Özet. Abstract. 1. Giriş



Benzer belgeler
Bartın Üniversitesi, Fen Bilimleri Enstitüsü, Makine Mühendisliği Anabilim Dalı, Bartın, Türkiye

Afyon Kocatepe Üniversitesi 7 (2) Afyon Kocatepe University FEN BİLİMLERİ DERGİSİ

Journal of Engineering and Technological Sciences (2014/2)

Altı Nozullu Karşıt Akışlı Vorteks Tüpünün Performansının Deneysel Olarak İncelenmesi

20 (2), , (2), , 2008

ÖZGEÇMİŞ. Derece Alan Üniversite Yıl. Teknik Eğitim Fakültesi, Makina Eğitimi. Fen Bilimleri Enstitüsü, Makina Eğitimi A.B.

VORTEKS TÜPÜNDE AKIŞKAN OLARAK HAVA OKSİJEN KARBONDİOKSİT VE AZOT KULLANILARAK ISITMA SOĞUTMA SICAKLIK PERFORMANSLARININ DENEYSEL OLARAK İNCELENMESİ

s , 2006 Azot Ve Argon Kullanılarak Isıtma Soğutma Sıcaklık Performanslarının Deneysel Olarak Karşılaştırılması V. Kırmacı

Altı Nozullu Vorteks Tüpünün Soğutma Isıtma Sıcaklık Performanslarının Deneysel Olarak İncelenmesi

RANQUE-HILSCH VORTEKS TÜPÜNDE FARKLI GAZLARIN DEĞİŞKEN BASINÇ DEĞERLERİNDE SOĞUTMA PERFORMANSLARININ SAYISAL İNCELENMESİ

KARŞIT AKIŞLI VORTEKS TÜPÜ SOĞUTMA PERFORMANSINA ETKİ EDEN PARAMETRELERİN HAD YÖNTEMİ KULLANILARAK İNCELENMESİ

VORTEKS TÜPÜNDE AKIŞKAN OLARAK KULLANILAN HAVA İLE AZOT GAZININ SOĞUTMA SICAKLIK PERFORMANSLARININ DENEYSEL İNCELENMESİ

Yrd. Doç. Dr. Tolga DEMİRCAN. Akışkanlar dinamiğinde deneysel yöntemler

Abs tract: Key Words: Abdullah YILDIZ Mustafa Ali ERSÖZ

AKIŞ ÖLÇÜMLERİ. Harran Üniversitesi Makina Mühendisliği Bölümü. Dr.M.Azmi AKTACİR-2010-ŞANLIURFA 1

Vorteks Tüpünde Akışkan Olarak Kullanılan Hava İle Karbondioksitin Soğutma Sıcaklık Performanslarının Deneysel İncelenmesi

ODA SOĞUTUCULARI UNIT AIR COOLERS. ısıtma ve soğutmanın ritmini biz belirliyoruz!.. we give the rhythm in terms of heating and cooling!..

Dumlupınar Gaz Atomizasyonu Ünitesi

Isıtma Sistemlerinde Kullanılan Plakalı Isı Değiştiricilerin Termodinamik Analizi

ÖZGEÇMİŞ. Yardımcı Doçent Makine Mühendisliği Çukurova Üniversitesi Doçent Makine Mühendisliği Çukurova Üniversitesi

Makale. ile ihtiyacın eşitlendiği kapasite modülasyon yöntemleri ile ilgili çeşitli çalışmalar gerçekleştirilmiştir

ISI DEĞĠġTĠRGEÇLERĠ DENEYĠ

HELİSEL BORULARDA AKIŞ VE ISI TRANSFERİNİN İNCELENMESİ. Fırat Üniversitesi Teknik Eğitim Fakültesi Makina Eğitimi Bölümü, 23119, Elazığ

1. Aşağıda verilen fiziksel büyüklüklerin dönüşümünde? işareti yerine gelecek sayıyı bulunuz.

AKIŞ ÖLÇÜMLERİ. Harran Üniversitesi Makina Mühendisliği Bölümü. Dr.M.Azmi AKTACİR-2010-ŞANLIURFA 1

ÇEV207 AKIŞKANLAR MEKANİĞİ KİNEMATİK-1. Y. Doç. Dr. Güray Doğan

NÖ-A NÖ-B. Şube. Alınan Puan. Adı- Soyadı: Fakülte No: 1. Aşağıda verilen fiziksel büyüklüklerin eşit olduğunu gösteriniz. 1/6

ÖZGEÇMİŞ. Osmaniye Korkut Ata Üniversitesi Makine Mühendisliği Bölümü Osmaniye/Türkiye Telefon : /3688 Faks :

LEVHA KANATLI BORULU TİPLİ BİR BUHARLAŞTIRICININ ISIL DAVRANIŞININ ENTALPİK TÜNELİNDE DENEYSEL OLARAK İNCELENMESİ

HAVA SOĞUTMALI BİR SOĞUTMA GURUBUNDA SOĞUTMA KAPASİTESİ VE ETKİNLİĞİNİN DIŞ SICAKLIKLARLA DEĞİŞİMİ

ÇEV207 AKIŞKANLAR MEKANİĞİ KİNEMATİK-1. Y. Doç. Dr. Güray Doğan

EŞANJÖR (ISI DEĞİŞTİRİCİSİ) DENEYİ FÖYÜ

Kişilik, enerjiyi yönetebilme ve verimli kullanabilme kabiliyetinin bir göstergesidir. (A. Midilli)

