Mikro denetleyicili Uygulama devresi bileşenleri

Ebat: px
Şu sayfadan göstermeyi başlat:

Download "Mikro denetleyicili Uygulama devresi bileşenleri"

Transkript

1 Mikro denetleyicili Uygulama devresi bileşenleri Bir PIC mikro denetleyici ile uygulama gerçekleştirebilmek için ; Besleme devresi, Reset sinyali, Osilatör devresi, Uygulama devresi elemanlarına İhtiyaç vardır.

2 Besleme Devresi ve Bacak Bağlantıları Besleme geriliminin bağlandığı bacaklar Vdd (PIC16F84 için 14 nolu bacak, PIC16F877 için ise 11 ve 32 nolu iki farklı bacak) isimli bacaklardır. Toprak/Şase bağlantısı için ise Vss (PIC16F84 için 5 nolu bacak, PIC16F877 için ise 12 ve 31 nolu iki farklı bacak) isimli bacaklar kullanılır. Şekildeki 16F877 entegresinin bacak bağlantılarına bakıldığında besleme ve toprak girişleri, iki yanda birer tane olacak şekilde konumlandırılmıştır. Vdd' ile 'Vss' uçları arasına devreye ilk gerilim uygulaması anında (PIC'e enerji verme sırasında) olabilecek gerilim dalgalanmalarının sebep olabileceği arızaları önlemek amacıyla 0,1 mikrof'lık bir 'dekuplaj kondansatörü' bağlanır.

3 Reset Uçları ve Devresi: PIC mikro denetleyicilerin MCLR ucu (16F84 için 4 nolu, 16F877 için 1 nolu bacak) reset bacağıdır. Bacak bağlantılarında MCLR üzerinde bulunan çizgi, lojik 0 da iken reset işleminin gerçekleştiğini göstermektedir. Bu bacak lojik 0 (0V) seviyesine çekildiğinde program kesilir ve tekrar lojik 1 (+5V) seviyesine gelince program ilk satırdan itibaren çalışmaya başlar. Reset devresi aşağıdaki gibi kurulur. MCLR pininin yanlışlıkla lojik '0' değeri ile aktif hale gelmesini engellemek amacıyla bir direnç üzerinden + besleme ucuna bağlanması gereklidir. Bağlandığı ucu sabit olarak lojik '1' değerinde tutan bu direnç, 'pull-up' direnci olarak isimlendirilir. PIC microcontrollers aşağıdaki durumlarda RESET oluşur: PIC e ilk güç verildiğinde (POR Power On Reset), MCLR girişi mantıksal 0 yapıldığında, Watchdog zamanlayıcısında taşma olduğunda.

4 Osilatör devresi ve bağlantısı: (1/2) PIC bir mikroişlemcili sistem olduğundan, komutları işleyebilmesi için saat(clock) sinyali dediğimiz, frekansı belli olan bir kare dalga işarete ihtiyaç duyar. PIC mikro denetleyicilerin saat sinyali girişi için kullanılan iki ucu vardır; bunlar OSC1 (16F84 için 16. pin, 16F877 için 13. pin olmak üzere) ve OSC2 (16F84 için 15. pin, 16F877 için 14. pin olmak üzere) uçlarıdır. Bu uçlara farklı tipte osilatörlerden elde edilen clock sinyalleri uygulanabilir. Seçilecek osilatör tipi Pic in kontrol ettiği devrenin hız gereksinimine bağlı olarak seçilir. Clock osilatör tipleri şunlardır: RC: Direnç/Kondansatör XT: Kristal veya seramik resonetör HS: Yüksek hızlı kristal veya seramik resonetör LP: Düşük frekanslı kristal

5 Osilatör devresi ve bağlantısı: (2/2) Kristal Osc. genelde C1 ve C2 kondansatörünün birbirine eşit olması gerekir. Seramik Resonator

6 Konfigürasyon bitleri ve işlevleri Power-up timer (PWRTE) Osilatör start-up timer BOR (Brown Out Reset) Yonga içindeki bir RC osilatör devresi ile belirli bir frekansta çalışması denetlenen WDT (Watch Dog Timer) Kesmeler Kod koruma güvenliği Id yerleşimleri Güç harcamasının azaltılması istendiği durumlar için uyku (sleep) modu İsteğe bağlı osilatör seçenekleri: RC/ XT/ HS/ LS Devre içi seri programlama (iki pin ile seri olarak programlanabilme) Devre içi düşük gerilimle programlama Devre içi hata arayıcı (Debugger) Not: Kullanılan osilatör tipi programlama esnasında PIC içerisinde bulunan konfigürasyon bitlerine yazılmalıdır. CONFIG _XT_OSC & _PWRTE_ON & _BODEN_OFF & _CP_OFF & _WDT_OFF & _LVP_OFF & _CPD_OFF CONFIG 0x3F31; CONFIG b CONFIG(UNPROTECT & LVPDIS & BORDIS & MCLREN & WDTDIS & PWRTEN & INTIO); //C için CONFIG( HS & WDTDIS & PWRTDIS & BORDIS & LVPDIS & WRTEN & DEBUGDIS & UNPROTECT ); // C için Not: Program belleğinin 2007h adresinde olup 14 bittir. Bu bitlere sadece PIC programlama aşamasında erişilebilmektedir.

7 Konfigürasyon bitleri ve işlevleri CP1,CP0 : Flash Program Memory Code Protection Bits. All of the CP1:CP0 pairs have to be given the same value to enable the code protection scheme listed. 11 : Code protection off 10 : 1F00h to 1FFFh code protected 01 : 1000h to 1FFFh code protected 00 : 0000h to 1FFFh code protected DEBUG : In-Circuit Debugger Mode 1 : In-Circuit Debugger disabled, RB6 and RB7 are general purpose I/O pins. 0 : In-Circuit Debugger enabled, RB6 and RB7 are dedicated to the debugger. WRT : Flash Program Memory Write Enable 1 : Unprotected program memory may be written to by EECON control 0 : Unprotected program memory may not be written to by EECON control CPD : Data EEPROM memory Code Protection 1 : Code protection off 0 : Data EEPROM memory code protected LVP : Low Voltage In-Circuit Serial Programming Enable bit 1 : RB3/PGM pin has PGM function, low voltage programming enabled The high voltage programming mode is always available, regardless of the state of the LVP bit. 0 : RB3 is digital I/O, High Voltage on MCLR must be used for programming BODEN : Brown-out Reset Enable bit 1 : BOR enabled 0 : BOR disabled PWRTE : Power-up Timer Enable bit 1 : PWRT disabled 0 : PWRT enabled WDTE : Watchdog Timer Enable bit 1 : WDT enabled 0 : WDT disabled FOSC1,FOSC0 : Oscillator Selection bits 11 : RC : Resistor/Capacitor oscillator ( Less than 1MHz ) 10 : HS : High Speed Crystal/Resonator oscillator ( 4MHz to 20MHz ) 01 : XT : Crystal/Resonator oscillator ( Less than 4MHz ) 00 : LP : Low Power Crystal oscillator ( Less than 200KHz )

8 I/O Portları: Analog/Digital Seçimi 16F877 de 8 tane 10 bitlik A/D çevirme kanalı bulunur. A / D kanalları için RA4 hariç diğer A ve E portları kullanılır. A/D çevirme işlemi 4 adet kaydediciyle yapılmaktadır. Aşağıda ilgili register lar ve adresleri gösterilmiştir. ADRESH 0x1E ; A / D sonuç kaydedicisi (high register) ADRESL 0x9E ; A / D sonuç kaydedicisi (low register) ADCON0 0x1F ; A / D kontrol kaydedicisi 0 ADCON1 0x9F ; A / D kontrol kaydedicisi 1 ADFM biti dönüştürme işlemi sonunda 10 bitlik sayının formatını belirler.1: Sayı sağa kaydırılır.0: Sayı sola kaydırılır. PCFG3 PCFG0 bitleri A/D portlarının durumunu belirler. Tümü 0 yapılırsa bu durumda 8 tane analog kanal seçilmiş olur ve her kanalın referans gerilimi VDD olarak ayarlanır.

9 I/O Portları: Analog/Digital Seçimi ADCON1, PORTA portunu dijital giriş çıkış yapmaya izin verir. Eğer bunu yapmasaydık PORTA analog olacak ve dijital olarak giriş ve çıkış işlemleri yapamayacaktık. Ayrıntılı bilgi için lütfen datasheet e ve ileride anlatacağımız ADC konusuna göz atınız.

10 Gecikme Programları Örnek 1: Tek bir döngü ile yaklaşık 1000 saykıllık bir gecikme sağlayacak programı yazınız. Çözüm: Toplam Gecikme= Döngü dışındakiler + SAYAC* Döngü içindekiler = 1+1+ (249*4) + 2=1000 saykıl Tabii 1000 saykıllık gecikme programının ne kadar sürelik bekleme sağlayacağı PIC mikro denetleyicinin çalışma frekansına bağlıdır. 10 MHz lik PIC MCU için toplam gecikme; 1000*0.1µS*4=400µS lik bir gecikme sağlayacaktır. DON MOVLW d 250 ;1 saykıl MOVWF SAYAC ;1 saykıl DECFSZ SAYAC, F ;1*250 NOP ;1*249 GOTO DON ;2*249 +1

11 İçiçe Gecikme Programları Tek bir döngü ile genelde istediğimiz zaman gecikmesini elde edemeyebiliriz. Çünkü bir kaydedici içine yazabileceğimiz en büyük değer ondalık olarak 255 tir. Bu da 255 ten fazla tekrar yaptıramayacağımız anlamına gelir. Bu durumda iç içe döngüler kullanarak bu sayıyı çok çok büyütebiliriz. İç içe döngüler kullandığımızda hem tekrarlanan komut sayısı artacağından döngünün bir adımının harcadığı süre uzayacak, hem de içi içe döngüler sebebiyle iki (veya daha fazla) döngünün çarpımı kadar sayıda tekrar olabilecektir. TG= 4+5*255+3*255*255+2 = saykıl Bu programda yaklaşık toplam gecikme 3*SAYAC1*SAYAC2 değeri kadardır. Yaklaşık toplam gecikme = 3*255*255 kadardır. 1MHz lik dahili sat saykılında bu süre yaklaşık 195µS lik bir gecikme sağlayacaktır. İç içe döngüleri çoğaltarak gecikmenin süresini

