ÇEKİRDEK TEMEL DÜZEY ÖZELLİKLERİ ve ÇEKİRDEK ŞEKİLLERİ ve YOĞUNLUKLARI Çekirdeklerin çok küçük boyutlarına rağmen onların şekilleri ve

Ebat: px
Şu sayfadan göstermeyi başlat:

Download "ÇEKİRDEK TEMEL DÜZEY ÖZELLİKLERİ ve ÇEKİRDEK ŞEKİLLERİ ve YOĞUNLUKLARI Çekirdeklerin çok küçük boyutlarına rağmen onların şekilleri ve"

Transkript

1 2..2. ÇEKİRDEK TEMEL DÜZEY ÖZELLİKLERİ ve ÇEKİRDEK ŞEKİLLERİ ve YOĞUNLUKLARI Çekirdeklerin çok küçük boyutlarına rağmen onların şekilleri ve büyüklükleri hakkında birçok şey öğrenmiş bulunmaktayız. Atomik çekirdeğin keskin sınırlarla belirlenmiş bir şekli ve büyüklüğü yoktur. Zira parçacıklar bir araya gelip yumak haline dönüşerek kuantum mekaniğinde olduğu gibi dağılım ihtimaliyetlerine sahiptir. Dolayısıyla çekirdeği kuantum mekaniksel yapıda incelemek doğru olduğu gibi istatistiksel olarak da incelenme durumları vardır. En erken çekirdek modeli sıvı damla modeli olarak ortaya konmuştur. Gerçekten bu model nükleer maddeyi tanımlama da oldukça başarılıdır. Bununla birlikte çekirdeğin küresel formundan başka birçok farklı şekle sahip olduğundan dolayı bu model yeterli olamamıştır. Çekirdek şekilleri şekil 9-4 te gösterildiği gibi dir. Şekilde de görüldüğü gibi her bir çekirdek farklı şekillerde olabilir. Böylece enerji düzeyleri çekirdek şekillerine göre etiketlenebilir. Çekirdek şekillerine göre enerji düzeylerinin etiketlenmesi daha ileriki bölümlerde ayrıntılı olarak anlatılacaktır.

2 Çekirdek büyüklüğünü incelemenin bir yolu da yüklü parçacıkların (e lar p lar ve alfa çekirdekleri) saçılmalarını gözlemlemektir. Protonların ve alfa çekirdeklerinin Rutherford saçılma formülasyonlarıyla belli bir mesafeye kadar yaklaşmalarını hesaplamakla nükleer etkileşmeler başlatılmış olur. Coulomb ve nükleer etkileşimin girişimi ile çekirdeğin ince yapı şekilleri detaylı bir şekilde gözlenebilir(şekil9 4). Elektronlar nükleer kuvvetlerle etkileşmediğinden çekirdeklerin şekilleri ve yoğunluklarını uzaklığın fonksiyonu olarak bize verebilirler. Tabi burada ki nükleer çekirdek yoğunluğundaki kastımız nükleer yük yoğunluğu olup nükleer kütle yoğunluğu değildir. Zira nötronlar sıfır yüke sahip olup Coulomb kuvvetiyle etkileşmezler. Çekirdek yoğunluğuna birden fazla nükleon ilave etmekle ne değişmektedir? Nükleon sayılarının artırılmasıyla çekici kuvvetlerin artmasını bekleyebiliriz. Bu çekici kuvvet, çekirdeği bir arada tutan ve nükleonların tamamıyla etkileşim içinde olan bir çekici kuvvettir. Örneğin yoğunluk A ile artmakta olup çekirdeğin merkezinden uzaklaştıkça yoğunluk azalmaktadır. Sürpriz bir şekilde Şekil9-5 te görüldüğü üzere yapılan deneyler sonucunda bu beklenti doğru değildir. Nükleer yük yoğunluğu uzaklığın fonksiyonu olarak hemen hemen sabit kalmakta A değerinin 0 ile 250 arasında değişmesine karşın nükleer yük yoğunluğu %0 oranında değişmektedir. Şekil9-5 te görüldüğü üzere çekirdek yoğunluğu, çekirdek dışından saçılan yüklü parçacıklar tarafından ölçümü görülmektedir. Kabul etmekteyiz ki nötron yoğunluğu yük yoğunluğuyla eşleşmektedir. Bu kabullenmemiz için birkaç delil vardır. Şekil9-5 te toplam yoğunluğa bakılacak olursa bu görülebilir. Deneyler nötron yoğunluğunun ölçümünün çok zor olduğunu ve halen bu konunun açık bir problem olduğunu göstermektedir. Kararlılıktan uzak nötronca çok zengin egzotik çekirdekler nötron halolarına sahiptirler. Dolayısıyla nötron yoğunlukları proton yoğunluğunu takip etmez. Uzaklık ve kütle numarasıyla birlikte nükleer yoğunluktaki değişmezlik nükleon kuvvetleri hakkında bize birçok önemli ipuçları vermektedir. Bu ipuçları bu kuvvetlerin çok kısa menzilli ve doyumlu olduğu hakkındadır. Sonuç olarak şunu

3 söyleyebiliriz; nükleer yoğunlukların elektron saçılmalarıyla test edip incelenmeleri en güncel çalışma alanlarıdır ve nükleer kuvvetlerin anlaşılmasında önemli rol oynamaktadırlar. Gerçekte çekirdek yoğunluğu sabit olup A kütle numarasından bağımsızdır. Bunun anlamı birim hacim başına proton ve nötronların sayısı yaklaşık olarak bütün A lar için sabittir. A sabit 4 π R R αa, ve Rα A Şeklindedir. Çekirdeklerin çok keskin yarıçapları olmayacağı için küresel olmayan durumlarda çekirdek çapı ortalama karekök R şeklinde tanımlanabilir. İki çekirdek birbirine temas ettiğinde bir takım kabullenmeler yapmamız gerekmektedir. İlk olarak çekirdek çapını şu şekilde tanımlayabiliriz. R = R A (9.) 0 Burada R o deneyle tespit edilen bir sabittir. R o ın değeri x0-5 m ile 4,5x0-5 m arasında değişmektedir. Fakat birçok uygulamada bu değer,2x0 5 m olarak alınır. Eşitlik 9, kullanılarak 27 Al nin çapını hesaplayabiliriz. 5 5 R =.2x0 m x 27 =.6x0 m Aynı şekilde 26 Ra un çapı da bu formülle hesaplanabilir. 26 Ra çekirdeğinin nükleon sayısı 27 Al çekirdeğinin nükleon sayısının tam 8 katı olmasına rağmen çapı 27 Al çekirdeğinden sadece 2 kat daha büyüktür. Dikkat edilirse eşitlik 9, kabullenmesi küresel çekirdekler için geçerli bir durumdur. Deforme çekirdekler için ortalama bir değer alınmalıdır. Nükleer madde yoğunluğu şu şekilde verilebilir, m A.u A.u u 7 4 ρ = = = = = 2x0 kg m = 2x0 g cm v πr πr0 A πr0 Suyun yoğunluğu gr/cm,kurşunun yoğunluğu gr/cm ve dünyanın ortalama yoğunluğu 5,5 gr/cm olmasına karşılık, çekirdek madde yoğunluğu 2x0 4 gr/cm tür. Eğer cm lük bir küp şeker çekirdek madde yoğunluğuna göre ele alınacak olursa bunun kütlesi 2x0 kg olacaktır. Yani cm hacimdeki küp şeker yaklaşık 200 milyon ton ağırlığında olacaktır. Şekil9-5 te görüldüğü üzere nükleer yük yoğunluğu sabit değildir ve zayıf olarak Z ye bağlıdır. Bu bağımlılık şu şekilde yazılabilir. 4 4 m = ρ V = 2x0 g cm xcm = 2x0 g = 2x0 kg 200 milyon ton! Burada ρ kütle yoğunluğudur. Şekil9-5 te görüldüğü gibi yük yoğunluğu sıfıra doğru yaklaşmaktadır ve böylece yük yoğunluğu parametrize edilecek olursa; Z ρ( r) ρmass ( r) A r ρ(0) ρ ( ) = (9,2) ( r a b + e ) Burada a =,07A / x0-5 m ve b=0,55x0-5 m dir. Buradaki a nükleer yük yoğunluğunun yarı maksimum olduğu değerdeki çekirdek çapıdır ve 2b çekirdek yüzeyi kalınlığıdır. 209 Bi çekirdeği için r = R0 A değeri aşağıda ki eşitlikle ifade edilebilir. 2

