Güncel sorunlar ve çözüm arayışı. Sezen Sekmen CERN Türk Öğretmenler Çalıştayı 4 Temmuz 2015

Benzer belgeler
Güncel sorunlar ve çözüm arayışı. Sezen Sekmen CERN CERN Türk Öğretmenler Programı Şubat 2014

Güncel sorunlar ve çözüm arayışı. Sezen Sekmen CERN Türk Öğretmenler Çalıştayı Ocak 2015

Güncel sorunlar ve çözüm arayışı. Sezen Sekmen CERN Türk Öğretmen Çalıştayı 5 Şubat 2016

Güncel sorunlar ve çözüm arayışı. G. Ünel CERN Türk Öğretmenler Çalıştayı 8 Ocak 2018

STANDART MODEL ÖTESİ YENİ FİZİK

STANDART MODEL VE ÖTESİ. Güncel sorunlar ve çözüm arayışı. A. Zorluer Türk Öğretmen Çalıştayı 8 Ocak 2018

ATLAS Dünyası. Standart Model. ATLAS ağ sayfası Karşımadde

Doğayı anlamak için, Parçacıkları, Kuvvetleri ve Kuralları Bilmemiz gerekir. Gordon Kane,Süpersimetri

CERN VE HİGGS HİGGS PARÇACIĞI NEDİR? Tuba KÖYLÜ Bilişim Teknolojileri Öğretmeni Şanlıurfa İl Milli Eğitim Müdürlüğü 27 Haziran 2017

STANDART MODEL VE ÖTESİ. : Özge Biltekin

Parçacık Fiziği Söyleşisi

Maddenin içine yaptığımız yolculukta...

Parçacıkların Standart Modeli ve BHÇ

FİZ314 Fizikte Güncel Konular

Parçacık Fiziği. Dr. Bora Akgün / Rice Üniversitesi CERN Türkiye Öğretmenleri Programı Temmuz 2015

ATLAS Higgs Araştırmalarında En Yeni Sonuçlar

Higgs ve Higgs Buluşu. Sezen Sekmen CERN Türk Öğretmenler Çalıştayı 26 Haziran 1 Temmuz 2016

Temel Parçacık Dinamikleri. Sunum İçeriği

Hazırlayan: Ayten İLHAN Branşı: Bilişim Teknolojileri Görev Yaptığı Okul: EMİNE ÖZCAN ANADOLU LİSESİ

Temel Sabitler ve Birimler

LHC Run2 Beklentileri

PARÇACIK FİZİĞİ SÖYLEŞİ. Sezen Sekmen Kyungpook Na0onal University HPFBUIV, Eskisehir, 1-8 Subat 2015

Herbir kuarkın ters işaretli yük ve acayipliğe sahip bir anti kuarkı vardır: TİP (ÇEŞNİ,flavor) YÜK ACAYİPLİK. u (up, yukarı) 2/3 0

Murat ŞENER Bursa Sınav Fen Lisesi

PARÇACIK FİZİĞİ, HIZLANDIRICILAR ve DEDEKTÖRLER

Uluslararası Lineer Çarpıştırıcı'da (ILC) Ayar Aracı Bozonları ile Süpersimetri Kırılması

HİGGS HAKKINDA NAZLI FANUS FEN BİLİMLERİ ÖĞRETMENİ ULUPAMİR ORTAOKULU (CERN TÜRK ÖĞRETMEN ÇALIŞTAYI-7)

ATLAS DENEYİ BOYAMA KİTABI

ALIfiTIRMALARIN ÇÖZÜMÜ

Madde Dünya. Molekül Atom. Atomlar Elektron. Kuark

Higgs ve Higgs Buluşu. Sezen Sekmen CERN Türk Öğretmenler Çalıştayı Ocak 2015

, (Compton Saçılması) e e, (Çift Yokoluşu) OMÜ_FEN

Temel Sabitler ve Birimler

Büyük Patlama ve Evrenin Oluşumu. Test 1 in Çözümleri

SU Lise Yaz Okulu. Evrenin Başlangıcı ve Enflasyon Teorisi

Bhabha Saçılması (Çift yokoluş ve Çift oluşumu. Moller Saçılması (Coulomb Saçılması) OMÜ_FEN

Parçacık Fiziği: Söyleşi

125 GeV Kütleli Yeni bir Parçacığın Gözlenmesi

Mezon Molekülleri ve X(3872)

HİGGS??? STANDART MODEL HIGGS BOZONU ve ALANI HIGGS İ BULMAK İÇİN: HIZLANDIRICILAR PEKİ YA SONRA?