12 Örnek 1: Bir gecikme alt programı kullanarak PORTB ye bağlı 8 ledi dörtlü olarak (ilk önce LSB tarafı daha sonra MSB tarafı olacak şekilde) belirli zaman aralıkları ile yakıp, söndüren bir programı gerçekleştiriniz

13 Zamanlayıcı kullanan Gecikme Programı TMR0 ve Watchdog Timer Devresi PSA ; 0 ise TMR0 1 ise WDT TOCS; 0 ise dahili komut saykılı 1 ise harici digital sinyal

14 Frekans Bölme(Prescaler) Oranı: Bir PIC te OSC1 girişinden girilen işaretin frekansının dörde bölündüğü ve bu bölünmüş işaretin OSC2 çıkışından alınabildiğinden bahsedilmişti. PIC te bir komutun işletilmesi için geçecek zaman, OSC1 girişinden verilen sinyalin dörde bölümü ile bulunan frekansla belirlenir. Örneğin, OSC1 girişine 4MHz lik bir osilatör bağlanmışsa, bu işaret PIC içinde dörde bölünür ve dahili komut sinyalinin frekansı 1MHz olur. Bu 1MHz lik işaret PIC in OSC2 çıkışından alınabilir. Bu örnekte, dahili komut frekansının 1MHz olması, 1 saniye içinde 1 milyon tane komut işletilebildiği anlamı taşır. Diğer bir deyişle, 1 komutun işletilebilmesi için geçecek süre saniyenin milyonda biri, yani 1μs olacaktır. Frekans bölme oranı OPTION kaydedicisinin ilk üç biti tarafından belirlenir. TMR0 daki artışın frekans bölme oranı ile çarpılması bir komut zamanı verir. Mesela frekans bölme oranı 1/4 ise, bir komut zamanı TMR0 daki artışın dörtte birine denk geliyor demektir. Bu da her 4 komut zamanında bir, TMR0 içeriği 1 sayı artıyor anlamına gelir. Ornek: Osilator frekans. 8MHz olan bir PIC için, OPTION kaydedicisindeki PS2, PS1 ve PS0 bitlerinin değerleri sırasıyla «101» şeklindedir. TMR0 zamanlayıcısının 00h değerinden saymaya başladığı kabulü ile bu PIC kaç saniye sonra TMR0 tarafından bir kesme oluşturur? Cozum: 8 MHz saat frekansı ise peryot, TOSC =1/fosc =0.125 µs PS2:PS0 = 101 olduğundan Prescaler= 1:64 Kesme gecikmesi = 4 *0.125 µs * 64 *(256 0) = 8192 µs = 8 ms.

15 Frekans Bölme (Prescaler) Oranı: MOVLW b ; TMRO, dahili sinyal kaynağı ve prescaler:111 seç MOVWF OPTION_REG

16 TMR0 ile Gecikme TMR0 sayıcısının FF (255) den 00 a geçmesi TMR0 kesmesine sebep o lur ve bu kesme sonucunda INTCON kesme kaydedicisinin 2. (T0IF) biti 1 değerini alır. Bu kesmeyi kullanabilmek için daha öncesinde INTCON kaydedicisinin TOIE bitinin 1 yapılarak kesmeye izin verilmesi gerektiği unutulmamalıdır. TMR0 hem yazılabilir, hem okunabilir bir sayıcıdır. OPTION kaydedicisi ile belirlenebilen frekans bölme seçeneği vardır. Saymaya ana programda, alt programlarda ve kesme alt programlarında da devam eder. Bu bir avantajdır. En önemli özelliği ise, saydığı değer FFh sayısından 00h sayısına geçerken oluşan taşmada, INTCON kaydedicisin de T0IF bayrağı 1 değerini alır ve bu değer kullanılarak bir kesme alt programı çalıştırılabilir. Öncesinde TOIE biti <1> yapılarak TMRO da taşma olması halinde kesmeye izin verilmesi sağlanmalıdır. Tosc=1/Fosc Kesme gecikmesi (Overflow time)= 4 *TOSC * Prescaler *(256 TMR0 başlangıç değeri) Bu formülden TMR0 başlangıç değeri de çekilebilir. O zaman TMR0 = 256 (Gecikme zamanı)/(4 *TOSC* Prescaler)

17 TMR0 Gecikme Alt programı Örnek2: Osilatör frekansı 4MHz olan bir PIC için, OPTION kaydedicisindek i PS2, PS1 ve PS0 bitlerinin değerleri sırasıyla b 111 şeklindedir. TMR0 z amanlayıcısının sıfır(0) değerinden saymaya başladığı kabulü ile bu PIC kaç s aniye sonra TMR0 tarafından bir kesme oluşturur? Çözüm: 4 MHz saat frekansı ise peryot, TOSC =1/fosc =0.25 µs PS2:PS0 = 111 olduğundan Prescaler= 1:256 Kesme gecikmesi (Overflow time) = 4 *0.25 µs * 256 *(256 0) = µs =65.536ms MOVLW b ;TMR0, DAHİLİ SİNYAL,1:256 MOVWF OPTION_REG GECIKME DON CLRF TMR0 BTFSS INTCON, TOIF GOTO DON BCF INTCON, TOIF RETURN

18 Uygulama Devreleri için başka bir gecikme programı:1 sn lik gecikme programı Eğer Hz lik bir kristal seçilirse ¼*32.768=8.192 Hz lik bir çalışma frekansı elde edilebilir. Buda bir LED i 1 sn süre ile yakmak için 8192 kez komut saykılı saymak gerekir. OPTION kaydedicisinin PS2:PS0 bitleri ile bu sayı 2 ile 256 arasında bölünür. Prescaler 256 seçilirse 8192/256=32Hz yapar. Bu hız seçildiğinde 1 saniyede 32 sinyal üretilir. Böylece TMR0 ı 32 ye kadar saydırdığımızda LED i 1 sn gecikme ile yakabiliriz. MOVLW B MOVWF OPTION_REG ;PRESCALER : 1/256 ;********************************************************* ;32/32=1 Saniyelik gecikme programı BEKLE DON CLRF TMR0 ;TMR0 başlat MOVF TMR0,W SUBLW.32 ;TMR -32 ;TMR0 değerini W taşı BTFSS STATUS,Z ; Sonuc 0 mı? GOTO DON ;32 kez don RETLW 0 ;W içeriğini 0 layarak ana programa don. ;*********************************************************

19 Örnek 3: 4 Bitlik Binary(ikili) Geri Sayıcı(15-0) BASLA TEST: BEKLE: DON LIST P=16F84A #INCLUDE<P16F84A.INC> CLRF PORTB ;PORTB temizlenir BSF STATUS, 5 ;BANK1 e geçilir MOVLW b' ' ;TMR0, DAHİLİ SİNYAL,1:256 MOVWF OPTION_REG MOVLW h'0f' MOVWF TRISA ;PORTA nın tüm uçları giriş CLRF TRISB ;PORTB nin tüm uçları çıkış olacaktır BCF STATUS, 5 ;BANK0 a geçilir MOVLW d'16' MOVWF PORTB BTFSC PORTA,0 GOTO TEST CALL BEKLE ;65,53ms CALL BEKLE ;65,53+65,53=131ms lik gecikme DECFSZ PORTB,F GOTO TEST GOTO BASLA ;Başa dön ;gecikme alt programı CLRF TMR0 BTFSS INTCON,T0IF GOTO DON BCF INTCON,T0IF RETURN END PORTB ye bağlı ledlerde binary sayım:

20 Çevrim Tabloları Ve 7 Segment Display Uygulaması Çevrim / Bakış tabloları ile bir kodu başka bir koda dönüştürmek için kullanılırlar. Örneğin PIC mikro denetleyiciyi portlarına bağlı 7 Segment display / gösterge üzerinde hexadecimal (onaltılık tabandaki) sayıları göstermek, sıcaklık dönüşümü(derecefahrenayt gibi) yapma, sinus, kosinus alma gibi işlemlerde dönüşüm/çevrim tabloları kullanılar. 7 Segment display kodlaması için aşağıdaki tablo kullanılır.

21 Çevrim tablosunda uygun kodu seçmek için program sayıcıyı (PCL Program Counter), seçilen kodu ana programa göndermek için de RETLW komutunu kullanırız Birden fazla display bağlantısı Çevrim tablosundaki verilere sıralı olarak erişerek PCL ye yani o anki adrese istediğimiz sayıyı ekleyerek istediğimiz adrese / elemana ulaşırız. PCL nin o anki değerine ADDWF ile istediğimiz sayıyı ekleriz. Kullanım Şekli: ADDWF PCL, F İstediğimiz değeri geri döndürecek komut ise RETLW (RETLW h 3F gibi) dir. RETLW komutu ile alt alta yazılan sayı değerleri dt komutu yanyana yazılabilir. DIZI ADDWF PCL, F dt h 3F, h 06, h 5b,.

22 Örnek 4: 7 segment display de 5 sayısını gösteren programı yazınız.