ĠKLĠMLENDĠRME DENEYĠ

R1234YF SOĞUTUCU AKIŞKANININ FİZİKSEL ÖZELLİKLERİ İÇİN BASİT EŞİTLİKLER ÖZET ABSTRACT

Orifis, Nozul ve Venturi Tip Akışölçerler

SANTRİFÜJ POMPA DENEYİ

AKIŞ ÖLÇÜMLERİ. Kütlenin korunumu prensibine göre içerisinde üretim olmayan bir sistem için;

BİLECİK ŞEYH EDEBALİ ÜNİVERSİTESİ MÜHENDİSLİK FAKÜLTESİ MAKİNE VE İMALAT MÜHENDİSLİĞİ BÖLÜMÜ

KLİMA SANTRALLERİNDEKİ BOŞ HÜCRELER İÇİN TASARLANAN BİR ANEMOSTAT TİP DİFÜZÖRÜN AKIŞ ANALİZİ

AKIŞKANLARIN ISI İLETİM KATSAYILARININ BELİRLENMESİ DENEYİ

Akışkanların Dinamiği

Levha Kanatlı Borulu Tipli Bir Buharlaştırıcının Isıl Davranışının Entalpik Tünelinde Deneysel Olarak İncelenmesi

ÇİFT KADEMELİ SOĞUTMA ÇEVRİMLERİNDE ENERJİ VERİMLİLİĞİ

Havalı Güneş Kolektörlerinde Farklı Bağlantı Şekillerinin Isıl Performansa Etkisinin Deneysel Analizi

BASINÇLI KAPLARDA ÇALIŞMALARDA İŞ SAĞLIĞI ve GÜVENLİĞİ

KARABÜK İÇİN DERECE-ZAMAN HESAPLAMALARI DEGREE-TIME CALCULATIONS FOR KARABÜK

VAV DEĞİŞKEN DEBİLİ HAVA DAMPERLERİ

The Power to Save Energy.

T.C. GAZİ ÜNİVERSİTESİ ENERJİ SİSTEMLERİ MÜHENDİSLİĞİ BÖLÜMÜ AKIŞKANLAR LABORATUVARI BUHAR TÜRBİNİ DENEYİ FÖYÜ

BAŞKENT ÜNİVERSİTESİ MAKİNE MÜHENDİSLİĞİ BÖLÜMÜ MAK MAKİNE MÜHENDİSLİĞİ LABORATUVARI DENEY 4

T.C. ONDOKUZ MAYIS ÜNĠVERSĠTESĠ MÜHENDĠSLĠK FAKÜLTESĠ MAKĠNA MÜHENDĠSLĠĞĠ BÖLÜMÜ SANTRĠFÜJ POMPA DENEY FÖYÜ HAZIRLAYANLAR. Prof. Dr.

AirMaxi Serisi Isı Pompaları

T. C. GÜMÜŞHANE ÜNİVERSİTESİ MÜHENDİSLİK VE DOĞA BİLİMLERİ FAKÜLTESİ MAKİNE MÜHENDİSLİĞİ BÖLÜMÜ MAKİNE MÜHENDİSLİĞİ DENEYLER 2

T.C. BARTIN ÜNİVERSİTESİ FEN BİLİMLERİ ENSTİTÜSÜ MAKİNE MÜHENDİSLİĞİ ANABİLİM DALI

OKG-175 GAZ ABSORBSİYON DESORBSİYON DENEY SETİ

T.C. GAZİ ÜNİVERSİTESİ TEKNOLOJİ FAKÜLTESİ ENERJİ SİSTEMLERİ MÜHENDİSLİĞİ BÖLÜMÜ AKIŞKANLAR MEKANİĞİ LABORATUVARI

ISI POMPASI DENEY FÖYÜ

AirMidi Serisi Isı Pompaları

VANTİLATÖR DENEYİ. Pitot tüpü ile hız ve debi ölçümü; Vantilatör karakteristiklerinin devir sayısına göre değişimlerinin belirlenmesi

RADYATÖR BAĞLANTILARININ RADYATÖR DAYANIKLILIĞINA ETKİSİNİN İNCELENMESİ

VORTEKS TÜPLER İLE SOĞUTMA UYGULAMALARI

Hesaplamalı Akışkanlar Dinamiği (HAD)

ÇUKUROVA ÜNİVERSİTESİ FEN BİLİMLERİ ENSTİTÜSÜ/MAKİNE MÜHENDİSLİĞİ (DR)

