Prof. Dr. Niyazi MERİÇ Ankara Üniversitesi Nükleer Bilimler Enstitüsü

Save this PDF as:
 WORD  PNG  TXT  JPG

Ebat: px
Şu sayfadan göstermeyi başlat:

Download "Prof. Dr. Niyazi MERİÇ Ankara Üniversitesi Nükleer Bilimler Enstitüsü"

Transkript

1 0537 RADYASYO FİZİĞİ Prof. Dr. iyazi MERİÇ Ankara Üniversitesi ükleer Bilimler Enstitüsü

2 TEMEL KAVRAMLAR Radyasyon, Elektromanyetik Dalga, Uyarılma ve İyonlaşma, peryodik cetvel radyoaktif bozunum Radyoaktivite, Prof.Dr.iyazi MERİÇ

3 TEMEL KAVRAMLAR Radyasyon: Dalga ya da parçacık şeklinde uzayda enerji yayınlanmasıdır. Aşağıdakiler örnek olarak verilebilir: Dalga şeklinde yayınlananlar: Radyo dalgaları Görünen ışık Isı X-ışınları Gamma ışınları Parçacık şeklinde yayınlananlar: Alfa radyasyonu Beta radyasyonu ötron radyasyonu Temel kavramlar Prof.Dr.iyazi MERİÇ 3

4 Transfer edilen enerji miktarına bağlı olarak radyasyon, iyonize ve iyonize olmayan radyasyon olarak ikiye ayrılabilir. Bu dersin kapsamında, aksi belirtilmedikçe, radyasyon denildiğinde iyonize radyasyon kast edilecektir. Atomun yapısı, radyasyonunun kaynağının ve doğasının anlaşılmasında önemlidir. Atomun Bohr modeli, nükleer ve atomik dönüşümlerin gösterilmesinde önemlidir. Bohr modeli aşağıda verilen iki postülata dayanır: i) Çekirdek etkisi altında bulunan elektronlar, sadece belli enerji seviyelerini işgal ederler. ii) Bir atomik elektron bir seviyeden başka bir seviyeye geçerken, enerji soğurarak ve bırakarak sadece enerjisini değiştirir. Enerji soğurma ya da yayınlama, elektromanyetik radyasyon ile olmaktadır. Temel kavramlar Prof.Dr.iyazi MERİÇ 4

5 ELEKTROMAYETİK DALGA Görünebilir ışık, radyo dalgaları ve ultroviyole ışınları dalga şeklinde yayılan radyasyon biçimleridir. Bunlar elektromanyetik dalga çeşitleridir. Elektromanyetik dalgalar (e.m), bir kaynaktan bir alıcıya enerji ve momentum taşırlar ve boşlukta ışık hızıyla yayılırlar: c Burada, λ: Dalga boyu; : frekans Elektromanyetik dalgalar foton adı verilen enerji kuantumlarından oluşur. Foton enerjisi ise, E=hv ile verilir. Burada, h, Planck sabitidir. Temel kavramlar Prof.Dr.iyazi MERİÇ 5

6 Elektromanyetik Dalga Güneş ve çeşitli doğal yada yapay kaynaklar değişik dalga boylarında elektromanyetik enerji saçarlar. Görünen ışık; insan gözü tarafından görülebilen veya algılanabilen elektromanyetik enerji aktarımının birçok şekillerinden sadece birisidir. Radyo dalgaları, ısı, morötesi (ultraviyole) ışınları, x ışınları diğer benzer şekillerdir. Bir Elektromanyetik Dalga. Prof.Dr.iyazi MERİÇ 6

7 Elektromanyetik Dalga Fizik yasalarından bildiğimiz gibi, dalgaların için genel eşitlik; c =. λ Bir diğer kuram ise kuantum enerjisi ile açıklanabilir. E = h. = E / h ise burdan, h.c E = λ Böylece kuantum kuramında da kuantum enerjisinin dalga boyuyla ters orantılı olduğu görülür. Sonuçta; Daha uzun dalga boyu, daha düşük enerji taşır şeklinde bir açıklama elde edilir. Prof.Dr.iyazi MERİÇ 7

8 E.M DALGA SPEKTRUMU E.M. Dalga Spektrumumu şekil. de görülmektedir. Gamma ışınları X-ışınları UV Görünür IR Mikro dalgalar Radyo dalgaları Dalga boyu (cm) Şekil. Elektromagnetik dalga spektrumu Temel kavramlar Prof.Dr.iyazi MERİÇ 8

9 Elektromanyetik Spektrum Prof.Dr.iyazi MERİÇ 9

10 Güneş Işınımının Etkisi Optik algılayıcıların kaydettikleri enerji güneşten gelen enerji ile ilgilidir. Her ne kadar güneşten gelen enerjinin tayfsal dağılımı sabitse de bir cisme ulaşan miktar atmosferden geçerken değişime uğrar. Atmosfer dışında güneş ışıması Enerji Siyah cisim ışıması Deniz düzeyinde güneş ışıması Dalga Boyu Prof.Dr.iyazi MERİÇ 0

11 EM Spektrum Prof.Dr.iyazi MERİÇ

12 UYARILMA VE İYOLAŞMA Yörüngesel bir elektrona transfer edilen enerji seviyesini aşarsa, elektron daha yüksek enerjili bir düzeye çıkar. Bu durumda elektron uyarılmıştır denir. Eğer, elektrona yeteri kadar enerji transferi yapılırsa elektron tamamen çekirdek etkisinden kurtulur ve uzaklaşır. Bu durumda atom iyonlaşmıştır denir. Atomun yörüngesel elektronları için enerji seviyesi değişiminin olduğu bazı olaylar görünür ve UV bölgesinde e.m radyasyon yayınlanmasına neden olur. İyonizayona yetecek kadar enerji olursa bu X-ışınlarına atfedilir. Atomdaki elektronların sahip olduğu kesikli enerji düzeyleri, çekirdekteki nükleonlar için de söz konusudur. Temel kavramlar Prof.Dr.iyazi MERİÇ

13 ÇEKİRDEK KUVVETLERİ Proton ve nötronlar çekirdek içinde, Coulomb itmesinin üstesinden gelen nükleer kuvvetlerle bağlanırlar. Bu kuvvetler yaklaşık 0-5 m mesafede etkilidirler. ükleonların çekirdeğe bağlanma enerjisi MeV mertebesinde olup bu da elektronların atoma bağlanma enerjisinin 000 katı büyüklüğündedir. Buna köre çekirdek reaksiyonlarında gerekli enerji kimyasal reaksiyonlara nazaran 0 6 kat daha büyüktür. V(r) Coulomb itmesi r Şekil. ükleer potansiyel Çekici nükleer potansiyeli Prof.Dr.iyazi MERİÇ 3

14 ÜKLEER BAĞLAMA EERJİSİ Çekirdekteki bireysel nükleonların kütlelerinin toplamı çekirdek kütlesinden küçüktür. Kütle farkı E=mc bağıntısı gereğince bağlanma enerjisine dönüşmektedir. C atomunun kütlesinin de biri atomik kütle birimi (u) olarak tanımlanır. Bir atomik kütle birimi de 93.5 MeV lik enerjiye karşılık gelir. ükleer reaksiyonlarda kütle kaybı nükleer enerji olarak açığa çıkar. Dolaysıyla meydana gelen ürünlerin bağlanma enerjisi artmaktadır. Tipik bir nükleer reaksiyon ve açığa çıkan nükleer enerji aşağıda görülmektedir: nh. 0 H Prof.Dr.iyazi MERİÇ 4

15 ÜKLEER KARARLILIK Bu reaksiyonda açığa çıkan enerji reaksiyon sonucu yayınlanan foton tarafından taşınmakta olup.4 MeV değerindedir. Bu değer de ürünün (döteronun) bağlanma enerjisidir. Çekici özellikteki nükleer kuvvetler p-p, n-n, veya n-p arasında aynı özelliktedir. Bir çekirdekte, bu kuvvetler nükleonları birbirine çekerken protonlar da bir birlerini Coulomb kuvvetiyle iterler. Bir çekirdekte Coulomb itmesi nükleer kuvveti aşarsa bu çekirdek kararsızdır. Hafif çekirdekler =Z (kararlılık doğrusu) olduğunda daha kararlıdırlar. Ağır çekirdekler >Z olduğunda daha kararlıdırlar. İlave Coulomb itmesine karşı koyabilmek için daha çok sayıda nötrona ihtiyaç vardır. Z>83 olan çekirdekler kararsızdırlar. Prof.Dr.iyazi MERİÇ 5

16 nötron sayısı KARARLILIK EĞRİSİ Kararlılık eğrisi α-yayınımı 40 0 β-yayınımı Kararlılık bandı =Z Β + yayınımı veya elektron yakalama 0 Şekil.. nükleer kararlılık proton sayısı Prof.Dr.iyazi MERİÇ 6

17 PERYODİK CETVEL VE RADYOAKTİF BOZUUM Peryodik tablo, elementleri fiziksel ve kimyasal özelliklerine göre düzenler ve gruplara ayırır. Çekirdeklerin haritası, belli bir çekirdeğin nükleer özelliklerini gösterecek şekilde düzenlenebilmektedir. Bir çekirdek kütle ve atom numarasıyla belirtilir. Radyoaktif bozunum, bir çekirdeğin daha kararlı olabilmek amacıyla kütlesini veya enerjisini kaybetmesi olayıdır. Radyonüklit kelimesi de bir atomun radyoaktif olduğu belirtmede kullanılır. Yaygın bozunum tipleri aşağıdaki şekilde sıralanabilir: Alfa bozunumu Beta bozunumu Pozitron bozunumu Elektron yakalama Gamma yayınımı Prof.Dr.iyazi MERİÇ 7