23 Uygulama-5: 0 dan 9 kadar olan sayıları PORB uçlarına bağlı 7 segment display de gösteren programı gerçekleştiriniz. LIST P=16F84A #INCLUDE <P16F84A.INC> SAYAC1 EQU h'0d' BSF STATUS,5 ;BANK1 e geçiş yap CLRF TRISB ;PORTB nin tüm uçları çıkış seçildi BCF STATUS,5 ;BANK0 a geçiş yap CLRF PORTB ;PORTB yi temizle Basla MOVLW h'00' ;W kaydedicisine h'00' değerini yükle MOVWF SAYAC1 DON MOVF SAYAC1,W CALL DIZI MOVWF PORTB ; W içeriğini PORTB ye aktar INCF SAYAC1,F ; SAYAC1 değerini artır GOTO DON DIZI ADDWF PCL, F ;W içeriğini PCL ye aktar RETLW b' ' ;W ya 0 değeri yüklendi RETLW b' ' ;W ya 1 değeri yüklendi RETLW b' ' ;W ya 2 değeri yüklendi RETLW b' ' ;W ya 3 değeri yüklendi RETLW b' ' ;W ya 4 değeri yüklendi RETLW b' ' ;W ya 5 değeri yüklendi RETLW b' ' ;W ya 6 değeri yüklendi RETLW b' ' ;W ya 7 değeri yüklendi RETLW b' ' ;W ya 8 değeri yüklendi RETLW b' ' ;W ya 9 değeri yüklendi END

24 Uygulama-6: 0 dan F ileri sayıcı (PIC16F877 için) LIST P=16F877 #INCLUDE <P16F877.INC> SAYAC1 EQU h'21' BSF STATUS,5 ;BANK1 e geçiş yap CLRF TRISB ;PORTB nin tüm uçları çıkış seçildi BCF STATUS,5 ;BANK0 a geçiş yap CLRF PORTB ;PORTB yi temizle Basla MOVLW h'00' ;W kaydedicisine h'00' değerini yükle MOVWF SAYAC1 DON MOVF SAYAC1,W CALL DIZI MOVWF PORTB ; W içeriğini PORTB ye aktar INCF SAYAC1,F GOTO DON DIZI ADDWF PCL, F ;W içeriğini PCL ye aktar dt 0x3F,0x06, 0x5B, 0x4F, 0x66, 0x6D, 0x7D, 0x07,0x7F,0x6F dt h'77',h'7c',h'39',h'5e',h'79',h'71' END

25 Uygulama-7: Sürekli bir şekilde F den 0 a geri sayıcı (PIC16F877 için) LIST P=16F877 #INCLUDE <P16F77.INC> SAYAC1 EQU h'21' BSF STATUS,5 CLRF TRISB BCF STATUS,5 CLRF PORTB BASLA MOVLW h'10' MOVWF SAYAC1 DON MOVF SAYAC1,W CALL DIZI MOVWF PORTB DECF SAYAC1,F GOTO DON DIZI ADDWF PCL, F GOTO BASLA dt 0x3F,0x06, 0x5B, 0x4F, 0x66, 0x6D, 0x7D, 0x07,0x7F,0x6F dt h'77',h'7c',h'39',h'5e',h'79',h'71' END

26 Uygulama-8: 9 Dan 0 A Geri Sayıcı (Alternatif) LIST P=16F84 INCLUDE "P16F84.INC" SAYAC EQU h'0c' CLRF PORTB CLRF SAYAC BSF STATUS,5 CLRF TRISB BCF STATUS,5 BASLA INCF SAYAC,F MOVF SAYAC,W SUBLW d'10' ;W=10-W BTFSS STATUS,Z GOTO DISPLAY MOVLW h'00' MOVWF SAYAC GOTO DISPLAY GOTO BASLA DISPLAY CALL DIZI MOVWF PORTB GOTO BASLA DIZI ADDWF PCL,F RETLW b' ';0gfedcba RETLW b' ' RETLW b' ' RETLW b' ' RETLW b' ' RETLW b' ' RETLW b' ' RETLW b' ' RETLW b' ' RETLW b' ' END

27 Uygulama 9: F den 0 a kadar Geri Sayıcı (Alternatif) LIST P=16F84 INCLUDE "P16F84.INC" SAYAC EQU h'0c' CLRF PORTB CLRF SAYAC BSF STATUS,5 CLRF TRISB BCF STATUS,5 BASLA INCF SAYAC,F MOVF SAYAC,W SUBLW d'16' ;W=16-W BTFSS STATUS,Z GOTO DISPLAY MOVLW h'00' MOVWF SAYAC GOTO DISPLAY GOTO BASLA DISPLAY DIZI CALL DIZI MOVWF PORTB GOTO BASLA ADDWF PCL,F dt h'3f',h'06',h'5b',h'4f',h'66',h'6d', dt h'7d',h'07',h'7f',h'6f',h'77',h'7c', dt h'39',h'5e',h'79',h'71' END

28 Uygulama 10: 0 dan F ye İleri Sayıcı Gecikmeli SAYAC SAYAC2 SAYAC3 DON BEKLE DON1 DON2 DIZI LIST P=16F84 INCLUDE "P16F84.INC" EQU h'0c' EQU h'0d' EQU h'0e' CLRF PORTB BSF STATUS,5 CLRF TRISB BCF STATUS,5 CLRF SAYAC MOVF SAYAC,W CALL DIZI MOVWF PORTB CALL BEKLE INCF SAYAC,F GOTO DON MOVLW h'ff' MOVWF SAYAC2 MOVLW h'ff' MOVWF SAYAC3 DECFSZ SAYAC3,F GOTO DON2 DECFSZ SAYAC2,F GOTO DON1 RETURN ADDWF PCL,F dt h'3f',h'06',h'5b',h'4f',h'66',h'6d', dt h'7d',h'07',h'7f',h'6f',h'77',h'7c', dt h'39',h'5e',h'79',h'71

29 Uygulama 11: Trafik Işığı Programı K S Y K S Y B7 B6 B5 B4 B3 B2 B1 B0 0 Y S K 0 Y S K

30 Kesmeler Kesme (Interrupt), mikro denetleyicinin gerçekleştirdiği işleme bakmaksı zın belirli durumların/olayların olması durumunda isteklere / olaylara ce vap verilmesini sağlayan mekanizmadır. Bu mekanizma, mikro denetleyi ci ile çevre birimleri arasındaki bağlantıları oluşturması ve ilişkileri düzenl emesi nedeniyle çok önemli bir yere sahiptir. Oluşan her kesme programı ile programın normal işlenme süreci deği ştirilerek program durdurulur ve kesme ile ilgili rutin/altprogram gerçekl eştirildikten sonra ana programın işlenmesi kalınan noktadan devam edilir PIC16F84 mikro denetleyicisi dört farklı kaynaktan kesme alabilir. Bunlar;

31 RB0/INT Pini Harici Kesme Örneği RB0/INT pini harici kesmesi kenar tetiklemelidir. Yani bu uçtaki sinyalin 1 d en 0 a veya 0 dan 1 e geçişi kesmeye sebep olur. Kesmenin yükselen kenar da mı yoksa düşen kenarda mı gerçekleşeceğine programcı karar verir. Bu nun için OPTION_REG kaydedicisinin INTEDG biti kullanılır. INTEDG biti 1 ise kesme yükselen kenarda, 0 ise düşen kenarda gerçekleşir. INT kesmesini kullanabilmek için INTCON kaydedicisinin INTE biti 1 yapılar ak kesmeye izin verilmelidir. INT kesmesi oluştuğunda INTCON kaydedici sinin INTF biti 1 olur. Programda kesme alt programı içerisinde INTF=0 yapılmalıdır.

32 Uygulama-12: PORTB nin RB0/INT ucundan gelen bir kesme gerçekleşince kesme alt progr amında PORTA ya bağlı LED leri yakan programı yazalım Program Algoritması: RB0/INT ucunu giriş olarak seç, OPTION_REG kaydedicisinin INTEDG biti ile düşen veya yükselen kenar tetiklemesini seç, INTCON kaydedicisinin GIE ve INTE bitleri 1 yapılarak kesmeye izin verilir, Kesme oluşup, program kesme alt programına dallandığında INTF bitini 0 yap.

33 PORTB Değişim Kesmesi Örneği PORTB nin 4 ve 7. bitlerinde (RB4- RB7) bitlerinde bir değişim meydana gelmesi PORTB değişim kesmesine sebep o lur. Bu kesmeyi aktif hale getirmek için INTCON kaydedicisinin RBIE bitinin 1 ya pılması gerekir. PORTB değişim kesmesi oluştuğunda RBIF=1 olur ve program ke sme alt programına dallanır. Program RBIF bitini otomatik sıfırlayamadığı için kesme alt programı içerisinde RBIF=0 yapılır. UYGULAMA - 9 : PORTB nin RB4- RB7 uçlarına bağlı butonlardan bir veya bir kaçına basıldığında PORTA nın ilk 4 bit ini yakan program. Program Algoritması: PORTB nin 4, 5, 6 ve 7. Bitlerini giriş olarak seç, INTCON kaydedicisinin GIE ve RBIE bitini 1 yaparak PORTB değişim kesmesi ne izin ver. Kesme oluşup, program kesme alt programına dallandığında RBIF bitini 0 yap

34 Uygulama-13: PORTB nin RB4-RB7 uçlarından gelen bir kesme gerçekleşince kesme alt progr amında PORTA ya bağlı LED leri yakan programı yazalım BASLA KESME BEKLE DON1 DON2 LIST P=16F84 INCLUDE "P16F84.INC" CBLOCK H'0C' SAYAC1,SAYAC2 ENDC ORG 0X00 GOTO BASLA ORG 0X04 GOTO KESME BSF STATUS,5 ;BANK1 e geçiş yap CLRF TRISA ;PORTA çıkış seçildi MOVLW 0XFF MOVWF TRISB ;PORTB GIRIŞ BCF STATUS,5 ;BANK0 a geçiş yap CLRF PORTA ;PORTA ya bağlı ledleri söndür BSF INTCON,RBIE;RB değişim kesmesine izin ver BSF INTCON,GIE ;Tüm kesmelere izin ver GOTO BASLA MOVLW 0X0F MOVWF PORTA CLRF INTCON CALL BEKLE RETFIE MOVLW 0X05 MOVWF SAYAC1 MOVLW 0X06 MOVWF SAYAC2 DECFSZ SAYAC2,F GOTO DON1 DECFSZ SAYAC1,F GOTO DON2 RETURN END

PIC MIKRODENETLEYICILER-3: GECĠKME ve KESME PROGRAMLARI

PIC MIKRODENETLEYICILER-3: GECĠKME ve KESME PROGRAMLARI P I C 1 6 F 8 4 / P I C 1 6 F 8 7 7 K O M U T S E T İ PIC MIKRODENETLEYICILER-3: GECĠKME ve KESME PROGRAMLARI Hazırlayan:Öğr.Gör.Bülent ÇOBANOĞLU 1 Gecikme Programları Örnek 1: Tek bir döngü ile yaklaģık

Detaylı

PIC Mikrodenetleyiciler. Hazırlayan:Öğr.Gör.Bülent ÇOBANOĞLU 1

PIC Mikrodenetleyiciler. Hazırlayan:Öğr.Gör.Bülent ÇOBANOĞLU 1 PIC Mikrodenetleyiciler PIC MCU= CPU + I/O pinleri+ Bellek(RAM/ROM) Hazırlayan:Öğr.Gör.Bülent ÇOBANOĞLU 1 PIC Mikro denetleyici Programlama Assembly programlama dili, çoğu zaman özel alanlarda geliştirilen