ERCİYES ÜNİVERSİTESİ MÜHENDİSLİK FAKÜLTESİ ENERJİ SİSTEMLERİ MÜHENDİSLİĞİ BÖLÜMÜ MOTORLAR LABORATUARI

1.0. OTOMATİK KONTROL VANALARI UYGULAMALARI

TOA06 SÜRÜKLENME KANALLI TAŞKIN YATAKLARDA MİNİMUM TAŞKINLAŞMA HIZININ BELİRLENMESİ

AKM 205 BÖLÜM 8 - UYGULAMA SORU VE ÇÖZÜMLERİ

HAVA ARAÇLARINDAKİ ELEKTRONİK EKİPMANLARIN SOĞUTULMASINDA KULLANILAN SOĞUTMA SIVILARININ PERFORMANSA BAĞLI SEÇİM KRİTERLERİ

KBM0308 Kimya Mühendisliği Laboratuvarı I HAVA AKIŞ DENEYİ. Bursa Teknik Üniversitesi DBMMF Kimya Mühendisliği Bölümü 1

BİLECİK ŞEYH EDEBALİ ÜNİVERSİTESİ MÜHENDİSLİK FAKÜLTESİ MAKİNE VE İMALAT MÜHENDİSLİĞİ BÖLÜMÜ

Gizli Tavan Tipi Fancoil

GEMĐLERDE KULLANILAN VAKUM EVAPORATÖRLERĐNDE OPTĐMUM ISI TRANSFER ALANININ BELĐRLENMESĐ

AYTEK COOLING SYSTEMS SU SOĞUTMALI CHILLER + TCU

TEST RAPORU ALCAS AF50E SİSTEM ( ) NUMUNESİ İÇİN TEST METODU

İKLİMLENDİRME DENEYİ FÖYÜ

ONDOKUZ MAYIS ÜNİVERSİTESİ MÜHENDİSLİK FAKÜLTESİ KİMYA MÜHENDİSLİĞİ BÖLÜMÜ KMB-305 KİMYA MÜHENDİSLİĞİ LABORATUVARI I

SICAK SU HAZIRLAYICISI (BOYLER)

ISSN : ambiance_su@hotmail.com Turkey DEĞİŞKEN SU DEBİLERİNİN TERMOELEKTRİK MODÜLÜN SOĞUTMA PERFORMANSINA ETKİLERİ

Giyilebilir Teknolojiler ve Solar Enerjili Şapka Uygulaması

Akışkanların Dinamiği

Bölüm 5 KONTROL HACİMLERİ İÇİN KÜTLE VE ENERJİ ÇÖZÜMLEMESİ

TAVAN TİPİ SOĞUTUCULAR CEILING TYPE UNIT COOLERS

SORULAR VE ÇÖZÜMLER. Adı- Soyadı : Fakülte No :

Akış kanalı genişliğinin pem tipi yakıt hücresi performansına etkisinin incelenmesi

OAG 100A HİDROLOJİ EĞİTİM SETİ ANA ÜNİTE

Abs tract: Key Words: Elif ŞAHİN Erkan DİKMEN Arzu ŞENCAN ŞAHİN

ISI POMPASI DENEY FÖYÜ

TERMODİNAMİK SINAV HAZIRLIK SORULARI BÖLÜM 4

GİRİŞ SAYFASI > Ürünler > Kontrol üniteleri > VARYCONTROL > VAV terminal üniteleri > Type LVC. Type LVC

DENEY-6 Akış Ölçme Deneyi - 2

HHO HÜCRESİNİN PERFORMANSININ DENEYSEL OLARAK İNCELENMESİ. Konya, Türkiye,

aircoolers Evaporatörler Aircoolers TAVAN TİPİ EVAPORATÖRLER CEILING TYPE AIR COOLERS DUVAR TİPİ EVAPORATÖRLER WALL TYPE AIR COOLERS

AZOT SIVILAŞTIRMA ÜNİTESİNİN ENERJİ ANALİZİ ENERGY ANALYSIS OF NITROGEN LIQUEFACTION PROCESSES

ÇÖZÜM 1) konumu mafsallı olup, buraya göre alınacak moment ile küçük pistona etkileyen kuvvet hesaplanır.

YATAY VE DİKEY OLARAK KONUMLANDIRILMIŞ KRANK-BİYEL MEKANİZMASININ BİLGİSAYAR DESTEKLİ ANALİZİ

HAVA SOĞUTMALI SU SOĞUTMA GRUBU. İklimlendirme Sistemleri.

MAK-LAB007 AKIŞKAN YATAĞINDA AKIŞKANLAŞTIRMA DENEYİ

VIESMANN VITOCAL 200-S Hava/su ısı pompası, split tipi 1,3-16,0 kw

TEST MASASI BTB-6. BAYLAN ÖLÇÜ ALETLERİ SAN. ve TİC. LTD. ŞTİ.

