Buna göre, bir devrede yük akışı olabilmesi için, üreteç ve pil gibi aygıtlara ihtiyaç vardır.

Benzer belgeler
Buna göre, bir devrede yük akışı olabilmesi için, üreteç ve pil gibi aygıtlara ihtiyaç vardır.

<<<< Geri ELEKTRİK AKIMI

YAŞAMIMIZDAKİ ELEKTRİK

ELEKTRİK AKIMI Elektrik Akım Şiddeti Bir İletkenin Direnci

01 OCAK 2015 ELEKTRİK AKIMI VE LAMBA PARLAKLIĞI SALİH MERT İLİ DENİZLİ ANADOLU LİSESİ 10/A 436

ÖĞRENME ALANI : FĐZĐKSEL OLAYLAR ÜNĐTE 3 : YAŞAMIMIZDAKĐ ELEKTRĐK (MEB)

Bölüm 4 Doğru Akım Devreleri. Prof. Dr. Bahadır BOYACIOĞLU

Temel Kavramlar. Elektrik Nedir? Elektrik nedir? Elektrikler geldi, gitti, çarpıldım derken neyi kastederiz?

Elektrik akımının yönü ELEKTRİK İLE İLGİLİ BAZI SİMGELER VE İSİMLERİ. Yukarıda da aktardığım

BİRLİKTE ÇÖZELİM. Bilgiler I II III. Voltmetre ile ölçülür. Devredeki yük akışıdır. Ampermetre ile ölçülür. Devredeki güç kaynağıdır.

Elektrik ve Manyetizma

T.C. ERCİYES ÜNİVERSİTESİ MÜHENDİSLİK FAKÜLTESİ MEKATRONİK MÜHENDİSLİĞİ BÖLÜMÜ TEMEL ELEKTRİK DEVRE LABORATUVARI TEMEL DEVRE TEOREMLERİNİN UYGULANMASI

Güç, enerji ve kuvvet kavramları, birimler, akım, gerilim, direnç, lineerlik nonlineerlik kavramları. Arş.Gör. Arda Güney

Lambalar. piller paralel bağlanır. Lamba yanar ama en parlak yanmaz. CEVAP A CEVAP C

Elektrik Akımı, Direnç ve Ohm Yasası

KARABÜK ÜNİVERSİTESİ Öğretim Üyesi: Doç.Dr. Tamila ANUTGAN 1

Makine Mühendisliği İçin Elektrik-Elektronik Bilgisi. Ders Notu-3 Doğru Akım Devreleri Hazırlayan: Yrd. Doç. Dr. Ahmet DUMLU

6. DİRENÇ ÖLÇME YÖNTEMLERİ VE WHEATSTONE KÖPRÜSÜ

9. ÜNİTE OHM KANUNU KONULAR

2. BÖLÜM AKIM, DİRENÇ, GERİLİM ELEKTRİK DEVRELERİ. Yazar: Dr. Tayfun Demirtürk E-posta:

X Y Z K L M. L o. K o. ADI: SOYADI: No: Sınıfı: Tarih.../.../... ALDIĞI NOT:... A) Grubu. 3. Soru doğru ise (D), yanlış ise (Y) ile işaretleyiniz.

Hareket halindeki elektrik yüklerinin oluşturduğu bir sistem düşünelim. Belirli bir bölgede net bir yük akışı olduğunda, akımın mevcut olduğu

CİSİMLERİN ELEKTRİKLENMESİ VE ELEKTRİKLENME ÇEŞİTLERİ

7. ÜNİTE AKIM, GERİLİM VE DİRENÇ

Ankara Üniversitesi Fen Fakültesi Fizik Bölümü 7. Hafta. Aysuhan OZANSOY

Doğru Akım Devreleri

Dönem Ödevi Konusu:Elektrik devreleri, dirençler ve lambalar

Cisimlerin değişik yöntemlerle (+)pozitif veya (-) negatif elektrik yükü kazanmalarına elektriklenme denir. Negatif yük sayısı= 5

M O Q R L. ADI: SOYADI: No: Sınıfı: Tarih.../.../... ALDIĞI NOT:...