18 YARI-ÖMÜR VE BOZUMA HIZI Herhangi bir radyoaktif izotopun makroskopik bir örneği çok sayıda radyoaktif çekirdek içerir. Bu çekirdeklerin hepsi aynı anda bozunmaz. Bu bir rastgele olaydır ve verilen bir numunenin ne zaman bozunacağını tam olarak göstermez. Fakat, bir olasılık bazında yaklaşık olarak bir örnekte verilen bir zaman boyunca kaç tane çekirdeğin bozunacağını ve her çekirdeğin bulunduğu her saniyede aynı olasılıkla bozunacağını söyleyebiliriz. Çok kısa bir t zaman aralığında olan bozunmaların sayısı, başlangıçtaki mevcut radyoaktif çekirdeklerin sayısı ile orantılıdır: t (.) Bu eşitlikte λ bozunma sabiti olarak bilinen bir orantı sabiti olup farklı izotoplar için farklıdır. (.) eşitliğindeki işareti deki azalmayı gösterir. RADYOAKTİVİTE Prof.Dr.iyazi MERİÇ 8

19 Bozunma miktarı Birim zaman başına Bozunma ÜSTEL BOZUUM 4 C çekirdeğinin üstel bozunumu (=x0 ) 0 4 x0 0 0 / 0 /4 0 / t (yıl) (a) t (yıl) (b) Şekil.4 a) C-4 çekirdeğinin üstel bozunumu b) aynı çekirdeğin birim zamandaki bozunmasının üstel azalması. RADYOAKTİVİTE Prof.Dr.iyazi MERİÇ 9

20 ÜSTEL BOZUUM Eğer eşitlik (.) de, t 0 limitini alırsak, ile kıyaslandığında küçük kalır ve eşitliği sonsuz küçük formda gösterebiliriz: d dt (.) Eşitliği t nin bir fonksiyonu olarak olarak düzenlersek yi elde edebiliriz, (.3) Burada 0, t=0 anında mevcut olan çekirdeklerin sayısı ve ise t anında kalan çekirdeklerin sayısıdır. İntegral, veya, 0 ln d 0 t 0 dt t (.4) (.5) 0 e t RADYOAKTİVİTE Prof.Dr.iyazi MERİÇ 0

21 AKTİFLİK YA DA BOZUUM HIZI Bozunma hızı veya saniyedeki bozunmaların sayısı basit bir örnekte d/dt olup bu da verilen bir örneğin aktivitesi olarak tanımlanır: d dt 0e t Buna göre bi t anındaki aktivite, d dt d dt 0 e t ile ve t=0 anındaki aktivite ise (.6) d dt 0 0 (.7) ile verilir. SI birim sisteminde aktivite birimi Becquerel (Bq) olup Bq= bozunum/s olarak tanımlanır. Prof.Dr.iyazi MERİÇ

22 YARI-ÖMÜR Böylece, (.6) eşitliğinden, d d (.8) t t e A A0e dt dt 0 elde edilir. Buna göre aktiflik, zamanla aynı hızda üstel olarak azalır (şekil -4 b). Herhangi bir izotopun bozunma hızı λ bozunma hızından çok yarı-ömrü ile belirlenir. Bir izotopun yarı-ömrü verilen örnekteki bozunmaya maruz izotopun başlangıçtaki miktarının yarıya düşmesi için geçen zaman olarak tanımlanır. Bilinen radyoaktif izotopların yarı-ömürleri 0 - s kadar kısa süreden yaklaşık 0 8 s ( yıl) kadar uzun bir süreye kadar değişir. 0 Yarı ömür (T / ) başlangıçtaki radyoaktif çekirdeğin yarıya düşmesi için geçen süredir. (.5) eşitliğinde = 0 / yazarak yarı-ömür bağıntısı elde edilir: T ln / 0693 RADYOAKTİVİTE Prof.Dr.iyazi MERİÇ

23 Örnek 3-3: Radyoaktif bir örnek.49 µg saf yarı-ömre sahiptir. a) Başlangıçta kaç adet çekirdek vardır? b) Başlangıçtaki aktivite ne kadardır? d) yaklaşık ne kadar zaman sonra aktivite s - değerine düşer? Çözüm: 3 7 içermektedir ve bu da 0 dk (600 s) lık bir a) Atomik kütle 3 olduğundan, 3 g, 6.0x0 3 (Avagadro sayısı) adet çekirdek içerir. Sadece.49x0-6 g çekirdeğimiz olduğundan, başlangıçtaki 0 değeri elde edilir: ve 0 6.9x0 6.49x0 g 6.0x0 3g çekirdek RADYOAKTİVİTE Prof.Dr.iyazi MERİÇ 3

24 b) c) ) (0.693) /(600 s x s. 0 8 ) 0 (6.90 ) 0 ( s x x x x dt d s - s dt d / / x s x s dt d dt d e t 7.674s. s.76x0.6x0 3 ) ln(.5x0 t RADYOAKTİVİTE Prof.Dr.iyazi MERİÇ 4

25 RADYOAKTİVİTE PEŞ PEŞE PARÇALAMA KAUU Gerek doğal olarak bulunan radyoaktif izotoplarda ve gerekse suni olarak meydana getirilen radyoaktif izotoplarda bozunma, şayet ürün çekirdekte radyoaktifse peş peşe parçalanmalar şeklinde meydana gelebilir. Birçok durumda peş peşe bozunma, ana maddenin ürüne ve ürününde kararlı bir izotopa bozunumuyla sınırlıdır. Herhangi bir t anında λ bozunma sabiti ile ürüne bozunacak ana elementin atomlarının sayısı olsun, ürün atomlarının sayısı da olsun ve ürün atomları da λ bozunma sabitiyle sayısı 3 olan kararlı bir elemente bozunsun. Başlangıçta (t=0 da ) = 0 ; = 0 ve 3 = 30 =0 olduğunu varsayalım. Buna göre aşağıdaki eşitlikler yazılabilir. d dt d RADYOAKTİVİTE dt (.0) (.) Prof.Dr.iyazi MERİÇ 5

26 PEŞ PEŞE PARÇALAMA KAUU Son ifadeye göre tipindeki atomlar λ hızıyla üretilirler ve λ hızıyla gözden kaybolurlar. tipindeki atomlar da radyoaktif olduklarından 3 atomlarının üretilme hızı, d dt 3 3 (.) şeklinde ifade edilebilir. (.) ile verilen aşağıdaki eşitliğin her iki tarafı e λ ile çarpıp integral alalım. d dt t 0e t ( ) t e 0e C T=0 da = 0 alarak, C 0 bulunur. (.3) RADYOAKTİVİTE Prof.Dr.iyazi MERİÇ 6

27 PEŞ PEŞE PARÇALAMA KAUU 0 t ( e e t ) (.4) herhangi bir t anında atomlarının sayısını veren ifade bulunur. Şimdi, (.) ve (.4) yardımıyla, d 3 t 0( e t e ) dt (.5) elde edilir. Şimdi, bu son ifadenin de integrali alınıp t=0 da 3 = 30 =0 şartını kullanılırsa, herhangi bir t anındaki 3 atomlarının sayısı elde edilir: e t e t 3 0 (.6) RADYOAKTİVİTE Prof.Dr.iyazi MERİÇ 7

28 RADYOAKTİF DEGE GEÇİCİ DEGE Bir ana çekirdeğin λ bozunma sabitiyle birinci ürüne, onun da λ sabitiyle ikinci ürüne bozunduğunu kabul edelim. Bu iki çekirdek için olduğunu varsayalım. Buna göre, (.4) ifadesinin zamana göre türevi alınıp sıfıra eşitlenmesiyle nin maksimuma ulaştığı süre, t m ln bulunur. Bu t m süresinden sonra birinci ürünün bozunma hızına (d /dt ye λ ve λ den hangisi büyükse o etkili olacaktır. Buna göre: (.7) i. λ < λ ise Aktiviteler oranı ise: d d / dt / dt ( 0 e t ) (.8) (.9) RADYOAKTİVİTE Prof.Dr.iyazi MERİÇ 8

29 RADYOAKTİF DEGE Bu durumda ana çekirdek ürünle geçici olarak dengededir denir. Buradan, (.8) ifadesine göre, λ ile bozunacak ve (.0) ifadesine göre de / ifadesi sabit kalacaktır. ii. λ > λ ise, (.4) eşitliğinde birinci terim daha hızlı sıfıra gideceğinden, ( 0 e t ) (.0) yazılabilir. Bu ise belli bir zaman sonra birinci ürün elementin λ ile bozunacağını gösterir. Belli bir süre sonra ana element bitecek ve birinci üründe kendi hızıyla bozunmasına devam edecektir. RADYOAKTİVİTE Prof.Dr.iyazi MERİÇ 9

30 KALICI VEYA SÜREKLİ DEGE Birinci ürünün herhangi bir t anındaki sayısını veren (.8) ifadesini göz t önüne alalım. λ << λ olsun. Buna göre, ve alınabilir e ve, (.) t 0 ( e ifadesi yazılabilir. Burada λ t >> olup dır. Bu sonuç, birinci ürünün ( nin) sabit olduğunu söyler. Bu durumda birinci t e ürünün 0 ana ürünle sürekli dengede olduğu söylenebilir. için yazılabilir. Buna göre de, (.) İfadesi elde edilir. Bu ifade kalıcı denge şartı olarak adlandırılır. ) 0 RADYOAKTİVİTE Prof.Dr.iyazi MERİÇ 30

31 KALICI DEGE Kalıcı denge Ana ürünün bozunma hızı Ürünün oluşma hızı t Şekil.5 Kalıcı radyoaktif denge Prof.Dr.iyazi MERİÇ 3

