Demiryolu Köprülerinde Yapı Zemin Etkileşimi. Soil-Structure Interaction In Railway Bridges

Benzer belgeler
ESKİŞEHİR-KÖSEKÖY HIZLI TREN HATTINDAKİ KÖPRÜ VE VİYADÜKLERİN ÜSTYAPILARININ TASARIMI

ANKARA ŞUBESİ PERŞEMBE SEMİNERLERİ

İtme Sürme Yöntemi İle İnşa Edilmiş Sürekli Ardgermeli Köprülerin Deprem Tasarımı. Özgür Özkul, Erdem Erdoğan, Hatice Karayiğit

DUMLUPINAR ÜNİVERSİTESİ MÜHENDİSLİK FAKÜLTESİ İNŞAAT MÜHENDİSLİĞİ BÖLÜMÜ GÜZ YARIYILI

Şekil 1. DEÜ Test Asansörü kuyusu.

YAPI MÜHENDİSLİĞİ BİLGİSAYAR UYGULAMALARI

10 - BETONARME TEMELLER ( TS 500)

KİRİŞ YÜKLERİ HESABI GİRİŞ

YENİ İNŞAA EDİLECEK DEMİRYOLU GÜZERGÂHLARINDA YAPILACAK KÖPRÜ VE MENFEZLERİN UYGULAMA PROJELERİNİN HAZIRLANMASINA AİT TEKNİK ŞARTNAME

FATİH SULTAN MEHMET KÖPRÜSÜ YAPISAL DAVRANIŞININ BELİRLENMESİ. Kubilay KAPTAN 1

Temeller. Onur ONAT Munzur Üniversitesi Mühendislik Fakültesi İnşaat Mühendisliği Bölümü, Tunceli

Demiryolu Altyapı ve Üstyapı Hesaplarının Sonlu Elemanlar Yöntemiyle Analizi ve Hat Bileşenlerinin Boyutlandırılması

Hibrit ve Çelik Kablolu Köprülerin Dinamik Davranışlarının Karşılaştırılması

Taşıyıcı Sistem İlkeleri. Dr. Haluk Sesigür İ.T.Ü. Mimarlık Fakültesi Yapı ve Deprem Mühendisliği Çalışma Grubu

EŞDEĞER DEPREM YÜKÜ YÖNTEMİ İLE BETONARME KIZAĞIN DEPREM PERFORMANSININ İNCELENMESİ

T.C. ERCİYES ÜNİVERSİTESİ FEN BİLİMLERİ ENSTİTÜSÜ İNŞAAT MÜHENDİSLİĞİ (Y.L.) PROGRAMI EĞİTİM ÖĞRETİM YILI DERS KATALOĞU

Ders Kodu Ders Adı İngilizce Ders Adı TE PR KR AKTS Ders Kodu Ders Adı İngilizce Ders Adı TE PR KR AKTS

Karayolu Köprülerinin Modal Davranışına Kutu Kesitli Kiriş Şeklinin Etkisi Doç. Dr. Mehmet AKKÖSE

İki Farklı Metodla Üretilen Çelik Boru Profillerin Mikroyapı Ve Mekanik Özelliklerinin İncelenmesi

ÇOK KATLI BİNALARIN DEPREM ANALİZİ

Perdeli-Çerçeveli Taşıyıcı Sistemli Binalarda Taşıyıcı Sistem Seçiminin Yapı Davranışı Üzerindeki Etkisinin İncelenmesi

KODU DERSİN ADI SORUMLUSU YER P.TESİ SALI ÇARŞ PERŞ CUMA Yüksek Lisans Tezi Doç. Dr. Tayfun DEDE

BÖLÜM 2: DÜŞEY YÜKLERE GÖRE HESAP

TDY 2007 de Kullanılan Farklı Zemin Sınıfları İçin Performans Değerlendirme Yöntemleri Üzerine Bir Araştırma

ÇELĐK PREFABRĐK YAPILAR

ihmal edilmeyecektir.