Transkript:

Karşıt Akışlı Ranque-Hilsch Vorteks Tüpünde Kullanılan Alüminyumun ve Çelik Nozul Malzemesinin Soğutma Isıtma Sıcaklık Performanslarının Deneysel Olarak İncelenmesi 1 İsmail Cebeci, * 2 Volkan KIRMACI 1 KK Astsb MYO Klığı Makine Bölüm Başkanlığı, Balıkesir, Türkiye *2 Bartın Üniversitesi Makine Mühendisliği Bölümü, Bartın, Türkiye Özet Bu çalışmada, iç çapı 10 mm, gövde uzunluğu 100 mm olan karşıt akışlı Ranque-Hilsch vorteks tüpte, alüminyumun ve çelik nozul malzeme kullanılmıştır 2, 3, 4, 5, 6 nozul sayılarında 150 kpa dan 700 kpa basınç değerine kadar 50 kpa aralıklarla basınçlı akışkan olarak hava kullanılmıştır Deneysel çalışmalarda, sıcak akışkan çıkış tarafındaki kontrol vanası tam açık konumda bırakılmıştır Vorteks tüplerde oluşan enerji ayrışma olayı iki farklı akışkan için deneysel olarak incelenmiştir ve deneysel sonuçları grafiklerle değerlendirilerek performanslarının arttırılmasına yönelik önerilerde bulunulmuştur Anahtar Kelimeler: Vorteks tüpü, soğutma, ısıtma Abstract In this study aluminum and steel nozzle was used in 10 mm inner diameter and 100 mm length counter flow vortex tube Air was used as a working fluid in the vortex tube with nozzles which have 2,3,4,5,6 inlet and working pressure ranged from 150 kpa to 700 kpa with 50 kpa increment In experimental studies, the control valve on the hot outlet side was left in fully open position Energy separation event that occurs in the vortex tube has been investigated experimentally for two different fluids and suggestions were made for improving the performance depending on the the experimental results and graphs Keywords: Vortex tube, cooling, heating 1 Giriş Vorteks tüplerin ilk keşfi Ranque tarafından yapılmış olup, Hilsch tarafından geliştirilmiştir Keşfi ve geliştirmesini yapan kişilerin isimlerinden dolayı Ranque - Hilsch vorteks tüpü (RHVT) olarak isimlendirilmiştir [1,2,] RHVT, hareketli bir parçası bulunmayan basit bir borudan ibaret olan basınçlı akışkan kullanılarak aynı anda hem soğutma hem de ısıtma işlemi gerçekleştirebilen bir sistemdir Ebatlarının ufak ve hafif olması, hızlı rejim süresi, herhangi bir soğutucu akışkan gereksinimi olmamasından dolayı çevresel açıdan zararlı olmamaları gibi birçok özellikleri nedeniyle RHVT ler günümüzde birçok soğutma ve ısıtma problemine çözüm olabilmektedirler [3,4] Ebatlarının ufak olması, hızlı rejim süresi, herhangi bir soğutucu akışkan gereksinimi *Corresponding author: Address: Faculty of Engineering, Department of Mechanical Engineering Bartın University, 74100, Bartın TURKEY E-mail address: volkankirmaci@gmailcom, Phone: +903782949178 Fax: +903782949364

V KIRMACI et al/ ISITES2015 Valencia -Spain 1476 olmamasından dolayı çevresel açıdan zararlı olmamaları gibi birçok özellikleri nedeniyle vorteks tüpler günümüzde birçok soğutma ve ısıtma problemine çözüm olabilmektedirler [5,6] Karşıt akışlı RHVT ün çalışma prensibi, nozullardan tüpe teğetsel olarak gönderilen basınçlı akışkan, tüpün silindirik yapısından dolayı, girişteki basınca ve hıza bağlı olarak, tüp içerisinde çok yüksek açısal hızla dönmeye başlar Yüksek açısal hızlarda dönen akışkanın tüp cidarındaki sürtünmeden dolayı, tüp cidarı ve tüp merkezindeki akışkan arasında basınç farkı oluşur Tüp cidarı yakınlarındaki akışkanın açısal hızı, tüp cidarındaki sürtünmenin etkisinden dolayı tüp merkezindeki akışkanın açısal hızına göre daha düşüktür ve merkezdeki akışkan tüp cidarındaki akışkanı ivmelendirmeye çalışır Bu nedenle merkezdeki akışkan tüp cidarındaki akışkana enerji transfer eder ve tüpün geometrik yapısına bağımlı olarak bir durma noktasından sonra ters yönde hareket ederek, soğuk çıkış tarafından tüpü terk eder Enerji transfer eden soğuk akışkan, enerji transfer edilen akışkan ise sıcak akışkandır (Şekil1-2) [7-10] Şekil 1 Karşıt akışlı RHVT ün yapısı Şekil 2 Karşıt akışlı RHVT içindeki sıcak ve soğuk akışın hareketi [11]

