Enstrümantal Analiz, Cihazlar, FTIR, IR Uygulamalar

Ebat: px
Şu sayfadan göstermeyi başlat:

Download "Enstrümantal Analiz, Cihazlar, FTIR, IR Uygulamalar"

Transkript

1 IR ABSORBSİYON SPEKTROSKOPİSİ TEORİSİ Enstrümantal Analiz, Cihazlar, FTIR, IR Uygulamalar Elektromagnetik Spektrum X-ışını Ultraviyole İnfrared Mikro- Radyo frekansı dalga Ultraviyole Görünür Vibrasyonal Nükleer magnetik infrared rezonans 2.5 m 5 m m 5 m kısa yüksek yüksek dalga boyu () frekans () enerji uzun düşük düşük Dalga boyu (), m Geçirgenlik, % parmak izi bölgesi Dalga sayısı, cm -

2 2 Elektromagnetik Spektrumun infrared (IR) bölgesi, dalga sayısı cm - veya dalga boyu m aralığındaki ışını kapsar. Uygulama ve cihaz yönünden IR spektrum üç gruba bölünür: Dalga boyu, m Dalga sayısı, cm - Frekans, Hz Yakın IR x x 0 4 Orta IR x x 0 2 Uzak IR x x 0 Analitik uygulamalarda en çok kullanılan bölge, orta IR ışının bir bölümü olan cm - veya m aralığındaki kısımdır. İnfrared spektroskopisinin en çok kullanıldığı alan organik bileşiklerin tanımlanmasıdır; bu maddelerin spektrumlarında çok sayıda maksimum ve minimumların olduğu absorbsiyon bantları bulunur ve bunlar maddelerin birbirleriyle kıyaslanmasına olanak verir. Gerçekte bir organik maddenin spektrumu onun fiziksel özelliklerinden biridir ve optik izomerler dışında, teorik olarak aynı absorbsiyon spektrumu verebilen iki farklı madde yoktur. İnfrared spektrofotometre kalitatif-analitik bir cihaz olarak kullanıldığı gibi kantitatif analizlerde için de uygundur. Cihazın önemli bir avantajı seçici özelliğidir; örneğin, karışım içindeki bir maddenin kantitatif analizi herhangi bir ön ayırma yapmadan veya basit bir ön ayırma ile yapılabilir. Bu tip analizlerden en önemlileri endüstriyel atıkların neden olduğu atmosferik kirlerin saptanmasıdır. Çift-ışınlı bir spektrofotometreden alınan tipik bir infrared spektrum aşağıdaki şekilde görülmektedir. Ultraviyole ve görünür spektrumların tersine, çok sayıda maksimum ve minimumların bulunduğu bir dizi bantlar vardır. Şekilde ordinat geçirgenlikle orantılıdır (doğrusaldır); bazı cihazlarda ordinatın doğrusal olmayan absorbansa göre kalibre edildiği grafik kağıtları da kullanılır. Yine buradaki şekilde apsis dalga sayısını (cm - ) gösterir ve skala doğrusaldır, apsisin dalga boyunu gösterdiği doğrusal skalalı spektrumlar da vardır (bir skalanın diğerine çevrilmesi için en kolay yöntem cm - x m = 0000 ilişkisini hatırlamaktır).

3 3 Dalga boyu, m Geçirgenik (transmittance), % Dalga sayısı, cm - Polistirenin infrared absorbsiyon spektrumu (apsis skalası 2000 cm - de değişmektedir) Orijinal spektrum kağıdının üst kısmına dalga boyu skalası konularak apsis eksenindeki dalga sayısı ile kıyaslama olanağı sağlanmıştır. Bazı kağıtlarda her iki skala da bulunur, ancak bunlardan sadece biri doğrusal olabilir. Dalga sayısı, enerji ve frekans ile doğru orantılı bir miktar olduğundan çoğunlukla doğrusal dalga sayısı skalası tercih edilir (absorblanan ışının frekansı, molekülün titreşim frekansıdır). Frekansın apsis ekseni olarak kullanılması, çok büyük değerler olduğundan, arzu edilmez; örneğin, şekildeki cm - dalga sayısı skalası yerine frekans skalası kullanılması durumunda değerler.2 x x 0 3 Hz aralığında olur. cm - skalasına çoğu kez frekans skalası da denir, bu terim doğru değildir, çünkü dalga sayısı frekansla sadece doğru orantılıdır. Şekildeki apsis skalası 2000 cm - 'den küçük dalga boylarında iki misli genişletilmiştir. Bunun nedeni, pek çok maddenin tanımında kullanılan absorbsiyon bandlarının 2000 cm - 'den küçük dalga sayılarında bulunmasıdır. Titreşim ve Dönme Sırasında Dipol Değişmeleri Elektronik geçişler, bir molekülün ultraviyole veya görünür bölgede enerji absorblamasıyla gerçekleşir.

4 4 İnfrared ışının absorbsiyonu ise çeşitli titreşim ve dönme halleri arasındaki küçük enerji farkları ile sınırlandırılmıştır. İnfrared ışının absorblanması için moleküldeki titreşim veya dönme hareketlerinin molekülün dipolü momentini artırıcı yönde bir değişiklik yaratması gerekir. Işının değişen elektrik alanı, sadece bu koşullar altında moleküle etki eder ve molekül hareketlerinden birini daha da kuvvetlendirir. elektrik alanı (+) üzerindeki kuvvet, alan yönünde molekül sıkıştırılır dipol moment azalır (-) üzerindeki kuvvet, alanın zıt yönünde elektrik alanı (+) üzerindeki kuvvet, alan yönünde molekül gerdirilir dipol moment artar (-) üzerindeki kuvvet, alanın zıt yönünde Örneğin, hidrojen klorür gibi bir molekülün etrafındaki yük dağılımı simetrik değildir, klorür hidrojene göre daha yüksek bir elektron yoğunluğuna sahiptir. Bu nedenle hidrojen klorürün önemli derecede bir dipol momenti vardır, yani molekül polardır. Dipol momentini, yükler arasındaki farkın büyüklüğü ve iki yük merkezi arasındaki uzaklık belirler. Bir hidrojen klorür molekülü titreşirken, dipol momentinde düzgün bir dalgalanma olur ve bunun sonucunda bir alan oluşur. Bu alan ile ışının elektrik alanı birbirini etkiler. Eğer ışının frekansı molekülün tabii titreşim frekansı ile aynı seviyelerde ise moleküle ışından enerji geçişi olur ve moleküler titreşimin "genliği" değişir: sonuç ışının absorblanmasıdır. Benzer şekilde asimetrik moleküllerin kültle merkezleri etrafında dönmesiyle periyodik bir dipol dalgalanması olur; meydana gelen alan, ışının elektrik alanı ile etkileşime girer. O 2, N 2 veya Cl 2 gibi tek cins atomlu (homonükleer) moleküllerin titreşimleri veya dönmelerinde molekülün dipol momentini artırıcı bir değişiklik olmaz; bu nedenle böyle maddeler infrared ışın absorblamazlar.

5 5 Dönme Geçişleri Dönme seviyesinde bir değişiklik olması için gerekli enerji çok küçüktür ve 00 m veya daha büyük (<00 cm - ) dalga boylarındadır. Dönme seviyeleri belirli miktarlarda (kuvantize) enerji ile sınırlandırılmış olduğundan, uzak-infrared bölgede gazların ışın absorblaması tek tek, birbirinden ayrı ve çok iyi tanımlanan hatlar verir. Sıvılar ve katılarda moleküller arası çarpışmalar ve etkileşimler hatların bir süreklilik(ayrılmadan) içinde genişlemesine yol açar. Titreşim-Dönme Geçişleri Titreşim enerji seviyeleri de kuvantizedir ve kuvantum halleri arasındaki enerji farkları, cm - ( m) aralığındaki IR bölgedeki enerjiye uygundur. Bir gazın infrared spektrumu çok sayıda birbirine yakın hatlardan oluşur, çünkü her bir titreşim hali için birkaç dönme enerji hali vardır. Diğer taraftan dönme olayı sıvılar ve katılarda oldukça engellenmiştir; böyle örneklerde, tek tek titreşimdönme hatları kaybolur, sadece biraz genişlemiş titreşim pikleri gözlenir. Buradaki önemli konu dönme etkilerinin en az olduğu çözeltilerin, sıvıların ve katıların spektrumlarıdır. Moleküler Titreşim Tipleri Bir molekülde bulunan atomlardan herhangi birinin relatif (diğerlerine göre) durumu sabit olmayıp atomdaki çok sayıda ve değişik tipteki titreşimler nedeniyle sürekli bir dalgalanma halindedir. Basit bir iki-atomlu veya üç-atomlu moleküldeki titreşimlerin türü ve sayısını hesaplamak ve bunların absorblanan enerjiyle ilişkilerini çıkarmak oldukça kolaydır. Çok atomlu moleküller için ise bu hesaplamalar zordur; bunlarda çok sayıda titreşim merkezleri bulunduğu gibi bazı merkezler arasında çeşitli etkileşimler de vardır. Hesaplamalarda tüm etkilerin dikkate alınması gerekir. Titreşimler iki temel sınıfta toplanır:. Gerilme (stretching) titreşimleri: Bir gerilme titreşimi iki atom arasındaki uzaklığın, atomların bağ ekseni boyunca sürekli olarak değişmesiyle ilişkilidir. Asimetrik gerilme Simetrik gerilme

6 6 2. Eğilme (bending) titreşimleri. Eğilme titreşimleri iki bağ arasındaki açının değişmesi ile tanımlanır ve dört tiptir: Kesilme (scissoring) Bükülme (rocking) Sallanma (wagging)" Burulma (twistıng) Çeşitli titreşim tipleri şekilde görülmektedir. Tüm titreşim tipleri ikiden fazla atomlu moleküllerde bulunur. Ayrıca, tek bir merkez atomun bağları ile ilgili titreşimler birbirleri ile etkileşime girerler veya "birleşebilirler (kaplin)". Kapling sonucunda titreşimlerin normal haldeki özellikleri değişir. Asimetrik Gerilme Simetrik Gerilme (a) düzlem içi gerilme hareketleri Düzlem-içi kesilme (scissoring) Düzlem-içi bükülme (rocking) (b) düzlem içi eğilme hareketleri Düzlem-dışı burulma (twistıng) (c) düzlem dışı eğilme hareketleri Düzlem-dışı sallanma (wagging)