RİSKLİ BİNALARIN TESPİT EDİLMESİ HAKKINDA ESASLAR 5-Kontrol Uygulaması

Yapı Sağlığı İzleme Sistemlerinin Farklı Taşıyıcı Sistemli Uzun Açıklıklı Tarihi Köprülere Uygulanması

REZA SHIRZAD REZAEI 1

BETONARME-II ONUR ONAT HAFTA-1 VE HAFTA-II

1. YARIYIL / SEMESTER 1

Betonarme Yapıların Davranışının Zaman Tanım Alanında Hesap Yöntemi ile Belirlenmesi

YAPILARDA BURULMA DÜZENSİZLİĞİ

Yumuşak Kat Düzensizliği olan Betonarme Binalarda Yapı Zemin Etkileşimi

ANTAKYA MÜZE OTEL TAŞIYICI SİSTEM PROJESİ. İnş.Yük.Müh. Bülent DEVECİ

İNŞAAT MÜHENDİSLİĞİNE GİRİŞ (Bölüm-3) KÖPRÜLER

Hafta_3. INM 405 Temeller. Temel Türleri-Yüzeysel temeller. Yrd.Doç.Dr. İnan KESKİN.

İNŞAAT MÜHENDİSLİĞİ BÖLÜMÜ ÖĞRETİM ELEMANLARININ 2011 YILI AKADEMİK ETKİNLİKLERİ TABLOSU

28. Sürekli kiriş örnek çözümleri

Deprem Etkisindeki Betonarme Binalarda Yumuşak Kat Düzensizliğine Perde Duvar Etkisi

RÜZGAR ENERJI SEKTÖRÜNDE KULE ve TEMEL TEKNOLOJILERI

KİRİŞLERDE PLASTİK MAFSALIN PLASTİKLEŞME BÖLGESİNİ VEREN BİLGİSAYAR YAZILIMI

FARKLI ÇAPMA ETKİLERİNE MARUZ KALMIŞ BETONARME KİRİŞLERİN DAVRANIŞININ BELİRLENMESİ

Sıvı Depolarının Statik ve Dinamik Hesapları

Lif Takviyeli Kompozit Asma Yaya Köprüsünün Yapısal Davranışının İncelenmesi: Halgavor Asma Yaya Köprüsü

YILDIZ TEKNİK ÜNİVERSİTESİ MAKİNE FAKÜLTESİ

Düzce Üniversitesi Bilim ve Teknoloji Dergisi

Üst yapı yüklerinin bir bölümü ya da tümünü zemin yüzünden daha derinlerdeki tabakalara aktaran

DEPREM ETKİSİ ALTINDA TEK KATLI ÇELİK YAPILARIN TEMEL SİSTEMİ İÇİN MODEL ÇALIŞMASI

Orta Doğu Teknik Üniversitesi İnşaat Mühendisliği Bölümü

Mukavemet 1. Fatih ALİBEYOĞLU. -Çalışma Soruları-

Yeni Deprem Yönetmeliği ve İstinat Yapıları Hesaplarındaki Değişiklikler

DÖŞEMELERDEN KİRİŞLERE GELEN YÜKLER

Proje Genel Bilgileri

ÖĞRETİM ÜYELERİ Yrd. Doç. Dr. Mürüde Çelikağ Yrd. Doç. Dr. Giray Özay Yrd. Doç. Dr. Serhan Şensoy Yrd. Doç. Dr. Masoud Negin Yarı zamanlı Prof. Dr.

Dairesel Betonarme Kolonlarda Çatlamış Kesite Ait Etkin Eğilme Rijitliklerinin İrdelenmesi

Standart Lisans.

PERDELERDEKİ BOŞLUKLARIN YATAY ÖTELENMEYE ETKİSİ. Ayşe Elif ÖZSOY 1, Kaya ÖZGEN 2 elifozsoy@hotmail.com

RÜZGAR ENERJİ SEKTÖRÜNDE KULE ve TEMEL TEKNOLOJİLERİ

Hafta_3. INM 405 Temeller. Temel Türleri-Yüzeysel temeller. Doç.Dr. İnan KESKİN.