3. HAFTA BLM223 DEVRE ANALİZİ. Yrd. Doç Dr. Can Bülent FİDAN.

FTR 205 Elektroterapi I. Temel Kavramlar. yrd.doç.dr. emin ulaş erdem

Elektrik Nedir? Elektrik nedir? Elektrikler geldi, gitti, çarpıldım derken neyi kastederiz?

ELEKTRİK DEVRE TEMELLERİ

DİRENÇLER, DİRENÇLERİN SERİ VE PARALEL BAĞLANMASI, OHM VE KIRCHOFF YASALARI

DENEY 6 TUNGSTEN FİTİLLİ AMPUL VE YARIİLETKEN DİYOT

Elektrik Müh. Temelleri

KARABÜK ÜNİVERSİTESİ Öğretim Üyesi: Doç.Dr. Tamila ANUTGAN 1

Doğru Akım Devreleri

F AKIM DEVRELER A. DEVRE ELEMANLARI VE TEMEL DEVRELER

Elektrik Akımı, Devreler ve Direnç

Sensörler Öğr. Gör. Erhan CEMÜNAL Thomas Alva Edison

SERİ, PARALEL DİRENÇ DEVRELERİ VE KIRCHHOFF KANUNLARI

DENEY 2: TEMEL ELEKTRİK YASALARI-GERİLİM VE AKIM ÖLÇÜMLERİ

BİLGİSAYAR MÜHENDİSLİĞİ BÖLÜMÜ DEVRE TEORİSİ DERSİ TEMEL KAVRAMLAR

KAYNAK DÖNÜŞÜMÜ NORTON-THEVENIN ve SÜPERPOZİSYON TEOREMLERİ & İŞ-GÜÇ-ENERJİ

A.Ü. GAMA MYO. Elektrik ve Enerji Bölümü ÖLÇME TEKNİĞİ 9. HAFTA

Artvin Meslek Yüksekokulu

11. SINIF SORU BANKASI. 2. ÜNİTE: KUVVET VE HAREKET 5. Konu ELEKTROMANYETİK İNDÜKSİYON TEST ÇÖZÜMLERİ

Ankara Üniversitesi Fen Fakültesi Kimya Bölümü Bahar Yarıyılı Bölüm-6 Özeti Ankara Aysuhan OZANSOY

3. ÜNİTE: YAŞAMIMIZDAKİ ELEKTRİK KONU: ELEKTRİKLENME

ALTERNATİF AKIMIN TEMEL ESASLARI

Makine Mühendisliği İçin Elektrik-Elektronik Bilgisi. Ders Notu-2 Hazırlayan: Yrd. Doç. Dr. Ahmet DUMLU

6.SINIF. Yaşamımızdaki elektrik. Elektrik çarpmalarına karşı korunmanın

Problem Çözmede Mühendislik Yaklaşımı İzlenecek Yollar Birimler ve ölçekleme Yük, akım, gerilim ve güç Gerilim ve akım kaynakları Ohm yasası

Öğrencinin; Adı: Görkem Andaç Soyadı: KİRİŞ Sınıfı: 10 FEN B No su: 277. Konu: Transformatörler