V KIRMACI et al/ ISITES2015 Valencia -Spain 1477 Sıcak ve soğuk akışkanın sıcaklığını etkileyen bir çok faktör vardır Vorteks tüpün uzuluğunun tüp çapına oranı, vorteks tüpün imal edilmiş olduğu malzeme, nozul sayısı, akışkanın vorteks tüpe girişteki hızı ve basıncı bunlardan bazılarıdır[12] Saidi ve Valipour [13], yaptıkları çalışmada, vorteks tüpün çalışmasına etki eden parametrelerin verim ve soğuk uç sıcaklık farkı üzerindeki etkilerini deneysel olarak incelemişlerdir Shannak [14], yaptıkları çalışmada, vorteks tüp içerisindeki enerji ayrışma mekanizmasını ve sürtünme kayıplarını teorik ve deneysel olarak incelemişlerdir Yılmaz vd [15], yaptıkları literatür araştırması çalışmalarında, vorteks tüplerinin sınıflandırılmasını yaparak enerji ayrışması ve vorteks tüplerin performansını incelemişlerdir Gao vd [16], yaptıkları çalışmada, vorteks tüplerdeki soğutma sıcaklığını deneysel olarak incelemişlerdir Skye vd [17], yaptıkları çalışmada, vorteks tüp içindeki akışı deneysel ve CFD modelleme tekniğini kullanarak incelemişlerdir Wu vd [18], yaptıkları deneysel çalışmada, vorteks tüplerin enerji ayrışma verimini iyileştirmek için, yeni bir lüle tasarlamışlardır Eiamsa ve Promvonge [19], yaptıkları çalışmada, vorteks tüplerle ilgili olarak geçmiş den günümüze, mevcut literatürü bir arada toplamışlardır Nimbalkar ve Muller [20], yaptıkları çalışmada, değişik soğuk uç geometrileri, farklı giriş basınçları ve y c değerlerinin enerji ayrışması üzerindeki etkilerini deneysel olarak incelemişlerdir Pınar vd [21], yaptıkları teorik çalışmada vorteks tüpleri için optimum çalışma koşullarını ve parametrelerin sistem üzerindeki etkinlik oranlarını belirlemek için Taguchi Metod u kullanarak giriş basıncı, lüle sayısı ve akışkan cinsi etkilerini bu metoda göre hesaplamışlardır Kırmacı [22], Ranque-Hilsch vorteks tüpünde akışkan olarak hava ve oksijen kullanılarak değişken giriş basıncı ve farklı nozullarda deneysel bir çalışma yaparak sitemin ısıtma, soğutma performansını incelemiş ve enerji analizlerini yapmıştır Bu çalışmada, iç çapı 10 mm, gövde uzunluğu 100 mm olan karşıt akışlı RHVT, alüminyumun ve çelik nozul sayısı 2, 3, 4, 5, 6 olan malzemelerinde basınçlı akışkan olarak hava kullanılan, 150 kpa dan başlayarak 700 kpa basınç değerine kadar 50 kpa aralıklarla, soğutma ısıtma performansları deneysel olarak incelenmiş ve deneysel sonuçlar grafiklerle değerlendirilerek performanslarının arttırılmasına yönelik önerilerde bulunulmuştur 2 Deneysel Çalışma Bu çalışmada, iç çapı 10 mm, gövde uzunluğu 100 mm olan karşıt akışlı RHVT kullanılmıştır RHVT genişliği 55 cm, yüksekliği 33 cm, kalınlığı 1,2 mm olan bir sac levha üzerine yatay konumda sabitlenmiş ve aynı ölçülerde, derinliği 30 cm olan bir çantanın içerisine Şekil 3 deki gibi yerleştirilmiştir RHVT giren baınçlı akışkanın basıncını ölçmek için %5 hassasiyetinde PAKKENS marka gliserinli manometre, hacimsel debilerini ölçmek için %1 hassasiyetinde TSI (Trust Science, Innovatıon) marka debimetreler RHVT ün çıkışlarına bağlanmıştır Bağlanan debimetre ile bağlandığı noktadaki basınç ve sıcaklık değerleri de okunmaktadır Sistemde basınçlı akışkan kaynağı olarak kompresör ve oksijen tüpü kullanılmıştır Sistem elemanları arasındaki bağlantılar basınca dayanıklı pnömatik hortum vasıtasıyla yapılmıştır RHVT nün girişi ile hava kompresörü arasında, 10 bar basınç dayanımı olan pnömatik hortum, quick kuplin vasıtasıyla bağlanmıştır Hava kompresörü çalıştırılmış ve tüpün akışkan girişindeki vana yardımıyla deneylerde başlangıç basıncı olan 150 kpa lık basınç sağlanmıştır Yapılan basınç ayarlamasından sonra RHVT nün sıcak ve soğuk akışkan çıkışına monte edilen ölçüm cihazlarında okunan sıcaklık değerleri sabit oluncaya kadar aynı basınçta hava, kompresörden gönderilmiştir