7 7 Gerilme Titreşimlerinin Mekanik Modeli İki kütlenin bir yay aracılığı ile birleştirilmesiyle yapılan mekanik bir modelle atomik gerilme titreşiminin özellikleri incelenebilir. Kütlelerden birinin yay ekseni boyunca hareket ettirilmesi bir titreşim yaratır; buna " basit harmonik hareket" denir. yay kuvveti yay kuvveti denge bağ uzunluğu gerilme sıkışma Sabit bir yere bağlanan bir yayın ucundaki kütle yay ekseni doğrultusunda uygulanan bir kuvvetle denge konumundan y kadar uzaklaştırılsın; kütlenin ilk konumuna gelmesi için gerekli karşı kuvvet (F), y ile orantılıdır (Hook kanunu). F = - k y F, geri çeken kuvvet, k kuvvet sabitidir (kuvvet sabiti yayın sertliğine bağlıdır). Formüldeki negatif işaret kuvvetin geri çekme kuvveti olduğunu gösterir. Harmonik Bir Osilatörün Potansiyel Enerjisi Kütlenin ve yayın potansiyel enerjisi, kütle denge konumunda olduğunda sıfır kabul edilebilir. Yay sıkıştırılır veya gerilirse sistemin potansiyel enerjisi artar; artış, kütleyi hareket ettirmek için gerekli işe eşittir. Örneğin, kütle bulunduğu y konumundan (y + dy) konumuna hareket ettirildiğinde yapılan iş ve bu nedenle E potansiyel enerjisindeki de değişimi, de = - F dy F = - k y ve de = - F dy birleştirilir ve denge konumu y = 0 ile y arasında integral alınırsa potansiyel enerji ifadesi elde edilir. de = k y dy

8 8 E y de = k y dy 0 0 E = k y 2 2 Basit bir harmonik osilasyonun yukarıdaki denklemden çıkarılan potansiyel enerji eğrisi aşağıda verilmiştir. Eğriden görüldüğü gibi, yay en yüksek kapasitesine kadar sıkıştırıldığında (-A), veya gerildiğinde (+A) potansiyel enerji maksimumdur, aradaki değerlerde denge konumunda sıfır olacak şekilde parabolik olarak azalır. - A Potansiyel enerji, E 0 m 0 +A - A 0 +A y Yer değiştirme enerji seviyesi V osilasyon periyodu kütlenin zamana göre konumu ve osilasyon periyodu t Titreşim Frekansı Potansiyel enerji diyagramı; harmonik osilatör, Kütlenin, zamanın(t) fonksiyonu olarak hareketi aşağıdaki gibi çıkarılabilir. Newton kanununa göre, F = m a m kütle, a ivmedir (hızlanma). İvme, uzaklığın zamana göre ikinci türevidir. d 2 y a = dt 2 F = ma eşitliğinde F yerine () deki ifade konulur,

9 9 d y 2 m a = = - ky dt 2 Bu denklemin çözümlerinden biri aşağıdaki ifadeyi verir, y = A k sin( t ) m Burada A, titreşim büyüklüğüdür, sabittir, ve y'nin en yüksek değerine eşittir. Bu eşitlik, y = A sin 2 t ile tarif edilen sinüzoidal fonksiyonla aynıdır. İki eşitliğin birleştirilmesiyle aşağıdaki eşitlikler elde edilir. k t = 2 t m m = 2 k m m, mekanik osilatörün "doğal frekansı" dır. Doğal frekans yayın kuvvet sabiti ve yaya bağlanan malzemenin kütlesine bağımlı, fakat sisteme verilen enerjiden bağımsızdır; enerjideki değişiklik sadece titreşimin büyüklüğünü(a) değiştirir. Elde edilen eşitlikler, bir yay ile birbirlerine bağlanmış m ve m 2 kütlelerinin oluşturduğu sistemin davranışlarını açıklayacak şekle dönüştürülebilir. Burada, tek m kütlesinin yerini "indirgenmiş kütle, " alır. İndirgenmiş kütle aşağıdaki gibi tarif edilir. m m 2 = m + m 2 böyle bir sistem için titreşim frekansı ifadesi bulunur k k (m m = + m 2 ) 2 = 2 m m 2 Bir moleküler titreşimin, yukarıda tarif edilen mekanik modele benzediği kabul edilebilir. Bu nedenle de moleküler titreşim frekansı, m ve m 2 yerine iki atomun kütleleri konularak m eşitliğinden hesaplanabilir; k kimyasal bağın kuvvet sabitidir. Bu eşitlikten anlaşılacağı gibi:

10 0. Kuvvet sabiti k büyüdüğünde, titreşim frekansı da (cm - birimiyle) büyür; şekilde, farklı kuvvet sbitleri için üç absorbsiyon piki görülmektedir. Absorbans Dalga sayısı, cm - 2. Titreşen atomik kütlenin büyümesiyle titreşim frekansı (cm - birimiyle) küçülür; şekilde, farklı kütleler için üç absorbsiyon piki görülmektedir. Absorbans Mid-Infrared_Spectroscopy-Part_II.ppt#5 Dalga sayısı, cm - Titreşimlerde Kuvantum Olayı Harmonik Osilatörler Normal mekanik denklemler atomik boyutlardaki taneciklerin davranışlarını tam olarak açıklayamaz. Örneğin, moleküler titreşim enerjilerinin kuvantize (belirli miktarlarda olmak) yapısı bu denklemlerde tanımlanmamıştır. Kuvantum mekaniğinin dalga denklemlerinin geliştirilmesi için de basit harmonik osilatör kavramından hareket edilebilir. Bu denklemlerin potansiyel enerjiye göre çözümüyle, E = ( + ) 2 h 2 k eşitliği elde edilir. Burada v, "titreşim kuvantum sayısı" dır ve sıfır dahil tam sayılarla ifade edilir. Buna göre, kuvantum mekaniği, normal mekaniğin tersine, bir vibratörden çıkan titreşimlerden sadece bazı belirli enerjileri kabul eder.

11 (k/) 2 terimi mekanik ve kuvantum eşitliklerinin her ikisinde de bulunur; Yukarıdaki denklemlerden aşağıdaki ifade elde edilir. m, mekanik modelin titreşim frekansıdır. E = ( + ) h m 2 Titreşim enerji seviyelerindeki geçişlerin ışın ile yapıldığını ve bu ışının enerjisinin de titreşim kuvantum halleri arasındaki E enerji farkına eşit olduğunu varsayalım (tabii aynı zamanda titreşimin dipolde dalgalanmaya neden olduğu da kabul ediliyor). Bu fark (E), nin tam sayılar olması nedeniyle, birbirini takip eden herhangi iki enerji seviyesi arasındaki enerji farkına eşittir; yani, h E = h m = 2 k Oda sıcaklığında moleküller temel halde (= 0) bulunurlar, doayısıya, E 0 = h m 2 yazılabilir. Birinci uyarılmış hale ( = ) geçmek için gerekli enerji 3 E = h m 2 Bu enerjiyi verilebilecek ışının enerjisi de 3 E ışın = ( h m - h m ) = h m 2 2 olmalıdır. Bu değişikliği yapabilecek ışının frekansı, bağın klasik titreşim frekansına ( m ) eşit olmalıdır. Bu durumda veya, h E ışın = h = E = h m = 2 k = m = 2 k ışın dalga sayısı birimi ile tanımlanırsa,

12 2 = 2 c k = 2 c k (m + m 2 ) m m 2 Burada (cm - ), bir absorbsiyon pikinin dalga sayısı, k(din/cm) ışığın kuvvet sabiti, c (cm/sn) ışık hızı ve m (g) ve m 2 (g), ve 2 atomlarının kütleleridir. Çeşitli kimyasal bağların kuvvet sabitleri bu eşitlik ve infrared ölçmelerle bulunabilir. Tek bağların pek çoğu için k değeri 3 x x 0 5 din/cm aralığındadır; hesaplarda ortalama olarak 5 x 0 5 değeri kullanılır. Eşitlik, çeşitli bağ tipleri için temel absorbsiyon piklerinin dalga sayılarını hesaplamada kullanılır (temel absorbsiyon piki, temel halden birinci uyarılmış hale geçiş nedeniyle oluşan piktir). Aşağıda böyle bir hesaplama örneği verilmiştir. Seçim Kuralları Enerji seviyesi 'den 2'ye, veya 2'den 3'e bir geçiş için gerekli olan enerji miktarları, 0 geçişi için gerekenle aynıdır. Ayrıca kuvantum teorisine göre bir geçişin olabilmesi için titreşim kuvantum sayısı değişikliklerin olması gerekir; buradan çok bilinen seçim kuralı halleri, v = ± bulunur. Titreşim seviyeleri eşit olarak dağıldığından, bir geçiş için sadece bir pik elde edilir. Anharmonik (Harmonik Olmayan) Osilatör Harmonik osilatörün klasik ve kuvantum mekaniği yönünden incelemesi daha önce yapılmıştı. Böyle bir vibratörün potansiyeli, kütleler arasındaki uzaklığın dalgalanmasıyla periyodik olarak değişir. Kalitatif yönden, moleküler titreşimin bu şekilde tarifi yetersizdir. Örneğin, iki atom birbirine yaklaştırıldıkça (sıkıştırma) çekirdekler arasındaki kulomb itmesi nedeniyle bir kuvvet oluşur ve oluşan kuvvetin yönü, bağı eski konumuna çekmek isteyen karşı kuvvetin yönü ile aynıdır; bu durumda, potansiyel enerjide harmonik modelde olduğundan daha hızlı bir yükselme beklenir. Osisilasyonun diğer uç noktasında ise (gerilme), karşı kuvvette ve tabii potansiyel enerjide bir azalma olur; bunun nedeni de atomlar arasındaki uzaklığın artmasıyla, atomların disosiyasyon olabileceği bir noktaya kadar gelinmesidir. Teorik olarak kuvantum mekaniğin dalga denklemleri, moleküler vibrasyonun doğruya çok yakın potansiyel-enerji eğrilerinin çizilmesine olanak verir. Ne yazık ki bu denklemlerin matematiksel yapısı çok karmaşıktır ve her sistem için kantitatif bir uygulama yapılamaz, denklemler ancak çok basit sistemler için çözülebilir.