CERN'deki Büyük Hadron Çarpıştırıcısı ve LCG (LHC Computing Grid) Projesi

TÖÇ-6. Parçacık Fiziğine giriş. Gökhan ÜNEL / UCI - Haziran 2016

Parçacık Fiziğinde Korunum Yasaları

TÖÇ-5. Parçacık Fiziğine giriş. Gökhan ÜNEL / UCI - Şubat 2016

Vektör Bozon Saçılması

IceCube Deneyinde Gözlemlenen PeV Enerjili Olayların Renk Sekizlisi Nötrino Yorumu

CERN NEDİR? NE ZAMAN VE NİÇİN KURULDU?

TURKFAB Tesisinin Araş0rma Potansiyeli, Kullanıcı Profili ve Üreteceği Katma Değer

RADYASYON FİZİĞİ 1. Prof. Dr. Kıvanç Kamburoğlu

Theory Tajik (Tajikistan)

HIGGS HAKKINDA. STANDART MODEL HIGGS BOZONU ve ALANI HIGGS İ BULMAK İÇİN: HIZLANDIRICILAR PEKİ YA SONRA?

Simetri ve Süpersimetri. Spot: Kerem Cankoçak. Simetri nedir?

CMS Deneyinde Ek Boyutlu Kara Delik Üre6m ve Bozunumu

Ç.Ü Fen ve Mühendislik Bilimleri Dergisi Yıl:2012 Cilt:28-2

Şekil: LHC hızlandırıcısında hızlandırılan protonların CMS deneyinde çarpışması sonucu gözlemlenen olaylar

YEN FZE DORU. Yüksek Enerji Fizii ndeki son gelimeler Fizik Bilimi nin gelecei

Evrenimizdeki karanlık maddenin 3 boyutlu olarak modellenmesi Karanlık maddenin evrende ne şekilde dağıldığı hala cevabı bulunmamış sorulardan

Çekirdek Modelleri. Alfa Bozunumu. Nükleer Fizikte Kullanışlı Birimler Çekirdeğin Yapısı ve Etkileşmeler. Çekirdeğin Sıvı Damlası Modeli

Radyoaktivite - Büyük Patlama ve Evrenin Oluşumu

CMS DENEYİNDEKİ SÜPERSİMETRİ ARAŞTIRMALARI * Supersymmetry Searches in Cms Experiment

YEN FZE DORU. Yüksek Enerji Fizii ndeki son gelimeler Fizik Bilimi nin gelecei

Newton ve Einstein nin Evren Anlayışları

Higgs bozonu nedir? Hasan AVCU

Boğaziçi Üniversitesi. 20 Temmuz CERN Türk Öğretmen Çalıştayı 4

Higgs keşfedildi, şimdi ne olacak? Evren hakkında bütün gizemler

NÜKLEER FİSYON Doç. Dr. Turan OLĞAR

Kadri Yakut

BÖLÜM 3: (6,67x10 Nm kg )(1,67x10 kg)»10 36 F (9x10 Nm C )(1,6x10 C) NÜKLEONLAR ARASI KUVVET- NÜKLEER KUVVET

İçindekiler: CERN Globe Binası ve Micro Cosmos Müzesi

Parçacık Fiziğine Giriş ve Simulasyonlar

Parçacık Fabrikalarında Fizik: B-Kuarklı ve C-Kuarklı Mezonlar Çalıştayı, Mart 2012, HTE, Ankara

Hızlandırıcılar ve Çarpıştırıcılar

Doğanın Geometrisi: Herşeyin Kuramına doğru

LHC VE VLHC BAZINDA LEPTON-HADRON ÇARPIŞTIRICILARI: E-LİNAK İLE E-HALKA KARŞILAŞTIRILMASI. Hande KARADENİZ DOKTORA TEZİ

Yapıtaşları: Kuarklar ve Leptonlar örn: u,d,.. Elektron(e)..