V KIRMACI et al/ ISITES2015 Valencia -Spain 1478 RHVT girişteki basınç, vorteks tüpünden çıkan sıcak-soğuk akışkanın sıcaklık ve basınç değerleriyle birlikte hacimsel debileri de okunmuştur Daha sonra 200 kpa olan basınç değerindeki deneye başlamadan önce vorteks tüpünün soğuk ve sıcak akışkan sıcaklığını ölçen dijital termometre ile ortam sıcaklığını ölçen dijital termometrelerin eşit sıcaklık değerine gelinceye kadar beklenmiş ve okunan değerler eşitlendikten sonra 200 kpa olan basınç değerindeki deneyler yapılmaya başlanmıştır 250, 300, 350, 400, 450, 500, 550, 600, 650 ve 700 kpa basınç değerleri için yapılan deneysel çalışmalarda imal alüminyumun ve çelik malzemesinden imal edilmiş olan bütün nozullarla tekrarlanmıştır RHVT de 150 kpa ve 700 kpa arasında basınçlı hava gönderilerek yapılan deneyler tamamlandıktan sonra hava kompresörü bağlantısı sistemden çıkarılarak, yerine basınçlı akışkan kaynağı olarak Oksijenin muhafaza edildiği tüp bağlanmıştır Hava için yapılan bütün deneyler oksijen tüpü ile de yapılarak deneyler tamamlanmıştır Deneyde elde edilen sonuçların doğruluğu için bir deney 3 kez tekrarlanmış ve elde edilen değerlerin ortalamaları alınmıştır 3 Bulgular ve Tartışma Şekil 3 Deneysel sistem Bir giriş ve bir çıkışlı sürekli akışlı açık sistemler için kütlenin korunumu, m gir m çkş (1) gir m : Girişteki akışkanın kütlesel debisi, kg/s çkş m : Çıkıştaki akışkanın kütlesel debisi, kg/s şeklinde yazılabilir Eşitlik 1 vorteks tüpü için Eşitlik 2 şeklinde yazılabilir

V KIRMACI et al/ ISITES2015 Valencia -Spain 1479 m çkş m a m b (2) Vorteks tüpünde performansa önemli ölçüde etki eden soğuk akışkanın kütle debisinin, girişteki akışkanın kütle debisine oranı y c olarak tanımlanmış ve Eşitlik 3 ile verilmiştir (23) mb (3) m gir y c m : Sıcak akışkanın kütlesel debisi, kg/s a m : Soğuk akışkanın kütlesel debisidir, kg/s b Girişteki akışkan sıcaklığı (T gir ) ile soğuk uçtaki akışkan sıcaklık (T sgk ) farkı, soğuk akışkan sıcaklık farkı T sgk olarak tanımlanmış ve Eşitlik 4 ile verilmiştir T T T (4) sgk sgk gir Girişteki akışkan sıcaklığı (T gir ) ile sıcak uçtaki akışkan sıcaklık (T sck ) farkı, sıcak akışkan sıcaklık farkı T sck olarak tanımlanmış ve Eşitlik 5 ile verilmiştir T T T (5) sck sck gir Deneysel sistemin performansı, sıcak akışkanın sıcaklığı ile soğuk akışkanın sıcaklığı arasındaki fark olan cinsinden Eşitlik 6 ile ifade edilmiştir (4) T T sck T sgk (6) Bu çalışmada, iç çapı 10 mm, gövde uzunluğu 100 mm olan karşıt akışlı RHVT ünde nozul malzemesi alüminyumun ve çelikten yapılmış 2, 3, 4, 5, 6 nozul sayılarında150 kpa dan başlayarak 700 kpa basınç değerine kadar 50 kpa aralıklarla basınçlı hava kullanarak soğutma ısıtma performansları deneysel olarak incelenmiştir RHVT, sıcak akışın çıkış tarafında bulunan vananın açılıp kapanması ile y c oranı değişmektedir Yapılmış olan bu deneysel çalışmada, vana tam açık konumda bırakılarak deneyler yapıldığından y c oranı sabittir RHVT de basınçlı akışkan olarak havanın kullanıldığı alüminyumun ve çelikten yapılmış 2, 3, 4, 5, 6 nozullarında giriş basıncı (P gir ) 150 kpa dan 50 kpa aralıklarla 700 kpa basınç değerine kadar RHVT ün soğuk akışkan çıkış ucunda ölçülen sıcaklıklar (T soğ ) Şekil 4 ve 5 te verilmiştir

V KIRMACI et al/ ISITES2015 Valencia -Spain 1480 Şekil 4 Çelik için T soğ değişimleri Şekil 5 Alüminyum için T soğ değişimleri Bütün nozul sayıları (N) için en düşük T soğ incelendiğinde, Çelik malzemeden üretilmiş N=4 ve P gir =700 kpa değerinde T soğ değeri -193 0 C (25385 K) olduğu, en yüksek T soğ incelendiğinde ise alüminyum malzemeden üretilmiş N=3 ve P gir =150 kpa değerinde 156 0 C (28875 K) olarak ölçülmüştür Çelik malzemeden üretilmiş nozullar incelendiğinde en yüksek T soğ değerinin N=2 ve P gir =150 kpa da 148 0 C (28795 K) olduğu görülmüştür (Şekil 4) Alüminyum malzemeden üretilmiş nozullar incelendiğinde ise en düşük T soğ değerinin N=4 ve P gir =700 kpa da -164 0 C (25675 K) olduğu deneysel olarak tespit edilmiştir (Şekil 5) RHVT de basınçlı akışkan olarak havanın kullanıldığı çelik ve alüminyumdan yapılmış 2, 3, 4, 5, 6 nozullarında 150 kpa dan 50 kpa aralıklarla 700 kpa basınç değerine kadar RHVT ün sıcak akışkan çıkış ucunda ölçülen sıcaklıklar (T sck ) Şekil 6 ve 7 de verilmiştir