13 3 Yine de eğrilerin anharmonik şekilde olması gerektiği kantitatif olarak saptanmıştır (Şekil). Bu eğriler bağın yapısı ve atomların özelliklerine göre harmonik davranışlardan az veya çok derecelerde saparlar. Harmonik ve anharmonik eğriler, düşük potansiyel enerjilerde benzer bir şekil alırlar. Potansiyel enerji, E 2 disosiyasyon enerjisi 2 harmonik - A Potansiyel enerji, E m 0 +A enerji seviyeleri 0 0 Atomlar - A arası uzaklık, 0 r +A y Potansiyel enerji diyagramı; anharmonik osilatör Anharmoniklik iki tip sapmayı açıklar:. Yüksek kuvantum sayılarına çıkıldıkça E küçülür ve seçim kuralı tam olarak karşılanamaz; sonuçta geçişlerde v = ±2 veya v= ±3 gözlenir. Bu tip geçişler, "overtone hatları" olarak tanımlanan ve temel hatların yaklaşık olarak iki-üç katı olan frekanslardaki bandları oluştururlar; overtone absorbsiyonun şiddeti çoğunlukla düşüktür ve pikler gözlenemeyebilirler. 2. Bir moleküldeki iki farklı titreşim birbirleriyle etkileşerek yeni absorbsiyon pikleri verebilirler. Yeni piklerin frekansları iki titreşimin temel frekanslarının yaklaşık olarak toplamına veya farkına eşittir; bunlara "kombinasyon" veya "fark" bandları denir ve şiddetleri çoğunlukla düşüktür. Overtone, kombinasyon ve fark bantları titreşim spektrumuna karmaşık bir görünüm verirler.

14 4 Titreşim Şekilleri İki atomlu ve üç atomlu basit moleküllerdeki titreşimlerin sayıları ve tipleri ile infrared absorbsiyona neden olup olmayacakları saptanabilir. Kompleks moleküller çeşitli atomlar ve değişik bağlar içerebilirler; çok sayıda titreşim oluşur ve bunların hepsinin de spektrumda bulunması halinde molekülün analizi oldukça zorlaşır. Çok atomlu (poliatomik) bir moleküldeki olabilecek titreşimlerin sayısı aşağıdaki gibi hesaplanabilir: Bir noktanın boşlukta yerleşebilmesi için üç koordinata gereksinim vardır; N tane noktanın yerinin belirlenmesi için her birine üçer taneden toplam 3N koordinat gerekir. Çok atomlu bir moleküldeki atomların her birine ait her bir koordinat bir "serbestlik derecesi" demektir; buna göre N atomlu bir molekülün serbestlik derecesi 3N dir. Bir molekülün hareketi tanımlanırken, aşağıdaki noktalar dikkate alınmalıdır: Tüm molekülün boşluktaki hareketi (bu, molekülün ağırlık merkezinin yer değiştirme hareketidir). Tüm molekülün kendi ağırlık merkezi etrafındaki dönme hareketi. Moleküldeki her atomun diğer atomlara göre olan hareketi (başka bir deyişle, her bir atomun kendi titreşimleri). Doğrusal olmayan bir molekülde yer değiştirme hareketinin tanımlanması için üç koordinata gereksinim vardır ve üç serbestlik derecesi kullanılır. Molekülün bir bütün olarak dönmesini tanımlamak için de üç serbestlik derecesi gerekir. Yani, yer değiştirme ve dönme hareketleri için toplam serbestlik derecesi sayısı 6'dır. N atomlu bir molekülün serbestlik derecesi 3N olduğuna göre kalan (3N-6) serbestlik dereceleri atomlar arasındaki hareketlere aittir ve molekül içindeki titreşimlerin sayısını verir. Doğrusal bir molekül özel bir durum gösterir, atomların hepsi tek ve doğru bir hat üzerinde bulunur. Böyle bir molekül bağ ekseni üzerinde dönme hareketi yapamayacağından dönme hareketini tarif etmek için iki serbestlik derecesi yeterli olur. Böylece, doğrusal bir moleküldeki titreşimlerin sayısı (3N-5) formülü ile verilir. (3N-6) veya (3N-5) den bulunan titreşimlerin her birine" normal titreşim şekli" denir. Her normal titreşim şekli için, Morse eğrisine benzer bir potansiyel enerji ilişkisi vardır ve daha önce incelenen seçim kuralları uygulanabilir. Ayrıca, titreşimin

15 5 harmonik davranışlar göstermeye başladığı düşük enerji seviyelerinde, bir titreşimin enerji seviyeleri arasındaki farklar birbirine eşit olur; böylece her titreşim için (dipolde değişiklik yapan) tek bir absorbsiyon bandı elde edilir. Gerçek hesapla bulunan normal titreşimlerin sayısı ile gözlenen absorbsiyon piklerinin sayısı aynı olmaz; pik sayısı çoğunlukla daha az olur. Çünkü: Molekülün simetrik yapısı, bazı titreşimlerin dipol momentte değişiklik yapmasına olanak vermez. İki veya daha fazla titreşimlerin enerjileri birbirine eşit veya çok yakın olabilir. Absorbsiyonun şiddeti çok düşük olabilir, spektrumda band gözlenemez. Titreşim enerjisi cihazın ölçme sınırları dışında kalabilir. Ayrıca, overtone, kombinasyon veya fark pikleri gibi pikler de bulunabilir. Titreşimlerin Kaplingi (Birleşmesi) Bir titreşimin enerjisi ve absorbsiyon pikinin dalga boyu moleküldeki diğer titreşimlerden etkilenebilir (kapling). Bu tür etkileşimlerin nedeni saptamak mümkündür. Gerilme titreşimleri arasında kuvvetli bir kapling, sadece bir atomun iki titreşime birden katılması halinde olur. Eğilme titreşimleri arasında bir etkileşim olabilmesi için, titreşen gruplar arasında ortak bir bağ olması gerekir. Bir gerilme ve bir eğilme titreşimi arasında kapling olması için, gerilme bağının, eğilme titreşiminde değişen açının bir kenarı olması gerekir. Birleşen grupların enerjilerinin yaklaşık olarak birbirine eşit olması halinde etkileşim en üst düzeydedir. Birbirinden iki veya daha fazla bağ uzakta bulunan gruplar arasındaki etkileşim ya çok az olur veya hiç olmaz. Kapling olabilmesi için titreşimler aynı tür simetride bulunmalıdırlar. Kapling etkisini açıklamak için bir karbon dioksitin IR spektrumunu inceleyelim. İki C O bağı arasında kaling olmasaydı, beklenen absorbsiyon pikinin dalga sayısı, alifatik bir ketondaki C O gerilme titreşimi için bulunan dalga sayısı (~700 cm - =

16 6 6 m) ile aynı olurdu. Oysa, karbon dioksit deneysel olarak 2330 cm - (4.3m) ve 667 cm - (5 m) de iki absorbsiyon piki verir. Karbon dioksit doğrusal bir moleküldür, bu nedenle dört (3N 5 = 3 x 3 5 = 4) normal titreşim şekli bulunmalıdır. İki gerilme titreşimi olabilir; bunlar, bağların aynı karbon atomuna (ortak) bağlı olması nedeniyle birbiriyle etkileşim içindedirler. Aşağıda görüldüğü gibi birleşen titreşimlerden biri simetrik, diğeri ise asimetriktir. simetrik asimetrik Simetrik titreşim dipolde değişiklik yaratmaz, çünkü iki oksijen atomunun merkez atomuna göre hareketi birbirinin aynısıdır. Bu nedenle simetrik titreşim infraredinaktiftir (yani infrared bölgede absorbsiyon yapmaz). Asimetrik titreşimde ise oksijenlerden biri karbon atomuna yaklaşırken diğeri uzaklaşır. Bunun sonucunda yük dağılımında periyodik olarak bir değişiklik oluşur; 2330 cm - 'deki ışın absorblanır. Karbon dioksidin diğer iki temel titreşimin şekli, aşağıda görülen kesilme titreşimleridir İki eğilme titreşimi, bağ ekseni etrafında bulunabilecek tüm düzlemlerdeki eğilme hareketlerinin, birbirine göre 90 derecelik açı yapan iki ayrı düzlem üzerinde toplanmış bileşenleridir. İki titreşimin enerjisi birbirine eşittir ve bu nedenle 667 cm - de sadece bir pik elde edilir (kuvantum enerji farklarının eşit olması haline, bu örnekde olduğu gibi, dejenere denir). Karbon dioksit spektrumunun su, kükürt dioksit veya azot oksit gibi üç atomlu ve doğrusal olmayan bir molekülle kıyaslamasını yapalım. Bu moleküllerde üç (3N - 6 = 3 x 3-6 = 3) temel titreşim şekli bulunmalıdır, bunlar aşağıdaki gibi gösterilebilir:

17 7 simetrik gerilme asimetrik gerilme kesilme Merkezi atom diğer iki atom ile aynı eksen üzerinde olmadığından, simetrik gerilme titreşimi dipolde değişiklik yaratır ve böylece infrared absorbsiyon olur. Örneğin, su molekülünde simetrik gerilme titreşim piki 3650 cm - (2.74 m) de, asimetrik gerilme titreşim piki 3760 cm - (2.66m)de çıkar. Doğrusal olmayan böyle bir molekül için kesilme titreşimini gösteren sadece bir bileşen vardır; çünkü molekülün bulunduğu düzlemdeki hareket bir serbestlik derecesini belirler. Su için eğilme titreşimi 595 cm - de ( 6.27 m) absorbsiyona neden olur. Doğrusal ve doğrusal olmayan üç atomlu moleküllerin davranışlarındaki farklılık (birincide iki, ikincide üç absorbsiyon bandı), infrared-absorbsiyon spektroskopisinin bazı hallerde molekülün şekli hakkında da bilgi verebildiğini gösterir. Titreşimlerin kaplingi ortak bir olaydır; bu nedenle bir organik fonksiyonel grubun absorbsiyon pikinin bulunacağı yer (dalga sayısı veya dalga boyu) kesin olarak saptanamaz. Örneğin, metanolün C O gerilme titreşim bandı 034 cm - (9.67m)de, etanolünki 053 cm - (9.50 m) de, metiletilkarbinolün ise 05 cm - (9.05m) dedir. Bu farlılıklar, CO gerilmesinin komşu CC veya CH titreşimleri ile kaplinginden kaynaklanır. Bağlar arasındaki etkileşim, bir bileşikte bulunan fonksiyonel grupların tanımında kararsızlık ve hatalara neden olabilir. Bunun için özel bileşiklerin tanımında önceden hazırlanmış standart infrared absorbsiyon spektrumlarından yararlanılır.