A A A A A A A A A A A

DOĞRU AKIM DEVRE ANALİZİ Ö. ŞENYURT - R. AKDAĞ ÜÇÜNCÜ BÖLÜM: OHM KANUNU, İŞ, ENERJİ VE GÜÇ

11. SINIF SORU BANKASI. 2. ÜNİTE: KUVVET VE HAREKET 5. Konu ELEKTROMANYETİK İNDÜKSİYON TEST ÇÖZÜMLERİ

11. ÜNİTE İŞ VE GÜÇ KONULAR

TEMEL ELEKTRONİK VE ÖLÇME -1 DERSİ 1.SINAV ÇALIŞMA NOTU

ELEKTRİK ELEKTRONİK DEVRE ELEMANLARI

ÖRNEKTİR. Uyarı! ertansinansahin.com A) 1 2 B) 2 3. İletkenlik

2. HAFTA BLM223 DEVRE ANALİZİ. Yrd. Doç Dr. Can Bülent FİDAN.

11. SINIF SORU BANKASI. 2. ÜNİTE: ELEKTRİK VE MANYETİZMA 6. Konu ALTERNATİF AKIM VE TRANSFORMATÖRLER TEST ÇÖZÜMLERİ

BASİT ELEKTRİK DEVRELERİ

ELEKTROSTATİK. Atomda proton ve nötrondan oluşan bir çekirdek ve çekirdeğin çevresinde yörüngelerde hareket eden elektronlar bulunur.

DENEY DC GERİLİM ÖLÇÜMÜ DENEYİN AMACI

Bölüm 1. Elektriksel Büyüklükler ve Elektrik Devre Elemanları

Kondansatörler (Sığaçlar) Test 1 in Çözümleri. q 1. = = 600 µc yükü ile yüklenirken E 1. enerjisi;

10. ÜNİTE DİRENÇ BAĞLANTILARI VE KİRCHOFF KANUNLARI

Test Üç adet düzlem kondansatör, potansiyel farkı 30 volt olan bir üretece şekildeki gibi bağlıdır.

2. KİRCHHOFF YASALARI AMAÇLAR

Aşağıdaki formülden bulunabilir. S16-Kesiti S1=0,20 mm²,uzunluğu L1=50 m,özdirenci φ=1,1 olan krom-nikel telin direnci kaç ohm dur? R1=?

Alternatif Akım Devreleri

ELEKTRİK ELEKTRONİK BİLGİSİ

Yüksüz (nötr) bir atomdaki elektronların ( ) yük toplamı, protonların (+) yük toplamına eşittir.

Elektrik Müh. Temelleri

DEVRE DEĞİŞKENLERİ Bir elektrik devresinde enerji ölçülebilen bir değer değildir fakat ölçülebilen akım ve gerilim değerlerinden hesaplanır.

Elektrik Devre Temelleri

Ders 2- Temel Elektriksel Büyüklükler

11. SINIF SORU BANKASI. 2. ÜNİTE: ELEKTRİK VE MANYETİZMA 6. Konu ALTERNATİF AKIM VE TRANSFORMATÖRLER TEST ÇÖZÜMLERİ

TEMEL ELEKTRİK-ELEKTRONİK DERSİ SORU BANKASI

Şekil 1. R dirençli basit bir devre

Ders 3- Direnç Devreleri I

Şekil-1. Doğru ve Alternatif Akım dalga şekilleri

TEMEL ELEKTRONĠK DERS NOTU

TEMEL KAVRAMLAR BİRİM SİSTEMİ TEMEL NİCELİKLER DEVRE ELEMANLARI ÖZET

TEMEL BİLGİLER. İletken : Elektrik yüklerinin oldukça serbest hareket ettikleri maddelerdir. Örnek olarak bakır, gümüş ve alüminyum verilebilir.

Elektrik Devre Temelleri 3

a. Yükseltgenme potansiyeli büyük olanlar daha aktifdir.

13. ÜNİTE AKIM VE GERİLİM ÖLÇÜLMESİ

Alternatif Akım Devre Analizi

KANUNLAR : Bir iletkenin iki ucu arasındaki potansiyel farkının,iletkenden geçen akım şiddetine oranı sabittir.