UBT Foton Algılayıcıları Ara Sınav Cevap Anahtarı Tarih: 22 Nisan 2015 Süre: 90 dk. İsim:

CERN de ne bulundu? Ne bulunamadı? Mahmut Hortaçsu Bilim Akademisi D. ve

Çözümleme Kavramları. Sezen Sekmen / Kyungpook Nat. U. Gökhan Ünel / UC Irvine HPFBUIV- Şubat 2015

ÇUKUROVA ÜNİVERSİTESİ FEN BİLİMLERİ ENSTİTÜSÜ

FİZ314 Fizikte Güncel Konular

Büyük Patlama kuramları ve Yaradılışçılık. Kerem Cankoçak (İTÜ Fizik)

TURKISH TEACHERS PROGRAM-5 TÜRK ÖĞRETMEN ÇALIŞTAYI-5 İSVİÇRE-CENEVRE 01-05/02/2016

KİM-117 TEMEL KİMYA Prof. Dr. Zeliha HAYVALI Ankara Üniversitesi Kimya Bölümü

Boğaziçi Üniversitesi. 21 Temmuz CERN Türk Öğretmen Çalıştayı 4

6.HAFTA BÖLÜM 3: ÇEKİRDEK KUVVETLERİ VE ÇEKİRDEK MODELLERİ

ATOMİK YAPI. Elektron Yükü=-1,60x10-19 C Proton Yükü=+1,60x10-19 C Nötron Yükü=0

CMS DENEYİNDEKİ HADRONİK KALORİMETREDE KAYIP DİK ENERJİNİN ÖLÇÜMÜ. Missing Transverse Energy Measurement in Hadronic Calorimeter of CMS

ATOMİK YAPI. Elektron Yükü=-1,60x10-19 C Proton Yükü=+1,60x10-19 C Nötron Yükü=0

Fizik bilimi nedir? Fizik Bilimi nedir? Fizik biliminin uğraşı alanları nelerdir? On5yirmi5.com. Fizik Bilimi nedir?

ÇUKUROVA ÜNİVERSİTESİ FEN BİLİMLERİ ENSTİTÜSÜ YÜKSEK LİSANS TEZİ

BİYOLOJİK MOLEKÜLLERDEKİ

Başka Boyutlar Arayışı-2:

1. Hafta. İzotop : Proton sayısı aynı nötron sayısı farklı olan çekirdeklere izotop denir. ÖRNEK = oksijenin izotoplarıdır.

Var Olabilen Şeyler ve Var Olması Gereken Şeyler

T.C. GAZİANTEP ÜNİVERSİTESİ ARAŞTIRMA PROJELERİ YÖNETİM BİRİMİ KOZMİK MÜON TELESKOPU. Ahmet Bingül

Bugün Evreni oluşturan tüm enerji toplu iğne ucu büyüklüğünden LHC. Zaman, uzay ve madde Büyük Patlama sırasında ortaya çıktı.

PROTON-PROTON ÇARPIŞTIRICILARINDA KARA MADDE ARAŞTIRMALARI. YÜKSEK LİSANS TEZİ Ekin KÜÇÜKSÖNMEZ. Anabilim Dalı : Fizik Mühendisliği

TR RARE B -> VVY DECAY AND NEW PHYSICS EFFECTS

Maddenin Yapısı ve Higgs Bozonu

Transkript:

? Güncel sorunlar ve çözüm arayışı Sezen Sekmen CERN Türk Öğretmenler Çalıştayı 4 Temmuz 215 1

Maddenin en küçük öğesi bulunmadan insan evreni asla anlayamaz. Plato 2

Büyük Patlama dan hemen sonra evrenimiz bir parçacık kadar küçüktü. 3

ve evrenimizin gelişimi parçacıklarla ve onların etkileşimiyle doğrudan bağlantılıdır. 4