4 r a 0.6A.07A 5.07 = = 5.07 ve e = b 0.55 Gerçekten nükleer yük yoğunluğu 40 Ca ile 209 Bi arasında hemen hemen sabittir. Bunun anlamı nükleer kuvvetlerin doyumlu olduğunu göstermektedir. Yani her bir nükleon komşu birkaç nükleonla etkileşim içindedir. Bunu şöyle örneklendirebiliriz 00 kişilik bir odada konuşan insanlarla siz yalnızca birkaç insanla konuşabilirsiniz hepsiyle aynı anda konuşmazsınız ÇEKİRDEK KÜTLELERİ + 2 Çekirdek nötron ve protonlardan oluştuğundan ilk olarak çekirdek kütlesini n ve p ların kütlelerinin toplamı olarak düşünebiliriz. Fakat bu böyle değildir. Şimdi en basit örnek olan döteryum çekirdeğinin ele alalım. Deniz suyunda yaklaşık olarak her bir milyon H atomundan 50 tanesi döteryum atomudur. Döteryum çekirdeği p ve n dan meydana gelmiştir. Nötronun kütlesi m n =,008665u Protonun kütlesi m p =,007276u Her ikisinin toplamı m n +m p =2,0594u Fakat dötöryumun kütlesi m d =2,055u m n +m p Burada ki kütle farkı m p +m n -m d =0,00289u=2,22Mev u= 9.5 MeV Nötron ve proton döteryum çekirdeğinin oluşturacak şekilde birleştiğinde kütle enerjilerinin bir kısmını bırakırlar(2,2 MeV) bu enerji çekirdek bağlanma enerjisi olarak adlandırılır. Yani bu enerjiyle nötronlar ve protonlar iki serbest parçacık olarak ayrıştırılabilirler. Örneğin döteryum çekirdeği 2,22 MeV lik bir gama ışınını soğurduğunda serbest tek bir proton ve nötron ayrışır. Bağlanma enerjileri atom moleküler fiziğinde, nükleer fiziğe oranla çok daha küçük değerdedir. Örneğin iki H atomu birleşip bir tek H molekülü oluşturduğunda yalnızca 4 ev luk bağlanma enerjisi açığa çıkar. Durgun H atomunun kütlesine karşılık gelen enerji(p+e)yaklaşık 98, MeV + 0,5 MeV 000 MeV civarındadır. Bir atomun kütlesine karşılık gelen moleküler bağlanma enerjisi oranı 4 ev 9 = 4x0 000Mev Moleküler bağlanma enerjisi nükleer fizik problemlerinde çok küçük olduğundan ihmal edilebilir. Elektron ve proton birleşerek H atomunu oluşturduğunda elektronun atomik bağlanma enerjisi,6 ev enerji açığa çıkar. H atomunun kütlesinin elektronun bağlanma enerjisine oranı şudur,.6ev 5 x0 5keV Fakat nötronla proton birleşerek döteron çekirdeğini oluşturduğunda bu oran, 2.225Mev 2x0 (0.2 %) 98Mev Şeklindedir. Yüksek enerji fiziğinde bu oranın e yaklaştığını ve hatta den daha büyük olduğunu göreceğiz. Sonuç olarak nötronun kütlesi protonun kütlesinden daha büyük olduğundan serbest nötron beta bozunması yaparak proton, elektron ve anti-nötrinoya dönüşür. Buna karşılık çekirdeğin içerisinde serbest p lar ve n lar bağlanma enerjisiyle bir arada tutularak beta bozunmasına uğramazlar. Örneğin eğer nötron döteryum çekirdeğinde bozunuma uğrayarak 2 He + elektron + anti- nötrino ya dönüşebilir. 2 He nükleer kuvvetlerle yeterince

5 bağlanamadığından 2 protona dönüşür. Fakat döteryumun kütlesi 2p un kütlesinden küçük olduğundan tek bir elektron kütlesi ilave etmeden dötöryum 2He + m e +anti nötrino bozunması gerçekleşmez. Diğer bir yandan trityum çekirdeği beta bozunması yaparak He + elektron + anti-nötrinoya dönüşebilir. Burada şu söylenebilir çekirdeğin içerisindeki bir tek nötron p + elektron ve anti-nötrinoya dönüşebilecek kütleye sahiptir. Nükleer bağlanma enerjisi N ve Z nin kombinasyonlarını belirler. Açıklayıcı bilgiler şekil 9-2 de görüldüğü gibidir. Nötron fazlalığı olan çekirdekler β - bozunması proton fazlalığı olan çekirdeklerde β + bozunması yapabilirler. Nötron ve protonların bağlanma enerjileri kararlı ve radyoaktif çekirdekleri belirlemede önemli rol oynar KÜTLE TABLOSU VE BAĞLANMA ENERJİSİ 958 de üç atomik kütle skalası kabul edilmiştir : (i) Kesin skala, gram (ii) Fiziksel skala, bir 6 O çekirdeğinin atomunun atomik kütle birimi (amu) ne eşitlenmesi ile tarif edilmiştir. (iii) Kimyasal skala, normal izotropik oksijen karışımının ortalama atomik kütlesinin kütle birimine eşitlenmesi ile tarif edilmiştir. Bu fiziksel skaladan farklı ve biraz keyfidir. Çünkü 7 O ve 8 O izotopları doğada küçük değişimlerle bulunmaktadır. 960 dan itibaren karbon atomunun, 2 C atomik kütle birimine (m u veya u) eşitlenmesi ile kütle tabloları yapılmaya başlanmıştır. Kesin skala (gram) çok az kullanılır, çünkü bu nümerik olarak kullanışlı değildir ve kütle ölçümlerinin fiziksel içeriklerini perdeler. Nükleer fizikte tüm kütleler fiziksel skalada bulunur, bunlar nötral atomların kütleleri olup çekirdek kütleleri değildir, çünkü kütle spektrometrelerinde yapılan ölçümlerden elde edilirler. Kütle numarası A ve atom numarası Z olan bir çekirdeğin M(A, kütlesi, nükleer kütle M N ile ; M(A, = M N +ZN o m B( Eşitliği çerçevesinde ilişkilidir. Burada N o Avagadro sayısı, m elektron kütlesi ve B( atomik kütle birimi cinsinden toplam elektron bağlanma enerjisidir. Burada B(, M(A, nin % 0 4 ü kadar olup genellikle ihmal edilebilir. Kütle tabloları her ne kadar nötral atomların kütlelerini versede, genellikle Nükleer kütle kelimesi kullanılmaktadır. Kütlelerdeki doğruluk 0 amu için milyonda bir oranındadır. Nükleer kütle değişimleri E=c 2 M şeklindeki Einstein denklemi ile ilgilendirilir. Örneğin ( 6 O=6) alınmak suretiyle elde edilen atomik kütleler izotopları için : ± 4 amu ± 5 amu ± 7 amu.94799± 5 amu ±0 amu ± amu ± amu çekirdek kütleleri fiziksel skalada tam sayılara yakın olmakla birlikte proton veya nötron kütlelerinin tam katları değillerdir. Bir izotopun tam atomik kütlesi M(A, ile

6 kütle numarası arasındaki fark kütle eksiği (mass defect) = M (A,-A olarak adlandırılır. Bunun kütle numarasına oranı(packing fraction) olarak adlandırılır: M ( A, A P = = A A çekirdeğin toplam bağlanma enerjisi ; B( A, = ZM H + ( A M N M ( A, ortalama nükleon bağlanma enerjisi: B/A dır. Özel bir parçacığın çekirdekten ayrılması bu parçacık için ayırma enerjisidir. Nötron için Proton için α-parçacığı için (Helyum çekirdeği) S n = B(A,-B(A-, = M(A-,-M(A,+M n S P = B(A,-B(A-,Z-) = M(A-,Z-)-M(A,+M H S α = B(A,-B(A-4,Z-2) = M(A-4,Z-2)-M(A,+M He Ayırma enerjisi bu parçacık için aynı zamanda bağlanma enerjisidir. Bu genelde ortalama nükleon B/A bağlanma enerjisine eşit değildir. Ortalama bağlanma enerjisinin kütle numarası A ya karşı çizimi enterandır. Nükleon başına bağlanma enerjisi Bu şekil nükleer bağlanmanın pek çok yönünü açıklar : -) Tüm çekirdekler için bağlanma enerjisi pozitiftir. Yani çekirdek kendisini meydana getiren parçalardan daha stabildir. Bu demektir ki nükleonlar araındaki nükleer kuvvet

7 çekicidir. Diğer taraftan çekirdek çok küçük uzaklıklarda biraz iticidir, böylece çekirdek çökmez. 2-) 4 ün katları olan A lardan, hafif çekirdeklerde pikler vardır bunlar Z=/2 A dadırlar. Bunlar iki proton ve iki nötron yapısında, α parçacıkları gibidirler. -) A nın 20 den yüksek değerleri için B/A değeri çok fazla değişmez fakat 7.5 ve 8.5 MeV / Nükleon arasındadır. Yani çekirdeklerin çoğu için B yaklaşık olarak toplam nükleon sayısı A ile orantılıdır. Bununla beraber her nükleon tüm diğer nükleonlarla tek tek etkileştiğinden, B nin A 2 ile orantılı olmasını bekleriz. Dolayısı ile her nükleon çevredeki sadece belli limitte sayısı bulunan nükleonlarla etkileşmelidir. Bu özellik nükleer kuvvet doyumu olarak adlandırılır. 4-) En ağır çekirdek ile A=60 arasındaki, bağlanma enerjisinin yavaş azalımı, protonların elektrik itmesinin artışına ilişkilendirilebilir, bu ise çekirdeğin düzenini bozar. Bu etki, protonlardan çok nötronlar eklenerek daha ağır çekirdeklerde, nötronlar arası nükleer kuvveti artırıp stabiliteyi sürdürmeyi sağlar. Bununla beraber bir durumunda limitleri vardır. Coulomb kuvveti stabil elementlerin sayısını limitler. 5-) Eğer bireysel bağlanma enerjisine daha yakından bakılacak olursa, çift-çift çekirdeklerin tek z veya tek N alanlardan daha stabil oldukları gözlenir. Bu da aynı tip nükleonların ters spinli olanlarının çiftlenim kuvvetinin bir sonucudur. B(A,(MeV) B/A (MeV) He He He He deki fazla nötronun bağlanma enerjisi negatiftir, bu çekirdek bir 4 He ve nötrona bozunur. 4 N deki ayrım enerjileri çeşitli parçacıklar için bulunabilir. M ( N +n ) = M( 4 N ) = S n = 0.00 Kb = 0.5 MeV M( C + P ) = M( 4 N) = M( 0 B + 4 He ) = M( 4 N ) = S P = Kb = MeV S α = Kb =.6 MeV