SIĞA VE DİELEKTRİKLER

AET 113 DOĞRU AKIMI DEVRE ANALİZİ 1. HAFTA

Prof.Dr.Recep Dimitrov

HAFTA SAAT KAZANIM ÖĞRENME YÖNTEMLERİ ARAÇ-GEREÇLER KONU DEĞERLENDİRME

Akım ve Direnç. Bölüm 27. Elektrik Akımı Direnç ve Ohm Kanunu Direnç ve Sıcaklık Elektrik Enerjisi ve Güç

A.Ü. GAMA MYO. Elektrik ve Enerji Bölümü GÜNEŞ ENERJİSİ İLE ELEKTRİK ÜRETİMİ 10. HAFTA

DENEY 2: TEMEL ELEKTRİK YASALARI (OHM, KİRCHOFF AKIM VE GERİLİM)

Transkript:

ELEKTRİK AKIMI ve LAMBALAR ELEKTRİK AKIMI Potansiyelleri farklı olan iki iletken cisim birbirlerine dokundurulduğunda potansiyelleri eşit oluncaya kadar birinden diğerine elektrik yükü akışı olur. Potansiyeller eşitlendiğinde yani potansiyel farkı sıfır olduğunda bu akış durur. Akışkanların basınç farkından dolayı akmasını ve basınç farkı ortadan kalkınca akmanın durmasını buna benzetebiliriz. Buna göre, bir devrede yük akışı olabilmesi için, üreteç ve pil gibi aygıtlara ihtiyaç vardır. Şekilde, pil, anahtar ve lamba ile oluşturulan devrede, anahtarın kapatılmasıyla lambanın yandığı gözlenir. Bu durumda lamba üzerinden akım geçtiği anlaşılır. Bir iletken içinde elektronların sürekli olarak akışına elektrik akımı denir. Akım Şiddeti Bir iletkenin kesitinden bir saniyede geçen elektron miktarına akım şiddeti denir. i harfi ile gösterilir. Akım şiddeti ampermetre denilen aletle ölçülür. Ampermetre devreye seri bağlanır. Bağlandığı yerin direncini etkilememesi için ampermetrenin iç direnci çok çok küçüktür. Pratikte sıfır kabul edilir. Akım şiddeti birimi amperdir. A harfi ile gösterilir. 1 amperin binde birine miliamper denir. Bir iletkenin kesitinden t sürede geçen yük miktarı q ise, i akım şiddeti, i = q/t bağıntısı ile hesaplanır. Bağıntıya göre,

Üretecin veya pilin + ucu uzun, ucu kısa çizgi ile gösterilir. Elektronlar üretecin ( ) kutbundan (+) kutbuna doğru hareket ederler. Fakat akımın yönü, elektronların hareket yönünün tersine yani (+) kutuptan ( ) kutba doğru olduğu kabul edilmiştir. Bu bir kabullenmedir. Önemli bir sebebi yoktur. Bir İletkenin Direnci Elektronlar bir iletken içinde hareket ederken atom ve moleküllerle etkileşir ve enerji kaybederler. İyi iletken olmayan maddeler içinde ise hareket edemez ve akım oluşturamazlar, yani engellerle karşılaşırlar. Maddeler üzerinden geçen akıma karşı bir tepki yani direnme gösterirler. Bu direnmeye direnç denir. Direnç şekildeki gibi gösterilir ve R ile sembolize edilir. Direnç birimi ohm olup kısaca W ile gösterilir. Yalıtkan maddelerin direnci çok büyük olduğundan hiç akım geçirmezler. Elektrik akımını en iyi iletenler saf metallerdir. Uzunluğu l, kesit alanı S olan bir iletkenin direnci, bağıntısı ile hesaplanır. Burada r, iletkenin öz direncidir. Bu bağıntıya göre, direnç telin uzunluğu ve özdirenci ile doğru, kesit alanı ile ters orantılıdır. Kısa Devre Akımın dirençsiz yolu tercih etmesine kısa devre denir. Şekilde yanmakta olan lambanın iki ucu iletken bir telle birleştirilir yani K anahtarı kapatılırsa, akım dirençsiz yoldan gider. Dolayısıyla lambanın üzerinden giden i akımı artık lamba üzerinden gitmez ve lamba söner. Lamba yerinde bir R direnci olması halinde de aynı durum geçerlidir. r