V KIRMACI et al/ ISITES2015 Valencia -Spain 1481 Şekil 6 Çelik için T sck değişimleri Şekil 7 Alüminyum için T sck değişimleri Bütün N sayıları için en yüksek T sck incelendiğinde, çelik malzemeden üretilmiş N=6 ve P gir =700 kpa değerinde en yüksek T sck değerinin 391 0 C (312,25 K) olduğu, en düşük T sck incelendiğinde ise çelik malzemeden üretilmiş N=3 ve P gir =150 kpa değerinde T sck 140 0 C (287,15 K) olarak ölçülmüştür (Şekil 6) Alüminyum malzemeden üretilmiş nozullar incelendiğinde en yüksek T sck değerinin N=6 ve P gir =700 kpa da 372 0 C (31035 K) olduğu, en düşük T sck değerinin N=4 ve P gir =150 kpa da 150 0 C (28815 K) olduğu deneysel olarak tespit edilmiştir (Şekil 7) Bütün N sayıları için basınçlı akışkan olarak havanın kullanıldığı ve 150 kpa dan 50 kpa aralıklarla 700 kpa basınç değerlerindeki RHVT performans değeri olarak da adlandırılan sıcak

V KIRMACI et al/ ISITES2015 Valencia -Spain 1482 akışkan çıkış ucunda ölçülen T sck ile soğuk akışkan çıkış ucunda ölçülen T sgk arasındaki fark olan, T değerleri Şekil 8 de verilmiştir Şekil 8 Çelik ve Alüminyum için T (Tsıc - Tsoğ) değişimleri Bütün N sayıları için en yüksek T incelendiğinde, Çelik malzemeden üretilmiş N=6 ve P gir =700 kpa değerinde T değeri 566 0 C (32975 K) olduğu, en düşük T incelendiğinde ise alüminyum malzemeden üretilmiş N=2 ve P gir =150 kpa değerinde T değeri 09 0 C (27405 K) olarak ölçülmüştür Çelik malzemeden üretilmiş nozullar incelendiğinde ise en düşük T değerinin N=24 ve P gir =150 kpa da T değeri 35 0 C (27665 K) olduğu deneysel olarak tespit edilmiştir Alüminyum malzemeden üretilmiş nozullar incelendiğinde en yüksek T değerinin N=6 ve P gir =700 kpa da T değeri 519 0 C (32505 K) olduğu görülmüştür 3 Sonuç ve Öneriler Deneysel olarak yapılan bu çalışmada, y c oranı sabit tutulmuştur İç çapı 10 mm, gövde uzunluğu 100 mm olan karşıt akışlı RHVT, nozul sayısı 2, 3, 4, 5, 6 olan alüminyumun ve çelik malzemelerinden yapılmış, basınçlı akışkan olarak hava kullanılan, 150 kpa dan başlayarak 700 kpa basınç değerine kadar 50 kpa aralıklarla, soğutma ısıtma performansı deneysel olarak incelenmiştir Bu çalışma bir çok endüstriyel uygulama alanı olan Ranque - Hilsch vorteks tüpler performansları nozul malzemesi, nozul sayısı ve giriş basıncına göre deneysel olarak tespit edilmiştir Deneysel sonuçlar değerlendirildiğinde en iyi performans değerini giriş basıncı 700 kp da çelik malzemeden yapılmış 6 nozullu Ranque - Hilsch vorteks tüpü sağlamıştır Yapılan bu çalışma farklı nozul malzeleri ve sayıları ile yapılacak olan diğer bu tür çalışmalar için temel alınarak uygulanabileceği görüşüne sahip olunmuştur