8 Çiftlenim etkisi sabitlenmiş Z li çekirdeklere nötronlar eklenerek bulunabilir. Çiftlenim enerjisi P n (A, = S n (A,-S n (A-, Şeklinde tarif edilir. Aşağıdaki tabloda Ca izotopunun çekirdekleri için elde edilen nötron ayrımı ve çiftlenim enerjileri görülmektedir. Burada çiftlenen iki nötron için MeV lik ekstra bağlanma görülmektedir. İzotop S n (A, MeV P n (A, MeV 40 Ca Ca Ca Ca Ca Ca Ca Ca Ca Ca Ca izotopları Z= 20 için nötron ayrım ve çiftlenim enerjileri Bağlanma enerjisinden elde edilen ilk üç sonuç, nükleer maddenin bir sıvı damlasına benzer şekilde hareket ettiğini gösterir. Ölçülen kütlelerden eld edilen sonuçlara uyarlanan yarı ampirik kütle formülü ilk defa Von Weizsöcker tarafından kurulmuş bilahare Fermi ve diğer araştırmacılar tarafından daha fazla detaylandırılarak geliştirilmiştir. Bir sıvı damlası nötron-protondan oluşmuş sabit bir yoğunlukta düşünülürse, hacim nükleon sayısı A ile orantılıdır. Yarıçap ise A / ile orantılıdır, yani R= r 0 A / burada r 0 deneysel olarak bulunan bir sabit olup.2 x 0 - cm dir. B(A, toplam bağlanma enerjisi için bir formül şunları içerir: -) Nükleonlar arası esas bağlanma terimi. Bu kısa menzilli nükleer çekici kuvvetler sonucu oluşur. B/A sabit olduğundan bu yaklaşık olarak A ya bağlıdır. Bu terime hacim terimi denilir ve +a v A dır. Burada a v deneysel bir sabittir. 2-) yüzeydeki nükleonlar içerisindekiler kadar bağlanmaya etki etmeyecektir. Bağlanma yüzey alanı kadar bir faktörle azalacaktır bu da A 2/ ile orantılıdır. Dolayısı ile yüzey terimi a s A 2/ tür. -) Hafif çekirdeklerde aynı sayıda nötron ve protonu olan çekirdeklerin daha stabil olma eğilimleri vardır. Çekirdeğimizi bu simetrik durumdan çıkaran bir terim eklemek gerekir, bu da (/2A- 2 ile orantılıdır, bu terim hanelidir çünkü fazla nötron ve protonların

9 bağlanmayı azaltmasındaki etki aynıdır. Daha ağır çekirdeklerde bu etki azalır dolayısı ile bir A - faktörü eklenir. Böylece asimetri terimi a z (A-2 2 /A dır. 4-) Nükleer elektrik yükü bir bozunum etkisine sahiptir ve bağlanma enerjisini azaltma etkisi vardır. Eğer Ze yükü R=r 0 A / yarıçaplı bir küreye sığdırılırsa böyle düzgün yüklenmiş bir 2 ( Ze) 2 kürenin potansiyeli 5 Z tür. R A 5-) Çekirdeklerden çift-çift alanları tek tek alanlarından daha stabil olduğundan, bu çiftlenimi açıklayıcı terim +δ(a, dir. Burada δ > 0 A çift, Z,N çift δ < 0 A çift, Z ve N tek δ = 0 A tek Böylece yarı ampirik tamamlanmış formül : ( A 2 Z B( A, = av A as A aa ac + δ( A, A A bağlanma enerjisi grafiğindeki eğriye oldukça iyi bir yerleştirme için sabitlerin aşağıdaki değerleri kullanılabilir: a v = 5.6 MeV a a = 2. MeV a s = 7. MeV a c = 0.70 MeV δ=.5 A -/4

ATOMİK YAPI. Elektron Yükü=-1,60x10-19 C Proton Yükü=+1,60x10-19 C Nötron Yükü=0

ATOMİK YAPI. Elektron Yükü=-1,60x10-19 C Proton Yükü=+1,60x10-19 C Nötron Yükü=0 ATOMİK YAPI Elektron Yükü=-1,60x10-19 C Proton Yükü=+1,60x10-19 C Nötron Yükü=0 Elektron Kütlesi 9,11x10-31 kg Proton Kütlesi Nötron Kütlesi 1,67x10-27 kg Bir kimyasal elementin atom numarası (Z) çekirdeğindeki

Detaylı

Radyoaktif elementin tek başına bulunması, bileşik içinde bulunması, katı, sıvı, gaz, iyon halinde bulunması radyoaktif özelliğini etkilemez.

Radyoaktif elementin tek başına bulunması, bileşik içinde bulunması, katı, sıvı, gaz, iyon halinde bulunması radyoaktif özelliğini etkilemez. RADYOAKTİFLİK Kendiliğinden ışıma yapabilen maddelere radyoaktif maddeler denir. Radyoaktiflik çekirdek yapısıyla ilişkilidir. Radyoaktif bir atom hangi bileşiğin yapısına girerse o bileşiği radyoaktif

Detaylı

Element atomlarının atom ve kütle numaraları element sembolleri üzerinde gösterilebilir. Element atom numarası sembolün sol alt köşesine yazılır.

Element atomlarının atom ve kütle numaraları element sembolleri üzerinde gösterilebilir. Element atom numarası sembolün sol alt köşesine yazılır. Atom üç temel tanecikten oluşur. Bunlar proton, nötron ve elektrondur. Proton atomun çekirdeğinde bulunan pozitif yüklü taneciktir. Nötron atomun çekirdeğin bulunan yüksüz taneciktir. ise çekirdek etrafında

Detaylı

Büyük Patlama ve Evrenin Oluşumu. Test 1 in Çözümleri

Büyük Patlama ve Evrenin Oluşumu. Test 1 in Çözümleri 7 Büyük Patlama ve Evrenin Oluşumu 225 Test 1 in Çözümleri 1. Elektrikçe yüksüz parçacıklar olan fotonların kütleleri yoktur. Işık hızıyla hareket ettikleri için atom içerisinde bulunamazlar. Fotonlar

Detaylı

Malzeme Bilgisi Prof. Dr. Akgün ALSARAN. Temel kavramlar Atomsal yapı

Malzeme Bilgisi Prof. Dr. Akgün ALSARAN. Temel kavramlar Atomsal yapı Malzeme Bilgisi Prof. Dr. Akgün ALSARAN Temel kavramlar Atomsal yapı İçerik Temel kavramlar Atom modeli Elektron düzeni Periyodik sistem 2 Temel kavramlar Bütün maddeler kimyasal elementlerden oluşur.

Detaylı

6.HAFTA BÖLÜM 3: ÇEKİRDEK KUVVETLERİ VE ÇEKİRDEK MODELLERİ

6.HAFTA BÖLÜM 3: ÇEKİRDEK KUVVETLERİ VE ÇEKİRDEK MODELLERİ 6.HAFTA BÖLÜM 3: ÇEKİRDEK KUVVETLERİ VE ÇEKİRDEK MODELLERİ 3.1 ÇEKİRDEK KUVVETLERİ 3.1.1. GENEL KARAKTERİSTİK Çekirdek hakkında çok fazla bir şey bilmezden önce yalnızca iki farklı etkileşim kuvveti bilinmekteydi.

Detaylı

RADYASYON FİZİĞİ 1. Prof. Dr. Kıvanç Kamburoğlu

RADYASYON FİZİĞİ 1. Prof. Dr. Kıvanç Kamburoğlu RADYASYON FİZİĞİ 1 Prof. Dr. Kıvanç Kamburoğlu Herbirimiz kısa bir süre yaşarız ve bu kısa süre içerisinde tüm evrenin ancak çok küçük bir bölümünü keşfedebiliriz Evrenle ilgili olarak en anlaşılamayan

Detaylı

ATOMUN YAPISI ATOMUN ÖZELLİKLERİ

ATOMUN YAPISI ATOMUN ÖZELLİKLERİ ATOM Elementlerin özelliğini taşıyan, en küçük yapı taşına, atom diyoruz. veya, fiziksel ve kimyasal yöntemlerle daha basit birimlerine ayrıştırılamayan, maddenin en küçük birimine atom denir. Helyum un

Detaylı

BMM 205 Malzeme Biliminin Temelleri

BMM 205 Malzeme Biliminin Temelleri BMM 205 Malzeme Biliminin Temelleri Atom Yapısı ve Atomlar Arası Bağlar Dr. Ersin Emre Ören Biyomedikal Mühendisliği Bölümü Malzeme Bilimi ve Nanoteknoloji Mühendisliği Bölümü TOBB Ekonomi ve Teknoloji

Detaylı

Nötronlar kinetik enerjilerine göre aşağıdaki gibi sınıflandırılırlar

Nötronlar kinetik enerjilerine göre aşağıdaki gibi sınıflandırılırlar Nötronlar kinetik enerjilerine göre aşağıdaki gibi sınıflandırılırlar Termal nötronlar (0.025 ev) Orta enerjili nötronlar (0.5-10 kev) Hızlı nötronlar (10 kev-10 MeV) Çok hızlı nötronlar (10 MeV in üzerinde)

Detaylı

görülmüştür. Bu sırada sabit nükleer yoğunluk (ρ) hipotezide doğrulanmış olup ραa olarak belirtilmiştir.

görülmüştür. Bu sırada sabit nükleer yoğunluk (ρ) hipotezide doğrulanmış olup ραa olarak belirtilmiştir. 4.HAFTA 2.1.3. NÜKLEER STABİLİTE Bulunan yarı ampirik formülle nükleer stabilite incelenebilir. Aşağıdaki şekil bilinen satbil çekirdekler için nötron sayısı N e karşılık proton sayısı Z nin çizimini içerir.

