenarı daha büyük bir çözünürlükle görüntüleyebilmek için, her bir bölümün süresini azaltmak gerekebilir. Amplitüd ofsetleri. Girişe DC kuplajı uygulayın ve zemin referans markerinin yerini belirleyin. Tüm dc ofsetlerini değerlendirin ve bu ofsetin stabil kalıp kalmadığını veya dalgalanıp dalgalanmadığını gözleyin. Dalga biçimlerinin iki bileşeni simetrik değilse, sinyalde bir sorun olabilir. Bir dalga biçiminin öncü ve takip eden kenarlarının yükselme ve alçalma sürelerini değerlendirmek için imleç ve kılavuz çizgilerini kullanın. Genlik. Seviyenin, devrenin çalışma spesifikasyonları dahilinde olduğunu doğrulayın. Aynı zamanda, bir periyoddan diğerine tutarlılığı kontrol edin. Amplitüd değişikliklerine dikkat ederek, dalga biçimini uzun bir süre izleyin. Dalga biçimi dc ofsetlerini değerlendirin. Periyodik dalga biçimi. Osilatörler ve diğer devreler, sürekli tekrarlayan periyodlarla dalga biçimleri oluşturur. Tutarsızlıkları belirlemek için imleçler kullanarak, her bir periyodu zaman içinde değerlendirin. Periyodlar arasındaki süre değişikliklerini değerlendirin. Amplitüd dalgalanmalarını belirlemek için yatay imleçleri kullanın. 4 Fluke Corporation Elektrik sinyallerini anlamlandırma

Dalga biçimi anormallikleri Bir dalga biçiminde görülebilecek tipik anormallikler ve bu anormalliklerin tipik kaynakları şunlardır. Geçici akımlar veya bozuk sinyaller. Dalga biçimleri transistör veya şalter gibi aktif cihazlardan türetildiğinde, zamanlama hataları, yayılma gecikmeleri, hatalı temas noktaları veya diğer olgular, geçici akımlara veya diğer anormalliklere yol açabilir. Anlık dalgalanma Ölçülen sinyaldeki anlık değişiklikler genellikle ana voltajda düşüş veya artış, aynı elektrik devresine bağlı yüksek güçle çalışan bir aygıtın etkinleştirilmesi veya gevşek bağlantı gibi harici bir etkiden kaynaklanır. Yakalanması zor anlık olayları belirlemek üzere sinyali uzun periyodlar boyunca izlemek için ScopeMeter'in ScopeRecord işlevini ve Event Capture modunu kullanın. Üretilen rastgele paraziti gösteren zemin referans noktası ölçümü. Çınlama. Çınlama çoğunlukla dijital devrelerde ve radar ve atım genişliği modülasyon uygulamalarında görülebilir. Çınlama, yükselen veya alçalan uçtan düz dc seviyesine geçişte ortaya çıkar. Aşırı çınlamayı kontrol edin ve geçiş dalgası veya atımının net bir tarifini vermek için zaman tabanını ayarlayın. Bir atımın yükselen ucunda geçici akım oluşur. Sine dalgasının amplitüdünde yaklaşık 1,5 döngülük anlık değişiklik. Parazit. Parazite arızalı güç kaynağı devreleri, aşırı hızlı devre, parazit veya bitişik kablolardan gelen girişim neden olabilir. Veya parazit, dc-dc dönüştürücüler, aydınlatma sistemleri ve yüksek enerjili elektrik devreleri gibi kaynaklardan haricen üretilebilir. Kare dalganın üzerinde aşırı çınlama oluşuyor. 5 Fluke Corporation Elektrik sinyallerini anlamlandırma