Detaylı

Komutların İşlem Süresi

Komutların İşlem Süresi Komutların İşlem Süresi PIC lerde ŞARTSIZ dallanma komutları (GOTO, CALL, RETURN gibi ) hariç tüm Assembly dili komutları 1 saat saykılı (cycle) çeker. ŞARTLI dallanma komutları ise normalde 1 saat saykılı

Detaylı

Yrd.Doç. Dr. Bülent ÇOBANOĞLU. Sakarya Üniversitesi, Teknoloji Fakültesi

Yrd.Doç. Dr. Bülent ÇOBANOĞLU. Sakarya Üniversitesi, Teknoloji Fakültesi B Yrd.Doç. Dr. Bülent ÇOBANOĞLU Sakarya Üniversitesi, Teknoloji Fakültesi Kesmeler Kesme (Interrupt), mikro denetleyicinin gerçekleştirdiği işleme bakmaksızın belirli durumların/olayların olması durumunda

Detaylı

# PIC enerjilendiğinde PORTB nin 0. biti 1 olacak #PIC enerjilendiğinde PORTA içeriğinin tersini PORTB de karşılık gelen biti 0 olacak

# PIC enerjilendiğinde PORTB nin 0. biti 1 olacak #PIC enerjilendiğinde PORTA içeriğinin tersini PORTB de karşılık gelen biti 0 olacak # PIC enerjilendiğinde PORTB nin 0. biti 1 olacak - LIST=16F84 - PORTB yi temizle - BANK1 e geç - PORTB nin uçlarını çıkış olarak yönlendir - BANK 0 a geç - PORT B nin 0. bitini 1 yap - SON ;pic tanıtması

Detaylı

http://nptel.ac.in/courses/webcourse-contents/iit KANPUR/microcontrollers/micro/ui/Course_home3_16.htm Yrd.Doç. Dr.

http://nptel.ac.in/courses/webcourse-contents/iit KANPUR/microcontrollers/micro/ui/Course_home3_16.htm Yrd.Doç. Dr. http://nptel.ac.in/courses/webcourse-contents/iit KANPUR/microcontrollers/micro/ui/Course_home3_16.htm B Yrd.Doç. Dr. Bülent ÇOBANOĞLU PIC MİKRODENETLEYİCİ VE AİLESİ PIC, Microchip firması tarafından üretilen,

Detaylı

PIC TABANLI, 4 BASAMAKLI VE SER

PIC TABANLI, 4 BASAMAKLI VE SER PIC TABANLI, 4 BASAMAKLI VE SERİ BAĞLANTILI 7 SEGMENT LED PROJESİ Prof. Dr. Doğan İbrahim Yakın Doğu Üniversitesi, Mühendislik Fakültesi, Bilgisayar Mühendisliği Bölümü, Lefkoşa E-mail: dogan@neu.edu.tr,

Detaylı

Mikroişlemciler Ara Sınav---Sınav Süresi 90 Dk.

Mikroişlemciler Ara Sınav---Sınav Süresi 90 Dk. HARRAN ÜNİVERSİTESİ BİLGİSAYAR MÜHENDİSLİĞİ BÖLÜMÜ Mikroişlemciler Ara Sınav---Sınav Süresi 90 Dk. 15 Nisan 2014 1) (10p) Mikroişlemcilerle Mikrodenetleyiceleri yapısal olarak ve işlevsel olarak karşılaştırarak

Detaylı

PIC MCU ile UYGULAMALAR

PIC MCU ile UYGULAMALAR PIC MCU ile UYGULAMALAR Gecikme Programları TMRO Gecikmesi 7 Segment Göstergeler Sayaç Örnekleri Trafik Sinyalizasyonu ADC-DAC Uygulamaları Kesmeler ve Uygulamaları Tuş Takımı (Keypad) Uygulamaları Paralel

Detaylı

1. PORTB ye bağlı 8 adet LED i ikili sayı sisteminde yukarı saydıracak programı

1. PORTB ye bağlı 8 adet LED i ikili sayı sisteminde yukarı saydıracak programı 1. PORTB ye bağlı 8 adet LED i ikili sayı sisteminde yukarı saydıracak programı yazınız. SAYAC1 EQU 0X20 devam movlw B'00000000' call DELAY incf PORTB,f ;Akü ye 0' sabit değerini yaz. ;Aküdeki değer PORTB

Detaylı

PIC MCU da Komutların İşlem Süresi

PIC MCU da Komutların İşlem Süresi PIC MCU da Komutların İşlem Süresi PIC lerde dallanma komutları (GOTO, CALL, RETURN gibi ) hariç tüm Assembly dili komutları 1 saat saykılı (cycle) çeker. Hazırlayan: Dr.Bülent ÇOBANOĞLU 1 PIC in Bir Komutu

Detaylı

İstanbul Teknik Üniversitesi IEEE Öğrenci Kolu

İstanbul Teknik Üniversitesi IEEE Öğrenci Kolu Step Motor Step motor fırçasız elektrik motorlarıdır. Step motorlar ile tam bir tur dönmeyi yüksek sayıda adımlara bölebilmek mümkündür (200 adım). Step motorları sürmek için, sürekli gerilim uygulamak

Detaylı

LCD (Liquid Crystal Display )

LCD (Liquid Crystal Display ) LCD (Liquid Crystal Display ) Hafif olmaları,az yer kaplamaları gibi avantajları yüzünden günlük hayatta birçok cihazda tercih edilen Standart LCD paneller +5 V ile çalışır ve genellikle 14 konnektor lü

Detaylı

LCD (Liquid Crystal Display)

LCD (Liquid Crystal Display) LCD (Liquid Crystal Display) LCD ekranlar bize birçok harfi, sayıları, sembolleri hatta Güney Asya ülkelerin kullandıkları Kana alfabesindeki karakterleri de görüntüleme imkanını verirler. LCD lerde hane

Detaylı

Komutların İşlem Süresi

Komutların İşlem Süresi Komutların İşlem Süresi PIC lerde ŞARTSIZ dallanma komutları (GOTO, CALL, RETURN gibi ) hariç tüm Assembly dili komutları 1 saat saykılı (cycle) çeker. ŞARTLI dallanma komutları ise normalde 1 saat saykılı

Detaylı

Deney No Deney Adı Tarih. 3 Mikrodenetleyici Portlarının Giriş Olarak Kullanılması / /201...

Deney No Deney Adı Tarih. 3 Mikrodenetleyici Portlarının Giriş Olarak Kullanılması / /201... 3.1 AMAÇ: Assembly programlama dili kullanarak mikrodenetleyici portlarını giriş olarak kullanmak. GİRİŞ: Bir portun giriş olarak mı yoksa çıkış olarak mı kullanılacağını belirten TRIS kaydedicileridir.

Detaylı

PIC MİKROKONTROLÖR TABANLI MİNİ-KLAVYE TASARIMI

PIC MİKROKONTROLÖR TABANLI MİNİ-KLAVYE TASARIMI PIC MİKROKONTROLÖR TABANLI MİNİ-KLAVYE TASARIMI Prof. Dr. Doğan İbrahim Yakın Doğu Üniversitesi, Bilgisayar Mühendisliği Bölümü, Lefkoşa, KKTC E-mail: dogan@neu.edu.tr, Tel: (90) 392 2236464 ÖZET Bilgisayarlara

Detaylı

KOMUT AÇIKLAMALARI VE ÖRNEKLERİ

KOMUT AÇIKLAMALARI VE ÖRNEKLERİ KOMUT AÇIKLAMALARI VE ÖRNEKLERİ Komut açıklamalarında kullanılan harflerin anlamları: F : File(dosya), kaynak ve bilgi alınan yeri ifade eder. D : Destination (hedef), işlem sonucunun kaydedileceği yer.

Detaylı

IŞIĞA YÖNELEN PANEL. Muhammet Emre Irmak. Mustafa Kemal Üniversitesi Mühendislik Fakültesi. Elektrik-Elektronik Mühendisliği Bölümü

IŞIĞA YÖNELEN PANEL. Muhammet Emre Irmak. Mustafa Kemal Üniversitesi Mühendislik Fakültesi. Elektrik-Elektronik Mühendisliği Bölümü IŞIĞA YÖNELEN PANEL Muhammet Emre Irmak Mustafa Kemal Üniversitesi Mühendislik Fakültesi Elektrik-Elektronik Mühendisliği Bölümü e-posta: memreirmak@gmail.com ÖZET Işığa yönelen panel projesinin amacı,

Detaylı

DERS 12 PIC 16F84 ile KESME (INTERRUPT) KULLANIMI İÇERİK

DERS 12 PIC 16F84 ile KESME (INTERRUPT) KULLANIMI İÇERİK DERS 12 PIC 16F84 ile KESME (INTERRUPT) KULLANIMI İÇERİK KESME NEDİR KESME ÇEŞİTLERİ INTCON SAKLAYICISI RBO/INT KESMESİ PORTB (RB4-RB7) LOJİK SEVİYE DEĞİŞİKLİK KESMESİ Ders 12, Slayt 2 1 KESME PIC in bazı

Detaylı

KONFİGÜRASYON BİTLERİ

KONFİGÜRASYON BİTLERİ MİKROİŞLEMCİLER VE MİKRODENETLEYİCİLER 1 - DERS NOTLARI (Kısım 2) Doç. Dr. Hakan Ündil INCLUDE Dosyalar Assembly programlarını yazarken kullanılacak register adreslerini (EQU) komutu ile tanımlamak hem

Detaylı

BSF STATUS,5 ;bank1 e geçiş CLRF TRISB ;TRISB=00000000 BCF STATUS,5 ;bank0 a geçiş

BSF STATUS,5 ;bank1 e geçiş CLRF TRISB ;TRISB=00000000 BCF STATUS,5 ;bank0 a geçiş +5V ĠġĠN ADI: PORTB DEKĠ LEDLERĠN ĠSTENĠLENĠ YAKMAK/SÖNDÜRMEK GND C F C F X R 5 U OSC/CLKIN RA0 OSC/CLKOUT RA RA RA RA/T0CKI PICFA RB RB RB RB RB RB 0 R R R R5 R R R R D D D D D5 D D D INCLUDE CONFIG P=FA

Detaylı

Hacettepe Robot Topluluğu

Hacettepe Robot Topluluğu Hacettepe Robot Topluluğu PIC Assembly Dersleri 4. Ders: Kesme Đşlemleri ve Timer Bileşeninin Kullanımı HUNRobotX - PIC Assembly Dersleri 4. Ders: Kesme Đşlemleri ve Timer Bileşeninin Kullanımı Yazan:

Detaylı

Bank değiştirme Bir banktan diğerine geçmek için STATUS register denilen özel registerin 5. ve 6. bitinin durumunu değiştirmek gerekir.