32 RADYOAKTİF DEGE Örnek 3-5: Radyoaktif 6 Ra izotopunun yine radyoaktif olan Rn izotopuna bozunmasının yarı-ömrü 60 yıldır. Rn elementinin yarı-ömrü 3.8 gün olup 3.8 gün<<60 yıl dır. e kadar zaman sonra radyon denge konsantrasyonunun %99.5 na ulaşılır? Radyoaktif 6 Ra izotopunun yine radyoaktif olan Rn izotopuna bozunmasının yarı-ömrü 60 yıldır. Rn elementinin yarı-ömrü 3.8 gün olup 3.8 gün<<60 yıl dır. e kadar zaman sonra radyon denge konsantrasyonunun %99.5 na ulaşılır? Çözüm: Sonsuz zaman sonra denge değerine ulaşır.(.8) ile verilen ifadeden, ifadesi elde edilir: 0 e 0 e ( t ( t ) e t ) RADYOAKTİVİTE Prof.Dr.iyazi MERİÇ 3

33 RADYOAKTİF DEGE Sonsuz zaman sonra denge değerine erişir ( = 0 ). ( ), t) e ( ) ( t t ln5x / 3.8 9gün gün sonrada %99.5 denge konsantrasyonuna ulaşır. RADYOAKTİVİTE Prof.Dr.iyazi MERİÇ 33

34 RADYOAKTİVİTE BOZUMA SERİLERİ Bazen bir radyoaktif izotop, radyoaktif olan başka bir izotopa dönüşür. Bazen bu ürün de yine radyoaktif olan üçüncü bir ürüne bozunabilir. Böyle peşpeşe olan bozunmalara bozunma serisi denir. Önemli bir örnek, şekil.5 te görülmektedir. Burada, 38 U çekirdeği α-bozunumu ile 34 Th a dönüşür. Seriler şekilde görüldüğü gibi altta birkaç dallanma il devam eder. Örneğin, 8 Po, ya α-bozunumu ile 4 Pb e veya β - bozunumu ile 8 At e bozunur ve sonunda kararlı izotop 08 Pb de son bulur. Aynı şekilde, başka bozunum şekilleri de vardır. Böyle bozunum serilerinden dolayı, doğada çeşitli radyoaktif elementler bulunmaktadır. Aksi takdirde bulunmazlardı. Güneş sistemi 5 milyar yıl önce oluştuğundan yaklaşık olarak bütün çekirdekler füzyon yoluyla oluşmuşlardır. Kısa yarı-ömürlü bir çok izotop, çok çabuk bozunduklarından ve bugün bunlar doğada yokturlar. RADYOAKTİVİTE Prof.Dr.iyazi MERİÇ 34

35 RADYOAKTİF BOZUUM SERİSİ U- (T / =4.5x0 9 ) y 38 α Th-34 β Pr-34 β.33x0 5 y U-34 α Th x0 4 y α 590 y Ra-6 α 3.85 g Ra- Po-8 α α 40 g α Po-4 β Bi-4 β Pb-4 Bi-0 α β Po-0 5 g Pb-06 Şekil Uile başlayan bozunum serisi. RADYOAKTİVİTE Prof.Dr.iyazi MERİÇ 35

Radyoaktif elementin tek başına bulunması, bileşik içinde bulunması, katı, sıvı, gaz, iyon halinde bulunması radyoaktif özelliğini etkilemez.

Radyoaktif elementin tek başına bulunması, bileşik içinde bulunması, katı, sıvı, gaz, iyon halinde bulunması radyoaktif özelliğini etkilemez. RADYOAKTİFLİK Kendiliğinden ışıma yapabilen maddelere radyoaktif maddeler denir. Radyoaktiflik çekirdek yapısıyla ilişkilidir. Radyoaktif bir atom hangi bileşiğin yapısına girerse o bileşiği radyoaktif

Detaylı

KİM-117 TEMEL KİMYA Prof. Dr. Zeliha HAYVALI Ankara Üniversitesi Kimya Bölümü

KİM-117 TEMEL KİMYA Prof. Dr. Zeliha HAYVALI Ankara Üniversitesi Kimya Bölümü KİM-117 TEMEL KİMYA Prof. Dr. Zeliha HAYVALI Ankara Üniversitesi Kimya Bölümü Bu slaytlarda anlatılanlar sadece özet olup ayrıntılı bilgiler ve örnek çözümleri derste verilecektir. BÖLÜM 5 ATOM ÇEKİRDEĞİNİN

Detaylı

FİZ444 RADYASYON FİZİĞİ DERS NOTLARI

FİZ444 RADYASYON FİZİĞİ DERS NOTLARI FİZ444 RADYASYON FİZİĞİ DERS NOTLARI Bu ders notları, 2009 yılından beri BEÜ Fizik Bölümü web sayfasında güncellenmekte olup başkaları tarafından değiştirilemez, bir kısmı veya tamamı kopyalanıp internet

Detaylı

İSG 514 RADYASYON GÜVENLİĞİ

İSG 514 RADYASYON GÜVENLİĞİ İSG 514 RADYASYON GÜVENLİĞİ İŞ SAĞLIĞI VE GÜVENLİĞİ TEZSİZ YÜKSEK LİSANS PROGRAMI Ders koordinatörü: Yrd. Doç. Dr. Mustafa GÜNGÖRMÜŞ mgungormus@turgutozal.edu.tr http://www.turgutozal.edu.tr/mgungormus/

Detaylı

ATOM BİLGİSİ Atom Modelleri

ATOM BİLGİSİ Atom Modelleri 1. Atom Modelleri BÖLÜM2 Maddenin atom adı verilen bir takım taneciklerden oluştuğu fikri çok eskiye dayanmaktadır. Ancak, bilimsel bir (deneye dayalı) atom modeli ilk defa Dalton tarafından ileri sürülmüştür.

Detaylı

İÇİNDEKİLER -BÖLÜM / 1- -BÖLÜM / 2- -BÖLÜM / 3- GİRİŞ... 1 ÖZEL GÖRELİLİK KUANTUM FİZİĞİ ÖNSÖZ... iii ŞEKİLLERİN LİSTESİ...

İÇİNDEKİLER -BÖLÜM / 1- -BÖLÜM / 2- -BÖLÜM / 3- GİRİŞ... 1 ÖZEL GÖRELİLİK KUANTUM FİZİĞİ ÖNSÖZ... iii ŞEKİLLERİN LİSTESİ... İÇİNDEKİLER ÖNSÖZ... iii ŞEKİLLERİN LİSTESİ... viii -BÖLÜM / 1- GİRİŞ... 1 -BÖLÜM / 2- ÖZEL GÖRELİLİK... 13 2.1. REFERANS SİSTEMLERİ VE GÖRELİLİK... 14 2.2. ÖZEL GÖRELİLİK TEORİSİ... 19 2.2.1. Zaman Ölçümü

Detaylı

Büyük Patlama ve Evrenin Oluşumu. Test 1 in Çözümleri

Büyük Patlama ve Evrenin Oluşumu. Test 1 in Çözümleri 7 Büyük Patlama ve Evrenin Oluşumu 225 Test 1 in Çözümleri 1. Elektrikçe yüksüz parçacıklar olan fotonların kütleleri yoktur. Işık hızıyla hareket ettikleri için atom içerisinde bulunamazlar. Fotonlar

Detaylı

GÜNEŞİN ELEKTROMANYETİK SPEKTRUMU

GÜNEŞİN ELEKTROMANYETİK SPEKTRUMU GÜNEŞİN ELEKTROMANYETİK SPEKTRUMU Güneş ışınımı değişik dalga boylarında yayılır. Yayılan bu dalga boylarının sıralı görünümü de güneş spektrumu olarak isimlendirilir. Tam olarak ifade edilecek olursa;

Detaylı

Bohr Atom Modeli. ( I eylemsizlik momen ) Her iki tarafı mv ye bölelim.

Bohr Atom Modeli. ( I eylemsizlik momen ) Her iki tarafı mv ye bölelim. Bohr Atom Modeli Niels Hendrik Bohr, Rutherford un atom modelini temel alarak 1913 yılında bir atom modeli ileri sürdü. Bohr teorisini ortaya koyarak atomların çizgi spektrumlarının açıklanabilmesi için

Detaylı

RADYASYON FİZİĞİ 1. Prof. Dr. Kıvanç Kamburoğlu

RADYASYON FİZİĞİ 1. Prof. Dr. Kıvanç Kamburoğlu RADYASYON FİZİĞİ 1 Prof. Dr. Kıvanç Kamburoğlu Herbirimiz kısa bir süre yaşarız ve bu kısa süre içerisinde tüm evrenin ancak çok küçük bir bölümünü keşfedebiliriz Evrenle ilgili olarak en anlaşılamayan

Detaylı

Hayat Kurtaran Radyasyon

Hayat Kurtaran Radyasyon Hayat Kurtaran Radyasyon GÜNLÜK HAYAT KONUSU: Kanser tedavisinde kullanılan radyoterapi KĐMYA ĐLE ĐLĐŞKĐSĐ: Radyoterapi bazı maddelerin radyoaktif özellikleri dolayısıyla ışımalar yapması esasına dayanan

Detaylı

FİZ314 Fizikte Güncel Konular

FİZ314 Fizikte Güncel Konular FİZ34 Fizikte Güncel Konular 205-206 Bahar Yarıyılı Bölüm-7 23.05.206 Ankara A. OZANSOY 23.05.206 A.Ozansoy, 206 Bölüm 7: Nükleer Reaksiyonlar ve Uygulamalar.Nötron İçeren Etkileşmeler 2.Nükleer Fisyon

Detaylı

RADYOAKTİFLİK. Bu çalışmalar sonucunda radyoaktif olarak adlandırılan atomların yüksek enerjili tanecikler ve ışınlar yaydıkları belirlenmiştir.