18 8 IŞIN KAYNAKLARI DALGA BOYU SEÇİCİLER DEDEKTÖRLER ÖRNEK KAPLARI VE ÖRNEK HAZIRLAMA BAZI TİPİK CİHAZLAR FOURİER TRANSFORM IR, FTIR IR UYGULAMALAR Yararlanılan Kaynaklar Principles of Instrumental Analysis, D.A.Skoog, D.M. West, II. Ed. 98

ALETLİ ANALİZ YÖNTEMLERİ

ALETLİ ANALİZ YÖNTEMLERİ ALETLİ ANALİZ YÖNTEMLERİ Infrared (IR) ve Raman Spektroskopisi Yrd. Doç. Dr. Gökçe MEREY TİTREŞİM Molekülleri oluşturan atomlar sürekli bir hareket içindedir. Molekülde: Öteleme hareketleri, Bir eksen

Detaylı

Enstrümantal Analiz, Elektromagnetik Işının Özellikleri

Enstrümantal Analiz, Elektromagnetik Işının Özellikleri 1 ELEKTROMAGNETİK IŞIN Absorbsiyon ve Emisyon Enstrümantal Analiz, Elektromagnetik Işının Özellikleri Vakumdan gelerek bir maddenin yüzeyleri arasına giren ışının elektriksel vektörü, ortamda bulunan atom

Detaylı

BÖLÜM 12-15 HARMONİK OSİLATÖR

BÖLÜM 12-15 HARMONİK OSİLATÖR BÖLÜM 12-15 HARMONİK OSİLATÖR Hemen hemen her sistem, dengeye yaklaşırken bir harmonik osilatör gibi davranabilir. Kuantum mekaniğinde sadece sayılı bir kaç problem kesin olarak çözülebilmektedir. Örnekler

Detaylı

Infrared Spektroskopisi ve Kütle Spektrometrisi

Infrared Spektroskopisi ve Kütle Spektrometrisi Infrared Spektroskopisi ve Kütle Spektrometrisi 1 Giriş Spektroskopi, yapı tayininde kullanılan analitik bir tekniktir. Nümuneyi hiç bozmaz veya çok az bozar. Nümuneden geçirilen ışımanın dalga boyu değiştirilir

Detaylı

Dalga boyu aralığı Bölge. Dalga sayısı aralığı (cm. ) Yakın 0.78-2.5 12800-4000 Orta 2.5-50 4000-200 Uzak 50-1000 200-10

Dalga boyu aralığı Bölge. Dalga sayısı aralığı (cm. ) Yakın 0.78-2.5 12800-4000 Orta 2.5-50 4000-200 Uzak 50-1000 200-10 IR spektroskopisi Dalga boyu aralığı Bölge Dalga sayısı aralığı (cm (mm) ) Yakın 0.78-2.5 12800-4000 Orta 2.5-50 4000-200 Uzak 50-1000 200-10 Kızıl ötesi bölgesinde soğurma, moleküllerin titreşme ve dönme

Detaylı

MIT Açık Ders Malzemeleri http://ocw.mit.edu. 5.62 Fizikokimya II 2008 Bahar

MIT Açık Ders Malzemeleri http://ocw.mit.edu. 5.62 Fizikokimya II 2008 Bahar MIT Açık Ders Malzemeleri http://ocw.mit.edu 5.62 Fizikokimya II 2008 Bahar Bu materyallerden alıntı yapmak veya Kullanım Şartları hakkında bilgi almak için http://ocw.mit.edu/terms ve http://tuba.acikders.org.tr

Detaylı

Bileşiğin basit formülünün bulunması (moleküldeki C, H, O, X atomlarının oranından, veya molekül ağırlığından)

Bileşiğin basit formülünün bulunması (moleküldeki C, H, O, X atomlarının oranından, veya molekül ağırlığından) 1 SPEKTROSKOPİ PROBLEMLERİ Ref. e_makaleleri, Enstrümantal Analiz, Kütle Spektrometre Uygulamaları Molekül yapısı bilinmeyen bir organik molekülün yapısal formülünün tayin edilmesi istendiğinde, başlangıç

Detaylı

MIT Açık Ders Malzemeleri http://ocw.mit.edu. 5.62 Fizikokimya II. 2008 Bahar

MIT Açık Ders Malzemeleri http://ocw.mit.edu. 5.62 Fizikokimya II. 2008 Bahar MIT Açık Ders Malzemeleri http://ocw.mit.edu 5.62 Fizikokimya II 2008 Bahar Bu materyallerden alıntı yapmak veya Kullanım Şartları hakkında bilgi almak için http://ocw.mit.edu/terms ve http://tuba.acikders.org.tr

Detaylı

OPTİK ÇEVİRME DAĞILIMI VE DAİRESEL DİKROİZM

OPTİK ÇEVİRME DAĞILIMI VE DAİRESEL DİKROİZM 1 OPTİK ÇEVİRME DAĞILIMI VE DAİRESEL DİKROİZM Ref. e_makaleleri, Enstrümantal Analiz Optik çevirme dağılımı ve dairesel dikroizm, her ikisi de, dairesel polarize ışının optikce aktif taneciklerle etkileşimine

Detaylı

BÖLÜM 35 TİTREŞİM SPEKTROSKOPİSİ

BÖLÜM 35 TİTREŞİM SPEKTROSKOPİSİ BÖLÜM 35 TİTREŞİM SPEKTROSKOPİSİ Bu ders kapsamında defalarca vurguladığımız gibi, Born-Oppenheimer yaklaşımıyla çekirdekler, elektronların tanımladığı bir potansiyel enerji yüzeyinde (PEY) hareket eder.

Detaylı

gelen ışın gelme açısı

gelen ışın gelme açısı 1 REFRAKTOMETRİ Ref. e_makaleleri, Enstrümantal Analiz gelen ışın gelme açısı normal 1 M 1, az yoğun ortam 2 kırılma açısı kırılan ışın M 2, çok yoğun ortam n 2 > n 1 varsayılıyor 1 > 2 Şeffaf bir ortamdan

Detaylı

Dielektrik malzeme DİELEKTRİK ÖZELLİKLER. Elektriksel Kutuplaşma. Dielektrik malzemeler. Kutuplaşma Türleri 15.4.2015. Elektronik kutuplaşma

Dielektrik malzeme DİELEKTRİK ÖZELLİKLER. Elektriksel Kutuplaşma. Dielektrik malzemeler. Kutuplaşma Türleri 15.4.2015. Elektronik kutuplaşma Dielektrik malzeme DİELEKTRİK ÖZELLİKLER Dielektrik malzemeler; serbest elektron yoktur, yalıtkan malzemelerdir, uygulanan elektriksel alandan etkilenebilirler. 1 2 Dielektrik malzemeler Elektriksel alan

Detaylı

5.111 Ders Özeti #12. Konular: I. Oktet kuralından sapmalar

5.111 Ders Özeti #12. Konular: I. Oktet kuralından sapmalar 5.111 Ders Özeti #12 Bugün için okuma: Bölüm 2.9 (3. Baskıda 2.10), Bölüm 2.10 (3. Baskıda 2.11), Bölüm 2.11 (3. Baskıda 2.12), Bölüm 2.3 (3. Baskıda 2.1), Bölüm 2.12 (3. Baskıda 2.13). Ders #13 için okuma:

Detaylı

Ref. e_makaleleri, Enstrümantal Analiz, Deneysel Yöntemler

Ref. e_makaleleri, Enstrümantal Analiz, Deneysel Yöntemler 1 NMR SPEKTROSKOPİSİ NMR TEORİSİ Ref. e_makaleleri, Enstrümantal Analiz, Deneysel Yöntemler Elektromagnetik Spektrum AM radyo kısa dalga radyo televizyon FM radyo mikro dalgalar radar mm dalgalar telemetri

Detaylı

ELEMENT VE BİLEŞİKLER

ELEMENT VE BİLEŞİKLER ELEMENT VE BİLEŞİKLER 1- Elementler ve Elementlerin Özellikleri: a) Elementler: Aynı cins atomlardan oluşan, fiziksel ya da kimyasal yollarla kendinden daha basit ve farklı maddelere ayrılamayan saf maddelere

Detaylı

BÖLÜM 4: MADDESEL NOKTANIN KİNETİĞİ: İMPULS ve MOMENTUM

BÖLÜM 4: MADDESEL NOKTANIN KİNETİĞİ: İMPULS ve MOMENTUM BÖLÜM 4: MADDESEL NOKTANIN KİNETİĞİ: İMPULS ve MOMENTUM 4.1. Giriş Bir önceki bölümde, hareket denklemi F = ma nın, maddesel noktanın yer değiştirmesine göre integrasyonu ile elde edilen iş ve enerji denklemlerini

Detaylı

MIT Açık Ders Malzemeleri http://ocw.mit.edu. 5.62 Fizikokimya II 2008 Bahar

MIT Açık Ders Malzemeleri http://ocw.mit.edu. 5.62 Fizikokimya II 2008 Bahar MIT Açık Ders Malzemeleri http://ocw.mit.edu 5.62 Fizikokimya II 2008 Bahar Bu materyallerden alıntı yapmak veya Kullanım Şartları hakkında bilgi almak in http://ocw.mit.edu/terms ve http://tuba.acikders.org.tr

Detaylı

HAREKET HAREKET KUVVET İLİŞKİSİ

HAREKET HAREKET KUVVET İLİŞKİSİ HAREKET HAREKET KUVVET İLİŞKİSİ Sabit kabul edilen bir noktaya göre bir cismin konumundaki değişikliğe hareket denir. Bu sabit noktaya referans noktası denir. Fizikte hareket üçe ayrılır Ötelenme Hareketi:

Detaylı

8.04 Kuantum Fiziği Ders XII

8.04 Kuantum Fiziği Ders XII Enerji ölçümünden sonra Sonucu E i olan enerji ölçümünden sonra parçacık enerji özdurumu u i de olacak ve daha sonraki ardışık tüm enerji ölçümleri E i enerjisini verecektir. Ölçüm yapılmadan önce enerji

Detaylı

SPEKTROSKOPİ. Spektroskopi ile İlgili Terimler

SPEKTROSKOPİ. Spektroskopi ile İlgili Terimler SPEKTROSKOPİ Spektroskopi ile İlgili Terimler Bir örnekteki atom, molekül veya iyonlardaki elektronların bir enerji düzeyinden diğerine geçişleri sırasında absorplanan veya yayılan elektromanyetik ışımanın,

Detaylı

ALETLİ ANALİZ YÖNTEMLERİ

ALETLİ ANALİZ YÖNTEMLERİ ALETLİ ANALİZ YÖNTEMLERİ Nükleer Manyetik Rezonans (NMR) Spektroskopisi Yrd. Doç. Dr. Gökçe MEREY GİRİŞ NMR organik bilesiklerin yapılarının belirlenmesinde kullanılan en güçlü tekniktir. Çok çesitli çekirdeklerin

Detaylı

Nükleer Manyetik Rezonans Spektroskopisi

Nükleer Manyetik Rezonans Spektroskopisi Nükleer Manyetik Rezonans Spektroskopisi Giriş NMR organik bileşiklerin yapılarının belirlenmesinde kullanılan en güçlü tekniktir. Çok çeşitli çekirdeklerin çalışılmasında kullanılabilir : 1 H 13 C 15