Bank değiştirme Bir banktan diğerine geçmek için STATUS register denilen özel registerin 5. ve 6. bitinin durumunu değiştirmek gerekir. File register haritası Bank 0 Bank 1 0 00 INDF 0 80 INDF 0 01 TNF0 0 81 OPTION 0 02 PCL 0 82 PCL 0 03 STATUS 0 83 STATUS 0 04 FSR 0 84 FSR 0 05 PORT A 0 85 TRISA 0 06 PORT B 0 86 TRISB 0 07 0 87 EEPROM

Detaylı

# PIC enerjilendiğinde PORTB nin 0. biti 1 olacak #PIC enerjilendiğinde PORTA içeriğinin tersini PORTB de karşılık gelen biti 0 olacak

# PIC enerjilendiğinde PORTB nin 0. biti 1 olacak #PIC enerjilendiğinde PORTA içeriğinin tersini PORTB de karşılık gelen biti 0 olacak # PIC enerjilendiğinde PORTB nin 0. biti 1 olacak - başla - LIST=16F84 - PORTB yi temizle - BANK1 e geç - PORTB nin uçlarını çıkış olarak yönlendir - BANK 0 a geç - PORT B nin 0. bitini 1 yap - SON ;pic

Detaylı

T.C FIRAT ÜNİVERSİTESİ TEKNOLOJİ FAKÜLTESİ ELEKTRİK-ELEKTRONİK MÜHENDİSLİĞİ EET-302 MİKROİŞLEMCİLER LABORATUVARI DENEY FÖYÜ

T.C FIRAT ÜNİVERSİTESİ TEKNOLOJİ FAKÜLTESİ ELEKTRİK-ELEKTRONİK MÜHENDİSLİĞİ EET-302 MİKROİŞLEMCİLER LABORATUVARI DENEY FÖYÜ T.C FIRAT ÜNİVERSİTESİ TEKNOLOJİ FAKÜLTESİ ELEKTRİK-ELEKTRONİK MÜHİSLİĞİ EET-302 MİKROİŞLEMCİLER LABORATUVARI DENEY FÖYÜ Doç. Dr. Melih Cevdet İNCE DENEYLER Deney_1: 8085 Simülatör Kullanımı Deney_2: 8085

Detaylı

W SAYAC SAYAC SAYAC. SAYAC=10110110 ise, d=0 W 01001001

W SAYAC SAYAC SAYAC. SAYAC=10110110 ise, d=0 W 01001001 MOVLW k Move Literal to W k sabit değerini W saklayıcısına yükler. MOVLW h'1a' W 1A. Hexadecimal 1A sayısı W registerine yüklenir. MOVF f,d Move f f saklayıcısının içeriğini W veya f'e yükler. MOVF SAYAC,0

Detaylı

Program Kodları. void main() { trisb=0; portb=0; while(1) { portb.b5=1; delay_ms(1000); portb.b5=0; delay_ms(1000); } }

Program Kodları. void main() { trisb=0; portb=0; while(1) { portb.b5=1; delay_ms(1000); portb.b5=0; delay_ms(1000); } } Temrin1: PIC in PORTB çıkışlarından RB5 e bağlı LED i devamlı olarak 2 sn. aralıklarla yakıp söndüren programı yapınız. En başta PORTB yi temizlemeyi unutmayınız. Devre Şeması: İşlem Basamakları 1. Devreyi

Detaylı

Assembler program yazımında direkt olarak çizgi ile gösterilmemesine rağmen ekranınız ya da kağıdınız 4 ayrı sütunmuş gibi düşünülür.

Assembler program yazımında direkt olarak çizgi ile gösterilmemesine rağmen ekranınız ya da kağıdınız 4 ayrı sütunmuş gibi düşünülür. BÖLÜM 4 4. PIC PROGRAMLAMA Herhangi bir dilde program yazarken, öncelikle kullanılacak dil ve bu dilin editörünü kullanabilmek önemlidir. Biz bu işlem için Mplab programını kullanacağız. Bu sebeple aslında

Detaylı

T.C FIRAT ÜNİVERSİTESİ TEKNOLOJİ FAKÜLTESİ ELEKTRİK-ELEKTRONİK MÜHENDİSLİĞİ EET-302 MİKROİŞLEMCİLER LABORATUVARI DENEY FÖYÜ

T.C FIRAT ÜNİVERSİTESİ TEKNOLOJİ FAKÜLTESİ ELEKTRİK-ELEKTRONİK MÜHENDİSLİĞİ EET-302 MİKROİŞLEMCİLER LABORATUVARI DENEY FÖYÜ T.C FIRAT ÜNİVERSİTESİ TEKNOLOJİ FAKÜLTESİ ELEKTRİK-ELEKTRONİK MÜHİSLİĞİ EET-302 MİKROİŞLEMCİLER LABORATUVARI DENEY FÖYÜ Doç. Dr. Melih Cevdet İNCE DENEYLER Deney_1: Program yazma, derleme, pic e yükleme,

Detaylı

Hyper Terminal programı çalıştırıp Uygun COM portu ve iletişim parametrelerinin ayarları yapılıp bekletilmelidir.

Hyper Terminal programı çalıştırıp Uygun COM portu ve iletişim parametrelerinin ayarları yapılıp bekletilmelidir. DENEY 1: PIC 16F84 DEN BİLGİSAYARA VERİ GÖNDERME Bu uygulamada verici kısım PIC16F84, alıcı kısım ise bilgisayardır. Asenkron iletişim kurallarına göre her iki tarafta aynı parametreler kullanılacaktır.

Detaylı

BÖLÜM 1 ALT PROGRAMLAR 1.1.ALTPROGRAM NEDİR?

BÖLÜM 1 ALT PROGRAMLAR 1.1.ALTPROGRAM NEDİR? 0 BÖLÜM 1 ALT PROGRAMLAR 1.1.ALTPROGRAM NEDİR? Programlamada döngü kadar etkili bir diğer kullanım şekli de alt programlardır. Bu sistemde işlemin birkaç yerinde lazım olan bir program parçasını tekrar

Detaylı

B.Ç. / E.B. MİKROİŞLEMCİLER

B.Ç. / E.B. MİKROİŞLEMCİLER 1 MİKROİŞLEMCİLER RESET Girişi ve DEVRESİ Program herhangi bir nedenle kilitlenirse ya da program yeniden (baştan) çalıştırılmak istenirse dışarıdan PIC i reset yapmak gerekir. Aslında PIC in içinde besleme

Detaylı

16F84 ü tanıt, PORTB çıkış MOVLW h FF MOWF PORTB

16F84 ü tanıt, PORTB çıkış MOVLW h FF MOWF PORTB MİKROİŞLEMCİLER VE MİKRODENETLEYİCİLER 1 - DERS NOTLARI (Kısım 3) Doç. Dr. Hakan Ündil Program Örneği 9 : Gecikme altprogramı kullanarak Port B ye bağlı tüm LED leri yakıp söndüren bir program için akış

Detaylı

UYGULAMA 05_01 MİKRODENETLEYİCİLER 5.HAFTA UYGULAMA_05_01 UYGULAMA_05_01. Doç.Dr. SERDAR KÜÇÜK

UYGULAMA 05_01 MİKRODENETLEYİCİLER 5.HAFTA UYGULAMA_05_01 UYGULAMA_05_01. Doç.Dr. SERDAR KÜÇÜK UYGULAMA 05_01 MİKRODENETLEYİCİLER 5.HAFTA Doç.Dr. SERDAR KÜÇÜK PORTB den aldığı 8 bitlik giriş bilgisini PORTD ye bağlı LED lere aktaran MPASM (Microchip Pic Assembly) Doç. Dr. Serdar Küçük SK-2011 2

Detaylı

PROGRAMLANABİLİR ZAMANLAYICI

PROGRAMLANABİLİR ZAMANLAYICI T.C. KARADENİZ TEKNİK ÜNİVERSİTESİ MÜHENDİSLİK FAKÜLTESİ ELEKTRİK-ELEKTRONİK MÜHENDİSLİĞİ BÖLÜMÜ PROGRAMLANABİLİR ZAMANLAYICI BİTİRME ÇALIŞMASI SULTAN ÜÇOK 203786 HAZİRAN,2011 TRABZON T.C. KARADENİZ TEKNİK

Detaylı

MIKROBILGISAYARLAR ve PIC PROGRAMLAMA TEST ÇALIŞMA SORULARI

MIKROBILGISAYARLAR ve PIC PROGRAMLAMA TEST ÇALIŞMA SORULARI MIKROBILGISAYARLAR ve PIC PROGRAMLAMA TEST ÇALIŞMA SORULARI S1. Aşağıdaki eleman ya da birimlerden hangisi genel bir bilgisayar sisteminin donanımsal yapısında yer almaz? a) Mikroişlemci (CPU) b) Bellek

Detaylı

Mikroişlemci: Merkezi işlem biriminin fonksiyonlarını tek bir yarı iletken tümleşik devrede birleştiren programlanabilir sayısal elektronik devre

Mikroişlemci: Merkezi işlem biriminin fonksiyonlarını tek bir yarı iletken tümleşik devrede birleştiren programlanabilir sayısal elektronik devre MİKRODENETLEYİCİLER Mikroişlemci: Merkezi işlem biriminin fonksiyonlarını tek bir yarı iletken tümleşik devrede birleştiren programlanabilir sayısal elektronik devre Mikrodenetleyici: Bir mikroişlemcinin

Detaylı

PIC 16F84 VE TEK BUTONLA BĐR LED KONTROLÜ

PIC 16F84 VE TEK BUTONLA BĐR LED KONTROLÜ DERSĐN ADI : MĐKROĐŞLEMCĐLER II DENEY ADI : PIC 16F84 VE ĐKĐ BUTONLA BĐR LED KONTROLÜ PIC 16F84 VE TEK BUTONLA BĐR LED KONTROLÜ PIC 16F84 VE VAVĐYEN ANAHTAR ĐLE BĐR LED KONTROLÜ ÖĞRENCĐ ĐSMĐ : ALĐ METĐN

Detaylı

DERS 7 PIC 16F84 PROGRAMLAMA İÇERİK. PIC 16F84 örnek programlar Dallanma komutları Sonsuz döngü

DERS 7 PIC 16F84 PROGRAMLAMA İÇERİK. PIC 16F84 örnek programlar Dallanma komutları Sonsuz döngü DERS 7 PIC 16F84 PROGRAMLAMA İÇERİK PIC 16F84 örnek programlar Dallanma komutları Sonsuz döngü Ders 7, Slayt 2 1 PROGRAM 1 RAM bellekte 0x0C ve 0x0D hücrelerinde tutulan iki 8-bit sayının toplamını hesaplayıp

Detaylı

Hacettepe Robot Topluluğu

Hacettepe Robot Topluluğu Hacettepe Robot Topluluğu Makaleler PIC ile LED Yakıp Söndüren Devre PIC ile LED Yakıp Söndüren Devre Canol Gökel - 13 Ekim 2006 Giriş Merhaba arkadaşlar, bu makalemizde PIC'e yeni başlayanlar için basit

Detaylı

KESME (INTERRUPT) NEDİR?