Detaylı

FIZ 512 İLERİ NÜKLEER FİZİK II. Doç. Dr. Harun Reşit YAZAR

FIZ 512 İLERİ NÜKLEER FİZİK II. Doç. Dr. Harun Reşit YAZAR FIZ 5 İLERİ NÜKLEER FİZİK II Doç. Dr. Harun Reşit YAZAR DERSİN HEDEFİ: Çekirdek büyüklükleri ve şekilleri ile ilgili alt yapı oluşturmak, çekirdek modelleri hakkında bilgi vermek. İÇİNDEKİLER BÖLÜM : TEMEL

Detaylı

İSG 514 RADYASYON GÜVENLİĞİ

İSG 514 RADYASYON GÜVENLİĞİ İSG 514 RADYASYON GÜVENLİĞİ İŞ SAĞLIĞI VE GÜVENLİĞİ TEZSİZ YÜKSEK LİSANS PROGRAMI Ders koordinatörü: Yrd. Doç. Dr. Mustafa GÜNGÖRMÜŞ mgungormus@turgutozal.edu.tr http://www.turgutozal.edu.tr/mgungormus/

Detaylı

1) İzotop, izoton ve izobar niceliklerini tanımlayarak örnekler

1) İzotop, izoton ve izobar niceliklerini tanımlayarak örnekler 1) İzotop, izoton ve izobar niceliklerini tanımlayarak örnekler veriniz. ii İzotop: p Bir elementin, aynı proton sayılı ancak, farklı nötron sayılı çekirdekleri o elementin izotoplarıdır. Örnek: U ; U

Detaylı

Atomun Yapısı Boşlukta yer kaplayan, hacmi, kütlesi ve eylemsizliği olan her şeye madde denir. Maddeyi (elementi) oluşturan ve maddenin (elementin)

Atomun Yapısı Boşlukta yer kaplayan, hacmi, kütlesi ve eylemsizliği olan her şeye madde denir. Maddeyi (elementi) oluşturan ve maddenin (elementin) Atomun Yapısı Boşlukta yer kaplayan, hacmi, kütlesi ve eylemsizliği olan her şeye madde denir. Maddeyi (elementi) oluşturan ve maddenin (elementin) kendi özelliğini taşıyan en küçük yapı birimine atom

Detaylı

Hayat Kurtaran Radyasyon

Hayat Kurtaran Radyasyon Hayat Kurtaran Radyasyon GÜNLÜK HAYAT KONUSU: Kanser tedavisinde kullanılan radyoterapi KĐMYA ĐLE ĐLĐŞKĐSĐ: Radyoterapi bazı maddelerin radyoaktif özellikleri dolayısıyla ışımalar yapması esasına dayanan

Detaylı

MADDENİN YAPISI VE ÖZELLİKLERİ ATOM

MADDENİN YAPISI VE ÖZELLİKLERİ ATOM MADDENİN YAPISI VE ÖZELLİKLERİ ATOM ATOMUN YAPISI Elementlerin tüm özelliğini gösteren en küçük parçasına atom denir. Atomu oluşturan parçacıklar farklı yüklere sa-hiptir. Atomda bulunan yükler; negatif

Detaylı

ATOM BİLGİSİ I ÖRNEK 1

ATOM BİLGİSİ I  ÖRNEK 1 ATOM BİLGİSİ I Elementlerin özelliklerini ta ıyan en küçük yapıta ı atomdur. Son çözümlemede, bütün maddelerin atomlar toplulu u oldu unu söyleyebiliriz. Elementler, aynı tür atomlardan, bile ik ve karı

Detaylı

FİZK Ders 5. Elektrik Alanları. Dr. Ali ÖVGÜN. DAÜ Fizik Bölümü.

FİZK Ders 5. Elektrik Alanları. Dr. Ali ÖVGÜN. DAÜ Fizik Bölümü. FİZK 104-0 Ders 5 Elektrik Alanları Dr. Ali ÖVGÜN DAÜ Fizik Bölümü Kaynaklar: -Fizik. Cilt (SERWAY) -Fiziğin Temelleri.Kitap (HALLIDAY & RESNIK) -Üniversite Fiziği (Cilt ) (SEARS ve ZEMANSKY) http://fizk104.aovgun.com

Detaylı

3.3. ÇEKİRDEK MODELLERİ

3.3. ÇEKİRDEK MODELLERİ 7. HAFTA 3.3. ÇEKİRDEK MODELLERİ Çekirdeği anlamak için temel tanımlamamız şu şekilde özetlenebilir: çekirdeğin içerisinde nükleonların nasıl hareket ettikleri ve nükleer kuvvetlerin nasıl davrandıklarıdır.

Detaylı

A. ATOMUN TEMEL TANECİKLERİ

A. ATOMUN TEMEL TANECİKLERİ ÜNİTE 3 MADDENİN YAPISI VE ÖZELLİKLERİ 1. BÖLÜM MADDENİN TANECİKLİ YAPISI 1- ATOMUN YAPISI Maddenin taneciklerden oluştuğu fikri yani atom kavramı ilk defa demokritus tarafından ortaya atılmıştır. Örneğin;

Detaylı

FİZİK 2 ELEKTRİK VE MANYETİZMA Elektrik yükü Elektrik alanlar Gauss Yasası Elektriksel potansiyel Kondansatör ve dielektrik Akım ve direnç Doğru akım

FİZİK 2 ELEKTRİK VE MANYETİZMA Elektrik yükü Elektrik alanlar Gauss Yasası Elektriksel potansiyel Kondansatör ve dielektrik Akım ve direnç Doğru akım FİZİK 2 ELEKTRİK VE MANYETİZMA Elektrik yükü Elektrik alanlar Gauss Yasası Elektriksel potansiyel Kondansatör ve dielektrik Akım ve direnç Doğru akım devreleri Manyetik alanlar Akım nedeniyle oluşan manyetik

Detaylı

, (Compton Saçılması) e e, (Çift Yokoluşu) OMÜ_FEN

, (Compton Saçılması) e e, (Çift Yokoluşu) OMÜ_FEN Göreli olmayan kuantum mekaniği 1923-1926 yıllarında tamamlandı. Göreli kuantum mekaniğinin ilk başarılı uygulaması 1927 de Dirac tarafından gerçekleştirildi. Dirac denklemi serbest elektronlar için uygulandığında

Detaylı

T. C. GAZİ ÜNİVERSİTESİ GAZİ EĞİTİM FAKÜLTESİ FİZİK EĞİTİMİ A. B. D. PROJE ÖDEVİ

T. C. GAZİ ÜNİVERSİTESİ GAZİ EĞİTİM FAKÜLTESİ FİZİK EĞİTİMİ A. B. D. PROJE ÖDEVİ T. C. GAZİ ÜNİVERSİTESİ GAZİ EĞİTİM FAKÜLTESİ FİZİK EĞİTİMİ A. B. D. PROJE ÖDEVİ ÖĞRETİMİ PLANLAMA VE DEĞERLENDİRME Dr. Yücel KAYABAŞI ÖLÇME ARACI Hazırlayan : Hasan Şahin KIZILCIK 98050029457 Konu : Çekirdek

Detaylı

ATOM ATOMUN YAPISI 7. S I N I F S U N U M U. Elementlerin tüm özelliğini gösteren en küçük parçasına atom denir.

ATOM ATOMUN YAPISI 7. S I N I F S U N U M U. Elementlerin tüm özelliğini gösteren en küçük parçasına atom denir. ATO YAP Atomu oluşturan parçacıklar farklı yüklere sahiptir Atomda bulunan yükler; negatif yükler ve pozitif yüklerdir Elementlerin tüm özelliğini gösteren en küçük parçasına atom denir Atomu oluşturan

Detaylı

Periyodik Tablo. Elementleri artan atom numaralarına ve tekrar eden fiziksel kimyasal özelliklerine göre sınıflandırır.

Periyodik Tablo. Elementleri artan atom numaralarına ve tekrar eden fiziksel kimyasal özelliklerine göre sınıflandırır. Periyodik Tablo Elementleri artan atom numaralarına ve tekrar eden fiziksel kimyasal özelliklerine göre sınıflandırır. 1828 Berzelius elementleri sembolize etmek için harfleri kullandı. 1829 Döbereiner

Detaylı

7. Sınıf Fen ve Teknoloji

7. Sınıf Fen ve Teknoloji KONU: Atomun Yapısı Saçlarımızın elektriklenmesi, araba kapısına çarpan parmak uçlarımızın elektriksel yük boşalmasından dolayı karıncalanması, cam çubuğun kumaşa sürtüldükten sonra kâğıdı çekmesi, kazağımızı

Detaylı

Atomlar ve Moleküller

Atomlar ve Moleküller Atomlar ve Moleküller Madde, uzayda yer işgal eden ve kütlesi olan herşeydir. Element, kimyasal tepkimelerle başka bileşiklere parçalanamayan maddedir. -Doğada 92 tane element bulunmaktadır. Bileşik, belli

Detaylı

ATOM NEDİR? -Atom elementin özelliğini taşıyan en küçük parçasına denir. Her canlı-cansız madde atomdan oluşmuştur.

ATOM NEDİR? -Atom elementin özelliğini taşıyan en küçük parçasına denir. Her canlı-cansız madde atomdan oluşmuştur. DERS: KİMYA KONU : ATOM YAPISI ATOM NEDİR? -Atom elementin özelliğini taşıyan en küçük parçasına denir. Her canlı-cansız madde atomdan oluşmuştur. Atom Modelleri Dalton Bütün maddeler atomlardan yapılmıştır.