Atomun içine yolculuk Temel parçacık 1897 çekirdek 188 (Dalton) A New System of Chemical Philosophy 1911 1918 (1932) 1964 Temel parçacık 5

Sonra tuhaf parçacıklar görünmeye başladı Pozitronlar (positif elektronlar) Muonlar (daha ağır elektronlar Nötrinolar (yüksüz elektronlar) Çeşitli mezonlar (2 kuarktan oluşur) ve baryonlar (3 kuarktan oluşur) Ve bu tuhaf parçacıklar bize Standart Model I getirdi. 6

STANDART MODEL temel parçacıklar ve etkileşimler hakkındaki bütün bilgimizi içeren bir kuramlar bütünüdür. kütle yük dönü Kuarklar isim Leptonlar 2.4 MeV/c 2 ⅔ u yukarı 4.8 MeV/c 2 d - ⅓ aşağı <2. ev/c 2 ν e elektron nötrino.511 MeV/c 2-1 e elektron 1.27 GeV/c 2 ⅔ c tılsım 14 MeV/c 2 s - ⅓ acayip <.19 MeV/c 2 ν μ müon nötrino 15.7 MeV/c 2-1 μ müon 173.3 GeV/c 2 ⅔ t üst 4.2 GeV/c 2 - ⅓ b alt <18.2 MeV/c 2 ν τ tau nötrino 1.777 GeV/c 2-1 tau 1. aile 2. aile 3. aile Fermiyonlar τ 125.1 GeV/c 2 1 1 γ foton 91.2 GeV/c 2 1 g gluon Z Z bosonu 8.4 GeV/c 2 ±1 1 H o Higgs bosonu W ± W bosonu Bosonlar Her kuarktan 3 renk. Her parçacık için bir karşıparçacık Etkileşimler kuvvet taşıyıcı parçacıklarla yönlendirilirler Toplamda 6 parçacık (LHC öncesinde) Standart Model doğrudur, ancak eksikleri vardır. 7

Ya SM ile uyuşmayan beklenmedik bir gözlem yapacağız ve gözleme göre yeni bir kuram oluşturacağız Ya da SMin eksiklerinden çıkıp yeni kuramlar bularak onların izlerini araştıracağız. 8

Standart Model doğrudur doğruluğu deneylerce kanıtlandı. Ancak SM eksiktir. Açıklayamadığı şeyler vardır. Dünya düzdür. Dünya yuvarlaktır. Bakış açımızı genişletmemiz gerekiyor. Bu konuda Standart Model in eksikleri bize yardımcı olacak! 9

SM eksikleri: Kütle sorunu Fermiyonlar kütle yük dönü Kuarklar isim Leptonlar 2.4 MeV/c 2 ⅔ u yukarı 4.8 MeV/c 2 d - ⅓ aşağı <2. ev/c 2 ν e elektron nötrino.511 MeV/c 2-1 e elektron 1.27 GeV/c 2 ⅔ c tılsım 14 MeV/c 2 s - ⅓ acayip <.19 MeV/c 2 ν μ müon nötrino 15.7 MeV/c 2-1 μ müon 173.3 GeV/c 2 ⅔ t üst 4.2 GeV/c 2 - ⅓ b alt <18.2 MeV/c 2 ν τ tau nötrino 1.777 GeV/c 2-1 tau 1. aile 2. aile 3. aile τ Bosonlar 125.1 GeV/c 2 1 1 γ foton 91.2 GeV/c 2 1 g gluon Z Z bosonu 8.4 GeV/c 2 ±1 1 H o Higgs bosonu W ± W bosonu Parçacıklara kütlesini veren nedir? Neden farklı parçacıklar farklı kütlelere sahiptirler? Çözüm: 1