KESME (INTERRUPT) NEDİR? KESME (INTERRUPT) NEDİR? Mikro işlemcilerle yeni çalışmaya başlayan çoğu kimseler, interrupt kelimesini duymalarına rağmen, kullanımlarının zor olduğu düşüncesiyle programları içerisinde kullanmaktan çekinirler.

Detaylı

BÖLÜM 3 3. PIC 16F8X KOMUTLARI 3.1.KULLANILAN SEMBOLLER: 3.2.KOMUTLAR VE KULLANIM ÖRNEKLERİ

BÖLÜM 3 3. PIC 16F8X KOMUTLARI 3.1.KULLANILAN SEMBOLLER: 3.2.KOMUTLAR VE KULLANIM ÖRNEKLERİ BÖLÜM 3 3. PIC 16F8X KOMUTLARI 3.1.KULLANILAN SEMBOLLER: f : File register, Herhangi bir değişkenle tarif edilen bir saklayıcı adresi (0h-7Fh) k : Sabit değer (genellikle (0-FF arasında) d : Destination

Detaylı

MİKRODENETLEYİCİLER II DERS NOTLARI Prof. Dr. Hakan ÜNDİL Bahar-FİNAL KISMI

MİKRODENETLEYİCİLER II DERS NOTLARI Prof. Dr. Hakan ÜNDİL Bahar-FİNAL KISMI MİKRODENETLEYİCİLER II DERS NOTLARI Prof. Dr. Hakan ÜNDİL 2017-2018 Bahar-FİNAL KISMI BÖLÜM 7 - LOJİK İŞLEM KOMUTLARI 7.1. RLF Komutu (Bir bit Sola Kaydırma) Bir file register içinde bulunan bitlerin (C

Detaylı

T.C. MİLLÎ EĞİTİM BAKANLIĞI ELEKTRİK ELEKTRONİK TEKNOLOJİSİ MİKRODENETLEYİCİYLE ANALOG İŞLEMLER 523EO0022

T.C. MİLLÎ EĞİTİM BAKANLIĞI ELEKTRİK ELEKTRONİK TEKNOLOJİSİ MİKRODENETLEYİCİYLE ANALOG İŞLEMLER 523EO0022 T.C. MİLLÎ EĞİTİM BAKANLIĞI ELEKTRİK ELEKTRONİK TEKNOLOJİSİ MİKRODENETLEYİCİYLE ANALOG İŞLEMLER 523EO0022 Ankara, 2012 I Bu modül, mesleki ve teknik eğitim okul/kurumlarında uygulanan Çerçeve Öğretim Programlarında

Detaylı

7 Segment Display ve Kesmeler (Interrupts) Hafta6-7. Dr. Bülent Çobanoğlu-SAÜ 1

7 Segment Display ve Kesmeler (Interrupts) Hafta6-7. Dr. Bülent Çobanoğlu-SAÜ 1 7 Segment Display ve Kesmeler (Interrupts) Hafta6-7 Dr. Bülent Çobanoğlu-SAÜ 1 Çevrim Tabloları Ve 7 Segment Display Uygulaması Çevrim / Bakış tabloları ile bir kodu başka bir koda dönüştürmek için kullanılırlar.

Detaylı

MİKROİŞLEMCİLER VE MİKRO DENETLEYİCİLER 2 DERS NOTLARI Prof. Dr. Hakan Ündil 2013-2014 Bahar-Final

MİKROİŞLEMCİLER VE MİKRO DENETLEYİCİLER 2 DERS NOTLARI Prof. Dr. Hakan Ündil 2013-2014 Bahar-Final MİKROİŞLEMCİLER VE MİKRO DENETLEYİCİLER 2 DERS NOTLARI Prof. Dr. Hakan Ündil 2013-2014 Bahar-Final BÖLÜM 7 - LOJİK İŞLEM KOMUTLARI 7.1. RLF Komutu (Bir bit Sola Kaydırma) Bir file register içinde bulunan

Detaylı

PIC MİKRODENETLEYİCİLERİN HAFIZA YAPISI. Temel olarak bir PIC içerisinde de iki tür hafıza bulunur:

PIC MİKRODENETLEYİCİLERİN HAFIZA YAPISI. Temel olarak bir PIC içerisinde de iki tür hafıza bulunur: PIC MİKRODENETLEYİCİLERİN HAFIZA YAPISI Temel olarak bir PIC içerisinde de iki tür hafıza bulunur: 1. Program Hafızası (ROM,PROM,EPROM,FLASH) Programı saklar, kalıcıdır. 2. Veri Hafızası (RAM, EEPROM)

Detaylı

PIC UYGULAMALARI. Öğr.Gör.Bülent Çobanoğlu

PIC UYGULAMALARI. Öğr.Gör.Bülent Çobanoğlu PIC UYGULAMALARI STEP MOTOR UYGULAMLARI Step motor Adım motorları (Step Motors), girişlerine uygulanan lojik sinyallere karşılık analog dönme hareketi yapan fırçasız, sabit mıknatıs kutuplu DC motorlardır.

Detaylı

Configuration bitleri ve reset durumları hakkında kavramlar

Configuration bitleri ve reset durumları hakkında kavramlar PİC HAKKINDA KISA KISA BİLGİLER-1 Pic mikrodenetleyicilerinin 8 bit, 16 bit ve 32 bit işlemci çeşitleri vardır. Çoğu uygulamalarımız için 8 bit yeterli olmaktadır. Bu kursta kullanacağımız pic işlemcisi,

Detaylı

PIC16F87X te ADC MODÜLÜNÜN KULLANIMI

PIC16F87X te ADC MODÜLÜNÜN KULLANIMI PIC16F87X te ADC MODÜLÜNÜN KULLANIMI Emre YAVUZ Temmuz 2009 PIC16F87X te ADC MODÜLÜ Ü KULLA IMI Bu makalemizde PIC16F87X serisi mikrodenetleyicilerde ADC modülünün temel düzeyde kullanımını anlatacağım.

Detaylı

MİKRODENETLEYİCİLER 2 DERS NOTLARI Prof. Dr. Hakan ÜNDİL Bahar-Final Kısmı

MİKRODENETLEYİCİLER 2 DERS NOTLARI Prof. Dr. Hakan ÜNDİL Bahar-Final Kısmı MİKRODENETLEYİCİLER 2 DERS NOTLARI Prof. Dr. Hakan ÜNDİL 2014-2015 Bahar-Final Kısmı (NOT: Derslerde işlenen diğer örnekler de Final sınavına dahildir) BÖLÜM 7 - LOJİK İŞLEM KOMUTLARI 7.1. RLF Komutu (Bir

Detaylı

MİKRODENETLEYİCİ GELİŞTİRME SETİ TASARIM VE UYGULAMALARI. öğrencilerine eğitimleri esnasında iş hayatında karşılaşabilecekleri kontrol işlemleri ve

MİKRODENETLEYİCİ GELİŞTİRME SETİ TASARIM VE UYGULAMALARI. öğrencilerine eğitimleri esnasında iş hayatında karşılaşabilecekleri kontrol işlemleri ve MİKRODENETLEYİCİ GELİŞTİRME SETİ TASARIM VE UYGULAMALARI Muciz ÖZCAN 1 Hidayet GÜNAY 2 1 Selçuk Üniversitesi KONYA 2 MPG Makine Prodüksiyon Grubu Arge- Müh. KONYA Özet Haberleşme, Elektronik, Kontrol ve

Detaylı

MİKRODENETLEYİCİLER II DERS NOTLARI Prof. Dr. Hakan ÜNDİL Bahar-FİNAL KISMI

MİKRODENETLEYİCİLER II DERS NOTLARI Prof. Dr. Hakan ÜNDİL Bahar-FİNAL KISMI MİKRODENETLEYİCİLER II DERS NOTLARI Prof. Dr. Hakan ÜNDİL 2016-2017 Bahar-FİNAL KISMI (NOT: Derslerde işlenen diğer örnekler, Lab. Deneyi ve Sayı Sistemleri de Final sınavına dahildir) BÖLÜM 7 - LOJİK

Detaylı

DSPIC30F2010 ASSEMBLER PROGRAMI İÇERİSİNDE KONFİGÜRASYON BİTLERİNİ TANIMLAMA

DSPIC30F2010 ASSEMBLER PROGRAMI İÇERİSİNDE KONFİGÜRASYON BİTLERİNİ TANIMLAMA HAZIRLAYAN: Ramazan Muhammet TULAY DSPIC30F2010 ASSEMBLER PROGRAMI İÇERİSİNDE KONFİGÜRASYON BİTLERİNİ TANIMLAMA BU ÇALIŞMA, DSPIC30F2010 VEYA HERHANGİBİR DSPIC MİKRODENETLEYİCİSİNİ ASSEMBLER İLE PROGRAMLARKEN,