Detaylı

J.J. Thomson (Ġngiliz fizikçi, 1856-1940), 1897 de elektronu keģfetti ve kütle/yük oranını belirledi. 1906 da Nobel Ödülü nü kazandı.

J.J. Thomson (Ġngiliz fizikçi, 1856-1940), 1897 de elektronu keģfetti ve kütle/yük oranını belirledi. 1906 da Nobel Ödülü nü kazandı. 1 5.111 Ders Özeti #2 Bugün için okuma: A.2-A.3 (s F10-F13), B.1-B.2 (s. F15-F18), ve Bölüm 1.1. Ders 3 için okuma: Bölüm 1.2 (3. Baskıda 1.1) Elektromanyetik IĢımanın Özellikleri, Bölüm 1.4 (3. Baskıda

Detaylı

CANLILARIN KİMYASAL İÇERİĞİ

CANLILARIN KİMYASAL İÇERİĞİ CANLILARIN KİMYASAL İÇERİĞİ Prof. Dr. Bektaş TEPE Canlıların Savunma Amaçlı Kimyasal Üretimi 2 Bu ünite ile; Canlılık öğretisinde kullanılan kimyasal kavramlar Hiyerarşi düzeyi Hiyerarşiden sorumlu atom

Detaylı

Elektrostatik Elektrik Alan Elektrik Akı Kondansatör. Kaynak : Serway-Beichner Bölüm 23, 24, 26

Elektrostatik Elektrik Alan Elektrik Akı Kondansatör. Kaynak : Serway-Beichner Bölüm 23, 24, 26 Elektrostatik Elektrik Alan Elektrik Akı Kondansatör Kaynak : Serway-Beichner Bölüm 23, 24, 26 İndüksiyon Nötr Maddenin indüksiyon yoluyla yüklenmesi (Bir yük türünün diğer yük türüne göre daha fazla olması)

Detaylı

BÖLÜM 4: MADDESEL NOKTANIN KİNETİĞİ: İMPULS ve MOMENTUM

BÖLÜM 4: MADDESEL NOKTANIN KİNETİĞİ: İMPULS ve MOMENTUM BÖLÜM 4: MADDESEL NOKTANIN KİNETİĞİ: İMPULS ve MOMENTUM 4.1. Giriş Bir önceki bölümde, hareket denklemi F = ma nın, maddesel noktanın yer değiştirmesine göre integrasyonu ile elde edilen iş ve enerji denklemlerini

Detaylı

Yıldızlara gidemeyiz; sadece onlardan gelen ışınımı teleskopların yardımıyla gözleyebilir ve çözümleyebiliriz.

Yıldızlara gidemeyiz; sadece onlardan gelen ışınımı teleskopların yardımıyla gözleyebilir ve çözümleyebiliriz. Yıldızlara gidemeyiz; sadece onlardan gelen ışınımı teleskopların yardımıyla gözleyebilir ve çözümleyebiliriz. Işık genellikle titreşen elektromanyetik dalga olarak düşünülür; bu suda ilerleyen dalgaya

Detaylı

ELEKTRİKSEL POTANSİYEL

ELEKTRİKSEL POTANSİYEL ELEKTRİKSEL POTANSİYEL Elektriksel Potansiyel Enerji Elektriksel potansiyel enerji kavramına geçmeden önce Fizik-1 dersinizde görmüş olduğunuz iş, potansiyel enerji ve enerjinin korunumu kavramları ile

Detaylı

ATOMUN YAPISI VE PERIYODIK CETVEL

ATOMUN YAPISI VE PERIYODIK CETVEL ATOMUN YAPISI VE PERIYODIK CETVEL DALTON ATOM TEORISI - Tüm maddeler atomlardan yapılmıştır. - Farklı maddelerin atomlarıda birbirlerinden farklıdır. - Bir bileşiği oluşturan atomların kütleleri arasında

Detaylı

ÇALIŞMA YAPRAĞI (KONU ANLATIMI)

ÇALIŞMA YAPRAĞI (KONU ANLATIMI) ÇALIŞMA YAPRAĞI (KONU ANLATIMI) ATOMUN YAPISI HAZIRLAYAN: ÇĐĞDEM ERDAL DERS: ÖĞRETĐM TEKNOLOJĐLERĐ VE MATERYAL GELĐŞTĐRME DERS SORUMLUSU: PROF.DR. ĐNCĐ MORGĐL ANKARA,2008 GĐRĐŞ Kimyayı ve bununla ilgili

Detaylı

ALFA BOZUNUMU MEHMET YÜKSEL ÇÜ FBE FİZİK ABD ADANA-2010

ALFA BOZUNUMU MEHMET YÜKSEL ÇÜ FBE FİZİK ABD ADANA-2010 ALFA BOZUNUMU MEHME ÜKSEL ÇÜ FBE FİZİK ABD ADANA-010 İÇERİK 1. Giriş. Alfa (α) Parçacığı ve Özellikleri 3. Alfa Bozunuu Niçin Olur? 4. eel Alfa Bozunu Reaksiyonları 4.1. Alfa (α) Bozunuunda Enerji ve Moentu

Detaylı

İstatistiksel Mekanik I

İstatistiksel Mekanik I MIT Açık Ders Malzemeleri http://ocw.mit.edu 8.333 İstatistiksel Mekanik I: Parçacıkların İstatistiksel Mekaniği 2007 Güz Bu materyallerden alıntı yapmak veya Kullanım Şartları hakkında bilgi almak için

Detaylı

MADDE NEDİR? Çevremize baktığımızda gördüğümüz her şey örneğin, dağlar, denizler, ağaçlar, bitkiler, hayvanlar ve hava birer maddedir.

MADDE NEDİR? Çevremize baktığımızda gördüğümüz her şey örneğin, dağlar, denizler, ağaçlar, bitkiler, hayvanlar ve hava birer maddedir. MADDE NEDİR? Çevremize baktığımızda gördüğümüz her şey örneğin, dağlar, denizler, ağaçlar, bitkiler, hayvanlar ve hava birer maddedir. Her maddenin bir kütlesi vardır ve bu tartılarak bulunur. Ayrıca her

Detaylı

Yıldızların: Farklı renkleri vardır. Bu, onların farklı sıcaklıklarda olduklarını gösterir. Daha sıcak yıldızlar, ömürlerini daha hızlı tüketirler.

Yıldızların: Farklı renkleri vardır. Bu, onların farklı sıcaklıklarda olduklarını gösterir. Daha sıcak yıldızlar, ömürlerini daha hızlı tüketirler. Yıldızların Hayatı Yıldızların: Farklı renkleri vardır Bu, onların farklı sıcaklıklarda olduklarını gösterir Daha sıcak yıldızlar, ömürlerini daha hızlı tüketirler. Yıldız Oluşum Bölgeleri Evren, yıldız

Detaylı

FİSYON. Ağır çekirdekler nötronla bombardıman edildiklerinde bölünürler.

FİSYON. Ağır çekirdekler nötronla bombardıman edildiklerinde bölünürler. FİSYON Ağır çekirdekler nötronla bombardıman edildiklerinde bölünürler. Fisyon ilk defa 1934 te Ida Noddack tarafından önerilmiştir. Otto Hahn & Fritz Strassman Berlin (1938) de yaptıkları deneylerde hızlı

Detaylı

RADYOAKTİFLİK. Bu çalışmalar sonucunda radyoaktif olarak adlandırılan atomların yüksek enerjili tanecikler ve ışınlar yaydıkları belirlenmiştir.

RADYOAKTİFLİK. Bu çalışmalar sonucunda radyoaktif olarak adlandırılan atomların yüksek enerjili tanecikler ve ışınlar yaydıkları belirlenmiştir. RADYOAKTİFLİK Atomların ve molekiller arası çekim kuvvetlerinin değişmesi ile fiziksel değişimlerinin, atomların değerlik elektron sayılarının değişmesiyle kimyasal değişimlerin olduğu bilinmektedir. Kimyasal

Detaylı

MIT 8.02, Bahar 2002 Ödev # 1 Çözümler

MIT 8.02, Bahar 2002 Ödev # 1 Çözümler Adam S. Bolton bolton@mit.edu MIT 8.02, Bahar 2002 Ödev # 1 Çözümler 15 Şubat 2002 Problem 1.1 Kütleçekim ve Elektrostatik kuvvetlerin bağıl şiddetleri. Toz parçacıkları 50 µm çapında ve böylece yarıçapları

Detaylı

BÖLÜM 17 RİJİT ROTOR

BÖLÜM 17 RİJİT ROTOR BÖLÜM 17 RİJİT ROTOR Birbirinden R sabit mesafede bulunan iki parçacığın dönmesini düşünelim. Bu iki parçacık, bir elektron ve proton (bu durumda bir hidrojen atomunu ele alıyoruz) veya iki çekirdek (bu

Detaylı

Atomlar birleştiği zaman elektron dağılımındaki değişmelerin bir sonucu olarak kimyasal bağlar meydana gelir. Üç çeşit temel bağ vardır:

Atomlar birleştiği zaman elektron dağılımındaki değişmelerin bir sonucu olarak kimyasal bağlar meydana gelir. Üç çeşit temel bağ vardır: Atomlar birleştiği zaman elektron dağılımındaki değişmelerin bir sonucu olarak kimyasal bağlar meydana gelir. Üç çeşit temel bağ vardır: İyonik bağlar, elektronlar bir atomdan diğerine aktarıldığı zaman