Değişken Direnç (Reosta) Bir iletkenin direncini değiştirmek için kullanılan alete reosta denir. Reostaya ayarlı dirençte denilir. Kısa devre prensibi geçerlidir. Şekilde okun ucuna kadar iki yol vardır. Biri dirençli diğeri dirençsiz yoldur. Akım dirençsiz yolu tercih ettiğinden, devrede yalnız okun ucundan 1 yönünde kalan direnç var demektir. Dolayısıyla ok 1 yönünde hareket ettirilirse, direnç azalır, 2 yönünde hareket ettirilirse direnç artar. Potansiyel Farkı (Gerilim) Potansiyel iş yapabilme yeteneği olarak ifade edilebilir. Potansiyel enerji, depolanmış ve kullanıma hazır enerji demektir. Pil ve üreteçlerde de böyle bir enerji vardır. Potansiyel farkı denildiğinde iki noktanın potansiyellerinin farkı demektir. Üreteçlerin (+) ve ( ) kutuplarının potansiyelleri farklıdır. Dolayısıyla üretecin iki ucu arasında bir potansiyel farkı (gerilim) vardır. Bu potansiyel farkına gerilim de denir. Bir devrenin iki noktası arasında sabit bir potansiyel farkı var ise, bu iki nokta arasında düzenli bir akım oluşur. Evlerde 220 voltluk sabit bir potansiyel farkı kullanıldığı için ampüllerin parlaklığı zamanla değişmez. Potansiyel farkının birimi volttur. V harfi ile gösterilir. Voltmetre denilen aletle ölçülür. Voltmetre devreye paralel bağlanır. Voltmetrenin üzerinden akım geçmemesi için iç direnci çok çok büyük seçilir ve pratikte sonsuz kabul edilir. OHM KANUNU Bir iletkenin uçları arasındaki potansiyel farkının, iletkenden geçen akım şiddetine oranı sabittir. Bu sabit değer iletkenin direncine eşittir. Buna göre, Direnç R, potansiyel farkı V, akım şiddeti i olduğuna göre, kısaca V= i.r olarak yazılır.

Ohm kanunu, potansiyel farkı, akım ve direnç üçlüsü arasındaki ilişkiyi belirtir. Potansiyel farkı akım şiddeti grafiğinin eğimi, iletkenin direncini verir. DİRENÇLERİN BAĞLANMASI Seri Bağlama ve Özellikleri Dirençlerin uç uca bağlanmasıyla elde edilen bağlanma şekline seri bağlama denir. 1. Üreteçten çekilen akım kollara ayrılmaz ve bütün dirençlerin üzerinden eşit şiddette akım geçer. i T = i 1 = i 2 = i 3 2. Herbir direncin uçları arasın-daki potansiyel farkının toplamı, üretecin uçları arasındaki potansiyel farkına eşittir. V = V 1 + V 2 + V 3 +... 3. Dirençlerin toplamı toplam dirence eşittir. Reş = R 1 + R 2 + R 3 +...

Paralel Bağlama ve Özellikleri Birer uçları bir noktada, diğeruçları da başka bir noktada olacak şekilde yapılan bağlama şekline paralel bağlama denir. 1. Paralel bağlamada üreteçten çekilen toplam akım K noktasında kollara ayrılır, sonra tekrar L noktasında birleşir ve üretece gelir. i T = i 1 + i 2 + i 3 olur. 2. Dirençlerin hepsi K ve L noktalarına bağlı olduğu için, K L noktaları arasındaki potansiyel farkı ne ise, bütün dirençlerin uçları arasındaki de o kadardır. Ayrıca üreteç K ve L noktalarına paralel bağlı olduğundan, V = V 1 = V 2 = V 3 dür. 3. Devrenin eşdeğer direncinin tersi, dirençlerin terslerinin toplamına eşittir. * Paralel bağlı dirençlerin eşdeğeri, en küçük direnç değerinden daha küçüktür. * Paralel bağlı R 1 ve R 2 dirençlerinin eşdeğeri, bağıntısı ile de bulunabilir. * Herbirinin değeri R olan n tane özdeş direnç paralel bağlanırsa, eşdeğer direnç, ELEKTROMOTOR KUVVETİ Daha önce pil, akü ve üreteçlerin içinde kullanılmaya hazır bir enerji olduğunu belirtmiştik. İçerisinde mekanik, kimyasal veya başka çeşit enerjiyi elektrik enerjisine dönüştüren düzeneklere elektromotor kaynakları (emk) denir.