Detaylı

T.C. MİLLÎ EĞİTİM BAKANLIĞI DENİZCİLİK MİKRODENETLEYİCİ 2

T.C. MİLLÎ EĞİTİM BAKANLIĞI DENİZCİLİK MİKRODENETLEYİCİ 2 T.C. MİLLÎ EĞİTİM BAKANLIĞI DENİZCİLİK MİKRODENETLEYİCİ 2 ANKARA 2013 Bu modül, mesleki ve teknik eğitim okul/kurumlarında uygulanan Çerçeve Öğretim Programlarında yer alan yeterlikleri kazandırmaya yönelik

Detaylı

T.C. MİLLÎ EĞİTİM BAKANLIĞI MEGEP (MESLEKİ EĞİTİM VE ÖĞRETİM SİSTEMİNİN GÜÇLENDİRİLMESİ PROJESİ) ELEKTRİK ELEKTRONİK TEKNOLOJİSİ

T.C. MİLLÎ EĞİTİM BAKANLIĞI MEGEP (MESLEKİ EĞİTİM VE ÖĞRETİM SİSTEMİNİN GÜÇLENDİRİLMESİ PROJESİ) ELEKTRİK ELEKTRONİK TEKNOLOJİSİ T.C. MİLLÎ EĞİTİM BAKANLIĞI MEGEP (MESLEKİ EĞİTİM VE ÖĞRETİM SİSTEMİNİN GÜÇLENDİRİLMESİ PROJESİ) ELEKTRİK ELEKTRONİK TEKNOLOJİSİ MİKRODENETLEYİCİ İLE ANALOG İŞLEMLER ANKARA 2007 Milli Eğitim Bakanlığı

Detaylı

MİKRO DENETLEYİCİLER II DERS NOTLARI (Vize) Prof. Dr. Hakan Ündil Bahar

MİKRO DENETLEYİCİLER II DERS NOTLARI (Vize) Prof. Dr. Hakan Ündil Bahar MİKRO DENETLEYİCİLER II DERS NOTLARI (Vize) Prof. Dr. Hakan Ündil 2016-2017 Bahar (MİKRODENETLEYİCİLER I DERS NOTLARI nın devamıdır. Sadece VİZE için olan kısımdır) 6. BÖLÜM - ALT PROGRAMLAR Program içerisinde

Detaylı

Microprocessors and Programming

Microprocessors and Programming Microprocessors and Programming Dr. Kadir ERKAN Department of Mechatronics Engineering Fall : 2013 10/20/2013 1 Interpretation of Assembly Instructions ADDLW h 10 ; literal (constant) oriented ADDWF TOPLA,d

Detaylı

5. BÖLÜM - DÖNGÜ (ÇEVRİM) ve Z BAYRAĞI

5. BÖLÜM - DÖNGÜ (ÇEVRİM) ve Z BAYRAĞI MİKRO DENETLEYİCİLER II DERS NOTLARI Prof. Dr. Hakan Ündil 2015-2016 Bahar-Vize (MİKRODENETLEYİCİLER I DERS NOTLARI nın devamıdır. Sadece VİZE için olan kısımdır) 5. BÖLÜM - DÖNGÜ (ÇEVRİM) ve Z BAYRAĞI

Detaylı

MİKRODENETLEYİCİLER ÖRNEK PROGRAMLAR

MİKRODENETLEYİCİLER ÖRNEK PROGRAMLAR MİKRODENETLEYİCİLER ÖRNEK PROGRAMLAR Bülent ÖZBEK Örnek Program -1- B Portuna bağlı LED leri Yakma Bu programda PIC16F84 mikrodenetleyicisinin B portuna bağlı 8 adet LED in yanması sağlanacaktır. Bunu

Detaylı

MİKRO DENETLEYİCİLER II DERS NOTLARI (VİZE KONULARI) Prof. Dr. Hakan Ündil Bahar-Vize

MİKRO DENETLEYİCİLER II DERS NOTLARI (VİZE KONULARI) Prof. Dr. Hakan Ündil Bahar-Vize MİKRO DENETLEYİCİLER II DERS NOTLARI (VİZE KONULARI) Prof. Dr. Hakan Ündil 2014-2015 Bahar-Vize BÖLÜM 7 - LOJİK İŞLEM KOMUTLARI 7.1. RLF Komutu (Bir bit Sola Kaydırma) Bir file register içinde bulunan

Detaylı

Sistem Gereksinimleri: Uygulama Gelistirme: PIC Mikroislemcisinin Programlanmasi: PIC Programlama Örnekleri -1

Sistem Gereksinimleri: Uygulama Gelistirme: PIC Mikroislemcisinin Programlanmasi: PIC Programlama Örnekleri -1 PIC Programlama Örnekleri -1 Sistem Gereksinimleri: PIC programlayicinin kullanilabilmesi için; Win98 ve üstü bir isletim sistemi Paralel port 60 MB veya daha üstü disk alani gerekmektedir. Ancak programlama

Detaylı

T.C. NİĞDE ÜNİVERSİTESİ MÜHENDİSLİK-MİMARLIK FAKÜLTESİ ELEKTRİK-ELEKTRONİK MÜHENDİSLİĞİ BÖLÜMÜ BİTİRME ÖDEVİ

T.C. NİĞDE ÜNİVERSİTESİ MÜHENDİSLİK-MİMARLIK FAKÜLTESİ ELEKTRİK-ELEKTRONİK MÜHENDİSLİĞİ BÖLÜMÜ BİTİRME ÖDEVİ T.C. NİĞDE ÜNİVERSİTESİ MÜHENDİSLİK-MİMARLIK FAKÜLTESİ ELEKTRİK-ELEKTRONİK MÜHENDİSLİĞİ BÖLÜMÜ BİTİRME ÖDEVİ ÜÇ ODA BİR SALON BİR EV İÇİN HIRSIZ ALARMININ GERÇEKLEŞTİRİLMESİ HAZIRLAYAN Cevdet Selçuk KAHYALAR

Detaylı

ROBOT KOL BİTİRME PROJESİ DÖNEM İÇİ RAPORU

ROBOT KOL BİTİRME PROJESİ DÖNEM İÇİ RAPORU ROBOT KOL BİTİRME PROJESİ DÖNEM İÇİ RAPORU İSMAİL KAHRAMAN-ŞEYMA ÖZTÜRK 200713151027 200513152008 Robot Kol Mekanizması: Şekildeki robot-insan benzetmesinden yola çıkarak, bel kısmı tekerlekli ve sağa-sola-ileri-geri

Detaylı

İÇİNDEKİLER 1. KLAVYE... 11 2. KLAVYE RB0... 19 3. KLAVYE RBHIGH... 27 4. 4 DİSPLAY... 31

İÇİNDEKİLER 1. KLAVYE... 11 2. KLAVYE RB0... 19 3. KLAVYE RBHIGH... 27 4. 4 DİSPLAY... 31 İÇİNDEKİLER 1. KLAVYE... 11 Satır ve Sütunlar...11 Devre Şeması...14 Program...15 PIC 16F84 ile 4x4 klavye tasarımını gösterir. PORTA ya bağlı 4 adet LED ile tuş bilgisi gözlenir. Kendiniz Uygulayınız...18

Detaylı

EasyPic 6 Deney Seti Tanıtımı

EasyPic 6 Deney Seti Tanıtımı EasyPic 6 Deney Seti Tanıtımı Power supply voltage regulator J6 ile power supply seçimi yapılır. USB seçilirse USB kablosu üzerinden +5V gönderilir, EXT seçilirse DC connector üzerinden harici bir power

Detaylı

TIMER. SABANCI ATL ÖĞRETMENLERİNDEN YAVUZ AYDIN ve UMUT MAYETİN'E VERDİKLERİ DESTEK İÇİN TEŞEKKÜR EDİYORUZ

TIMER. SABANCI ATL ÖĞRETMENLERİNDEN YAVUZ AYDIN ve UMUT MAYETİN'E VERDİKLERİ DESTEK İÇİN TEŞEKKÜR EDİYORUZ TIMER SABANCI ATL ÖĞRETMENLERİNDEN YAVUZ AYDIN ve UMUT MAYETİN'E VERDİKLERİ DESTEK İÇİN TEŞEKKÜR EDİYORUZ PIC16F877A mikrodenetleyicisinde üç adet zamanlayıcı/sayıcı birimi bulunmaktadır. o Timer0 8 bitlik

Detaylı

8 Ledli Havada Kayan Yazı

8 Ledli Havada Kayan Yazı 8 Ledli Havada Kayan Yazı Hazırlayan Eyüp Özkan Devre Şemasının ISIS Çizimi Devre şemasından görüldüğü gibi PIC16F84A mikro denetleyicisinin Port B çıkışlarına 8 adet LED ve dirençler bağlı. 4MHz lik kristal

Detaylı

ADC: Anolog-Digital Çevirici

ADC: Anolog-Digital Çevirici ADC: Anolog-Digital Çevirici ADC, girişlerine uygulanan akım, gerilim, sıcaklık gibi analog büyüklükleri değerleri ile orantılı olarak çıkışında digital sinyale çeviren devredir. PIC16F877a da 8 kanallı

Detaylı

T.C. NİĞDE ÜNİVERSİTESİ MÜHENDİSLİK-MİMARLIK FAKÜLTESİ ELEKTRİK-ELEKTRONİK MÜHENDİSLİĞİ BÖLÜMÜ BİTİRME ÖDEVİ

T.C. NİĞDE ÜNİVERSİTESİ MÜHENDİSLİK-MİMARLIK FAKÜLTESİ ELEKTRİK-ELEKTRONİK MÜHENDİSLİĞİ BÖLÜMÜ BİTİRME ÖDEVİ T.C. NİĞDE ÜNİVERSİTESİ MÜHENDİSLİK-MİMARLIK FAKÜLTESİ ELEKTRİK-ELEKTRONİK MÜHENDİSLİĞİ BÖLÜMÜ BİTİRME ÖDEVİ ÜÇ ODA BİR SALON BİR EV İÇİN HIRSIZ ALARMININ GERÇEKLEŞTİRİLMESİ HAZIRLAYAN Cevdet Selçuk KAHYALAR

Detaylı

Hacettepe Robot Topluluğu

Hacettepe Robot Topluluğu Hacettepe Robot Topluluğu Makaleler Geri Sayım Cihazı HUNRobotX - Makaleler - Geri Sayım Cihazı Geri Sayım Cihazı Yazan: Kutluhan Akman, Düzenleyen: Canol Gökel - 22 Ekim 2006 Giriş Hepinizin bazı macera

Detaylı

HUNRobotX - Makaleler - Hız Ayarlı Çoklu DC Motor Kontrolü. Makaleler Hız Ayarlı Çoklu DC Motor Kontrolü

HUNRobotX - Makaleler - Hız Ayarlı Çoklu DC Motor Kontrolü. Makaleler Hız Ayarlı Çoklu DC Motor Kontrolü Makaleler Hız Ayarlı Çoklu DC Motor Kontrolü Hız Ayarlı Çoklu DC Motor Kontrolü Yazan: Mustafa Tufaner, Düzenleyen: Canol Gökel - 18 Kasım 2006 Giriş Robotikte sıkça kullanılabilecek bir uygulama ile karşınızdayız.