İNŞ 320- Betonarme 2 Ders Notları / Prof Dr. Cengiz DÜNDAR Arş. Gör. Duygu BAŞLI

CE498 PROJE DERS NOTU

Sigma 31, , 2013 Research Article / Araştırma Makalesi EDUCATIONAL SOFTWARE DEVELOPMENT FOR DESING OF STEEL STRUCTURES LESSON

idecad Çelik 8 idecad Çelik Kullanarak AISC ve Yeni Türk Çelik Yönetmeliği ile Kren Tasarımı Hazırlayan: Nurgül Kaya

Taşıyıcı Sistem İlkeleri

Güçlendirme Alternatiflerinin Doğrusal Olmayan Analitik Yöntemlerle İrdelenmesi

YARI RİJİT BİRLEŞİMLİ ÇELİK ÇERÇEVELERİN ANALİZİ

İÇERİSİ BETON İLE DOLDURULMUŞ ÇELİK BORU YAPI ELEMANLARININ DAYANIMININ ARAŞTIRILMASI ÖZET

Ad-Soyad K J I H G F E D C B A. Öğrenci No. Yapı kullanım amacı. Yerel Zemin Sınıfı. Deprem Bölgesi. Dolgu Duvar Cinsi. Dişli Döşeme Dolgu Cinsi

Kirişli Döşemeli Betonarme Yapılarda Döşeme Boşluklarının Kat Deplasmanlarına Etkisi. Giriş

TÜDEMSAŞ. Türkiye Demiryolu Makineleri Sanayii A.Ş. İSTANBUL (10 Eylül2015)

ÇELİK UZAY ÇATI SİSTEMLİ HAL YAPILARIN DEPREM DAVRANIŞLARININ İNCELENMESİ. Armağan KORKMAZ *, Zeki AY **

GÜLBURNU KÖPRÜSÜ GENEL BİLGİLER

Projemizde bir adet sürekli temel örneği yapılacaktır. Temel genel görünüşü aşağıda görülmektedir.

Müfredat Hafta Konular Yöntem Giriş. Genel bilgiler. Ödevi 1, 2, 3 açıklaması

Mesnet Şartlarının Betonarme Kısa Kirişlerin Davranışına Etkisinin Deneysel ve Analitik Olarak İncelenmesi

Bina Taşıyıcı Sistemlerinde Çerçeve Düzensizliklerinin Yatay Ötelemeye Etkisi

English for Academic Reading & Speaking I İngilizce Akademik Okuma ve Konuşma I. Introduction to Civil Engineering İnşaat Mühendisliğine Giriş

BETONARME YAPILARDA TAŞIYICI SİSTEM VE YAPI YÜKSEKLİĞİNİN DAVRANIŞA ETKİSİNİN İNCELENMESİ

Orta Doğu Teknik Üniversitesi İnşaat Mühendisliği Bölümü

English for Academic Reading & Speaking I İngilizce Akademik Okuma ve Konuşma I. Introduction to Civil Engineering İnşaat Mühendisliğine Giriş

BÖLÜM 2: DÜŞEY YÜKLERE GÖRE HESAP

GFRP-Beton Hibrit Kazıkların Malzeme Özelliklerinin İncelenmesi. Investigation of Material Properties of GFRP-Concrete Hybrid Piles

Döşeme ve Temellerde Zımbalamaya Dayanıklı Tasarım Üzerine Güncel Yaklaşımlar

2004 Üniversitesi Y. Lisans İnşaat Mühendisliği İzmir Yüksek 2008 Teknoloji Enstitüsü Doktora İnşaat Mühendisliği Ege Üniversitesi 2015

TEMELLER. Farklı oturma sonucu yan yatan yapılar. Pisa kulesi/italya. İnşa süresi:

Mukavemet-I. Yrd.Doç.Dr. Akın Ataş

İzmir Körfez Geçişi Projesi Ardgermeli Kavşak Köprüleri Tasarım Esasları

İnşaat Mühendisliği Bölümü Öğretim Yılı Güz Yarıyılı Bitirme Sınav Programı (Türkçe Programı)

DÜSEY YÜKLERE GÖRE HESAP

TEMELLER VE TEMELLERİN SINIFLANDIRILMASI. Yrd.Doç.Dr. Altan YILMAZ

hir Osmangazi Üniversitesi, Mühendislik

BETONARME YÜKSEK YAPILARIN DEPREM PERFORMANSINA BETONARME PERDE ORANIN ETKİSİ

Çelik Yapılar - INS /2016

UZUN AÇIKLIKLI KÖPRÜLERDE HAREKETLİ YÜK TASARIM PARAMETRELERİNİN TÜRK LRFD METHODU İÇİN BELİRLENMESİ. Doç. Dr. Alp CANER & Yusuf DÖNMEZ

Ön şart D. Kodu Dersin Adı T U L AKTS MAT101. English for Academic Reading & Speaking I İngilizce Akademik Okuma ve Konuşma I