RADYOAKTİFLİK. Bu çalışmalar sonucunda radyoaktif olarak adlandırılan atomların yüksek enerjili tanecikler ve ışınlar yaydıkları belirlenmiştir. RADYOAKTİFLİK Atomların ve molekiller arası çekim kuvvetlerinin değişmesi ile fiziksel değişimlerinin, atomların değerlik elektron sayılarının değişmesiyle kimyasal değişimlerin olduğu bilinmektedir. Kimyasal

Detaylı

Malzeme Bilgisi Prof. Dr. Akgün ALSARAN. Temel kavramlar Atomsal yapı

Malzeme Bilgisi Prof. Dr. Akgün ALSARAN. Temel kavramlar Atomsal yapı Malzeme Bilgisi Prof. Dr. Akgün ALSARAN Temel kavramlar Atomsal yapı İçerik Temel kavramlar Atom modeli Elektron düzeni Periyodik sistem 2 Temel kavramlar Bütün maddeler kimyasal elementlerden oluşur.

Detaylı

ATOMİK YAPI. Elektron Yükü=-1,60x10-19 C Proton Yükü=+1,60x10-19 C Nötron Yükü=0

ATOMİK YAPI. Elektron Yükü=-1,60x10-19 C Proton Yükü=+1,60x10-19 C Nötron Yükü=0 ATOMİK YAPI Elektron Yükü=-1,60x10-19 C Proton Yükü=+1,60x10-19 C Nötron Yükü=0 Elektron Kütlesi 9,11x10-31 kg Proton Kütlesi Nötron Kütlesi 1,67x10-27 kg Bir kimyasal elementin atom numarası (Z) çekirdeğindeki

Detaylı

T. C. GAZİ ÜNİVERSİTESİ GAZİ EĞİTİM FAKÜLTESİ FİZİK EĞİTİMİ A. B. D. PROJE ÖDEVİ

T. C. GAZİ ÜNİVERSİTESİ GAZİ EĞİTİM FAKÜLTESİ FİZİK EĞİTİMİ A. B. D. PROJE ÖDEVİ T. C. GAZİ ÜNİVERSİTESİ GAZİ EĞİTİM FAKÜLTESİ FİZİK EĞİTİMİ A. B. D. PROJE ÖDEVİ ÖĞRETİMİ PLANLAMA VE DEĞERLENDİRME Dr. Yücel KAYABAŞI ÖLÇME ARACI Hazırlayan : Hasan Şahin KIZILCIK 98050029457 Konu : Çekirdek

Detaylı

Kaynak: Forum Media Yayıncılık; İş Sağlığı ve Güvenliği için Eğitim Seti

Kaynak: Forum Media Yayıncılık; İş Sağlığı ve Güvenliği için Eğitim Seti Kaynak: Forum Media Yayıncılık; İş Sağlığı ve Güvenliği için Eğitim Seti Radyasyonun Keşfi 1895 yılında Wilhelm Conrad Röntgen tarafından X-ışınlarının keşfi yapılmıştır. Radyasyonun Keşfi 1896 yılında

Detaylı

ALFA BOZUNUMU MEHMET YÜKSEL ÇÜ FBE FİZİK ABD ADANA-2010

ALFA BOZUNUMU MEHMET YÜKSEL ÇÜ FBE FİZİK ABD ADANA-2010 ALFA BOZUNUMU MEHME ÜKSEL ÇÜ FBE FİZİK ABD ADANA-010 İÇERİK 1. Giriş. Alfa (α) Parçacığı ve Özellikleri 3. Alfa Bozunuu Niçin Olur? 4. eel Alfa Bozunu Reaksiyonları 4.1. Alfa (α) Bozunuunda Enerji ve Moentu

Detaylı

Yıldızlara gidemeyiz; sadece onlardan gelen ışınımı teleskopların yardımıyla gözleyebilir ve çözümleyebiliriz.

Yıldızlara gidemeyiz; sadece onlardan gelen ışınımı teleskopların yardımıyla gözleyebilir ve çözümleyebiliriz. Yıldızlara gidemeyiz; sadece onlardan gelen ışınımı teleskopların yardımıyla gözleyebilir ve çözümleyebiliriz. Işık genellikle titreşen elektromanyetik dalga olarak düşünülür; bu suda ilerleyen dalgaya

Detaylı

SCHRÖDİNGER: Elektronun yeri (yörüngesi ve orbitali) birer dalga fonksiyonu olan n, l, m l olarak ifade edilen kuantum sayıları ile belirlenir.

SCHRÖDİNGER: Elektronun yeri (yörüngesi ve orbitali) birer dalga fonksiyonu olan n, l, m l olarak ifade edilen kuantum sayıları ile belirlenir. . ATOMUN KUANTUM MODELİ SCHRÖDİNGER: Elektronun yeri (yörüngesi ve orbitali) birer dalga fonksiyonu olan n, l, m l olarak ifade edilen kuantum sayıları ile belirlenir. Orbital: Elektronların çekirdek etrafında

Detaylı

Nötronlar kinetik enerjilerine göre aşağıdaki gibi sınıflandırılırlar

Nötronlar kinetik enerjilerine göre aşağıdaki gibi sınıflandırılırlar Nötronlar kinetik enerjilerine göre aşağıdaki gibi sınıflandırılırlar Termal nötronlar (0.025 ev) Orta enerjili nötronlar (0.5-10 kev) Hızlı nötronlar (10 kev-10 MeV) Çok hızlı nötronlar (10 MeV in üzerinde)

Detaylı

Element atomlarının atom ve kütle numaraları element sembolleri üzerinde gösterilebilir. Element atom numarası sembolün sol alt köşesine yazılır.

Element atomlarının atom ve kütle numaraları element sembolleri üzerinde gösterilebilir. Element atom numarası sembolün sol alt köşesine yazılır. Atom üç temel tanecikten oluşur. Bunlar proton, nötron ve elektrondur. Proton atomun çekirdeğinde bulunan pozitif yüklü taneciktir. Nötron atomun çekirdeğin bulunan yüksüz taneciktir. ise çekirdek etrafında

Detaylı

FİZİK 2 ELEKTRİK VE MANYETİZMA Elektrik yükü Elektrik alanlar Gauss Yasası Elektriksel potansiyel Kondansatör ve dielektrik Akım ve direnç Doğru akım

FİZİK 2 ELEKTRİK VE MANYETİZMA Elektrik yükü Elektrik alanlar Gauss Yasası Elektriksel potansiyel Kondansatör ve dielektrik Akım ve direnç Doğru akım FİZİK 2 ELEKTRİK VE MANYETİZMA Elektrik yükü Elektrik alanlar Gauss Yasası Elektriksel potansiyel Kondansatör ve dielektrik Akım ve direnç Doğru akım devreleri Manyetik alanlar Akım nedeniyle oluşan manyetik

Detaylı

Nötr (yüksüz) bir için, çekirdekte kaç proton varsa çekirdeğin etrafındaki yörüngelerde de o kadar elektron dolaşır.

Nötr (yüksüz) bir için, çekirdekte kaç proton varsa çekirdeğin etrafındaki yörüngelerde de o kadar elektron dolaşır. ATOM ve YAPISI Elementin özelliğini taşıyan en küçük parçasına denir. Atom Numarası Bir elementin unda bulunan proton sayısıdır. Protonlar (+) yüklü olduklarından pozitif yük sayısı ya da çekirdek yükü

Detaylı

Alfa Bozunumu Alfa bozunumu

Alfa Bozunumu Alfa bozunumu Alfa Bozunumu 05.07.008 Alfa bozunumu Alfa bozunumu: Alfa 908 yılında Rutherford tarafında açıklanmıştı. Nın bir He çekirdeği oluğu biliniyor 4 He 930 yılında nın hava da ki erişim menzili 3,84 cm olduğu

Detaylı

Atomlar ve Moleküller

Atomlar ve Moleküller Atomlar ve Moleküller Madde, uzayda yer işgal eden ve kütlesi olan herşeydir. Element, kimyasal tepkimelerle başka bileşiklere parçalanamayan maddedir. -Doğada 92 tane element bulunmaktadır. Bileşik, belli

Detaylı

görülmüştür. Bu sırada sabit nükleer yoğunluk (ρ) hipotezide doğrulanmış olup ραa olarak belirtilmiştir.

görülmüştür. Bu sırada sabit nükleer yoğunluk (ρ) hipotezide doğrulanmış olup ραa olarak belirtilmiştir. 4.HAFTA 2.1.3. NÜKLEER STABİLİTE Bulunan yarı ampirik formülle nükleer stabilite incelenebilir. Aşağıdaki şekil bilinen satbil çekirdekler için nötron sayısı N e karşılık proton sayısı Z nin çizimini içerir.

Detaylı

ATOM ATOMUN YAPISI 7. S I N I F S U N U M U. Elementlerin tüm özelliğini gösteren en küçük parçasına atom denir.