Detaylı

Ultraviyole-Görünür Bölge Absorpsiyon Spektroskopisi

Ultraviyole-Görünür Bölge Absorpsiyon Spektroskopisi UV Ultraviyole-Görünür Bölge Absorpsiyon Spektroskopisi Doğrudan alınan güneşışığı %47 kızılötesi, %46 görünür ışık ve %7 morötesi ışınımdan oluşur. Spektroskopik Yöntemler Spektrofotometri (UV-Visible,

Detaylı

AKDENİZ ÜNİVERSİTESİ. Anten Parametrelerinin Temelleri. Samet YALÇIN

AKDENİZ ÜNİVERSİTESİ. Anten Parametrelerinin Temelleri. Samet YALÇIN AKDENİZ ÜNİVERSİTESİ Anten Parametrelerinin Temelleri Samet YALÇIN Anten Parametrelerinin Temelleri GİRİŞ: Bir antenin parametrelerini tanımlayabilmek için anten parametreleri gereklidir. Anten performansından

Detaylı

İstatistiksel Mekanik I

İstatistiksel Mekanik I MIT Açık Ders Malzemeleri http://ocw.mit.edu 8.333 İstatistiksel Mekanik I: Parçacıkların İstatistiksel Mekaniği 2007 Güz Bu materyallerden alıntı yapmak veya Kullanım Şartları hakkında bilgi almak için

Detaylı

Bugün için Okuma: Bölüm 1.5 (3. Baskıda 1.3), Bölüm 1.6 (3. Baskıda 1.4 )

Bugün için Okuma: Bölüm 1.5 (3. Baskıda 1.3), Bölüm 1.6 (3. Baskıda 1.4 ) 5.111 Ders Özeti #4 Bugün için Okuma: Bölüm 1.5 (3. Baskıda 1.3), Bölüm 1.6 (3. Baskıda 1.4 ) Ders #5 için Okuma: Bölüm 1.3 (3. Baskıda 1.6 ) Atomik Spektrumlar, Bölüm 1.7 de eģitlik 9b ye kadar (3. Baskıda

Detaylı

GÜNEŞİN ELEKTROMANYETİK SPEKTRUMU

GÜNEŞİN ELEKTROMANYETİK SPEKTRUMU GÜNEŞİN ELEKTROMANYETİK SPEKTRUMU Güneş ışınımı değişik dalga boylarında yayılır. Yayılan bu dalga boylarının sıralı görünümü de güneş spektrumu olarak isimlendirilir. Tam olarak ifade edilecek olursa;

Detaylı

Raman Spektroskopisi

Raman Spektroskopisi Raman Spektroskopisi Çalışma İlkesi: Bir numunenin GB veya yakın-ir monokromatik ışından oluşan güçlü bir lazer kaynağıyla ışınlanmasıyla saçılan ışının belirli bir açıdan ölçümüne dayanır. Moleküllerin

Detaylı

MALZEME BİLGİSİ DERS 7 DR. FATİH AY. www.fatihay.net fatihay@fatihay.net

MALZEME BİLGİSİ DERS 7 DR. FATİH AY. www.fatihay.net fatihay@fatihay.net MALZEME BİLGİSİ DERS 7 DR. FATİH AY www.fatihay.net fatihay@fatihay.net GEÇEN HAFTA KRİSTAL KAFES NOKTALARI KRİSTAL KAFES DOĞRULTULARI KRİSTAL KAFES DÜZLEMLERİ DOĞRUSAL VE DÜZLEMSEL YOĞUNLUK KRİSTAL VE

Detaylı

ELEKTRİK VE ELEKTRİK DEVRELERİ 2

ELEKTRİK VE ELEKTRİK DEVRELERİ 2 1 ELEKTİK VE ELEKTİK DEVELEİ ALTENATİF AKIM Enstrümantal Analiz, Doğru Akım Analitik sinyal transduserlerinden çıkan elektrik periyodik bir salınım gösterir. Bu salınımlar akım veya potansiyelin zamana

Detaylı

Ref. e_makaleleri, Enstrümantal Analiz, IR ve 1 H NMR ile Yapı Tayini

Ref. e_makaleleri, Enstrümantal Analiz, IR ve 1 H NMR ile Yapı Tayini 1 1 H NMR İLE KALİTATİF ANALİZ-1 1 H NMR ile Yapı Tayini Ref. e_makaleleri, Enstrümantal Analiz, IR ve 1 H NMR ile Yapı Tayini Her NMR spektrumu bir karmaşık bilgiler topluluğudur. Spektrayı kolaylıkla

Detaylı

BÖLÜM 1: MADDESEL NOKTANIN KİNEMATİĞİ

BÖLÜM 1: MADDESEL NOKTANIN KİNEMATİĞİ BÖLÜM 1: MADDESEL NOKTANIN KİNEMATİĞİ 1.1. Giriş Kinematik, daha öncede vurgulandığı üzere, harekete sebep olan veya hareketin bir sonucu olarak ortaya çıkan kuvvetleri dikkate almadan cisimlerin hareketini

Detaylı

DENEY 1 - SABİT HIZLA DÜZGÜN DOĞRUSAL HAREKET

DENEY 1 - SABİT HIZLA DÜZGÜN DOĞRUSAL HAREKET AMAÇ: DENEY 1 - SABİT HIZLA DÜZGÜN DOĞRUSAL HAREKET Bir nesnenin sabit hızda, net kuvvetin etkisi altında olmadan, düzgün bir hat üzerinde hareket etmesini doğrulamak ve bu hızı hesaplamaktır. GENEL BİLGİLER:

Detaylı

Toplam İkinci harmonik. Temel Üçüncü harmonik. Şekil 1. Temel, ikinci ve üçüncü harmoniğin toplamı

Toplam İkinci harmonik. Temel Üçüncü harmonik. Şekil 1. Temel, ikinci ve üçüncü harmoniğin toplamı FOURIER SERİLERİ Bu bölümde Fourier serilerinden bahsedeceğim. Önce harmoniklerle (katsıklıklarla) ilişkili sinüsoidin tanımından başlıyacağım ve serilerin trigonometrik açılımlarını kullanarak katsayıları

Detaylı

MIT Açık Ders Malzemeleri http://ocw.mit.edu. 5.62 Fizikokimya II 2008 Bahar

MIT Açık Ders Malzemeleri http://ocw.mit.edu. 5.62 Fizikokimya II 2008 Bahar MIT Açık Ders Malzemeleri http://ocw.mit.edu 5.62 Fizikokimya II 2008 Bahar Bu materyallerden alıntı yapmak veya Kullanım Şartları hakkında bilgi almak için http://ocw.mit.edu/terms ve http://tuba.acikders.org.tr

Detaylı

Maddeye hareket veren kuvveti, Isaac Newton (1642-1727) aşağıdaki matematiksel ifadeyle tanımlamıştır.

Maddeye hareket veren kuvveti, Isaac Newton (1642-1727) aşağıdaki matematiksel ifadeyle tanımlamıştır. 1 1. TEMEL TARİF VE KAVRAMLAR (Ref. e_makaleleri) Kuvvet Maddeye hareket veren kuvveti, Isaac Newton (1642-1727) aşağıdaki matematiksel ifadeyle tanımlamıştır. F=ma Burada F bir madde parçacığına uygulanan

Detaylı

BİLECİK ŞEYH EDEBALİ ÜNİVERSİTESİ MÜHENDİSLİK FAKÜLTESİ MAKİNE VE İMALAT MÜHENDİSLİĞİ BÖLÜMÜ

BİLECİK ŞEYH EDEBALİ ÜNİVERSİTESİ MÜHENDİSLİK FAKÜLTESİ MAKİNE VE İMALAT MÜHENDİSLİĞİ BÖLÜMÜ BİLECİK ŞEYH EDEBALİ ÜNİVERSİTESİ MÜHENDİSLİK FAKÜLTESİ MAKİNE VE İMALAT MÜHENDİSLİĞİ BÖLÜMÜ MÜHENDİSLİKTE DENEYSEL METOTLAR II DOĞRUSAL ISI İLETİMİ DENEYİ 1.Deneyin Adı: Doğrusal ısı iletimi deneyi..

Detaylı

KİMYA -ATOM MODELLERİ-

KİMYA -ATOM MODELLERİ- KİMYA -ATOM MODELLERİ- ATOM MODELLERİNİN TARİHÇESİ Bir çok bilim adamı tarih boyunca atomun yapısı ile ilgili pek çok fikir ortaya atmış ve atomun yapısını tanımlamaya çalışmış-tır. Zaman içerisinde teknoloji

Detaylı

Ref. e_makaleleri, Enstrümantal Analiz, NMR Teorisi

Ref. e_makaleleri, Enstrümantal Analiz, NMR Teorisi 1 NMR SPEKTROSKOPİSİ, DENEYSEL YÖNTEMLER Ref. e_makaleleri, Enstrümantal Analiz, NMR Teorisi Nükleer magnetik rezonans cihazları "yüksek-rezolusyon" veya "geniş-hat" cihazlarıdır. Bunlardan sadece yüksek-rezolusyon

Detaylı

Kuantum Fiziğinin Gelişimi (Quantum Physics) 1900 den 1930 a

Kuantum Fiziğinin Gelişimi (Quantum Physics) 1900 den 1930 a Kuantum Fiziğinin Gelişimi (Quantum Physics) 1900 den 1930 a Kuantum Mekaniği Düşüncesinin Gelişimi Dalga Mekaniği Olarak da Adlandırılır Atom, Molekül ve Çekirdeği Açıklamada Oldukça Başarılıdır Kuantum

Detaylı

2 MALZEME ÖZELLİKLERİ

2 MALZEME ÖZELLİKLERİ ÖNSÖZ İÇİNDEKİLER III Bölüm 1 TEMEL KAVRAMLAR 11 1.1. Fizik 12 1.2. Fiziksel Büyüklükler 12 1.3. Ölçme ve Birim Sistemleri 13 1.4. Çevirmeler 15 1.5. Üstel İfadeler ve İşlemler 18 1.6. Boyut Denklemleri

Detaylı

2+ 2- Mg SO 4. (NH 4 ) 2 SO 4 (amonyum sülfat) bileşiğini katyon ve anyonlara ayıralım.