Yatak Katsayısı Yaklaşımı

BETONARME-I 5. Hafta KİRİŞLER. Onur ONAT Munzur Üniversitesi Mühendislik Fakültesi İnşaat Mühendisliği Bölümü, Tunceli

ÇELİK PREFABRİK YAPILAR

34. Dörtgen plak örnek çözümleri

Transkript:

2017 Published in 5th International Symposium on Innovative Technologies in Engineering and Science 29-30 September 2017 (ISITES2017 Baku - Azerbaijan) Demiryolu Köprülerinde Yapı Zemin Etkileşimi * 1 Koray Şen ve 2 Hakan Güler * 1 Sakarya Üniversitesi, Fen Bilimleri Enstitüsü, Sakarya, Türkiye 2 Sakarya Üniversitesi, Mühendislik Fakültesi, İnşaat Mühendisliği, Sakarya, Türkiye Özet Bu çalışmada, Almanya nın Karlsruhe şehrinde bulunan Weiherfeld demiryolu köprüsünün yapı-zemin etkileşimi üzerine bir araştırma yapılmıştır. Weiherfeld köprüsünün üzerinden geçen hareketli tren yüklerinin etkisinde, köprünün belli bir zaman aralığında davranışı ile köprünün zemine aktarılan yükleri altında zeminde meydana gelen gerilme ve şekil değiştirmelerinin analizi yapılmıştır. Bu amaçla, köprünün yapısal modeli SAP 2000 sonlu elemanlar programı ile oluşturulmuş, yolcu ve yük trenlerinin dingil ağılıkları ve tren hızları dikkate alınarak yüklemeler hareketli yük olarak programda tanımlanmıştır. Bu yükleme senaryosunda köprü kiriş ve kolonlarında meydana gelen yükler ve deformasyonlar hesaplanmıştır. Daha sonra, PLAXIS programında killi zemin tipi dikkate alınarak köprü ayakları altında sürekli bir zemin ortamı modellenmiştir. SAP 2000 programından elde edilmiş dinamik yükler, PLAXIS programında oluşturulan zemin modeline aktarılarak yapı-zemin etkileşimi üzerine analizler yapılmış ve bu etkileşimin üstyapıya olan etkisinin değerlendirilmesi yapılmıştır. Anahtar kelimeler: Demiryolu köprüsü, Sonlu elemanlar yöntemi ve Yapı-zemin etkileşimi. Abstract Soil-Structure Interaction In Railway Bridges In this study, a research was made on the soil-structure interaction of the Weiherfeld railway bridge in Karlsruhe, Germany. The structural behavior of Weiherfeld bridge was analyses under freight and passenger trains for a while and in addition soil stress and strain analyses were performed considering the loads coming from the bridge structure. For this purpose, the structural model of the bridge was created with the SAP 2000 finite element program and the loads were defined in the program as the moving loads considering the axle loads and speeds of the passenger and freight trains. In this loading scenario, the loads and deformations occurring in the bridge beams and columns are calculated. Later on, a continuously soil structure was modeled in the PLAXIS program under the piers of bridges by taking into consideration a clayey soil structure type. The dynamic loads obtained from the SAP 2000 program were transferred to the soil model created in the PLAXIS program and various soil-structure analyses were performed. Finally the effects of soil-structure were evaluated considering the railway superstructure. Key words: Railway bridges, Finite element methods and Soil-structure interaction. *Corresponding author: Address: Sakarya Üniversitesi, Fen Bilimleri Enstitüsü, Sakarya, Türkiye. E-mail address: hguler@sakarya.edu.tr, Phone: +902642955747