Detaylı

İSRAFİL ARSLAN KİM ÖĞR. YGS ÇALIŞMA KİMYA SORULARI I

İSRAFİL ARSLAN KİM ÖĞR. YGS ÇALIŞMA KİMYA SORULARI I İSRAFİL ARSLAN KİM ÖĞR. YGS ÇALIŞMA KİMYA SORULARI I D) Elmas E) Oltu taşı 1. I. Civa II. Kil III. Kireç taşı Yukarıdaki maddelerden hangileri simyacılar tarafından kullanılmıştır? D) II ve III E) I, II

Detaylı

Yrd. Doç. Dr. H. Hasan YOLCU. hasanyolcu.wordpress.com

Yrd. Doç. Dr. H. Hasan YOLCU. hasanyolcu.wordpress.com Yrd. Doç. Dr. H. Hasan YOLCU hasanyolcu.wordpress.com En az iki atomun belli bir düzenlemeyle kimyasal bağ oluşturmak suretiyle bir araya gelmesidir. Aynı atomda olabilir farklı atomlarda olabilir. H 2,

Detaylı

STANDART MODEL VE ÖTESİ. : Özge Biltekin

STANDART MODEL VE ÖTESİ. : Özge Biltekin STANDART MODEL VE ÖTESİ : Özge Biltekin Standart model, bilim tarihi boyunca keşfedilmiş parçacıkların birleşimidir. Uzay zamanda bir nokta en, boy, yükseklik ve zaman ile tanımlanır. Alanlar da uzay zamanda

Detaylı

ALIfiTIRMALARIN ÇÖZÜMÜ

ALIfiTIRMALARIN ÇÖZÜMÜ ATOMLARDAN KUARKLARA ALIfiTIRMALARIN ÇÖZÜMÜ 1. Parçac klar spinlerine göre Fermiyonlar ve Bozonlar olmak üzere iki gruba ayr l r. a) Fermiyonlar: Spin kuantum say lar 1/2, 3/2, 5/2... gibi olan parçac

Detaylı

... ANADOLU L SES E T M YILI I. DÖNEM 10. SINIF K MYA DERS 1. YAZILI SINAVI SINIFI: Ö RENC NO: Ö RENC N N ADI VE SOYADI:

... ANADOLU L SES E T M YILI I. DÖNEM 10. SINIF K MYA DERS 1. YAZILI SINAVI SINIFI: Ö RENC NO: Ö RENC N N ADI VE SOYADI: 2009-2010 E T M YILI I. DÖNEM 10. SINIF K MYA DERS 1. YAZILI SINAVI A 1. Plastik bir tarak saça sürtüldü ünde tara n elektrikle yüklü hale gelmesinin 3 sonucunu yaz n z. 2. Katot fl nlar nedir? Katot fl

Detaylı

Parçacıkların Standart Modeli ve BHÇ

Parçacıkların Standart Modeli ve BHÇ Parçacıkların Standart Modeli ve BHÇ Prof. Dr. Altuğ Özpineci ODTÜ Fizik Bölümü Parçacık Fiziği Maddeyi oluşturan temel yapı taşlarını ve onların temel etkileşimlerini arar Democritus (460 MÖ - 370 MÖ)

Detaylı

RÖNTGEN FİZİĞİ X-Işını oluşumu. Doç. Dr. Zafer KOÇ Başkent Üniversitesi Tıp Fak

RÖNTGEN FİZİĞİ X-Işını oluşumu. Doç. Dr. Zafer KOÇ Başkent Üniversitesi Tıp Fak RÖNTGEN FİZİĞİ X-Işını oluşumu Doç. Dr. Zafer KOÇ Başkent Üniversitesi Tıp Fak X-IŞINI OLUŞUMU Hızlandırılmış elektronların anotla etkileşimi ATOMUN YAPISI VE PARÇACIKLARI Bir elementi temsil eden en küçük

Detaylı

Proton, Nötron, Elektron

Proton, Nötron, Elektron Atomun Yapısı Atom Atomu oluşturan parçacıklar farklı yüklere sahiptir. Farklı yüklere sahip bu parçacıklar birbirini etkileyerek bir arada bulunur ve atomu oluşturur. Atomda bulunan yükler negatif ve

Detaylı

ATOMİK YAPI VE ATOMLAR ARASI BAĞLAR. Aytekin Hitit

ATOMİK YAPI VE ATOMLAR ARASI BAĞLAR. Aytekin Hitit ATOMİK YAPI VE ATOMLAR ARASI BAĞLAR Aytekin Hitit Malzemeler neden farklı özellikler gösterirler? Özellikler Fiziksel Kimyasal Bahsi geçen yapısal etkenlerden elektron düzeni değiştirilemez. Ancak diğer

Detaylı

Elektrik Yük ve Elektrik Alan

Elektrik Yük ve Elektrik Alan Bölüm 1 Elektrik Yük ve Elektrik Alan Bölüm 1 Hedef Öğretiler Elektrik yükler ve bunların iletken ve yalıtkanlar daki davranışları. Coulomb s Yasası hesaplaması Test yük kavramı ve elektrik alan tanımı.

Detaylı

Aşağıda verilen özet bilginin ayrıntısını, ders kitabı. olarak önerilen, Erdik ve Sarıkaya nın Temel. Üniversitesi Kimyası" Kitabı ndan okuyunuz.

Aşağıda verilen özet bilginin ayrıntısını, ders kitabı. olarak önerilen, Erdik ve Sarıkaya nın Temel. Üniversitesi Kimyası Kitabı ndan okuyunuz. KİMYASAL BAĞLAR Aşağıda verilen özet bilginin ayrıntısını, ders kitabı olarak önerilen, Erdik ve Sarıkaya nın Temel Üniversitesi Kimyası" Kitabı ndan okuyunuz. KİMYASAL BAĞLAR İki atom veya atom grubu

Detaylı

ATOM ve YAPISI Maddelerin gözle görülmeyen (bölünmeyen) en parçasına atom denir. Atom kendinden başka hiçbir fiziksel ya da kimyasal metotlarla

ATOM ve YAPISI Maddelerin gözle görülmeyen (bölünmeyen) en parçasına atom denir. Atom kendinden başka hiçbir fiziksel ya da kimyasal metotlarla ATOM ve YAPISI Maddelerin gözle görülmeyen (bölünmeyen) en parçasına atom denir. Atom kendinden başka hiçbir fiziksel ya da kimyasal metotlarla kendinden farklı atomlara dönüşemezler. Atomda (+) yüklü

Detaylı

Dalton atom modelinde henüz keşfedilmedikleri için atomun temel tanecikleri olan proton nötron ve elektrondan bahsedilmez.

Dalton atom modelinde henüz keşfedilmedikleri için atomun temel tanecikleri olan proton nötron ve elektrondan bahsedilmez. MODERN ATOM TEORİSİ ÖNCESİ KEŞİFLER Dalton Atom Modeli - Elementler atom adı verilen çok küçük ve bölünemeyen taneciklerden oluşurlar. - Atomlar içi dolu küreler şeklindedir. - Bir elementin bütün atomları

Detaylı

ELEMENT VE BİLEŞİKLER

ELEMENT VE BİLEŞİKLER ELEMENT VE BİLEŞİKLER 1- Elementler ve Elementlerin Özellikleri: a) Elementler: Aynı cins atomlardan oluşan, fiziksel ya da kimyasal yollarla kendinden daha basit ve farklı maddelere ayrılamayan saf maddelere

Detaylı

Potansiyel Engeli: Tünelleme

Potansiyel Engeli: Tünelleme Potansiyel Engeli: Tünelleme Şekil I: Bir potansiyel engelinde tünelleme E

Detaylı

izotop MALZEME BILGISI B2

izotop MALZEME BILGISI B2 1. Giriş 2. Temel Kavramlar 3. Atomlarda Elektronlar 4. Periyodik Tablo 5. Bağ Kuvvetleri ve Enerjileri 6. Atomlararası Birincil Bağlar 7. İkincil bağlar veya Van Der Waals Bağları 8. Moleküller Bu özelliklerinden

Detaylı

DERS ÖĞRETİM PLANI. (Bölümden Bağımsız hazırlanmıştır

DERS ÖĞRETİM PLANI. (Bölümden Bağımsız hazırlanmıştır DERS ÖĞRETİM PLANI (Bölümden Bağımsız hazırlanmıştır TÜRKÇE 1 Dersin Adı: ÇEKİRDEK FİZİĞİ 2 Dersin Kodu: FZK3004 3 Dersin Türü: Zorunlu, 4 Dersin Seviyesi: Lisans 5 Dersin Verildiği Yıl: 2011-2012 6 Dersin

Detaylı

ÖĞRENME ALANI : FİZİKSEL OLAYLAR ÜNİTE 2 : KUVVET VE HAREKET

ÖĞRENME ALANI : FİZİKSEL OLAYLAR ÜNİTE 2 : KUVVET VE HAREKET ÖĞRENME ALANI : FİZİKSEL OLAYLAR ÜNİTE 2 : KUVVET VE HAREKET A BASINÇ VE BASINÇ BİRİMLERİ (5 SAAT) Madde ve Özellikleri 2 Kütle 3 Eylemsizlik 4 Tanecikli Yapı 5 Hacim 6 Öz Kütle (Yoğunluk) 7 Ağırlık 8

Detaylı

EŞ POTANSİYEL VE ELEKTRİK ALAN ÇİZGİLERİ. 1. Zıt yükle yüklenmiş iki iletkenin oluşturduğu eş potansiyel çizgileri araştırıp bulmak.