ATOM ATOMUN YAPISI 7. S I N I F S U N U M U. Elementlerin tüm özelliğini gösteren en küçük parçasına atom denir. ATO YAP Atomu oluşturan parçacıklar farklı yüklere sahiptir Atomda bulunan yükler; negatif yükler ve pozitif yüklerdir Elementlerin tüm özelliğini gösteren en küçük parçasına atom denir Atomu oluşturan

Detaylı

RÖNTGEN FİZİĞİ X-Işını oluşumu. Doç. Dr. Zafer KOÇ Başkent Üniversitesi Tıp Fak

RÖNTGEN FİZİĞİ X-Işını oluşumu. Doç. Dr. Zafer KOÇ Başkent Üniversitesi Tıp Fak RÖNTGEN FİZİĞİ X-Işını oluşumu Doç. Dr. Zafer KOÇ Başkent Üniversitesi Tıp Fak X-IŞINI OLUŞUMU Hızlandırılmış elektronların anotla etkileşimi ATOMUN YAPISI VE PARÇACIKLARI Bir elementi temsil eden en küçük

Detaylı

ÇALIŞMA YAPRAĞI (KONU ANLATIMI)

ÇALIŞMA YAPRAĞI (KONU ANLATIMI) ÇALIŞMA YAPRAĞI (KONU ANLATIMI) ATOMUN YAPISI HAZIRLAYAN: ÇĐĞDEM ERDAL DERS: ÖĞRETĐM TEKNOLOJĐLERĐ VE MATERYAL GELĐŞTĐRME DERS SORUMLUSU: PROF.DR. ĐNCĐ MORGĐL ANKARA,2008 GĐRĐŞ Kimyayı ve bununla ilgili

Detaylı

Bölüm 8: Atomun Elektron Yapısı

Bölüm 8: Atomun Elektron Yapısı Bölüm 8: Atomun Elektron Yapısı 1. Elektromanyetik Işıma: Elektrik ve manyetik alanın dalgalar şeklinde taşınmasıdır. Her dalganın frekansı ve dalga boyu vardır. Dalga boyu (ʎ) : İki dalga tepeciği arasındaki

Detaylı

FİSYON. Ağır çekirdekler nötronla bombardıman edildiklerinde bölünürler.

FİSYON. Ağır çekirdekler nötronla bombardıman edildiklerinde bölünürler. FİSYON Ağır çekirdekler nötronla bombardıman edildiklerinde bölünürler. Fisyon ilk defa 1934 te Ida Noddack tarafından önerilmiştir. Otto Hahn & Fritz Strassman Berlin (1938) de yaptıkları deneylerde hızlı

Detaylı

ALETLİ ANALİZ YÖNTEMLERİ

ALETLİ ANALİZ YÖNTEMLERİ ALETLİ ANALİZ YÖNTEMLERİ Spektroskopiye Giriş Yrd. Doç. Dr. Gökçe MEREY SPEKTROSKOPİ Işın-madde etkileşmesini inceleyen bilim dalına spektroskopi denir. Spektroskopi, Bir örnekteki atom, molekül veya iyonların

Detaylı

Gamma Bozunumu

Gamma Bozunumu Gamma Bozunumu Genelde beta ( ) ve alfa ( ) bozunumu sonunda çekirdek uyarılmış haldedir. Uyarılmış çekirdek gamma ( ) salarak temel seviyeye döner. Gamma görünür ışın ve x ışını gibi elektromanyetik radyasyon

Detaylı

ATOM NEDİR? -Atom elementin özelliğini taşıyan en küçük parçasına denir. Her canlı-cansız madde atomdan oluşmuştur.

ATOM NEDİR? -Atom elementin özelliğini taşıyan en küçük parçasına denir. Her canlı-cansız madde atomdan oluşmuştur. DERS: KİMYA KONU : ATOM YAPISI ATOM NEDİR? -Atom elementin özelliğini taşıyan en küçük parçasına denir. Her canlı-cansız madde atomdan oluşmuştur. Atom Modelleri Dalton Bütün maddeler atomlardan yapılmıştır.

Detaylı

Radyasyon, Radyoaktivite, Doz, Birimler ve Tanımlar. Dr. Halil DEMİREL

Radyasyon, Radyoaktivite, Doz, Birimler ve Tanımlar. Dr. Halil DEMİREL Radyasyon, Radyoaktivite, Doz, Birimler ve Tanımlar Dr. Halil DEMİREL Radyasyon, Radyoaktivite, Doz ve Birimler Çekirdek Elektron Elektron Yörüngesi Nötron Proton Nükleon Atom 18.05.2011 TAEK - ADHK 2

Detaylı

RADYONÜKLİTLERİN KİMYASI VE ANALİZİ

RADYONÜKLİTLERİN KİMYASI VE ANALİZİ RADYONÜKLİTLERİN KİMYASI VE ANALİZİ 6. ALKALİ TOPRAK METALLERİN RADYOKİMYASI Doç. Dr. Gaye Çakal ALKALİ TOPRAK METALLERİN RADYOKİMYASI 1. ALKALİ TOPRAK METALLERİN EN ÖNEMLİ RADYONÜKLİTLERİ 2. ALKALİ TOPRAK

Detaylı

ATOM BİLGİSİ I ÖRNEK 1

ATOM BİLGİSİ I  ÖRNEK 1 ATOM BİLGİSİ I Elementlerin özelliklerini ta ıyan en küçük yapıta ı atomdur. Son çözümlemede, bütün maddelerin atomlar toplulu u oldu unu söyleyebiliriz. Elementler, aynı tür atomlardan, bile ik ve karı

Detaylı

Radyoaktif Çekirdekler

Radyoaktif Çekirdekler NÜKLEER TIP Tıpta radyoaktif çekirdeklerin kullanılması esasen 1920 lerde önerilmiş ve 1940 larda kullanılmaya başlamıştır. Nükleer tıp görüntülemede temel, hasta vücudunda bir gama aktif bölge oluşturmak

Detaylı

ATOMUN YAPISI. Özhan ÇALIŞ. Bilgi İletişim ve Teknolojileri

ATOMUN YAPISI. Özhan ÇALIŞ. Bilgi İletişim ve Teknolojileri ATOMUN YAPISI ATOMLAR Atom, elementlerin en küçük kimyasal yapıtaşıdır. Atom çekirdeği: genel olarak nükleon olarak adlandırılan proton ve nötronlardan meydana gelmiştir. Elektronlar: çekirdeğin etrafında

Detaylı

TOBB Ekonomi ve Teknoloji Üniversitesi. chem.libretexts.org

TOBB Ekonomi ve Teknoloji Üniversitesi. chem.libretexts.org 9. Atomun Elektron Yapısı Elektromanyetik ışıma (EMI) Atom Spektrumları Bohr Atom Modeli Kuantum Kuramı - Dalga Mekaniği Kuantum Sayıları Elektron Orbitalleri Hidrojen Atomu Orbitalleri Elektron Spini

Detaylı

GENEL KİMYA. Yrd.Doç.Dr. Tuba YETİM

GENEL KİMYA. Yrd.Doç.Dr. Tuba YETİM GENEL KİMYA ATOMUN ELEKTRON YAPISI Bohr atom modelinde elektronun bulunduğu yer için yörünge tanımlaması kullanılırken, kuantum mekaniğinde bunun yerine orbital tanımlaması kullanılır. Orbital, elektronun

Detaylı

ÇEKİRDEK TEMEL DÜZEY ÖZELLİKLERİ ve ÇEKİRDEK ŞEKİLLERİ ve YOĞUNLUKLARI Çekirdeklerin çok küçük boyutlarına rağmen onların şekilleri ve

ÇEKİRDEK TEMEL DÜZEY ÖZELLİKLERİ ve ÇEKİRDEK ŞEKİLLERİ ve YOĞUNLUKLARI Çekirdeklerin çok küçük boyutlarına rağmen onların şekilleri ve 2..2. ÇEKİRDEK TEMEL DÜZEY ÖZELLİKLERİ ve ÇEKİRDEK ŞEKİLLERİ ve YOĞUNLUKLARI Çekirdeklerin çok küçük boyutlarına rağmen onların şekilleri ve büyüklükleri hakkında birçok şey öğrenmiş bulunmaktayız. Atomik

Detaylı

KİMYA -ATOM MODELLERİ-

KİMYA -ATOM MODELLERİ- KİMYA -ATOM MODELLERİ- ATOM MODELLERİNİN TARİHÇESİ Bir çok bilim adamı tarih boyunca atomun yapısı ile ilgili pek çok fikir ortaya atmış ve atomun yapısını tanımlamaya çalışmış-tır. Zaman içerisinde teknoloji

Detaylı

MADDENİN YAPISI VE ÖZELLİKLERİ ATOM

MADDENİN YAPISI VE ÖZELLİKLERİ ATOM MADDENİN YAPISI VE ÖZELLİKLERİ ATOM ATOMUN YAPISI Elementlerin tüm özelliğini gösteren en küçük parçasına atom denir. Atomu oluşturan parçacıklar farklı yüklere sa-hiptir. Atomda bulunan yükler; negatif

Detaylı

CANLILARIN KİMYASAL İÇERİĞİ

CANLILARIN KİMYASAL İÇERİĞİ CANLILARIN KİMYASAL İÇERİĞİ Prof. Dr. Bektaş TEPE Canlıların Savunma Amaçlı Kimyasal Üretimi 2 Bu ünite ile; Canlılık öğretisinde kullanılan kimyasal kavramlar Hiyerarşi düzeyi Hiyerarşiden sorumlu atom

Detaylı

Elementlerin tüm özelliğini gösteren en küçük parçasına atom denir. Atomu oluşturan parçacıklar farklı yüklere sahiptir. Atomda bulunan yükler;

Elementlerin tüm özelliğini gösteren en küçük parçasına atom denir. Atomu oluşturan parçacıklar farklı yüklere sahiptir. Atomda bulunan yükler; Elementlerin tüm özelliğini gösteren en küçük parçasına atom denir. Atomu oluşturan parçacıklar farklı yüklere sahiptir. Atomda bulunan yükler; negatif yükler ve pozitif yüklerdir. Atomu oluşturan parçacıklar:

Detaylı

Fotovoltaik Teknoloji

Fotovoltaik Teknoloji Fotovoltaik Teknoloji Bölüm 3: Güneş Enerjisi Güneşin Yapısı Güneş Işınımı Güneş Spektrumu Toplam Güneş Işınımı Güneş Işınımının Ölçülmesi Dr. Osman Turan Makine ve İmalat Mühendisliği Bilecik Şeyh Edebali

Detaylı

ATOMUN YAPISI ATOMUN ÖZELLİKLERİ

ATOMUN YAPISI ATOMUN ÖZELLİKLERİ ATOM Elementlerin özelliğini taşıyan, en küçük yapı taşına, atom diyoruz. veya, fiziksel ve kimyasal yöntemlerle daha basit birimlerine ayrıştırılamayan, maddenin en küçük birimine atom denir. Helyum un

Detaylı

Nanomalzemelerin Karakterizasyonu. Yapısal Karakterizasyon Kimyasal Karakterizasyon

Nanomalzemelerin Karakterizasyonu. Yapısal Karakterizasyon Kimyasal Karakterizasyon Nanomalzemelerin Karakterizasyonu Yapısal Karakterizasyon Kimyasal Karakterizasyon 1 Nanomalzemlerin Yapısal Karakterizasyonu X ışını difraksiyonu (XRD) Çeşitli elektronik mikroskoplar(sem, TEM) Atomik

Detaylı

Dalton atom modelinde henüz keşfedilmedikleri için atomun temel tanecikleri olan proton nötron ve elektrondan bahsedilmez.

Dalton atom modelinde henüz keşfedilmedikleri için atomun temel tanecikleri olan proton nötron ve elektrondan bahsedilmez. MODERN ATOM TEORİSİ ÖNCESİ KEŞİFLER Dalton Atom Modeli - Elementler atom adı verilen çok küçük ve bölünemeyen taneciklerden oluşurlar. - Atomlar içi dolu küreler şeklindedir. - Bir elementin bütün atomları

Detaylı

RADYOAKT FL K. ALIfiTIRMALARIN ÇÖZÜMÜ. 5. a) Denklemi yazd m zda; 1. Yar lanma süresi T 1/2. 6. a) Madde miktar n 8 m gram al rsak 7 m gram

RADYOAKT FL K. ALIfiTIRMALARIN ÇÖZÜMÜ. 5. a) Denklemi yazd m zda; 1. Yar lanma süresi T 1/2. 6. a) Madde miktar n 8 m gram al rsak 7 m gram RADYOAKT FL K RADYOAKT FL K 1. Yar lanma süresi T 1/ ile gösterilir. Radyoaktif element içerisindeki çekirdek say s n n yar s n n bozunmas için geçen süredir. Bu süre çok uzun olabilece i gibi çok k sa

Detaylı

RÖNTGEN FİZİĞİ 6. X-Işınlarının madde ile etkileşimi. Doç. Dr. Zafer KOÇ Başkent Üniversitesi Tıp Fak

RÖNTGEN FİZİĞİ 6. X-Işınlarının madde ile etkileşimi. Doç. Dr. Zafer KOÇ Başkent Üniversitesi Tıp Fak RÖNTGEN FİZİĞİ 6 X-Işınlarının madde ile etkileşimi Doç. Dr. Zafer KOÇ Başkent Üniversitesi Tıp Fak X-IŞINI MADDE ETKİLEŞİMİ Elektromanyetik enerjiler kendi dalga boylarına yakın maddelerle etkileşime

Detaylı

Tipik bir yayınlayıcısı olan 232 U (72 y) da, yayınlanan çeşitli

Tipik bir yayınlayıcısı olan 232 U (72 y) da, yayınlanan çeşitli ALFA () BOZUNUMU 1903 te Rutherford, radyumun bozunmasından oluşan parçacıklarının elektrik ve manyetik alandaki sapmalarından yararlanarak yükünün kütlesine oranını ölçtü. Rutherford un deneylerinde d

Detaylı

RADYASYON VE RADYASYONDAN KORUNMA

RADYASYON VE RADYASYONDAN KORUNMA RADYASYON VE RADYASYONDAN KORUNMA Mehmet YÜKSEL Çukurova Üniversitesi Fen Bilimleri Enstitüsü Fizik Anabilim Dalı MADDENİN YAPISI (ATOM) Çekirdek Elektronlar RADYASYON NEDİR? Radyasyon; iç dönüşüm geçiren

Detaylı

27.01.2014. İçerik. Temel Atom ve Çekirdek Yapısı RADYASYON TEMEL KAVRAMLAR. Çekirdek. Nötronlar (yüksüz) Elektronlar (-1)

27.01.2014. İçerik. Temel Atom ve Çekirdek Yapısı RADYASYON TEMEL KAVRAMLAR. Çekirdek. Nötronlar (yüksüz) Elektronlar (-1) TEKNİKERLERE YÖNELİK BİLGİSAYARLI TOMOGRAFİ SİSTEMLERİNDE RADYASYONDAN KORUNMA VE PERFORMANS TESTLERİ BİLGİLENDİRME SEMİNERLERİ 24-25 OCAK 2014 RADYASYON TEMEL KAVRAMLAR Dr. Aydın PARMAKSIZ Türkiye Atom

Detaylı

ATOM ve İZOTOPlar RADYOAKTİVİTE ve RADYASYON. Prof. Dr. Arif Altıntaş

ATOM ve İZOTOPlar RADYOAKTİVİTE ve RADYASYON. Prof. Dr. Arif Altıntaş ATOM ve İZOTOPlar RADYOAKTİVİTE ve RADYASYON Prof. Dr. Arif Altıntaş Atom nedir? Atomlar tüm maddeler için yapıyı oluşturan çok küçük partiküllerdir. Atom; bir elementin kimyasal özelliklerini gösteren

Detaylı

Atomik Çekirdek ve Radyoaktivite. Test 1 in Çözümleri

Atomik Çekirdek ve Radyoaktivite. Test 1 in Çözümleri 1 Atoik Çekirdek ve Radyoaktivite 1 Test 1 in Çözüleri 1. Yeğin çekirdek kuvveti, çekirdekteki tü parçacıklar arasında bulunur. Yani bu kuvvet proton-proton, proton-nötron, nötron-nötron etkileşelerinde

Detaylı

Spektroskopi. Elektromanyetik ışımanın madde ile etkileşimini inceleyen bilim dalına spektroskopi denir.

Spektroskopi. Elektromanyetik ışımanın madde ile etkileşimini inceleyen bilim dalına spektroskopi denir. Spektroskopi Elektromanyetik ışımanın madde ile etkileşimini inceleyen bilim dalına spektroskopi denir. Bu etkileşim absorbsiyon (soğurma) ya da emisyon (yayınma) şeklinde olabilir. Elektromanyetik ışımanın

Detaylı

FİZ441 ÇEKİRDEK FİZİĞİ DERS NOTLARI

FİZ441 ÇEKİRDEK FİZİĞİ DERS NOTLARI FİZ441 ÇEKİRDEK FİZİĞİ DERS NOTLARI Bu ders notları, 2009 yılından beri BEÜ Fizik Bölümü web sayfasında güncellenmekte olup başkaları tarafından değiştirilemez! Bir kısmı veya tamamı internet ortamında

Detaylı

BAKIR ATOMUNDA K,L,M ZARFLARI

BAKIR ATOMUNDA K,L,M ZARFLARI HER ATOMUN YÖRÜNGE ZARFLARINDA (K,L,M,..) BULUNABİLECEK MAKSİMUM ELEKTRON SAYISI 2n 2 FORMÜLÜ İLE BULUNABİLİR. SON YÖRÜNGE ZARFINDA EN ÇOK 8 ELEKTRON BULUNUR. Helyum atomu BAKIR ATOMUNDA K,L,M ZARFLARI

Detaylı

ATOM ve İZOTOPLAR. Prof. Dr. Arif Altıntaş.

ATOM ve İZOTOPLAR. Prof. Dr. Arif Altıntaş. ATOM ve İZOTOPLAR RADYOAKTİVİTE TE ve RADYASYON Prof. Dr. Arif Altıntaş altintas@veterinary.ankara.edu.tr Atom nedir? Atomlar tüm maddeler için yapıyı oluşturan çok küçük partiküllerdir. Atom; bir elementin

Detaylı

Radyoaktivitenin Canlılar Üzerindeki Etkisi

Radyoaktivitenin Canlılar Üzerindeki Etkisi Radyoaktivitenin Canlılar Üzerindeki Etkisi Atom: Elementin tüm özelliklerini gösteren en küçük yapı taşıdır. Yunanlı filozofların, tüm maddelerin bölünmeyen yapıtaşları ndan oluştuğunu ilk olarak öne

Detaylı

DERS ÖĞRETİM PLANI. (Bölümden Bağımsız hazırlanmıştır

DERS ÖĞRETİM PLANI. (Bölümden Bağımsız hazırlanmıştır DERS ÖĞRETİM PLANI (Bölümden Bağımsız hazırlanmıştır TÜRKÇE 1 Dersin Adı: ÇEKİRDEK FİZİĞİ 2 Dersin Kodu: FZK3004 3 Dersin Türü: Zorunlu, 4 Dersin Seviyesi: Lisans 5 Dersin Verildiği Yıl: 2011-2012 6 Dersin

Detaylı

A. ATOMUN TEMEL TANECİKLERİ

A. ATOMUN TEMEL TANECİKLERİ ÜNİTE 3 MADDENİN YAPISI VE ÖZELLİKLERİ 1. BÖLÜM MADDENİN TANECİKLİ YAPISI 1- ATOMUN YAPISI Maddenin taneciklerden oluştuğu fikri yani atom kavramı ilk defa demokritus tarafından ortaya atılmıştır. Örneğin;

Detaylı

=iki cisim+üç cisim+dört cisim+ +N cisim etkileşmelerinin tümü

=iki cisim+üç cisim+dört cisim+ +N cisim etkileşmelerinin tümü BÖLÜM 2: ÇEKİRDEĞİN GENEL ÖZELLİKLERİ Kuantum mekaniği yasalarının geçerli olduğu birçok sistem gibi, makroskobik bir cismi tanımlamak çekirdeği tanımlamaktan çok daha kolaydır. Ortalama ağırlıktaki 50

Detaylı

ÜNİTE 13. Radyoaktivite. Amaçlar. İçindekiler. Öneriler

ÜNİTE 13. Radyoaktivite. Amaçlar. İçindekiler. Öneriler ÜNİTE 13 Radyoaktivite Amaçlar Bu üniteyi çalıştıktan sonra, Radyoaktivite, Çekirdek kararlılığı, Radyasyon ve etkileri, İyonlaştırıcı radyasyon etkileri, Radyasyon ölçü ve birimleri hakkında bilgi edineceksiniz.