SM eksikleri: Çeşni sorunu Fermiyonlar kütle yük dönü Kuarklar isim Leptonlar 2.4 MeV/c 2 ⅔ u yukarı 4.8 MeV/c 2 d - ⅓ aşağı <2. ev/c 2 ν e elektron nötrino.511 MeV/c 2-1 e elektron 1.27 GeV/c 2 ⅔ c tılsım 14 MeV/c 2 s - ⅓ acayip <.19 MeV/c 2 ν μ müon nötrino 15.7 MeV/c 2-1 μ müon 173.3 GeV/c 2 ⅔ t üst 4.2 GeV/c 2 - ⅓ b alt <18.2 MeV/c 2 ν τ tau nötrino 1.777 GeV/c 2-1 τ tau 1. aile 2. aile 3. aile Neden herşeyi aynı, ancak sadece kütleleri farklı olan 3 parçacık ailesi vardır? 11

SM eksikleri: Kuvvetler farklılığı Neden kütleçekim kuvveti diğerlerinden farklıdır? Tüm kuvvetleri anlatacak olan birleşik tek kuram nedir? Elektromanyetik Zayıf Güçlü ElektroZayıf Kütleçekim elektromanyetizmadan 1 4 kadar güçsüz. 12

SM eksikleri: Madde- karşımadde asimetrisi Evrenin başlangıcında madde ve karşımadde eşit miktarlarda üretilmişlerdi. Fakat daha sonra maddenin karşımaddeye tercih edilmesini saplayan bir olay gerçeklesti. Sonra madde ve karşımadde birbirini yoketti. Geriye biraz madde kaldı. Neden? Kalan madde bizleri oluşturdu. 13

SM eksikleri: Karanlık madde ve karanlık enerji nedir? Neden yapılmışlardır? Evrenin içeriği: %4.9 görünen madde %26.8 karanlık madde %68.3 karanlık enerji 14

SM eksikleri: Karanlık madde Karanlık maddenin varolduğuna dair dolaylı deneysel kanıta sahibiz, ancak karanlık maddenin doğasını henüz bilmiyoruz. Karanlık madde büyük olasılıkla parçacıklardan oluşmaktadır. 15

SM eksikleri: Karanlık enerji Karanlık enerji evrendeki vakumla bağlantılı bir enerji formudur. Evrende homojen olarak dağılmıştır ve evrenin ivmelenerek genişlemesinden sorumludur. 16

Ne yapıyoruz? Standart Model I kapsayan, ancak eksiklerine de tamamlayıcı çözümler öneren yeni fizik kuramları oluşturuyoruz. Bu kuramlar çoğunlukla yeni parçacıkların varlığını öngörüyor. Öngörülen parçacıkları BHÇ verilerinde arıyoruz. 17

Sorunlar ve Çözüm adayları BBK BBK EkBoyutlar SicimKuramı BBK BBK Çeşni sorunu 3 kuvvetin birleşmesi Yerçekiminin güçsüzlüğü 4 kuvvetin birleşmesi madde- karşıt madde asimetrisi karanlık madde sorunu karanlık enerji sorunu Süpersimetri Süpersimetri Süpersimetri Süpersimetri 18

Aday kuram: Süpersimetri Süpersimetri (SUSY) fermionlar ve bozonlar arasında ya da madde ve kuvvet arasında bir simetridir. Yeni parçacıkların varlığını öngörür. Bilinen her SM parçacık için spini farklı ve daha ağır bir s(üper)parçacık bulunduğunu söyler. 19

Aday kuram: Ek boyutlar Uzayda 3ten fazla boyut olabilir. Ek boyutlar küçük ve kıvrılmış olabilirler. Bu tür boyutların varlığı parçacıkların etkileşimlerini değiştirebilir. Mesela ek boyutların içerisine girildiğinde kütleçekim kuvveti artar. 2

F i z i k t e K u r a m l a r ı n B i r l e ş m e s i Elektrik Işık 1861 Elektromanyetizma Manyetik 19 Beta Bozunumu Nötrino Etkileşimi 193 Proton 1815 Nötron 1932 Piyon 1947 1933 Zayıf Etkileşim ~1MeV 1961 Güçlü Etkileşim ~1GeV 1968 ElektroZayıf Etkileşimler ~1GeV 197x Standart Model ~TeV 2??? Büyük Birleşik Kuram???on 2?? ~16 Mekanik Göksel ~15 1687 Evrensel Çekim 1915 Genel Görecelik 2??? Herşeyin Kuramı Uzay- ~185 Zaman 21