2+ 2- Mg SO 4. (NH 4 ) 2 SO 4 (amonyum sülfat) bileşiğini katyon ve anyonlara ayıralım. KONU: Kimyasal Tepkimeler Dersin Adı Dersin Konusu İYONİK BİLEŞİKLERİN FORMÜLLERİNİN YAZILMASI İyonik bağlı bileşiklerin formüllerini yazmak için atomların yüklerini bilmek gerekir. Bunu da daha önceki

Detaylı

BÖLÜM I GİRİŞ (1.1) y(t) veya y(x) T veya λ. a t veya x. Şekil 1.1 Dalga. a genlik, T peryod (veya λ dalga boyu)

BÖLÜM I GİRİŞ (1.1) y(t) veya y(x) T veya λ. a t veya x. Şekil 1.1 Dalga. a genlik, T peryod (veya λ dalga boyu) BÖLÜM I GİRİŞ 1.1 Sinyal Bir sistemin durum ve davranış bilgilerini taşıyan, bir veya daha fazla değişken ile tanımlanan bir fonksiyon olup veri işlemde dalga olarak adlandırılır. Bir dalga, genliği, dalga

Detaylı

Mekanik. 1.3.33-00 İp dalgalarının faz hızı. Dinamik. İhtiyacınız Olanlar:

Mekanik. 1.3.33-00 İp dalgalarının faz hızı. Dinamik. İhtiyacınız Olanlar: Mekanik Dinamik İp dalgalarının faz hızı Neler öğrenebilirsiniz? Dalgaboyu Faz hızı Grup hızı Dalga denklemi Harmonik dalga İlke: Bir dört köşeli halat (ip) gösterim motoru arasından geçirilir ve bir lineer

Detaylı

1. Giriş 2. Yayınma Mekanizmaları 3. Kararlı Karasız Yayınma 4. Yayınmayı etkileyen faktörler 5. Yarı iletkenlerde yayınma 6. Diğer yayınma yolları

1. Giriş 2. Yayınma Mekanizmaları 3. Kararlı Karasız Yayınma 4. Yayınmayı etkileyen faktörler 5. Yarı iletkenlerde yayınma 6. Diğer yayınma yolları 1. Giriş 2. Yayınma Mekanizmaları 3. Kararlı Karasız Yayınma 4. Yayınmayı etkileyen faktörler 5. Yarı iletkenlerde yayınma 6. Diğer yayınma yolları Sol üstte yüzey seftleştirme işlemi uygulanmış bir çelik

Detaylı

Bölüm 3 SAF MADDENİN ÖZELLİKLERİ

Bölüm 3 SAF MADDENİN ÖZELLİKLERİ Bölüm 3 SAF MADDENİN ÖZELLİKLERİ 1 Amaçlar Amaçlar Saf madde kavramının tanıtılması Faz değişimi işleminin fizik ilkelerinin incelenmesi Saf maddenin P-v-T yüzeylerinin ve P-v, T-v ve P-T özelik diyagramlarının

Detaylı

2. Işık Dalgalarında Kutuplanma:

2. Işık Dalgalarında Kutuplanma: KUTUPLANMA (POLARİZASYON). Giriş ve Temel ilgiler Işık, bir elektromanyetik dalgadır. Elektromanyetik dalgalar maddesel ortamlarda olduğu gibi boşlukta da yayılabilirler. Elektromanyetik dalgaların özellikleri

Detaylı

MIT Açık Ders Malzemeleri http://ocw.mit.edu. 5.62 Fizikokimya II 2008 Bahar

MIT Açık Ders Malzemeleri http://ocw.mit.edu. 5.62 Fizikokimya II 2008 Bahar MIT Açık Ders Malzemeleri http://ocw.mit.edu 5.62 Fizikokimya II 2008 Bahar Bu materyallerden alıntı yapmak veya Kullanım Şartları hakkında bilgi almak için http://ocw.mit.edu/terms ve http://tuba.acikders.org.tr

Detaylı

OTOMATİK KONTROL SİSTEMLERİ. DİNAMİK SİSTEMLERİN MODELLENMESİ ve ANALİZİ

OTOMATİK KONTROL SİSTEMLERİ. DİNAMİK SİSTEMLERİN MODELLENMESİ ve ANALİZİ OTOMATİK KONTROL SİSTEMLERİ DİNAMİK SİSTEMLERİN MODELLENMESİ ve ANALİZİ 1) İdeal Sönümleme Elemanı : a) Öteleme Sönümleyici : Mekanik Elemanların Matematiksel Modeli Basit mekanik elemanlar, öteleme hareketinde;

Detaylı

Massachusetts Teknoloji Enstitüsü-Fizik Bölümü

Massachusetts Teknoloji Enstitüsü-Fizik Bölümü Massachusetts Teknoloji Enstitüsü-Fizik Bölümü Fizik 8.01 Ödev # 8 Güz, 1999 ÇÖZÜMLER Dru Renner dru@mit.edu 14 Kasım 1999 Saat: 18.20 Problem 8.1 Bir sonraki hareket bir odağının merkezinde gezegenin

Detaylı

ATOMLAR ARASI BAĞLAR Doç. Dr. Ramazan YILMAZ

ATOMLAR ARASI BAĞLAR Doç. Dr. Ramazan YILMAZ ATOMLAR ARASI BAĞLAR Doç. Dr. Ramazan YILMAZ Sakarya Üniversitesi, Teknoloji Fakültesi, Metalurji ve Malzeme Mühendisliği Bölümü Esentepe Kampüsü, 54187, SAKARYA Atomlar Arası Bağlar 1 İyonik Bağ 2 Kovalent

Detaylı

Tozların Şekillendirilmesi ve Sinterleme Yrd. Doç. Dr. Rıdvan YAMANOĞLU

Tozların Şekillendirilmesi ve Sinterleme Yrd. Doç. Dr. Rıdvan YAMANOĞLU Tozların Şekillendirilmesi ve Sinterleme Yrd. Doç. Dr. Rıdvan YAMANOĞLU Tozların Şekillendirilmesi Toz metalurjisinin çoğu uygulamalarında nihai ürün açısından yüksek yoğunluk öncelikli bir kavramdır.

Detaylı

CANLILARIN KİMYASAL İÇERİĞİ

CANLILARIN KİMYASAL İÇERİĞİ CANLILARIN KİMYASAL İÇERİĞİ Prof. Dr. Bektaş TEPE Canlıların Savunma Amaçlı Kimyasal Üretimi 2 Bu ünite ile; Canlılık öğretisinde kullanılan kimyasal kavramlar Hiyerarşi düzeyi Hiyerarşiden sorumlu atom

Detaylı

MALZEME BİLGİSİ. Katı Eriyikler

MALZEME BİLGİSİ. Katı Eriyikler MALZEME BİLGİSİ Dr.- Ing. Rahmi ÜNAL Konu: Katı Eriyikler 1 Giriş Endüstriyel metaller çoğunlukla birden fazla tür eleman içerirler, çok azı arı halde kullanılır. Arı metallerin yüksek iletkenlik, korozyona

Detaylı

İÇİNDEKİLER TEMEL KAVRAMLAR - 2. 1. Atomlar, Moleküller, İyonlar...36. 1.2. Atomlar...36. 1.2. Moleküller...37. 1.3. İyonlar...37

İÇİNDEKİLER TEMEL KAVRAMLAR - 2. 1. Atomlar, Moleküller, İyonlar...36. 1.2. Atomlar...36. 1.2. Moleküller...37. 1.3. İyonlar...37 vi TEMEL KAVRAMLAR - 2 1. Atomlar, Moleküller, İyonlar...36 1.2. Atomlar...36 1.2. Moleküller...37 1.3. İyonlar...37 2. Kimyasal Türlerin Adlandırılması...38 2.1. İyonların Adlandırılması...38 2.2. İyonik

Detaylı

örnek kompartmanı polarizer ışık kaynağı

örnek kompartmanı polarizer ışık kaynağı 1 POLARİMETRİ Ref. e_makaleleri, Enstrümantal Analiz örnek kompartmanı dedektör analizör polarizer ışık kaynağı http://www.antique-microscopes.com/chemistry/laurent_polarimeter.htm Optikce aktiflik, bazı

Detaylı

8.04 Kuantum Fiziği Ders IV. Kırınım olayı olarak Heisenberg belirsizlik ilkesi. ise, parçacığın dalga fonksiyonu,

8.04 Kuantum Fiziği Ders IV. Kırınım olayı olarak Heisenberg belirsizlik ilkesi. ise, parçacığın dalga fonksiyonu, Geçen Derste Kırınım olayı olarak Heisenberg belirsizlik ilkesi ΔxΔp x 2 Fourier ayrışımı Bugün φ(k) yı nasıl hesaplarız ψ(x) ve φ(k) ın yorumu: olasılık genliği ve olasılık yoğunluğu ölçüm φ ( k)veyahut

Detaylı

Harici Fotoelektrik etki ve Planck sabiti deney seti

Harici Fotoelektrik etki ve Planck sabiti deney seti Deneyin Temeli Harici Fotoelektrik etki ve Planck sabiti deney seti Fotoelektrik etki modern fiziğin gelişimindeki anahtar deneylerden birisidir. Filaman lambadan çıkan beyaz ışık ızgaralı spektrometre

Detaylı

Karabük Üniversitesi, Mühendislik Fakültesi...www.IbrahimCayiroglu.com. STATİK (2. Hafta)

Karabük Üniversitesi, Mühendislik Fakültesi...www.IbrahimCayiroglu.com. STATİK (2. Hafta) AĞIRLIK MERKEZİ STATİK (2. Hafta) Ağırlık merkezi: Bir cismi oluşturan herbir parçaya etki eden yerçeki kuvvetlerinin bileşkesinin cismin üzerinden geçtiği noktaya Ağırlık Merkezi denir. Şekil. Ağırlık

Detaylı

3. Merkez atomu orbitallerinin hibritleşmesi

3. Merkez atomu orbitallerinin hibritleşmesi 3. Merkez atomu orbitallerinin hibritleşmesi Bir atomun yapa bileceği kovalent bağ sayısı taşıdığı ya da az bir enerjiyle taşıyabileceği (hibritleşme) yarı dolu orbital sayısına eşittir. Farklı enerji

Detaylı

BÖLÜM 36 NÜKLEER MANYETİK REZONANS

BÖLÜM 36 NÜKLEER MANYETİK REZONANS BÖLÜM 36 NÜKLEER MANYETİK REZONANS IR spektroskopisi, ışık salan elektrik alanının sebep olduğu geçişlerin en basit örneğini temsil ederken, NMR da osilasyon yapan manyetik alanın sebep olduğu geçişlerin

Detaylı

görülmüştür. Bu sırada sabit nükleer yoğunluk (ρ) hipotezide doğrulanmış olup ραa olarak belirtilmiştir.

görülmüştür. Bu sırada sabit nükleer yoğunluk (ρ) hipotezide doğrulanmış olup ραa olarak belirtilmiştir. 4.HAFTA 2.1.3. NÜKLEER STABİLİTE Bulunan yarı ampirik formülle nükleer stabilite incelenebilir. Aşağıdaki şekil bilinen satbil çekirdekler için nötron sayısı N e karşılık proton sayısı Z nin çizimini içerir.