Detaylı

Biyofizik Nedir? Yrd. Doç Dr. Aslı AYKAÇ Tıp Fakültesi Biyofizik AD

Biyofizik Nedir? Yrd. Doç Dr. Aslı AYKAÇ Tıp Fakültesi Biyofizik AD Biyofizik Nedir? Yrd. Doç Dr. Aslı AYKAÇ Tıp Fakültesi Biyofizik AD Biyofizik Canlı varlıkların incelenmesinde fiziğin uygulanması canlı organizmaların fiziği Konusu Biyoloji konuları Metodolojisi Biyofizik

Detaylı

İşyeri ortamlarında, çalışanların sağlığını. ve güvenliğini korumak amacıyla yapılan bilimsel çalışmaların tümü diye tanımlanabilir.

İşyeri ortamlarında, çalışanların sağlığını. ve güvenliğini korumak amacıyla yapılan bilimsel çalışmaların tümü diye tanımlanabilir. İş Sağlığı ve Güvenliği İşyeri ortamlarında, çalışanların sağlığını ve güvenliğini korumak amacıyla yapılan bilimsel çalışmaların tümü diye tanımlanabilir. Çalışanların sağlığı ve güvenliğin bozulması

Detaylı

7. Sınıf Fen ve Teknoloji

7. Sınıf Fen ve Teknoloji KONU: Atomun Yapısı Saçlarımızın elektriklenmesi, araba kapısına çarpan parmak uçlarımızın elektriksel yük boşalmasından dolayı karıncalanması, cam çubuğun kumaşa sürtüldükten sonra kâğıdı çekmesi, kazağımızı

Detaylı

Atomun Yapısı Boşlukta yer kaplayan, hacmi, kütlesi ve eylemsizliği olan her şeye madde denir. Maddeyi (elementi) oluşturan ve maddenin (elementin)

Atomun Yapısı Boşlukta yer kaplayan, hacmi, kütlesi ve eylemsizliği olan her şeye madde denir. Maddeyi (elementi) oluşturan ve maddenin (elementin) Atomun Yapısı Boşlukta yer kaplayan, hacmi, kütlesi ve eylemsizliği olan her şeye madde denir. Maddeyi (elementi) oluşturan ve maddenin (elementin) kendi özelliğini taşıyan en küçük yapı birimine atom

Detaylı

BÖLÜM 2 ATOMİK YAPI İÇERİK. Atom yapısı. Bağ tipleri. Chapter 2-1

BÖLÜM 2 ATOMİK YAPI İÇERİK. Atom yapısı. Bağ tipleri. Chapter 2-1 BÖLÜM 2 ATOMİK YAPI İÇERİK Atom yapısı Bağ tipleri 1 Atomların Yapıları Atomlar başlıca üç temel atom altı parçacıktan oluşur; Protonlar (+ yüklü) Nötronlar (yüksüz) Elektronlar (-yüklü) Basit bir atom

Detaylı

1. ÜNİTE: MODERN ATOM TEORİSİ

1. ÜNİTE: MODERN ATOM TEORİSİ . ÜNİTE: MODERN ATOM TEORİSİ.4. Elektron Dizilimi ve Periyodik Sisteme Yerleşim Atomun Kuantum Modeli oluşturulduktan sonra Bohr, yaptığı çalışmalarda periyodik cetvel ile kuantum teorisi arasında bir

Detaylı

12. SINIF KONU ANLATIMLI

12. SINIF KONU ANLATIMLI 12. SINIF KONU ANLATIMLI 3. ÜNİTE: DALGA MEKANİĞİ 2. Konu ELEKTROMANYETİK DALGA ETKİNLİK VE TEST ÇÖZÜMLERİ 2 Elektromanyetik Dalga Testin 1 in Çözümleri 1. B manyetik alanı sabit v hızıyla hareket ederken,

Detaylı

I. FOTOELEKTRON SPEKTROSKOPĠSĠ (PES) PES orbital enerjilerini doğrudan tayin edebilir. (Fotoelektrik etkisine benzer!)

I. FOTOELEKTRON SPEKTROSKOPĠSĠ (PES) PES orbital enerjilerini doğrudan tayin edebilir. (Fotoelektrik etkisine benzer!) 5.111 Ders Özeti #9 Bugün için okuma: Bölüm 1.14 (3.Baskıda, 1.13) Elektronik Yapı ve Periyodik Çizelge, Bölüm 1.15, 1.16, 1.17, 1.18, ve 1.20 (3.Baskıda, 1.14, 1.15, 1.16, 1.17, ve 1.19) Atom Özelliklerinde

Detaylı

Bölüm 1 Maddenin Yapısı ve Radyasyon. Prof. Dr. Bahadır BOYACIOĞLU

Bölüm 1 Maddenin Yapısı ve Radyasyon. Prof. Dr. Bahadır BOYACIOĞLU Bölüm 1 Maddenin Yapısı ve Radyasyon Prof. Dr. Bahadır BOYACIOĞLU İÇİNDEKİLER X-ışınlarının elde edilmesi X-ışınlarının Soğrulma Mekanizması X-ışınlarının özellikleri X-ışını cihazlarının parametreleri

Detaylı

Aşağıda verilen özet bilginin ayrıntısını, ders kitabı. olarak önerilen, Erdik ve Sarıkaya nın Temel. Üniversitesi Kimyası" Kitabı ndan okuyunuz.

Aşağıda verilen özet bilginin ayrıntısını, ders kitabı. olarak önerilen, Erdik ve Sarıkaya nın Temel. Üniversitesi Kimyası Kitabı ndan okuyunuz. KİMYASAL BAĞLAR Aşağıda verilen özet bilginin ayrıntısını, ders kitabı olarak önerilen, Erdik ve Sarıkaya nın Temel Üniversitesi Kimyası" Kitabı ndan okuyunuz. KİMYASAL BAĞLAR İki atom veya atom grubu

Detaylı

STANDART MODEL VE ÖTESİ. : Özge Biltekin

STANDART MODEL VE ÖTESİ. : Özge Biltekin STANDART MODEL VE ÖTESİ : Özge Biltekin Standart model, bilim tarihi boyunca keşfedilmiş parçacıkların birleşimidir. Uzay zamanda bir nokta en, boy, yükseklik ve zaman ile tanımlanır. Alanlar da uzay zamanda

Detaylı

PERİYODİK CETVEL-ÖSS DE ÇIKMIŞ SORULAR

PERİYODİK CETVEL-ÖSS DE ÇIKMIŞ SORULAR PERİODİK CETVEL-ÖSS DE ÇIKMIŞ SORULAR 1. Bir elementin periyodik cetveldeki yeri aşağıdakilerden hangisi ile belirlenir? A) Atom ağırlığı B) Değerliği C) Atom numarası D) Kimyasal özellikleri E) Fiziksel

Detaylı

Nükleer Spektroskopi Arş. Gör. Muhammed Fatih KULUÖZTÜRK fatih.fizik@gmail.com

Nükleer Spektroskopi Arş. Gör. Muhammed Fatih KULUÖZTÜRK fatih.fizik@gmail.com BİTLİS EREN ÜNİVERSİTESİ FİZİK BÖLÜMÜ BÖLÜM SEMİNERLERİ 26.03.2014 Nükleer Spektroskopi Arş. Gör. Muhammed Fatih KULUÖZTÜRK fatih.fizik@gmail.com NÜKLEER SPEKTROSKOPİ Radyasyon ve Radyoaktivite Radyasyon

Detaylı

SUNUM KONUSU : GAMA IŞINLARI SUNUMU HAZIRLAYAN : KEMAL AKKUŞ NUMARASI : KONU BAŞLIKLARI

SUNUM KONUSU : GAMA IŞINLARI SUNUMU HAZIRLAYAN : KEMAL AKKUŞ NUMARASI : KONU BAŞLIKLARI SUNUM KONUSU : GAMA IŞINLARI SUNUMU HAZIRLAYAN : KEMAL AKKUŞ NUMARASI : 1120206019 KONU BAŞLIKLARI 1. Gama Işınları Nasıl Bulundu? 2. Gama Işınları Nedir? 3. Teknolojide ve Günlük Hayatta Kullanımı 4.