Sorunları belirleme ve giderme Başarılı sorun giderme hem bir sanat hem bir bilim olsa da, bir sorun giderme yönteminin benimsenmesi ve gelişmiş bir ScopeMeter Portatif Osiloskopun işlevselliğine güvenmek süreci büyük ölçüde basitleştirebilir. İyi sorun giderme uygulamaları zamandan kazandırır ve sıkıntıları önler. KGU (Bilinen Sağlam Birim) karşılaştırması olarak bilinen zamanın testinden geçmiş bir yaklaşım, her iki hedefi de gerçekleştirir. KGU şu basit prensibin üzerine inşa edilir: düzgün çalışan bir elektronik sistem, elektronik devresinin içindeki kritik nodlarda tahmin edilebilir dalga biçimleri sergiler ve bu dalga biçimleri yakalanıp saklanabilir. Bu referans kitaplığı, kaynak olarak ScopeMeter Test Aracında saklanabilir veya Fluke Connect uygulaması üzerinden bir akıllı telefona ve buluta aktarılabilir. Ayrıca basılı referans belgesi olarak yazdırılabilir. Daha sonra bir sistem veya özdeş bir sistem hata verirse, dalga biçimleri hatalı sistemden yakalanabilir - Test Edilen Cihaz (DUT) olarak adlandırılır - ve KGU'daki karşılık gelen parçalarıyla karşılaştırılabilir. Daha sonra, DUT onarılabilir veya değiştirilebilir. Bir referans kitaplığı oluşturmak için, DUT üzerindeki ilgili test noktalarını veya nodları belirleyerek başlayın. Ardından KGU'yu hızları boyunca çalıştırın ve her bir noddaki dalga biçimini yakalayın. Her bir dalga biçimine gerektiği şekilde not ekleyin. Her zaman anahtar dalga biçimlerini ve ölçümleri belgelemeyi alışkanlık haline getirin. Bir karşılaştırma referansının olması, sonraki sorun giderme işlemleri sırasında çok önemli olur. Sorun giderme uygularken, dalga biçiminde yapılan nokta denetiminde anormallik görülmese dahi, dalga biçimlerini hızlı geçici akımlara veya hatalı sinyallere karşı kontrol etmek önemlidir. Bu olayları belirlemek zor olabilir; ancak günümüzün ScopeMeter Test Araçlarının yüksek örnekleme hızı, etkin tetikleme ile birlikte bunu mümkün kılar. Ayrıca en son ScopeMeter Test Araçlarının kayıt özellikleri zaman içinde test noktası elektrik sinyallerinin eğilimini belirleyerek, kullanıcı tanımlı eşiklerin dışında oluşan ve sistem kapanmalarına veya sıfırlamalarına yol açan değişiklikleri veya rastgele olayları tespit edebilir. 6 Fluke Corporation Elektrik sinyallerini anlamlandırma Sapma. Sapmayı veya zaman içinde bir sinyalin voltajındaki küçük değişiklikler belirlemek çok güç olabilir. Değişiklik genellikle çok yavaştır ve belirlenmesi zordur. Sıcaklık değişiklikleri ve eskime, rezistör, kapasitör ve kristal osilatör gibi pasif elektronik bileşenleri etkileyebilir. Tanılanması gereken sorunlu hatalardan biri, referans dc gerilim kaynağı veya osilatör devresindeki sapmadır. Genellikle tek çözüm, ölçülen değeri (V dc, Hz, vs.) uzun bir süre boyunca izlemektir. Uzun bir süre (günler hatta haftalar) boyunca eğilim çizimi alınmış kristal bir osilatörde frekans ölçümü gerçekleştirmek, sıcaklık değişiklikleri ve eskimeye bağlı sapmanın etkisini vurgulayabilir. DİKKAT: Elektrik test araçlarının doğru ve güvenli kullanımı için, operatörlerin, şirketleri ve yerel güvenlik kurumları tarafından belirtilen güvenlik prosedürlerini izlemesi çok önemlidir. Fluke. Keeping your world up and running. Fluke TURKIYE P.O. Box 1186 5602 BD Eindhoven The Netherlands Web: www.fluke.com.tr For more information call: In the U.S.A. (800) 443-5853 or Fax (425) 446-5116 In Europe/M-East/Africa +31 (0)40 267 5100 or Fax +31 (0)40 267 5222 In Canada (905) 890-7600 or Fax (905) 890-6866 From other countries +1 (425) 446-5500 or Fax +1 (425) 446-5116 2016 Fluke Corporation. All rights reserved. Data subject to alteration without notice. 2/2016 6006757a-tr Modification of this document is not permitted without written permission from Fluke Corporation.