Örneğin pil ve akümülatörler kimyasal enerjiyi elektrik enerjisine dönüştürürler. Üretecin, bir q yükünü devrede dolaştırmak için harcadığı enerji, o üretecin elektromotor kuvveti (emk) olarak tanımlanır. e ile gösterilir. Her üretecin bir iç direnci vardır. Bu iç direnç ihmal edilmemiş ise devreye seri bağlı direnç gibi hesaba dahil edilir. Örneğin iç direnci r olan bir üretece R direnci bağlanırsa dirençten geçen akım şiddeti ohm kanunundan bulunur. ε = i (R + r) ε = i. R + i. r olur. Burada i. R direncin uçları arasındaki potansiyel farkı, i. r ise iç direncin uçları arasındaki potansiyel farkıdır. Ayrıca üretecin uçları arasındaki V potansiyel farkı V = i. R dir. Eğer üretecin iç direnci ihmal edilmiş ise, üretecin elektromotor kuvveti (ε), üretecin uçları arasındaki potansiyel farkına eşittir. (ε = V). İç direnç ihmal edilmemiş ise ε > V dir. Üreteçler bir devrede akım sağlayan kaynaklardır. Bir iletken üretece bağlanmaz ise, iki ucu arasında potansiyel farkı oluşmaz ve üzerinden akım geçmez. Üreteçlerin Bağlanması 1. Seri Bağlı Üreteçler Bir üretecin (+) kutbunu diğer üretecin ( ) kutbuna bağlanmasıyla elde edilen bağlama şekline seri bağlama denir. Seri bağlı üreteçlerin her birinden eşit şiddette akım çekilir. Dolayısıyla üretecin tükenme süresinden bir kazanç yoktur.

Üreteçlerin toplam elektromotor kuvveti, her birinin elektromotor kuvvetlerinin toplamına eşittir. ε T = ε 1 + ε 2 + ε 3 dür. Üreteçler seri bağlı olduğundan iç dirençlerinin toplamı, 2. Ters Bağlı Üreteçler r T = r 1 + r 2 + r 3 olur. Bir üretecin ( ) kutbunu diğer üretecin ( ) kutbuna ya da (+) kutupların birbirine bağlanmasıyla elde edilen bağlama şekline ters bağlama denir. Ters bağlamada emk lar birbirini yok edici yönde etki yapar. Eğer ters bağlı iki üreteç özdeş ise toplam emk sıfır olur. ε T = ε 1 ε2 dir. Büyük emk değeri küçük emk değerinden çıkarılır. Üreteçler ters bağlı olsa da iç dirençler seri bağlıdır. Dolayısıyla toplam iç direnç r T = r 1 + r 2 olur. Şekildeki gibi, ikiden fazla üreteç var ise, önce seri bağlı olanların emk ları toplanır. Sonra diğer emk ile aradaki fark alınır. Örneğin, ε 1 + ε 2 > ε 3 ise, toplam emk, ε T = ε 1 + ε 2 ε 3 olur. 3. Paralel Bağlı Üreteçler