EŞ POTANSİYEL VE ELEKTRİK ALAN ÇİZGİLERİ. 1. Zıt yükle yüklenmiş iki iletkenin oluşturduğu eş potansiyel çizgileri araştırıp bulmak. EŞ POTANSİYEL VE ELEKTRİK ALAN ÇİZGİLERİ AMAÇ: 1. Zıt yükle yüklenmiş iki iletkenin oluşturduğu eş potansiyel çizgileri araştırıp bulmak. 2. Bu eş potansiyel çizgileri kullanarak elektrik alan çizgilerinin

Detaylı

BAKIR ATOMUNDA K,L,M ZARFLARI

BAKIR ATOMUNDA K,L,M ZARFLARI HER ATOMUN YÖRÜNGE ZARFLARINDA (K,L,M,..) BULUNABİLECEK MAKSİMUM ELEKTRON SAYISI 2n 2 FORMÜLÜ İLE BULUNABİLİR. SON YÖRÜNGE ZARFINDA EN ÇOK 8 ELEKTRON BULUNUR. Helyum atomu BAKIR ATOMUNDA K,L,M ZARFLARI

Detaylı

5.111 Ders Özeti #12. Konular: I. Oktet kuralından sapmalar

5.111 Ders Özeti #12. Konular: I. Oktet kuralından sapmalar 5.111 Ders Özeti #12 Bugün için okuma: Bölüm 2.9 (3. Baskıda 2.10), Bölüm 2.10 (3. Baskıda 2.11), Bölüm 2.11 (3. Baskıda 2.12), Bölüm 2.3 (3. Baskıda 2.1), Bölüm 2.12 (3. Baskıda 2.13). Ders #13 için okuma:

Detaylı

DENEY 6 BASİT SARKAÇ

DENEY 6 BASİT SARKAÇ DENEY 6 BASİT SARKAÇ AMAÇ: Bir basit sarkacın temel fiziksel özelliklerinin incelenmesi. TEORİ: Basit sarkaç şekilde görüldüğü gibi kütlesiz bir ip ve ucuna asılı noktasal bir kütleden ibarettir. Şekil

Detaylı

Elektronların Dağılımı ve Kimyasal Özellikleri

Elektronların Dağılımı ve Kimyasal Özellikleri Elektronların Dağılımı ve Kimyasal Özellikleri Helyum (2), neon (10), argon (18)in elektron dağılımları incelendiğinde Eğer bu üç elementin birer elektronu daha olsaydı, her birinde yeni bir katman oluşacaktı.

Detaylı

Statik Manyetik Alan

Statik Manyetik Alan Statik Manyetik Alan Noktasal Yüke Etki eden Manyetik Kuvvet Akım Elemanına Etki Eden Manyetik Kuvvet Biot-Savart Kanunu Statik Manyetik Alan Statik manyetik alan, sabit akımdan veya bir sürekli mıknatıstan

Detaylı

Bu bölümde Coulomb yasasının bir sonucu olarak ortaya çıkan Gauss yasasının kullanılmasıyla simetrili yük dağılımlarının elektrik alanlarının çok

Bu bölümde Coulomb yasasının bir sonucu olarak ortaya çıkan Gauss yasasının kullanılmasıyla simetrili yük dağılımlarının elektrik alanlarının çok Gauss Yasası Bu bölümde Coulomb yasasının bir sonucu olarak ortaya çıkan Gauss yasasının kullanılmasıyla simetrili yük dağılımlarının elektrik alanlarının çok daha kullanışlı bir şekilde nasıl hesaplanabileceği

Detaylı

Mimar Sinan Güzel Sanatlar Üniversitesi, Fizik Bölümü Fizik II Dersi Birinci Ara Sınavı

Mimar Sinan Güzel Sanatlar Üniversitesi, Fizik Bölümü Fizik II Dersi Birinci Ara Sınavı Mimar Sinan Güzel Sanatlar Üniversitesi, Fizik Bölümü Fizik II Dersi Birinci Ara Sınavı 9 Mart 20 Hazırlayan: Yamaç Pehlivan Başlama saati: :00 Bitiş Saati: 2:20 Toplam Süre: 80 Dakika Lütfen adınızı ve

Detaylı

Bugün için Okuma: Bölüm 1.5 (3. Baskıda 1.3), Bölüm 1.6 (3. Baskıda 1.4 )

Bugün için Okuma: Bölüm 1.5 (3. Baskıda 1.3), Bölüm 1.6 (3. Baskıda 1.4 ) 5.111 Ders Özeti #4 Bugün için Okuma: Bölüm 1.5 (3. Baskıda 1.3), Bölüm 1.6 (3. Baskıda 1.4 ) Ders #5 için Okuma: Bölüm 1.3 (3. Baskıda 1.6 ) Atomik Spektrumlar, Bölüm 1.7 de eģitlik 9b ye kadar (3. Baskıda

Detaylı

Çalışma Soruları 2: Bölüm 2

Çalışma Soruları 2: Bölüm 2 Çalışma Soruları 2: Bölüm 2 2.1) Kripton(Kr) atomunun yarıçapı 1,9 Å dur. a) Bu uzaklık nanometre (nm) ve pikometre (pm) cinsinden nedir? b) Kaç tane kripton atomunu yanyana dizersek uzunlukları 1,0 mm

Detaylı

GENEL KİMYA. Yrd.Doç.Dr. Tuba YETİM

GENEL KİMYA. Yrd.Doç.Dr. Tuba YETİM GENEL KİMYA ATOMUN ELEKTRON YAPISI Bohr atom modelinde elektronun bulunduğu yer için yörünge tanımlaması kullanılırken, kuantum mekaniğinde bunun yerine orbital tanımlaması kullanılır. Orbital, elektronun

Detaylı

Soygazların bileşik oluşturamamasının sebebi bütün orbitallerinin dolu olmasındandır.

Soygazların bileşik oluşturamamasının sebebi bütün orbitallerinin dolu olmasındandır. KİMYASAL BAĞLAR Kimyasal bağ, moleküllerde atomları birarada tutan kuvvettir. Bir bağın oluşabilmesi için atomlar tek başına bulundukları zamankinden daha kararlı (az enerjiye sahip) olmalıdırlar. Genelleme

Detaylı

Magnetic Materials. 7. Ders: Ferromanyetizma. Numan Akdoğan.

Magnetic Materials. 7. Ders: Ferromanyetizma. Numan Akdoğan. Magnetic Materials 7. Ders: Ferromanyetizma Numan Akdoğan akdogan@gyte.edu.tr Gebze Institute of Technology Department of Physics Nanomagnetism and Spintronic Research Center (NASAM) Moleküler Alan Teorisinin

Detaylı

SU Lise Yaz Okulu. Evrenin Başlangıcı ve Enflasyon Teorisi

SU Lise Yaz Okulu. Evrenin Başlangıcı ve Enflasyon Teorisi SU Lise Yaz Okulu Evrenin Başlangıcı ve Enflasyon Teorisi Evrenin ilk zamanları Büyük patlamadan önce: Bilimsel olarak tar.şılamaz. Büyük patlama uzay ve zamanda bir tekilliğe karşılık gelir ve o noktada

Detaylı

BÖLÜM 1: MADDESEL NOKTANIN KİNEMATİĞİ

BÖLÜM 1: MADDESEL NOKTANIN KİNEMATİĞİ BÖLÜM 1: MADDESEL NOKTANIN KİNEMATİĞİ 1.1. Giriş Kinematik, daha öncede vurgulandığı üzere, harekete sebep olan veya hareketin bir sonucu olarak ortaya çıkan kuvvetleri dikkate almadan cisimlerin hareketini

Detaylı

ELEKTROSTATİK Nötr (Yüksüz) Cisim: Pozitif Yüklü Cisim: Negatif Yüklü Cisim: İletken Cisimler: Yalıtkan Cisimler:

ELEKTROSTATİK Nötr (Yüksüz) Cisim: Pozitif Yüklü Cisim: Negatif Yüklü Cisim: İletken Cisimler: Yalıtkan Cisimler: ELEKTROSTATİK Elektrostatik; durgun elektrik yüklerinin birbirleriyle ilişkilerinden, atom altı parçacıklarının etkileşmesine kadar geniş bir sahada yer alan fiziksel olayları inceler. Atomun merkezinde

Detaylı

Radyoaktif Çekirdekler

Radyoaktif Çekirdekler NÜKLEER TIP Tıpta radyoaktif çekirdeklerin kullanılması esasen 1920 lerde önerilmiş ve 1940 larda kullanılmaya başlamıştır. Nükleer tıp görüntülemede temel, hasta vücudunda bir gama aktif bölge oluşturmak

Detaylı

Theory Tajik (Tajikistan)

Theory Tajik (Tajikistan) Q3-1 Büyük Hadron Çarpıştırıcısı Bu probleme başlamadan önce ayrı bir zarfta verilen genel talimatları lütfen okuyunuz. Bu görevde, CERN de bulunan parçacık hızlandırıcısının LHC ( Büyük Hadron Çarpıştırıcısı)

Detaylı

ÜNİTE 2. Amaçlar. İçindekiler. Öneriler

ÜNİTE 2. Amaçlar. İçindekiler. Öneriler ÜNİTE 2 Atomun Yapısı Amaçlar Bu üniteyi çalıştıktan sonra, Atomun yapısını bilecek, Atom numarası ve atomu oluşturan parçacıkları tanıyacak, Atomların periyodik cetveldeki yerlerini bilecek, Periyod ve

Detaylı

Fizik bilimi nedir? Fizik Bilimi nedir? Fizik biliminin uğraşı alanları nelerdir? On5yirmi5.com. Fizik Bilimi nedir?