Aday kuram: Büyük Birleşme Kuramı Gözlemlediğimiz ElektroZayıf ve Güçlü kuvvetler aynı kuvvetin farklı bakış açılarına göre izdüşümleri olabilir. SM, daha yüksek enerjide ortaya çıkacak olan büyük bir kuramın düşük enerjideki hali mi? Lepton sayısını 4 QCD rengi olarak düşünebilir miyiz? patti - salam 1975 Bu kuram E6 birleşimi olabilir mi? gürsey 1976 Yeni fermiyon ve bozonlar 22

LHC de yeni fizik arıyoruz ama ufak bir sorun var: Bir çok olası adaydan hangisi doğru? 23

LHC de yeni fizik nasıl ararız? Aday kuramdan bağımsız aramalar: Öncelikle SMnin baskın olduğu son durumlarda ölçümler yaparak SMi doğrularız. Veride SM öngörüsüne göre bir fark olup olmadığına bakarız. Şimdiye kadar fark görmedik. Çok sayıda farklı son duruma aynı anda kabaca bakarız ve SMden bir farklılık ararız. Aday kurama bağlı aramalar: Yeni fizik kuramları arasından sevdiğimiz birini alırız. Aday kuramın genel karakteristiklerini belirleriz, ve bu karakteristikler arasında SMden ayırt edici olanları buluruz. BHÇ verilerı arasından bu karakteristiklere sahip olan olayları seçeriz. Seçimden kaç tane SM olay geçmiş olabileceğini hesaplarız. Hesaplanan SM miktarını seçilmiş verilerle karşılaştırırız ve fark çıksın diye umut ederiz. Eğer fark çıkarsa değişik kanallarda ölçüm yaparak yeni parçacığı tanımaya çalışırız. Eğer fark çıkmazsa veride fazlalık öngören yeni kuramları dıştalarız. 24

LHC de ne kadar SM oluşur? Bunların yanısıra 1 7 pb ile QCD ardalan var. QCD de 2 ya da fazla jet oluşuyor. 25

LHC de ne kadar yeni fizik oluşması beklenir? 26

Yeni fiziği heryerde aramak Yeni fizik kuramlarından herhangi birine odaklanmayı tercih etmiyorsak SM ötesi herhangi bir sinyal yakalamak için genel arama yaparız. BHÇde gözlemlenecek parçacıkların olası tüm kombinasyonlarını ele alırız (örneğin 1 elektron + 3 jet, 2 muon + 2 jet, vs.). Her kombinasyon için BHÇ verilerini SM beklentisi ile karşılaştırıp farklılık ararız. Bu yöntem SM ötesi kuramların karakteristiklerine yönelik arama yapmadığı için çok duyarlı değildir, ancak yönlendiricidir. ATLAS- CONF- 214-6 ATLAS 697 farklı kombinasyonda yeni fizik aramış, ancak sinyale rastlamamıştır. 27

Rezonanslar Eğer ağır bir parçacığın bozunduğu tüm parçacıkları algıçta gözleyebiliyorsak ağır parçacığı tanımlayabiliriz ve değişmez kütlesini hesaplayabiliriz (tıpkı Higgs te olduğu gibi) SM ötesi parçacıklardan birçoğu SM parçacıklara bozunur ve BHÇ de varlıkları araştırılabilir. Önerilen parçacıklardan çoğu 2 kuarka ya da 2 gluona (yanı 2 jete) bozunur. BHÇ de 2 jetlı olayları inceleyip 2 jet değişmez kütle dağılımında SM ile uyuşmazlık ararız. Ama henüz bulamadık 28