Detaylı

EŞ POTANSİYEL VE ELEKTRİK ALAN ÇİZGİLERİ. 1. Zıt yükle yüklenmiş iki iletkenin oluşturduğu eş potansiyel çizgileri araştırıp bulmak.

EŞ POTANSİYEL VE ELEKTRİK ALAN ÇİZGİLERİ. 1. Zıt yükle yüklenmiş iki iletkenin oluşturduğu eş potansiyel çizgileri araştırıp bulmak. EŞ POTANSİYEL VE ELEKTRİK ALAN ÇİZGİLERİ AMAÇ: 1. Zıt yükle yüklenmiş iki iletkenin oluşturduğu eş potansiyel çizgileri araştırıp bulmak. 2. Bu eş potansiyel çizgileri kullanarak elektrik alan çizgilerinin

Detaylı

Fizik 101-Fizik I 2013-2014. Katı Bir Cismin Sabit Bir Eksen Etrafında Dönmesi

Fizik 101-Fizik I 2013-2014. Katı Bir Cismin Sabit Bir Eksen Etrafında Dönmesi -Fizik I 2013-2014 Katı Bir Cismin Sabit Bir Eksen Etrafında Dönmesi Nurdan Demirci Sankır Ofis: 325, Tel: 2924332 İçerik Açısal Yerdeğiştirme, Hız ve İvme Dönme Kinematiği Açısal ve Doğrusal Nicelikler

Detaylı

Bernoulli Denklemi, Basınç ve Hız Yükleri Borularda Piezometre ve Enerji Yükleri Venturi Deney Sistemi

Bernoulli Denklemi, Basınç ve Hız Yükleri Borularda Piezometre ve Enerji Yükleri Venturi Deney Sistemi Bernoulli Denklemi, Basınç ve Hız Yükleri Borularda Piezometre ve Enerji Yükleri Venturi Deney Sistemi Akışkanlar dinamiğinde, sürtünmesiz akışkanlar için Bernoulli prensibi akımın hız arttıkça aynı anda

Detaylı

da. Elektronlar düşük E seviyesinden daha yüksek E seviyesine inerken enerji soğurur.

da. Elektronlar düşük E seviyesinden daha yüksek E seviyesine inerken enerji soğurur. 5.111 Ders Özeti #6 Bugün için okuma: Bölüm 1.9 (3. Baskıda 1.8) Atomik Orbitaller. Ders #7 için okuma: Bölüm 1.10 (3. Baskıda 1.9) Elektron Spini, Bölüm 1.11 (3. Baskıda 1.10) Hidrojenin Elektronik Yapısı

Detaylı

İÇİNDEKİLER. BÖLÜM 1 Değişkenler ve Grafikler 1. BÖLÜM 2 Frekans Dağılımları 37

İÇİNDEKİLER. BÖLÜM 1 Değişkenler ve Grafikler 1. BÖLÜM 2 Frekans Dağılımları 37 İÇİNDEKİLER BÖLÜM 1 Değişkenler ve Grafikler 1 İstatistik 1 Yığın ve Örnek; Tümevarımcı ve Betimleyici İstatistik 1 Değişkenler: Kesikli ve Sürekli 1 Verilerin Yuvarlanması Bilimsel Gösterim Anlamlı Rakamlar

Detaylı

KARBON ve CANLILARDAKİ MOLEKÜL ÇEŞİTLİLİĞİ

KARBON ve CANLILARDAKİ MOLEKÜL ÇEŞİTLİLİĞİ KARBON ve CANLILARDAKİ MOLEKÜL ÇEŞİTLİLİĞİ Karbonun önemi Hücrenin % 70-95ʼ i sudan ibaret olup, geri kalan kısmın çoğu karbon içeren bileşiklerdir. Canlılığı oluşturan organik bileşiklerde karbon atomuna

Detaylı

Manyetizma. Manyetik alan çizgileri, çizim. Manyetik malzeme türleri. Manyetik alanlar. BÖLÜM 29 Manyetik alanlar

Manyetizma. Manyetik alan çizgileri, çizim. Manyetik malzeme türleri. Manyetik alanlar. BÖLÜM 29 Manyetik alanlar ÖLÜM 29 Manyetik alanlar Manyetik alan Akım taşıyan bir iletkene etkiyen manyetik kuvvet Düzgün bir manyetik alan içerisindeki akım ilmeğine etkiyen tork Yüklü bir parçacığın düzgün bir manyetik alan içerisindeki

Detaylı

Cobra3 lü Akuple Sarkaçlar

Cobra3 lü Akuple Sarkaçlar Dinamik Mekanik Öğrenebilecekleriniz... Spiral yay Yer çekimi sarkacı Yay sabiti Burulma titreşimi Tork Vuruş Açısal sürat Açısal ivme Karakteristik frekans Kural: Belirli bir karakteristik frekansa sahip

Detaylı

Geçen Derste. ρ için sınır şartları serinin bir yerde sona ermesini gerektirir. 8.04 Kuantum Fiziği Ders XXIII

Geçen Derste. ρ için sınır şartları serinin bir yerde sona ermesini gerektirir. 8.04 Kuantum Fiziği Ders XXIII Geçen Derste Verilen l kuantum sayılı açısal momentum Y lm (θ,φ) özdurumunun radyal denklemi 1B lu SD şeklinde etkin potansiyeli olacak şekilde yazılabilir, u(r) = rr(r) olarak tanımlayarak elde edilir.

Detaylı

Malzeme Bilgisi Prof. Dr. Akgün ALSARAN. Mekanizma ve etkileyen faktörler Difüzyon

Malzeme Bilgisi Prof. Dr. Akgün ALSARAN. Mekanizma ve etkileyen faktörler Difüzyon Malzeme Bilgisi Prof. Dr. Akgün ALSARAN Mekanizma ve etkileyen faktörler Difüzyon İçerik Difüzyon nedir Difüzyon mekanizmaları Difüzyon eşitlikleri Difüzyonu etkileyen faktörler 2 Difüzyon nedir Katı içerisindeki

Detaylı

3.1 ATOM KÜTLELERİ... 75 3.2 MOL VE MOLEKÜL KAVRAMLARI... 77 3.2.1 Mol Hesapları... 79 SORULAR 3... 84

3.1 ATOM KÜTLELERİ... 75 3.2 MOL VE MOLEKÜL KAVRAMLARI... 77 3.2.1 Mol Hesapları... 79 SORULAR 3... 84 v İçindekiler KİMYA VE MADDE... 1 1.1 KİMYA... 1 1.2 BİRİM SİSTEMİ... 2 1.2.1 SI Uluslararası Birim Sistemi... 2 1.2.2 SI Birimleri Dışında Kalan Birimlerin Kullanılması... 3 1.2.3 Doğal Birimler... 4

Detaylı

Fizik 101-Fizik I 2013-2014. Dönme Hareketinin Dinamiği

Fizik 101-Fizik I 2013-2014. Dönme Hareketinin Dinamiği -Fizik I 2013-2014 Dönme Hareketinin Dinamiği Nurdan Demirci Sankır Ofis: 364, Tel: 2924332 İçerik Vektörel Çarpım ve Tork Katı Cismin Yuvarlanma Hareketi Bir Parçacığın Açısal Momentumu Dönen Katı Cismin

Detaylı

PARALEL KUVVETLERİN DENGESİ

PARALEL KUVVETLERİN DENGESİ ARALEL KUVVETLERİN DENGESİ aralel kuvvetler eğer aynı yönlü ise bileşke kuvvet iki kuvvetin arasında ve büyük kuvvete daha yakın olur. Bileşke kuvvetin bulunduğu noktadan cisim asılacak olursak cisim dengede

Detaylı

KUVVETLİ YER HAREKETİ

KUVVETLİ YER HAREKETİ KUVVETLİ YER HAREKETİ Belirli bir bölgedeki depremin etkisinin değerlendirilmesi için yüzeydeki kuvvetli yer hareketinin çeşitli şekillerde tanımlanması gereklidir. Pratikte yer hareketi 3 bileşeni (doğu-batı,

Detaylı

Değer. (a) Analog ve, (b) digital sinyallerin kıyaslaması. Digital devrelerin, karşıtı olan analog devrelere göre bazı avantajları vardır: bunlarda,

Değer. (a) Analog ve, (b) digital sinyallerin kıyaslaması. Digital devrelerin, karşıtı olan analog devrelere göre bazı avantajları vardır: bunlarda, DİGİTAL ELETRONİLER Enstrümantal Analiz, Mikrobilgisayarlar ve Mikroişlemciler imyasal sinyaller iki tiptir: () Analog sinyaller; sürekli sinyallerdir, örneğin, ph metreler, moleküler spektroskopi gibi.

Detaylı

Termal Genleşme İdeal Gazlar Isı Termodinamiğin 1. Yasası Entropi ve Termodinamiğin 2. Yasası

Termal Genleşme İdeal Gazlar Isı Termodinamiğin 1. Yasası Entropi ve Termodinamiğin 2. Yasası Termal Genleşme İdeal Gazlar Isı Termodinamiğin 1. Yasası Entropi ve Termodinamiğin 2. Yasası Sıcaklık, bir gaz molekülünün kütle merkezi hareketinin ortalama kinetic enerjisinin bir ölçüsüdür. Sıcaklık,

Detaylı

TOBB Ekonomi ve Teknoloji Üniversitesi. Genel Kimya 101. Yrd.Doç.Dr.Zeynep OBALI e-mail: zobali@etu.edu.tr Ofis: z-83/2

TOBB Ekonomi ve Teknoloji Üniversitesi. Genel Kimya 101. Yrd.Doç.Dr.Zeynep OBALI e-mail: zobali@etu.edu.tr Ofis: z-83/2 Genel Kimya 101 Yrd.Doç.Dr.Zeynep OBALI e-mail: zobali@etu.edu.tr Ofis: z-83/2 İyonik Bağ; İyonik bir bileşikteki pozitif ve negatif iyonlar arasındaki etkileşime iyonik bağ denir Na Na + + e - Cl + e

Detaylı

18.034 İleri Diferansiyel Denklemler

18.034 İleri Diferansiyel Denklemler MIT AçıkDersSistemi http://ocw.mit.edu 18.034 İleri Diferansiyel Denklemler 2009 Bahar Bu bilgilere atıfta bulunmak veya kullanım koşulları hakkında bilgi için http://ocw.mit.edu/terms web sitesini ziyaret