V KIRMACI et al/ ISITES2015 Valencia -Spain 1483 Kaynakçalar [1] Kırmacı V, Usta H, Tenlik T, Vorteks Tüpünde Akışkan Olarak Hava Oksijen Karbondioksit Azot Ve Argon Kullanılarak Isıtma Soğutma Sıcaklık Performanslarının Deneysel Olarak Karşılaştırılması Sakarya Üniversitesi Fen Bilimleri Enstitüsü Dergisi 2006: 10 (2): 39-44 [2] Dincer K, Ateş A, Başkaya Ş, Karşıt Akışlı Ranque-Hilsch Vorteks Tüpünün Performansına Tapa Hareketinin Etkisinin Yapay Sinir Ağları Yöntemi İle Modellenmesi Uluslar Arası İleri Teknolojiler Sempozyumu (İats 09) 13-15 Mayıs 2009, Karabük, Türkiye [3] Cebeci İ, Karşıt Akışlı Ranque-Hilsch Vorteks Tüpünde Hava Ve Oksijen Akışkanlarının Farklı Nozul Numaralarında Enerji-Ekserji Analizlerinin Deneysel Olarak İncelenmesi Yüksek Lisans Tezi Fen Bilimleri Enstitüsü Bartın Üniversitesi 2013 [4] Kırmacı V, Uluer O, Dincer K, Exerg Analysis And Performance Of A Counter Flow Vortex Tube: An Experimental Investigation With Various Nozzle Numbers At Different Inlet Pressures Of Air, Oxygen, Nitrogen And Argon Journal Of Heat Transfer-Transactions Of The Asme 2010: 12: 121701-121701 [5] Balmer R, Pressure Driven Ranque-Hilsch Temperature Seperation İn Liquids Journal Of Fluids Engineering- Transactions Of Asme 1998: 110 (2): 161-164 [6] Kırmacı V, Uluer O, The Effects Of Orifice Nozzle Number On Heating And Cooling Performance Of Vortex Tubes: An Experimental Study Instrumentation Science And Technology 2008: 36 (5): 493-502 [7] Saidi MH, Yazdi MR, Exergy Model Of A Vortex Tube System With Experimental Result Exergy 1999: 24: 625-632 [8] Fröhlıngsdorf W, Unger H, Numerical Investigations Of Compressible Flow And The Eneryg Seperation İn The Ranque-Hilsch Vortex Tube International Journal Of Heat And Mass Transfer 1999: 42: 415-422 [9] Dincer K, Uysal B Z, Başkaya Ş, Sivrioğlu M, Üçgül İ, Dört Nozullu Vorteks Tüpünün Performansının Deneysel İncelenmesi 15Ulusal Isı Bilimi Ve Tekniği Kongresi Bildiri Kitabı Trabzon 2005: 596-601 [10] Dincer K, Başkaya Ş, Ekserji Analiz Metoduyla Karşıt Akışlı Ranque Hilsch Vorteks Tüpün Tapa Açısının Ekserji Verimliliğine Etkisinin Değerlendirilmesi Gazi Üniversitesi Mühendislik Mimarlık Fakültesi Dergisi 2009: 24 (3): 533-538 [11] Kırmacı V, Uluer O, An Experimental Investigation Of The Cold Mass Fraction, Nozzle Number And Inlet Pressure Effects On Performance Of Counter Flow Vortex Tube Journal Of Heat Transfer-Transactions Of The Asme 2009: 131 (8): 081701-081709

V KIRMACI et al/ ISITES2015 Valencia -Spain 1484 [12] Dincer K, Başkaya Ş, Üçgül İ, Uysal B Z, Giriş Ve Çıkış Kütlesel Debilerinin Bir Vorteks Tüpün Performansına Etkisinin Deneysel İncelenmesi 14Ulusal Isı Bilimi Ve Tekniği Kongresi Bildiri Kitabı Isparta 2003: 13-18 [13] Saidi, M H, Valipour M S, Experimental Modeling Of Vortex Tube Refrigerator Applied Thermal Engineering 2003: 23: 1971-1980 [14] Shannak, B, A, Temperature Seperation And Friction Loses In Vortex Tube Heat And Mass Transfer 2004: 40: 779-785 [15] Yılmaz, M, Çomaklı, Ö, Kaya, M Ve Karslı, S, Vortex Tüpleri: 1- Teknolojik Gelişim Mühendis ve Makine 2005: 47: 553 [16] Gao, C M, Bosschaart, K J, Zeegers, J, Waele, ATAM, Experimental Study On A Simple Ranque-Hilsch Vortex Tube Cryogenics 2005: 45: 173-183 [17] Skye, H M, Nellis, G F, Klein, S A, Comparision Of Analysis To Emprical Data İn A Commercial Vortex Tube International Journal Of Refrigeration 2006: 29: 71-80 [18] Wu, YT, Ding, Y, Ji, YB, Ma, CF, Ge, M C, Modification And Experimental Research On Vortex Tube International Journal Of Refrigeration 2007: 30: 1042-1049 [19] Eiamsa S, Promvonge, P, Review Of Ranque-Hilch Effects In A Vortex Tubes Renewable and Sustainable Energy Reviews 2008: 12: 1822-1842 [20] Nimbalkar, S U, Muller MR, An Experimental Investigation Of The Optimum Geometry For The Cold End Orifice Of A Vortex Tube Applied Thermal Engineering 2008: 29: 509-514 [21] Pinar A, Uluer O, Kırmacı V, Optımızatıon Of Counter Flow Ranque-Hilsch Vortex Tube Performance Using Taguchı Method International Journal Of Refrigeration 2009: 32 (6): 1487-1494 [22] Kırmacı V, Exergy Analysis And Performance Of A Ranque-Hilsch Counter Flow Vortex Tube Having Various Nozzle Numbers At Different Inlet Pressures Of Oxygen And Air International Journal Of Refrigeration 2009: 32 (7): 1626-1633 [23] Kırmacı V, Cebeci İ, Balalı MY, Altı Nozullu Karşıt Akışlı Vorteks Tüpünün Performansının Deneysel Olarak İncelenmesi Bartın Üniversitesi Mühendislik ve Teknoloji Bilimleri Dergisi 2013: 1 (1): 77-90