Fizik bilimi nedir? Fizik Bilimi nedir? Fizik biliminin uğraşı alanları nelerdir? On5yirmi5.com. Fizik Bilimi nedir? On5yirmi5.com Fizik bilimi nedir? Fizik Bilimi nedir? Fizik biliminin uğraşı alanları nelerdir? Yayın Tarihi : 22 Ekim 2012 Pazartesi (oluşturma : 11/28/2015) Fizik Bilimi nedir? Fizik, deneysel gözlemler

Detaylı

RÖNTGEN FİZİĞİ 6. X-Işınlarının madde ile etkileşimi. Doç. Dr. Zafer KOÇ Başkent Üniversitesi Tıp Fak

RÖNTGEN FİZİĞİ 6. X-Işınlarının madde ile etkileşimi. Doç. Dr. Zafer KOÇ Başkent Üniversitesi Tıp Fak RÖNTGEN FİZİĞİ 6 X-Işınlarının madde ile etkileşimi Doç. Dr. Zafer KOÇ Başkent Üniversitesi Tıp Fak X-IŞINI MADDE ETKİLEŞİMİ Elektromanyetik enerjiler kendi dalga boylarına yakın maddelerle etkileşime

Detaylı

INSA 283 MALZEME BİLİMİ. Giriş

INSA 283 MALZEME BİLİMİ. Giriş INSA 283 MALZEME BİLİMİ Giriş Malzeme Gereksinimi Bütün mühendislik bilim dallari malzeme ile yakindan iliskilidir. Mühendisler kullanacaklari malzemeyi çok iyi tanıyarak ve genis malzeme tayfi içinde

Detaylı

NÜKLEER FİZİKTE KULLANILAN BİRİM SİSTEMİ *

NÜKLEER FİZİKTE KULLANILAN BİRİM SİSTEMİ * NÜKLEER FİZİKTE KULLNILN BİRİM SİSTEMİ * Uluslararası birim sistemi makroskopik nesneler için uygun olabilir, (örneğin insan boyunun, kilosunun ölçülmesi için) fakat mikroskopik boyutlara gidildiğinde

Detaylı

1 mol = 6, tane tanecik. Maddelerde tanecik olarak atom, molekül ve iyonlar olduğunda dolayı mol ü aşağıdaki şekillerde tanımlamak mümkündür.

1 mol = 6, tane tanecik. Maddelerde tanecik olarak atom, molekül ve iyonlar olduğunda dolayı mol ü aşağıdaki şekillerde tanımlamak mümkündür. 1 GENEL KİMYA Mol Kavramı 1 Mol Kavramı Günlük hayatta kolaylık olsun diye, çok küçük taneli olan maddeler tane yerine birimlerle ifade edilir. Örneğin pirinç alınırken iki milyon tane pirinç yerine ~

Detaylı

ELEMETLER VE BİLEŞİKLER ELEMENTLER VE SEMBOLLERİ

ELEMETLER VE BİLEŞİKLER ELEMENTLER VE SEMBOLLERİ ELEMENTLER VE SEMBOLLERİ Elementler Aynı cins atomlardan oluşan, fiziksel ya da kimyasal yollarla kendinden daha basit ve farklı maddelere ayrılamayan saf maddelere element denir. Elementler çok sayıda

Detaylı

I. FOTOELEKTRON SPEKTROSKOPĠSĠ (PES) PES orbital enerjilerini doğrudan tayin edebilir. (Fotoelektrik etkisine benzer!)

I. FOTOELEKTRON SPEKTROSKOPĠSĠ (PES) PES orbital enerjilerini doğrudan tayin edebilir. (Fotoelektrik etkisine benzer!) 5.111 Ders Özeti #9 Bugün için okuma: Bölüm 1.14 (3.Baskıda, 1.13) Elektronik Yapı ve Periyodik Çizelge, Bölüm 1.15, 1.16, 1.17, 1.18, ve 1.20 (3.Baskıda, 1.14, 1.15, 1.16, 1.17, ve 1.19) Atom Özelliklerinde

Detaylı

Elementlerin tüm özelliğini gösteren en küçük parçasına atom denir. Atomu oluşturan parçacıklar farklı yüklere sahiptir. Atomda bulunan yükler;

Elementlerin tüm özelliğini gösteren en küçük parçasına atom denir. Atomu oluşturan parçacıklar farklı yüklere sahiptir. Atomda bulunan yükler; Elementlerin tüm özelliğini gösteren en küçük parçasına atom denir. Atomu oluşturan parçacıklar farklı yüklere sahiptir. Atomda bulunan yükler; negatif yükler ve pozitif yüklerdir. Atomu oluşturan parçacıklar:

Detaylı

MALZEME BİLGİSİ DERS 4 DR. FATİH AY.

MALZEME BİLGİSİ DERS 4 DR. FATİH AY. MALZEME BİLGİSİ DERS 4 DR. FATİH AY www.fatihay.net fatihay@fatihay.net GEÇEN HAFTA TEMEL KAVRAMLAR ATOMLARDA ELEKTRONLAR PERİYODİK TABLO BÖLÜM II ATOM YAPISI VE ATOMLARARASı BAĞLAR BAĞ KUVVETLERİ VE ENERJİLERİ

Detaylı

BAHAR YARIYILI FİZİK 2 DERSİ. Doç. Dr. Hakan YAKUT. Fizik Bölümü

BAHAR YARIYILI FİZİK 2 DERSİ. Doç. Dr. Hakan YAKUT. Fizik Bölümü 2015-2016 BAHAR YARIYILI FİZİK 2 DERSİ Doç. Dr. Hakan YAKUT SAÜ Fen Edebiyat Fakültesi Fizik Bölümü Ofis: FEF A Blok, 3. Kat, Oda No: 812, İş tel.: 6092 (+90 264 295 6092) BÖLÜM 7 MANYETİK ALANLAR 2 İÇERİK

Detaylı

ELEMENTLER VE BİLEŞİKLER

ELEMENTLER VE BİLEŞİKLER ELEMENTLER VE BİLEŞİKLER 1- Elementler ve Elementlerin Özellikleri a) ELEMENTLER Aynı cins atomlardan oluşan, fiziksel ya da kimyasal yollarla kendinden daha basit ve farklı maddelere ayrılamayan saf maddelere

Detaylı

FİZİK-II DERSİ LABORATUVARI ( FL 2 5 )

FİZİK-II DERSİ LABORATUVARI ( FL 2 5 ) FİZİK-II DERSİ LABORATUVARI ( FL 2 5 ) EŞ POTANSİYEL VE ELEKTRİK ALAN ÇİZGİLERİ AMAÇ: 1. Zıt yükle yüklenmiş iki iletkenin oluşturduğu eş potansiyel çizgileri araştırıp bulmak. 2. Bu eş potansiyel çizgileri

Detaylı

Bölüm 1 Elektrik Alanları. Prof. Dr. Bahadır BOYACIOĞLU

Bölüm 1 Elektrik Alanları. Prof. Dr. Bahadır BOYACIOĞLU E Bölüm 1 Elektrik Alanları Prof. Dr. Bahadır BOYACIOĞLU ELEKTRİK ALANLARI Elektrik Yüklerinin Özellikleri Coulomb Kanunu Elektrik Alanı Düzgün Bir EA da Yüklü Parçacıkların Hareketi Elektrik Yüklerinin

Detaylı

Ders #15 için okuma: Bölümler 3.4, 3.5, 3.6 ve 3.7 (3.baskıda, Bölümler 3.4, 3.5, 3.6, 3.7 ve 3.8) Değerlik Bağı Teorisi.

Ders #15 için okuma: Bölümler 3.4, 3.5, 3.6 ve 3.7 (3.baskıda, Bölümler 3.4, 3.5, 3.6, 3.7 ve 3.8) Değerlik Bağı Teorisi. 5.111 Ders Özeti #14 Bugün için okuma: Bölüm 3.8 (3. Baskıda 3.9) Lewis Teorisinin Sınırları, Bölüm 3.9 (3. Baskıda 3.10) Molekül Orbitalleri, Bölüm 3.10 (3. Baskıda 3.11) Ġki Atomlu Moleküllerin Elektron

Detaylı

BÖLÜM 2 ATOMİK YAPI İÇERİK. Atom yapısı. Bağ tipleri. Chapter 2-1

BÖLÜM 2 ATOMİK YAPI İÇERİK. Atom yapısı. Bağ tipleri. Chapter 2-1 BÖLÜM 2 ATOMİK YAPI İÇERİK Atom yapısı Bağ tipleri 1 Atomların Yapıları Atomlar başlıca üç temel atom altı parçacıktan oluşur; Protonlar (+ yüklü) Nötronlar (yüksüz) Elektronlar (-yüklü) Basit bir atom

Detaylı

Harici Fotoelektrik etki ve Planck sabiti deney seti

Harici Fotoelektrik etki ve Planck sabiti deney seti Deneyin Temeli Harici Fotoelektrik etki ve Planck sabiti deney seti Fotoelektrik etki modern fiziğin gelişimindeki anahtar deneylerden birisidir. Filaman lambadan çıkan beyaz ışık ızgaralı spektrometre

Detaylı

ELEMENTLERİN SEMBOLLERİ VE ATOM

ELEMENTLERİN SEMBOLLERİ VE ATOM ELEMENT VE SEMBOLLERİ SAF MADDE: Kendisinden başka madde bulundurmayan maddelere denir. ELEMENT: İçerisinde tek cins atom bulunduran maddelere denir. Yani elementlerin yapı yaşı atomlardır. BİLEŞİK: En

Detaylı