K. SEN et al./ ISITES2017 Baku - Azerbaijan 456 1. Giriş 1820 yıllarında ilk modern demiryolu köprüsünün yapımından sonra demiryolu köprü mühendisleri demiryolu köprüleri konusunda çok önemli ilerlemeler kaydettiler. Buharlı lokomotifler yerlerini elektrikli ve dizel lokomotiflere bırakmış ve yük vagonlarının tonajı ve donanımları değişmiştir. Demiryolu altyapısının taşıma gücü sınırları, bakım ve yenileme gibi ekonomik sebeplerinden dolayı demiryolu araçlarının yükleme kapasitelerinin sınırlandırılmasına rağmen dingil yükleri zaman içinde artmaktadır. Çalışan ilk buharlı lokomotif John Fitch tarafından Amerika da 1794 yılında tasarlanmış ve yapılmıştır. Devamında İngiltere de 1804 yılında buharlı bir lokomotif daha yapılmıştır. İngiltere de Stocton ve Darlington arasında ilk demiryolu hattı işletmeciliği 1825 ve 1863 yılları arasında gerçekleştirilmiştir. Başlangıçta demiryolu mühendisleri demiryolu trafiğini demiryolu köprülerine aktarmakta zorluklar yaşamışlardır. Başlangıçta demiryolu körülerini çoğunlukla demirden imal edilmiş ve bağlantılarda perçin kullanılmıştır. Demiryolu köprüleri demiryolu altyapısının önemli bileşenleridir. Demiryolu köprüleri yapım ve bakım aşamalarında çok büyük yatırımlar gerektirirler ve demiryolu ulaşım sisteminin en kritik kesimleri yani şişe boynu olarak dikkate alınırlar. Köprülerde ciddi hasarların meydana gelmesi durumunda tüm demiryolu trafiği işletmeye kapatılır. Demiryolu köprüleri üzerindeki hareketli yükler zaman içinde demiryolu üstyapısında ve köprülerin yapısal formunda bozulmalara sebep olur. Yapısal bozukluğu olan demiryolu köprülerinde aşırı derece gürültü ve titreşimin meydana gelir. Demiryolu köprülerinde gürültü ve titreşim hava kaynaklı gürültü, yapı kaynaklı gürültü ve zemin kaynaklı gürültü olmak üzere üç ana başlık altında incelenir. Aşağıdaki Şekil 1 de gürültü ve titreşim kaynakları gösterilmiştir [1 ve 2]. Hava kaynaklı Yapı kaynaklı Zemin kaynaklı Şekil 1. Demiryolu köprülerinde gürültü ve titreşimin kaynağı Demiryolu köprülerinin yapısal özelliğinin belirlenmesindeki iki ana faktör köprü açıklığı ve geçilen engelin tipidir (Örneğin nehir, demiryolu, karayolu vb.). Aynı uzunluğa sahip açıklıklarda farklı alternatifler tercih edilebilir. Köprünün fonksiyonu, yapımı ve ekonomik sebepler nihai kararın verilmesinde etkili parametrelerdir. Köprülerin ana yapısal biçimleri aşağıdaki gibi sınıflandırılır [3]:

K. SEN et al./ ISITES2017 Baku - Azerbaijan 457 Plak kirişli veya kutu profil kirişli köprüler (0-250 m) Makas kirişli köprüler (400 m'ye kadar) Konsol köprüler (600 m'ye kadar) Halatlı köprüler (1200 m'ye kadar) Asma köprüler (1900 m'ye kadar). Demiryolu köprülerinin yapımında kullanılan malzeme özellileri Eurocode gibi özel ulusal kodlarla belirlenir. Bunun dışında Uluslararası Demiryolu Birliği (UIC) gibi kuruluşların ya da diğer bilimsel çalışmaların sonuçlarıda kullanılabilmektedir. Yapım, kontrol, değiştirme gibi kolaylıklardan ve hafif olmalarından dolayı çelik ve kompozit malzemeler köprü yapımında tercih edilirler. Genellikle yüksek mukavemetli malzemeler tercih edilirler ancak ekonomi de köprü yapımında dikkate alınır. Avrupa da genel olarak S355 karbon derecesine sahip bulunlu veya kaynaklı çelik köprüler tercih edilir. Bazı özel durumlarda daha yüksek dereceli çelik malzemeler kullanılabilir. Metal yapıların genel özellikleri EN 1993-1-1 de tanımlanmıştır. Betonarme köprülerde ise EN 1992-1-1 standardı dikkate alınır. ABD ise köprülerde kullanılan malzemeler Amerikan Test ve Malzeme Kurumu nun (ASTM) standartlarına uygun olmalıdır [3]. 2. Demiryolu köprülerinde yapı-zemin etkileşimi Özellikle demiryolu köprülerinde sığ temeller tercih edilmez ve köprü derin kazıklar üzerine oturtulur. Köprü gövdesini taşıyan yapı kenar ayaklar, diğer ayaklar ve bir temelden oluşur. Bu yapı köprünün ölü yükünü, hareketli yükünü, rüzgar ve su kuvvetlerini alarak zemine iletir. Köprü altyapısı genellikle kazık temeller, yayılı temeller, ayaklar ve çerçeve ya da bunların kombinasyonundan oluşur. Köprü yapılmadan önce mutlaka ayrıntılı bir zemin araştırmasının yapılması gerekmektedir. Köprü kazıklarının taşıma kapasiteleri ile ilgili olarak Amerikan Demiryolu Mühendisleri ve Bakım Birliğinin standardında ve Eurocode 7-1-7 numaralı standartta ayrıntılı bilgiler bulunmaktadır. Demiryolu köprülerinin yükleme koşulları ile ilgili ayrıntılar EN 1990 numaralı standartta verilmiştir. Demiryolu köprülerine etki eden yükler; Ölü yükler, Hareketli yükler, Dinamik yükler, Yatay yükler, Tren geçişlerinden kaynaklanan aerodinamik kuvvetler ve Trenlerin köprülerde raydan çıkmaları sonucu oluşan kuvvetler gibi ana başlıklarda incelenir [4]. Demiryolu köprüleri üzerindeki hareketli yük modelleri EN 1991-2 de tanımlanmıştır. Analizlerde önemli olan beş yükleme modeli aşağıda sıralanmış ve her bir modelde dikkate alınan yüklemeler şekillerle gösterilmiştir [4-11]: Yük Modeli 71 (Sürekli körülerde Yük Modeli SW/0): Ana demiryolu hatlarında normak demiryolu trafiğini tarif eder (Şekil 2). Yük Modeli SW/2: Ağır yüklerin taşındığı demiryolu hatlarını ifade eder (Şekil 3). Yük Modeli HSLM: 200 km/sa hızı aşan yolcu trenlerin yükleme koşullarını ifade eder (Şekil 4 ve Şekil 5). Yüsüz tren yük modeli: Yüklenmemiş trenlerin etkisini ifade eder. Düşey yönde 10 kn/m değere sahip yayılı yük hesaplarda dikkate alınır.

K. SEN et al./ ISITES2017 Baku - Azerbaijan 458 (1): Sınırlandırma bulunmamaktadır. Şekil 2. Yük Modeli 71 ve düşey yükler [4-11] Şekil 3. Yük Modeli SW/0 ve SW/2 [4-11] Yük Modeli SW/0 ve SW/2 de dikkate alınan yük ve açıklık değerleri aşağıdaki Tablo 1 de verilmiştir. Tablo 1. Yük Modeli SW/0 ve SW/2 yükleme değerleri Yük Modeli q vk (kn/m) a (m) c (m) SW/0 133 15.0 5.3 SW/2 150 25.0 7.0 (1) Lokomotif (Çeken ve çekilen araçlar benzerdir) (2) Son vagon (Çeken ve çekilen araçlar benzerdir) (3) Orta vagonlar Şekil 4. Yük Modeli HSLM-A [4-11] Yük Modeli HSLM-A da dikkate alınan yük ve açıklık değerleri aşağıdaki Tablo 2 de verilmiştir.

K. SEN et al./ ISITES2017 Baku - Azerbaijan 459 Tablo 2. Yük Modeli SW/0 ve SW/2 yükleme değerleri [4-11] Tren Tipi Orta vagon sayısı N Vagon uzunluğu D (m) Boji aks aralığı d (m) Tekil yük P (kn) A1 18 18 2.0 170 A2 17 19 3.5 200 A3 16 20 2.0 180 A4 15 21 3.0 190 A5 14 22 2.0 170 A6 13 23 2.0 180 A7 13 24 2.0 190 A8 12 25 2.5 190 A9 11 26 2.0 210 A10 11 27 2.0 210 Şekil 5. Yük Modeli HSLM-B [4-11] Yük Modeli HSLM-B de Boji aks aralığı (d), köprü uzunluğu (L) ve tekil yük (N) arasındaki ilişki aşağıdaki şekilde gösterilmiştir [4-11]. Şekil 6. Yük Modeli HSLM-B de dikkate alınan yük ve açıklık değerleri [4-11]