Detaylı

AST404 GÖZLEMSEL ASTRONOMİ HAFTALIK UYGULAMA DÖKÜMANI

AST404 GÖZLEMSEL ASTRONOMİ HAFTALIK UYGULAMA DÖKÜMANI AST404 GÖZLEMSEL ASTRONOMİ HAFTALIK UYGULAMA DÖKÜMANI Öğrenci Numarası: I. / II. Öğretim: Adı Soyadı: İmza: HAFTA 08 1. KONU: TAYFSAL GÖZLEM 1 2. İÇERİK Doppler Etkisi Kirchhoff Yasaları Karacisim Işınımı

Detaylı

Elektromanyetik Işıma Electromagnetic Radiation (EMR)

Elektromanyetik Işıma Electromagnetic Radiation (EMR) Elektromanyetik Işıma Electromagnetic Radiation (EMR) Elektromanyetik ışıma (ışık) bir enerji şeklidir. Işık, Elektrik (E) ve manyetik (H) alan bileşenlerine sahiptir. Light is a wave, made up of oscillating

Detaylı

ÇEKİRDEK KİMYASI. Kimya Ders Notu

ÇEKİRDEK KİMYASI. Kimya Ders Notu ÇEKİRDEK KİMYASI Kimya Ders Notu ÇEKİRDEK KİMYASI Atomaltı Tanecikler Atomaltı parçacıklar bağımsız olarak ömürleri çok kısa olduğu için normal şartlar altında gözlemlenemezler. Bu amaçla oluşturulan parçacık

Detaylı

NORMAL ÖĞRETİM DERS PROGRAMI

NORMAL ÖĞRETİM DERS PROGRAMI NORMAL ÖĞRETİM DERS PROGRAMI 1. Yarıyıl 1. Hafta ( 19.09.2011-23.09.2011 ) Nükleer reaktör türleri ve çalışma prensipleri Atomik boyuttaki parçacıkların yapısı Temel kavramlar Elektrostatiğin Temelleri,

Detaylı

Doz Birimleri. SI birim sisteminde doz birimi Gray dir.

Doz Birimleri. SI birim sisteminde doz birimi Gray dir. Doz Birimleri Bir canlının üzerine düşen radyasyon miktarından daha önemlisi ne kadar doz soğurduğudur. Soğurulan doz için kullanılan birimler aşağıdaki gibidir. 1 rad: Radyoaktif bir ışımaya maruz kalan

Detaylı

Yıldızların: Farklı renkleri vardır. Bu, onların farklı sıcaklıklarda olduklarını gösterir. Daha sıcak yıldızlar, ömürlerini daha hızlı tüketirler.

Yıldızların: Farklı renkleri vardır. Bu, onların farklı sıcaklıklarda olduklarını gösterir. Daha sıcak yıldızlar, ömürlerini daha hızlı tüketirler. Yıldızların Hayatı Yıldızların: Farklı renkleri vardır Bu, onların farklı sıcaklıklarda olduklarını gösterir Daha sıcak yıldızlar, ömürlerini daha hızlı tüketirler. Yıldız Oluşum Bölgeleri Evren, yıldız

Detaylı

Potansiyel Engeli: Tünelleme

Potansiyel Engeli: Tünelleme Potansiyel Engeli: Tünelleme Şekil I: Bir potansiyel engelinde tünelleme E

Detaylı

BMM 205 Malzeme Biliminin Temelleri

BMM 205 Malzeme Biliminin Temelleri BMM 205 Malzeme Biliminin Temelleri Atom Yapısı ve Atomlar Arası Bağlar Dr. Ersin Emre Ören Biyomedikal Mühendisliği Bölümü Malzeme Bilimi ve Nanoteknoloji Mühendisliği Bölümü TOBB Ekonomi ve Teknoloji

Detaylı

Bugün için Okuma: Bölüm 1.5 (3. Baskıda 1.3), Bölüm 1.6 (3. Baskıda 1.4 )

Bugün için Okuma: Bölüm 1.5 (3. Baskıda 1.3), Bölüm 1.6 (3. Baskıda 1.4 ) 5.111 Ders Özeti #4 Bugün için Okuma: Bölüm 1.5 (3. Baskıda 1.3), Bölüm 1.6 (3. Baskıda 1.4 ) Ders #5 için Okuma: Bölüm 1.3 (3. Baskıda 1.6 ) Atomik Spektrumlar, Bölüm 1.7 de eģitlik 9b ye kadar (3. Baskıda

Detaylı

Elementlerin büyük bir kısmı tabiatta saf hâlde bulunmaz. Çoğunlukla başka elementlerle bileşikler oluşturmuş şekilde bulunurlar.

Elementlerin büyük bir kısmı tabiatta saf hâlde bulunmaz. Çoğunlukla başka elementlerle bileşikler oluşturmuş şekilde bulunurlar. Elementlerin büyük bir kısmı tabiatta saf hâlde bulunmaz. Çoğunlukla başka elementlerle bileşikler oluşturmuş şekilde bulunurlar. Elementlerin bileşik oluşturma istekleri onların kararlı yapıya ulaşma

Detaylı

1. ÜNİTE: MODERN ATOM TEORİSİ İyon Yükleri ve Yükseltgenme Basamakları

1. ÜNİTE: MODERN ATOM TEORİSİ İyon Yükleri ve Yükseltgenme Basamakları 1. ÜNİTE: MODERN ATOM TEORİSİ 1.7. İyon Yükleri ve Yükseltgenme Basamakları Yüksüz bir atomun yapısındaki pozitif (+) yüklü protonlarla negatif () yüklü elektronların sayıları birbirine eşittir. Yüksüz

Detaylı

4 ve 2 enerji seviyelerinin oranından 3.33 değeri bulunur, bu da çekirdeğin içi hakkında bllgi verir.

4 ve 2 enerji seviyelerinin oranından 3.33 değeri bulunur, bu da çekirdeğin içi hakkında bllgi verir. 4.3. KOLLEKTİF MODEL Tüm nükleonların birlikte koherent davrandığı durum düşünülür. Çekirdekte olabilen kolektif davranışlar çekirdeğin tamamını kapsayan titreşimler ve dönmelerdir. Buna göre nükleer özellikler

Detaylı

Dielektrik malzeme DİELEKTRİK ÖZELLİKLER. Elektriksel Kutuplaşma. Dielektrik malzemeler. Kutuplaşma Türleri 15.4.2015. Elektronik kutuplaşma

Dielektrik malzeme DİELEKTRİK ÖZELLİKLER. Elektriksel Kutuplaşma. Dielektrik malzemeler. Kutuplaşma Türleri 15.4.2015. Elektronik kutuplaşma Dielektrik malzeme DİELEKTRİK ÖZELLİKLER Dielektrik malzemeler; serbest elektron yoktur, yalıtkan malzemelerdir, uygulanan elektriksel alandan etkilenebilirler. 1 2 Dielektrik malzemeler Elektriksel alan

Detaylı

ELEMENTLERİN SEMBOLLERİ VE ATOM

ELEMENTLERİN SEMBOLLERİ VE ATOM ELEMENT VE SEMBOLLERİ SAF MADDE: Kendisinden başka madde bulundurmayan maddelere denir. ELEMENT: İçerisinde tek cins atom bulunduran maddelere denir. Yani elementlerin yapı yaşı atomlardır. BİLEŞİK: En

Detaylı

PERİYODİK CETVEL Mendeleev Henry Moseley Glenn Seaborg

PERİYODİK CETVEL Mendeleev Henry Moseley Glenn Seaborg PERİYODİK CETVEL Periyodik cetvel elementleri sınıflandırmak için hazırlanmıştır. İlkperiyodik cetvel Mendeleev tarafından yapılmıştır. Mendeleev elementleri artan kütle numaralarına göre sıralamış ve

Detaylı

6.HAFTA BÖLÜM 3: ÇEKİRDEK KUVVETLERİ VE ÇEKİRDEK MODELLERİ

6.HAFTA BÖLÜM 3: ÇEKİRDEK KUVVETLERİ VE ÇEKİRDEK MODELLERİ 6.HAFTA BÖLÜM 3: ÇEKİRDEK KUVVETLERİ VE ÇEKİRDEK MODELLERİ 3.1 ÇEKİRDEK KUVVETLERİ 3.1.1. GENEL KARAKTERİSTİK Çekirdek hakkında çok fazla bir şey bilmezden önce yalnızca iki farklı etkileşim kuvveti bilinmekteydi.

Detaylı

PERİYODİK CETVEL. Yanıt : D. www.kimyahocam.com. 3 Li : 1s2 2s 1 2. periyot 1A grubu. 16 S : 1s2 2s 2 2p 6 3s 2 3p 4 3.

PERİYODİK CETVEL. Yanıt : D. www.kimyahocam.com. 3 Li : 1s2 2s 1 2. periyot 1A grubu. 16 S : 1s2 2s 2 2p 6 3s 2 3p 4 3. PERİODİK CETVEL Periyodik cetvel, elementlerin atom numaraları temel alınarak düzenlenmiş bir sistemdir. Periyodik cetvelde, nötr atomlarının elektron içeren temel enerji düzeyi sayısı aynı olan elementler

Detaylı

PERİYODİK SİSTEM VE ELEKTRON DİZİLİMLERİ#6

PERİYODİK SİSTEM VE ELEKTRON DİZİLİMLERİ#6 PERİYODİK SİSTEM VE ELEKTRON DİZİLİMLERİ#6 Periyodik sistemde yatay sıralara Düşey sütunlara.. adı verilir. 1.periyotta element, 2 ve 3. periyotlarda..element, 4 ve 5.periyotlarda.element 6 ve 7. periyotlarda

Detaylı

Atomların Kuantumlu Yapısı

Atomların Kuantumlu Yapısı Atomların Kuantumlu Yapısı Yazar Yrd. Doç. Dr. Sabiha AKSAY ÜNİTE 4 Amaçlar Bu üniteyi çalıştıktan sonra, Atom modellerinin yapısını ve çeşitlerini, Hidrojen atomunun enerji düzeyini, Serileri, Laser ve

Detaylı