Süpersimetri araştırmaları SUSY 1ün üzerinde serbest parametresi olan bir kuramdır. Çok farklı şekillerde ortaya çıkabilir: farklı süperparçacık kütleleri, farklı tesir kesitleri, farklı dallanma oranları Böylece SUSY BHÇ de çok çeşitli şekillerde görülebilir. Ağır sparçacıklar daha hafif sparçacıklara + SM parçacıklara bozunabilir ve çok miktarda ve çeşitlilikte parçacıklar görülebilir. Çok jetli, çok b kuarklı, çok t kuarklı, çok leptonlu son durumların herhangi birinde SUSY izlerine rastlayabiliriz. Klasik SUSYnin en belirgin özelliği ağır, kararlı, yüksüz ve algıçta gözlenemeyen parçacıklara sahip olmasıdır. Her SUSY olayında bu parçacıklardan mutlaka bulunur. Bu parçacıklar karanlık madde adayıdır. Görünmeyen parçacıkları görmeye çalışırız. 29

Kayıp dikey enerji (missing transverse energy) Bazı parçacıklar algıç ile etkileşmeden algıçtan çıkarlar. Bu parçacıkların varlığını kayıp enerjiden anlarız. Enerji/momentum korunumu yasasına göre ne kadar enerji/momentum ile başlamışsak sonuçta o kadar enerji/momentum görmemiz gerekir. Eğer denklik bozulmuşsa algıçtan kaçan parçacıklar olduğunu anlarız. FAKAT proton yönünde ne kadar enerji olduğunu bilemeyiz, çünkü etkileşimi gerçekleştiren kuark ve gluonlar proton enerjisinin sadece bir kısmını taşırlar. Ancak çarpışmaya dik düzlemde başlangıçta toplam E, p sıfırdır ve sonuçta da sıfır olması gerekir. Olayda gözlemlediğimiz tüm parçacıkların momentumlarından farkı hesaplayabiliriz: 3

Kayıp dikey enerji (missing transverse energy) FAKAT kayıp enerji görmemiz mutlaka kaçak parçacık var demek değildir. Algıçtaki ölçüm belirsizlikleri de kayıp enerjiye sebep olur. Biz de gerçek kayıp enerjiyi çakma kayıp enerjiden ayırt edecek yöntemler buluruz. 31

Doğrudan karanlık madde aramak SUSY ya da diğer kuramlara göre LHCde doğrudan da karanlık madde üretebiliriz: Bu görünmez olayı kuarktan ışınan bir gluon jeti ile görünür yapabiliriz. BHÇde tek jetli olaylar fazlalığı görmek görünmez parçacıkların doğrudan oluştuğuna işaret edebilir. 32

Ağır, yüklü, uzun ömürlü parçacıklar Bazı kuramlar ağır, elektrik yüklü ve uzun ömürlü parçacıklar öngörür. Bu parçacıkar bozunmadan algıçtan geçebilir, ve yüklü oldukları için muon odalarında görülebilirler. Parçacıklar ağır oldukları için ışık hızından düşük hızlarla yol alırlar. Muon algıcındaki saatleri kullanarak parçacığın geçiş hızını ölçebiliriz, ve momentum bilgisini de kullanarak parçacığın kütlesini hesaplarız. = c/v 33

BHÇ de SM ötesi parçacıklar adına ne bulduk? 34

35

AMA yine de ilginç şeyler öğreniyoruz. Yeni fizik sinyalinin yokluğunu kullanarak hangi kuramların daha az olası olduğunu araştırıyoruz. 36

37

AMA yine de ilginç şeyler öğreniyoruz. Yeni fizik sinyalinin yokluğunu kullanarak hangi kuramların daha az olası olduğunu araştırıyoruz. Ve bu bilginin ışığında yeni veri için yeni analizler tasarlıyoruz. LHC 215 Haziran da 13 TeV enerji ile tekrar veri almaya başladı! 38

KEEP CALM Ağır ve karanlık SUSY parçacıklar bükük ek boyutlardaki saklı kapıdan göründüler! Aman efendim, bunlar sadece Standart Model parçacıkları! AND SEARCH ON Bundan&sonrasında&bize&hem&Don&Quixote un&hayal&gücü,& hem&de&sancho nun&becerikli&gerçekçiliği&lazım. 39 A.#Pich,#ICHEP214# Kuramsal#Özet #konuşmasından#(ç)aldım.