K. SEN et al./ ISITES2017 Baku - Azerbaijan 460 3. Weiherfeld demiryolu körüsü için uygulama Weiherfeld köprüsü Almanya nın Karlsruhe şehrinde bulunan çelikten imal edilmiş perçin bağlantılı bir demiryolu köprüsüdür. Köprü, 1908 yılında inşaa edilmiş olup 27 m genişliğinde, 5 m yüksekliğinde ve 54.90 m uzunluğundadır. Köprü üzerinde her iki yönde demiryolu trafiği olup dokuz hat bulunmaktadır. Dokuz hat üzerinde Almanya nın Kuzey ve Güney yönüne doğru günde yaklaşık 560 yolcu ve yük treni ve ayrıca manevra trenleri hareket etmektedir. 2013 yılında köprünün rehabilitasyonu için proje çalışmaları başlatılmış ve çalışmalar 2014 yılının Ağustos ayında başlamıştır. Köprünün altyapısında ve üstyapısında yapılan rehabilitasyon çalışmaları tren trafiği altında yapılmış ve çalışmalar 2016 yılında tamamlanmıştır (Şekil 7) [1]. Şekil 7. Weiherfeld köprüsü enkesit, plan ve köprü yenileme çalışmaları Bu çalışmada Weiherfeld demiryolu köprüsünün yapı-zemin etkileşimini incelemek için EN 1991-2 standardında belirtilen yükleme modellerine uygun olarak analizler yapılmıştır. Bu amaçla, köprünün yapısal modeli Yük Modeli 71 dikkate alınarak SAP 2000 sonlu elemanlar programı ile oluşturulmuş, yolcu ve yük trenlerinin dingil ağılıkları ve tren hızları dikkate alınarak yüklemeler hareketli yük olarak programda tanımlanmıştır. 1.6 m aralıklı 250 kn luk yük dizisi köprüye etki ettirilmiştir. Köprü çelik kolonları I profil ve boyutları 300/700 olarak programda tanımlanmıştır. Köprü tablası ise uç noktalarda 1.3 m kalınlığındaki istinat duvarları üzerine oturtulmuştur. Yapılan yükleme sonucu köprü kiriş ve kolonlarında elde edilen yükler ve momentler Şekil 8 de gösterilmiştir. Yük Modeli 71 yüklemesinde dingil yükleri SAP 2000 programında hareketli yük olarak tanımlanmıştır. Köprü üzerinde maksimum 1,514 knm moment ve 762 kn kesme kuvveti oluşmuştur. Kolonlorda ise maksimum 980 kn normal kuvvet

K. SEN et al./ ISITES2017 Baku - Azerbaijan 461 oluşmuştur. Weiherfeld köprüsünde yapı-zemin etkileşimini analizleri için PLAXIS programında killi zemin dikkate alınarak köprü ayakları altında sürekli bir zemin ortamı modellenmiştir. Yapılan analizler Şekil 9 de gösterilmiştir. a)köprüde oluşan moment diyagramı b)köprü kesme kuvvetleri c) Köprü kolonlarında oluşan normal kuvvetler Şekil 8. Yük Modeli 71 ile yapılan yüklemeler sonucu köprüde oluşan tesir kuvvetleri a) Plaxis programında yapı-zemin modeli b) Zeminde oluşan deformasyonlar c) Efektif gerilmeler d) Yerdeğiştirmeler Şekil 9. Killi zeminde demiryolu köprüsü-zemin etkileşimi