Üreteçlerin (+) kutbu bir noktada ( ) kutbu da başka bir noktada olacak şekilde birleştirilerek oluşturulan bağlamaya, paralel bağlama denir. Paralel bağlı üreteçler özdeş seçilir. Özdeş olmaması durumunda devre analizi için yeni kurallar gereklidir. Paralel bağlı üreteçlerin devreye verdikleri akımlar eşit olur. Toplam emk üreteçlerden birinin emk sına eşittir. ε T = ε dir. İç direnci önemsiz paralel bağlı üreteç sayısının artması devreden geçen akım şiddetini etkilemez. Fakat üreteç sayısı arttıkça her bir üreteçten geçen akım azalır ve üreteçlerin tükenme süreleri artar. Paralel bağlamanın özelliği gereğince, toplam iç direnç, Üreteçlerin Tükenme Süresi Bir üretecin tükenme süresi, yapılış boyutlarına, yapısını oluşturan maddenin cinsine ve üreteçten birim zamanda çekilen akıma bağlıdır. Bir üretecin tükenme süresi, üreteçten çekilen akımla ters orantılıdır. Akım ne kadar çok çekilirse üreteç o kadar çabuk tükenir. Buna göre, devreye eşit şiddette akım veren seri bağlı özdeş üreteç ya da piller paralel bağlı olanlara göre daha çabuk tükenir. ELEKTRİKSEL ENERJİ Uçları arasındaki potansiyel farkı V olan üretece bir R direnci bağlandığında i akımı geçiyor. Akım geçerken çok hızlı hareket eden elektronlar iletkenin atom ve moleküllerine çarparak kazandıkları kinetik enerjilerin bir kısmını bu parçacıklara aktarırlar. Bu enerji ısı enerjisi alarak açığa çıkar. İletkenden t sürede akım geçtiğinde ısıya dönüşen elektriksel enerji, E=V.i.t

bağıntısından bulunur. V = i. R değeri yerine yazılırsa, E = i 2. R. t olarakta kullanılabilir. V; volt, i : amper, t : saniye cinsinden alınırsa, elektriksel enerji Joule cinsinden bulunur. Isıca yalıtılmış kapta bulunan sıvı içine bir iletken daldırılıp üzerinden i akımı geçirilirse, iletkenin verdiği ısı enerjisi sıvı tarafından alınır. Verilen ısı alınan ısıya eşittir. Q verilen = Q alınan c : sıvının öz ısısı m : sıvının kütlesi ΔT : sıcaklık değişimi Bütün elektrikli su ısıtıcıları bu sisteme göre çalışmaktadır. Elektriksel Güç Bir iletkenin birim zamanda yaydığı elektriksel enerjiye o iletkenin gücü denir. Buna göre, elektriksel güç, P=i, V=i 2.R olur.

Ayrıca değeri yerine yazılırsa olarak ta ifade edilebilir. LAMBALAR Lambaların Yanıp Yanmaması Bir lamba pil ya da üretece bağlandığında üzerinden akım geçer ve lamba yanar. Anahtar açıldığında ise lambadan akım geçmez ve lamba yanmaz. Lambanın iki ucu, direnci önemsiz bir telle birleştirilirse, akım dirençsiz yolu takip eder ve lamba kısa devre olur. Lambanın kısa devre olması demek üzerinden akım geçmemesi ve lambanın yanmaması demektir.şekilde K anahtarı kapatılırsa lamba söner. LAMBALARIN IŞIK ŞİDDETİ (PARLAKLIĞI) Yanan bir lambanın ışık şiddeti ya da parlaklığı lambanın gücü ile orantılıdır. Direnci R, uçları arasındaki gerilimi V olan lambadan i şiddetinde akım geçiyorsa, lambanın gücü, Buna göre, lambadan geçen akım ya da lambanın gerilimi azalırsa lambanın ışık şiddeti veya parlaklığı da azalır. Özellikle lambalar paralel bağlı ise, lambaların uçları arasındaki gerilimlerine bakılarak ışık şiddeti ya da parlaklık kıyaslaması daha kolay yapılır.esi ve lambanın yanmaması demektir. Şekilde K anahtarı kapatılırsa lamba söner.