Detaylı

7. Sınıf Fen ve Teknoloji Dersi 4. Ünite: Madde ve Yapısı Konu: Elementler ve Sembolleri

7. Sınıf Fen ve Teknoloji Dersi 4. Ünite: Madde ve Yapısı Konu: Elementler ve Sembolleri ÖĞRETĐM TEKNOLOJĐLERĐ VE MATERYAL GELĐŞĐMĐ 7. Sınıf Fen ve Teknoloji Dersi 4. Ünite: Madde ve Yapısı Konu: Elementler ve Sembolleri Çalışma Yaprağı Konu Anlatımı-Değerlendirme çalışma Yaprağı- Çözümlü

Detaylı

KİMYASAL BAĞLAR Kimyasal bağlar, Moleküllerde atomları birarada tutan

KİMYASAL BAĞLAR Kimyasal bağlar, Moleküllerde atomları birarada tutan KİMYASAL BAĞLAR Kimyasal bağlar, Moleküllerde atomları birarada tutan kuvvettir. Atomlar birleştiği zaman elektron dağılımındaki değişmelerin bir sonucu olarak kimyasal bağlar meydana gelir. Atomun sembolünün

Detaylı

ALETLİ ANALİZ YÖNTEMLERİ

ALETLİ ANALİZ YÖNTEMLERİ ALETLİ ANALİZ YÖNTEMLERİ UV-Görünür Bölge Moleküler Absorpsiyon Spektroskopisi Yrd. Doç.Dr. Gökçe MEREY GENEL BİLGİ Çözelti içindeki madde miktarını çözeltiden geçen veya çözeltinin tuttuğu ışık miktarından

Detaylı

Gürültü Perdeleri (Bariyerleri) Prof.Dr.Mustafa KARAŞAHİN

Gürültü Perdeleri (Bariyerleri) Prof.Dr.Mustafa KARAŞAHİN Gürültü Perdeleri (Bariyerleri) Prof.Dr.Mustafa KARAŞAHİN Gürültü nedir? Basit olarak, istenmeyen veya zarar veren ses db Skalası Ağrı eşiği 30 mt uzaklıktaki karayolu Gece mesken alanları 300 mt yükseklikte

Detaylı

Dizi Antenler. Özdeş anten elemanlarından oluşan bir dizi antenin ışıma diyagramını belirleyen faktörler şunlardır.

Dizi Antenler. Özdeş anten elemanlarından oluşan bir dizi antenin ışıma diyagramını belirleyen faktörler şunlardır. Dizi Antenler Özdeş anten elemanlarından oluşan bir dizi antenin ışıma diyagramını belirleyen faktörler şunlardır. 1. Dizi antenin geometrik şekli (lineer, dairesel, küresel..vs.) 2. Dizi elemanları arasındaki

Detaylı

Paslanmaz Çelik Gövde. Yalıtım Sargısı. Katalizör Yüzey Tabakası. Egzoz Emisyonları: Su Karbondioksit Azot

Paslanmaz Çelik Gövde. Yalıtım Sargısı. Katalizör Yüzey Tabakası. Egzoz Emisyonları: Su Karbondioksit Azot Paslanmaz Çelik Gövde Yalıtım Sargısı Egzoz Emisyonları: Su Karbondioksit Azot Katalizör Yüzey Tabakası Egzoz Gazları: Hidrokarbonlar Karbon Monoksit Azot Oksitleri Bu bölüme kadar, açıkça ifade edilmese

Detaylı

PERİYODİK CETVEL. Yanıt : D. www.kimyahocam.com. 3 Li : 1s2 2s 1 2. periyot 1A grubu. 16 S : 1s2 2s 2 2p 6 3s 2 3p 4 3.

PERİYODİK CETVEL. Yanıt : D. www.kimyahocam.com. 3 Li : 1s2 2s 1 2. periyot 1A grubu. 16 S : 1s2 2s 2 2p 6 3s 2 3p 4 3. PERİODİK CETVEL Periyodik cetvel, elementlerin atom numaraları temel alınarak düzenlenmiş bir sistemdir. Periyodik cetvelde, nötr atomlarının elektron içeren temel enerji düzeyi sayısı aynı olan elementler

Detaylı

8.333 İstatistiksel Mekanik I: Parçacıkların İstatistiksel Mekaniği

8.333 İstatistiksel Mekanik I: Parçacıkların İstatistiksel Mekaniği MIT Açık Ders Malzemeleri http://ocw.mit.edu 8.333 İstatistiksel Mekanik I: Parçacıkların İstatistiksel Mekaniği 2007 Güz Bu materyallerden alıntı yapmak ya Kullanım Şartları hakkında bilgi almak için

Detaylı

AERODİNAMİK KUVVETLER

AERODİNAMİK KUVVETLER AERODİNAMİK KUVVETLER Prof.Dr. Mustafa Cavcar Anadolu Üniversitesi, Sivil Havacılık Yüksekokulu, 26470 Eskişehir Bir uçak üzerinde meydana gelen aerodinamik kuvvetlerin bileşkesi ( ); uçağın etrafından

Detaylı

MIT Açık Ders Malzemeleri http://ocw.mit.edu. 5.62 Fizikokimya II 2008 Bahar

MIT Açık Ders Malzemeleri http://ocw.mit.edu. 5.62 Fizikokimya II 2008 Bahar MIT Açık Ders Malzemeleri http://ocw.mit.edu 5.62 Fizikokimya II 2008 Bahar Bu materyallerden alıntı yapmak veya Kullanım Şartları hakkında bilgi almak için http://ocw.mit.edu/terms ve http://tuba.acikders.org.tr

Detaylı

11.1 11.2. Tanım Akışkanların Statiği (Hidrostatik) Örnekler Kaldırma Kuvveti. 11.3 Örnek Eylemsizlik Momenti. 11.4 Eylemsizlik Yarıçapı

11.1 11.2. Tanım Akışkanların Statiği (Hidrostatik) Örnekler Kaldırma Kuvveti. 11.3 Örnek Eylemsizlik Momenti. 11.4 Eylemsizlik Yarıçapı 11.1 11. Tanım Akışkanların Statiği (Hidrostatik) Örnekler Kaldırma Kuvveti 11.3 Örnek Eylemsizlik Momenti 11.4 Eylemsizlik Yarıçapı 11.5 Eksen Takımının Değiştirilmesi 11.6 Asal Eylemsizlik Momentleri

Detaylı

ÇÖZÜNME ve ÇÖZÜNÜRLÜK

ÇÖZÜNME ve ÇÖZÜNÜRLÜK ÇÖZÜNME ve ÇÖZÜNÜRLÜK Prof. Dr. Mustafa DEMİR M.DEMİR 05-ÇÖZÜNME VE ÇÖZÜNÜRLÜK 1 Çözünme Olayı Analitik kimyada çözücü olarak genellikle su kullanılır. Su molekülleri, bir oksijen atomuna bağlı iki hidrojen

Detaylı

Musa DEMİRCİ. KTO Karatay Üniversitesi. Konya - 2015

Musa DEMİRCİ. KTO Karatay Üniversitesi. Konya - 2015 Musa DEMİRCİ KTO Karatay Üniversitesi Konya - 2015 1/46 ANA HATLAR Temel Kavramlar Titreşim Çalışmalarının Önemi Otomatik Taşıma Sistemi Model İyileştirme Süreci Modal Analiz Deneysel Modal Analiz Sayısal

Detaylı

BÖLÜM 1: TEMEL KAVRAMLAR

BÖLÜM 1: TEMEL KAVRAMLAR Sistem ve Hal Değişkenleri Üzerinde araştırma yapmak üzere sınırladığımız bir evren parçasına sistem, bu sistemi çevreleyen yere is ortam adı verilir. İzole sistem; Madde ve her türden enerji akışına karşı

Detaylı

Spektroskopi. Madde ile ışın arasındaki etkileşmeyi inceleyen bilim dalıdır.

Spektroskopi. Madde ile ışın arasındaki etkileşmeyi inceleyen bilim dalıdır. Spektroskopi Madde ile ışın arasındaki etkileşmeyi inceleyen bilim dalıdır. Bu yöntemde bir örnekteki atom, molekül veya iyonların, bir enerji düzeyinden diğerine geçişleri sırasında absorplanan veya yayılan

Detaylı

ELEKTRİK DEVRELERİ-2 LABORATUVARI VIII. DENEY FÖYÜ

ELEKTRİK DEVRELERİ-2 LABORATUVARI VIII. DENEY FÖYÜ EEKTRİK DEVREERİ-2 ABORATUVARI VIII. DENEY FÖYÜ SERİ VE PARAE REZONANS DEVRE UYGUAMASI Amaç: Seri ve paralel rezonans devrelerini incelemek, devrelerin karakteristik parametrelerini ölçmek, rezonans eğrilerini

Detaylı

Varsayımlar ve Tanımlar Tekil Yükleri Aktaran Kablolar Örnekler Yayılı Yük Aktaran Kablolar. 7.3 Yatayda Yayılı Yük Aktaran Kablolar

Varsayımlar ve Tanımlar Tekil Yükleri Aktaran Kablolar Örnekler Yayılı Yük Aktaran Kablolar. 7.3 Yatayda Yayılı Yük Aktaran Kablolar 7.1 7.2 Varsayımlar ve Tanımlar Tekil Yükleri Aktaran Kablolar Örnekler Yayılı Yük Aktaran Kablolar 7.3 Yatayda Yayılı Yük Aktaran Kablolar 7.4 Örnekler Kendi Ağırlığını Taşıyan Kablolar (Zincir Eğrisi)

Detaylı

ERCİYES ÜNİVERSİTESİ FEN BİLİMLERİ ENSTİTÜSÜ FİZİK ANABİLİM DALI

ERCİYES ÜNİVERSİTESİ FEN BİLİMLERİ ENSTİTÜSÜ FİZİK ANABİLİM DALI Dersin Kodu FIZ508 Spektroskopik Analiz Yöntemleri (II) Kredisi (T P K) (3 0 3) 2-Bahar Atomik spektroskopi, infrared absorpsiyon spektroskopisi, raman spektroskopisi, nükleer magnetik rezonans spektroskopisi,

Detaylı

MATEMATİĞİN GEREKLİLİĞİ

MATEMATİĞİN GEREKLİLİĞİ Dr. Serdar YILMAZ MEÜ Fizik Bölümü Ses dalgalarının özellikleri 2 MATEMATİĞİN GEREKLİLİĞİ Matematik, yaşamı anlatmakta kullanılır. Matematik yoluyla anlatma, yanlış anlama ve algılamayı engeller. Yaşamda

Detaylı