K. SEN et al./ ISITES2017 Baku - Azerbaijan 462 PLAXIS programında oluşturulan zemin modeline aktarılarak yapı-zemin etkileşimi üzerine analizler yapılmış ve sonuçlar aşağıda gösterilmiştir. Weiherfeld demiryolu köprüsünün killi bir zemine oturması durumunda köprü ayakları altında meydana gelen deformasyonlar, kuvvetler ve gerilmeler Şekil 9 de gösterilmiştir. Yapı-zemin modeli Şekil 9a da gösterilen sistemin yükler altında deformasyonu Şekil 9b de görülmektedir. Weiherfeld köprü ayakları altında maksimum 70 kn/m 2 gerilme olacağı tespit edilmiştir (Şekil 9c). Köprü ayaklarının düşey yönde maksimum 30 mm yerdeğiştirme yapabileceği tespit edilmiştir (Şekil 9d). Killi zeminde mevcut yüklemelerde köprü ayakları altında plastik deformasyon gösterecek bölgeler Şekil 8e de gösterilmiştir. 4. Sonuç ve değerlendirmeler Bu çalışmada demiryolu köprüleri için yapı-zemin etkileşimi incelemesi yapılmış ve demiryolu köprülerinin boyutlandırılmasına katkı sağlanmaya çalışılmıştır. Demiryolu köprüsü yapısal analiz programları (SAP 2000) ile statik ve dinamik olarak analiz edilmiştir. Köprü kiriş ve kolonlarında oluşabilecek kuvvet ve momentler tespit edilmiştir. Yapı-zemin etkileşimi analizi için zemin analiz programları (PLAXIS) kullanılmıştır. Bu çalışmada Zemin cinsi kil olarak alınmıştır. Zemin oluşan gerilmeler ve çökmeler tespit edilmiştir. Özetle bu çalışmada Weiherfeld köprüsünün yapısal modeli SAP 2000 sonlu elemanlar programı ile oluşturulmuş, yolcu ve yük trenlerinin dingil ağılıkları ve tren hızları dikkate alınarak Yük Modeli 71 e uygun olarak yüklemeler hareketli yük olarak programda tanımlanmıştır. Bu yükleme senaryosunda köprü kirişlerinde 1,514 knm moment ve 762 kn kesme kuvveti oluşmuştur. Hareketli yük tanımlaması yapıldığında köprü ayaklarında maksimum 980 kn normal kuvvet oluşmuştur. Yapı-zemin etkileşim modeli PLAXIS programında incelenmiştir. Zemin, kil karışımı bir zemin olarak dikkate alınmıştır. Köprü kolonlarına 1,000 kn yükleme yapıldığında, köprü temellerinin altında maksimum 70 kn/m 2 gerilme tespit edilmiştir. Kolonlarda oturmanın ise maksimum 30 mm olacağı görülmektedir. Zemin cinsleri değiştirilerek ya da zemin iyileştirmeleri yaparak demiryolu köprüsü-zemin etkilişimi analizlerini çeşitlendirmek mümkündür. Benzer şekilde demiryolu köprüsü yükleme modellerinin tümünü analiz ederek karşılaştırmalar yapmak da mümkündür. Bu analizler demiryolu köprülerinin yapısal elemanlarının boyutlandırılmasında önemli katkılar sağlayarak en ekonomik ve emniyetli boyutlandırma yapmaya imkan verecektir. Kaynaklar [1] Guler, H., Fath, B. and Akyol, T. P. "Acoustic Performance of Railways: A Case Study in Germany", Railways 2014: The Second International Conference on Railway Technology: Research, Development and Maintenance, 2014, Ajaccio, Corsica, France. [2] Fath, B., Guler, H. and Akyol, T. P. "A Non-Contact And Non-Destructive Railway Bridge Monitoring System: A Case Study In Germany",Railways 2014, The Second International Conference on Railway Technology: Research, Development and Maintenance, 2014, Ajaccio, Corsica, France. [3] Pipinato, A. and Patton, R. Innovative Bridge Design Handbook, Construction, Rehabilitation and Maintenance, Elsevier Publication, Waltham, USA, 2016, Chapter 19, pp. 509 527.

K. SEN et al./ ISITES2017 Baku - Azerbaijan 463 EN 1993-1-2, 2003. Design of steel structures. Part 1 2: General Rules Structural Fire Design. CEN, Bruxelles. [4] EN 1990, 2006. Basis of structural design. CEN, Bruxelles. [5] EN 1991-2, 2005. Actions on structures. Part 2: Traffic loads on bridges. CEN, Bruxelles. [6] EN 1992-1-1, 2004. Eurocode 3: Design of concrete structures Part 1-1: General Rules. CEN, Bruxelles. [7] EN 1993-1-1, 2003. Eurocode 3: Design of steel structures Part 1-1: General Rules. CEN, Bruxelles. [8] EN 1993-1-10, 2005. Eurocode 3: Design of steel structures Part 1-10: Material Toughness and Through-Thickness Properties. CEN, Bruxelles. [9] EN 1993-1-9, 2005. Eurocode 3: Design of steel structures. Part 1-9: Fatigue. CEN, Bruxelles. [10] EN 1993-2, 2005. Eurocode 3: Design of steel structures. Part 2: Steel Bridges. CEN, Bruxelles. [11] EN 1997-2, 2007. Eurocode 7 Geotechnical design Part 2: Ground investigation and testing. CEN, Bruxelles.