Detaylı

PIC 16F877 nin kullanılması

PIC 16F877 nin kullanılması PIC 16F877 nin kullanılması, dünyada kullanıma sunulmasıyla eş zamanlı olarak Türkiye de de uygulama geliştirenlerin kullanımına sunuldu., belki de en popüler PIC işlemcisi olan 16F84 ten sonra kullanıcılara

Detaylı

Mikroişlemciler. Microchip PIC

Mikroişlemciler. Microchip PIC Mikroişlemciler Microchip PIC Öğr. Gör. M. Ozan AKI r1.1 Microchip PIC Mikrodenetleyiciler www.microchip.com Microchip PIC Mikrodenetleyiciler Microchip PIC Mikrodenetleyiciler Microchip PIC Mikrodenetleyiciler

Detaylı

www.muhendisiz.net BÖLÜM 1

www.muhendisiz.net BÖLÜM 1 www.muhendisiz.net BÖLÜM 1 IR HABERLEŞME 1.1.IR Haberleşme Sisteminin Gerçekleştirilmesi Tüm haberleşme sistemlerinde olduğu gibi IR haberleşme sistemlerinde de modülasyon tekniğinden yararlanılır. IR

Detaylı

PD103 BUTON LED UYGULAMA DEVRESİ UYGULAMA ÖRNEKLERİ MALZEME LİSTESİ

PD103 BUTON LED UYGULAMA DEVRESİ UYGULAMA ÖRNEKLERİ MALZEME LİSTESİ PD103 BUTON LED UYGULAMA DEVRESİ UYGULAMA ÖRNEKLERİ MALZEME LİSTESİ AÇIK DEVRE ŞEMASI BASKI DEVRESİ PIC16F84 UYGULAMA-1 İŞLEM BASAMAKLARI 1. PIC16F84 te A portunun ilk bitine (RA0) bağlı butona basıldığında,

Detaylı

ELEKTRİK-ELEKTRONİK TEKNOLOJİSİ

ELEKTRİK-ELEKTRONİK TEKNOLOJİSİ T.C. MİLLÎ EĞİTİM BAKANLIĞI ELEKTRİK-ELEKTRONİK TEKNOLOJİSİ MİKRODENETLEYİCİ İLE DİJİTAL İŞLEMLER 523EO0021 Ankara, 2012 Bu modül, mesleki ve teknik eğitim okul/kurumlarında uygulanan Çerçeve Öğretim Programlarında

Detaylı

Yrd. Doç.Dr. Bülent ÇOBANOĞLU. Hazırlayan:Yrd.Doç.Dr.Bülent ÇOBANOĞLU 1

Yrd. Doç.Dr. Bülent ÇOBANOĞLU. Hazırlayan:Yrd.Doç.Dr.Bülent ÇOBANOĞLU 1 B Yrd. Doç.Dr. Bülent ÇOBANOĞLU Hazırlayan:Yrd.Doç.Dr.Bülent ÇOBANOĞLU 1 PIC Mikro denetleyici Programlama Assembly programlama dili, çoğu zaman özel alanlarda geliştirilen yazılımlarda kullanılan alt

Detaylı

DERS 13 PIC 16F84 ile DONANIM SAYICI KULLANIMI İÇERİK KESME

DERS 13 PIC 16F84 ile DONANIM SAYICI KULLANIMI İÇERİK KESME DERS 13 PIC 16F84 ile DONANIM SAYICI KULLANIMI İÇERİK KESME Ders 13, Slayt 2 1 TMR0 SAYICISI Ram belleğin h 01 adresi TMR0 adlı özel amaçlı bir saklayıcı olarak düzenlenmiştir. Bu saklayıcı bir sayıcıdır.

Detaylı

PIC Mikrodenetleyicileri

PIC Mikrodenetleyicileri PIC Mikrodenetleyicileri Intel 1976 da 8031/51 ailesini piyasaya sürdüğünde dünyanın en popüler mikroişlemcisi olmuştu. Bu işlemci dünya üzerinde 12 den fazla firma tarafından (İntel, Phillips, Dallas,

Detaylı

T.C. NİĞDE ÜNİVERSİTESİ MÜHENDİSLİK-MİMARLIK FAKÜLTESİ ELEKTRİK-ELEKTRONİK MÜHENDİSLİĞİ BÖLÜMÜ

T.C. NİĞDE ÜNİVERSİTESİ MÜHENDİSLİK-MİMARLIK FAKÜLTESİ ELEKTRİK-ELEKTRONİK MÜHENDİSLİĞİ BÖLÜMÜ T.C. NİĞDE ÜNİVERSİTESİ MÜHENDİSLİK-MİMARLIK FAKÜLTESİ ELEKTRİK-ELEKTRONİK MÜHENDİSLİĞİ BÖLÜMÜ GENEL AMAÇLI UZAKTAN KUMANDA MODÜLÜNÜN TASARIMI VE GERÇEKLEŞTİRİLMESİ Danışman Yrd. Doç. Dr. Murat UZAM Hazırlayan

Detaylı

T.C FIRAT ÜNİVERSİTESİ TEKNOLOJİ FAKÜLTESİ ELEKTRİK-ELEKTRONİK MÜHENDİSLİĞİ EET-302 MİKROİŞLEMCİLER LABORATUVARI DENEY FÖYÜ

T.C FIRAT ÜNİVERSİTESİ TEKNOLOJİ FAKÜLTESİ ELEKTRİK-ELEKTRONİK MÜHENDİSLİĞİ EET-302 MİKROİŞLEMCİLER LABORATUVARI DENEY FÖYÜ T.C FIRAT ÜNİVERSİTESİ TEKNOLOJİ FAKÜLTESİ ELEKTRİK-ELEKTRONİK MÜHENDİSLİĞİ EET-302 MİKROİŞLEMCİLER LABORATUVARI DENEY FÖYÜ Doç. Dr. Melih Cevdet İNCE DENEYLER Deney_1: 8085 Simülatör Kullanımı Deney_2:

Detaylı

Mikroislemci Kontrollu Prototip Trafik Lambalari ve Geri Sayici

Mikroislemci Kontrollu Prototip Trafik Lambalari ve Geri Sayici Mikroislemci Kontrollu Prototip Trafik Lambalari ve Geri Sayici Mahmut KISACIK ve Doç.Dr. Hasan KÖMÜRCÜGIL Bilgisayar Mühendisligi Bölümü, Dogu Akdeniz Üniversitesi Gazimagusa-Kuzey Kibris Türk Cumhuriyeti

Detaylı

3.2 PIC16F84 Yazılımı PIC Assembly Assembler Nedir?

3.2 PIC16F84 Yazılımı PIC Assembly Assembler Nedir? 3.2 PIC16F84 Yazılımı 3.2.1 PIC Assembly 3.2.1.1 Assembler Nedir? Assembler,bir text editöründe assembly dili kurallarına göre yazılmış olan komutları pıc in anlayabileceği heksadesimal kodlara çeviren

Detaylı

BÖLÜM 1: MİKRODENETLEYİCİLER

BÖLÜM 1: MİKRODENETLEYİCİLER V İÇİNDEKİLER BÖLÜM 1: MİKRODENETLEYİCİLER ve PIC16F877A... 13 1.1 Giriş... 13 1.2 Mikrochip Mikrodenetleyici Ailesi... 14 1.2.1 PIC12CXXX/PIC12FXXX Ailesi... 15 1.2.2 PIC16C5X Ailesi... 15 1.2.3 PIC16CXXX/PIC16FXXX

Detaylı

BİLİŞİM TEKNOLOJİLERİ

BİLİŞİM TEKNOLOJİLERİ T.C. MİLLÎ EĞİTİM BAKANLIĞI BİLİŞİM TEKNOLOJİLERİ MİKRODENETLEYİCİ Ankara, 2014 Bu modül, mesleki ve teknik eğitim okul/kurumlarında uygulanan Çerçeve Öğretim Programlarında yer alan yeterlikleri kazandırmaya

Detaylı

PIC Mikro denetleyiciler ve Programlama. Öğr.Gör.Bülent ÇOBANOĞLU

PIC Mikro denetleyiciler ve Programlama. Öğr.Gör.Bülent ÇOBANOĞLU PIC Mikro denetleyiciler ve Programlama Değerlendirme BaĢarı Puanı: Yıl içi %60+ Final %40 Yıl içi ise; Vize*60+Q1*10+Q2*10+Ödev*15+Devam*5 BaĢarı Ortalaması 40 altı olan FF dir. Diğer notlar, çana göre

Detaylı

P IC 16F877. Program. Belleği

P IC 16F877. Program. Belleği P IC 16F877 Mİ MARİ (Architecture) PIC 16F87X ve 16F8X serisi öncelikle, PIC 16CXX ailesinin özelliklerini taşır. PIC 16CXX de Harvard mimarisi kullanılmıştır. Von Neuman mimarisinde, veri ve program belleğine

Detaylı

DENEY-4. SABANCI ATL ÖĞRETMENLERİNDEN YAVUZ AYDIN ve UMUT MAYETİN'E VERDİKLERİ DESTEK İÇİN TEŞEKKÜR EDİYORUZ

DENEY-4. SABANCI ATL ÖĞRETMENLERİNDEN YAVUZ AYDIN ve UMUT MAYETİN'E VERDİKLERİ DESTEK İÇİN TEŞEKKÜR EDİYORUZ DENEY-4 SABANCI ATL ÖĞRETMENLERİNDEN YAVUZ AYDIN ve UMUT MAYETİN'E VERDİKLERİ DESTEK İÇİN TEŞEKKÜR EDİYORUZ MİKRODENETLEYİCİLERDE ZAMANLAYICI VE SAYICILAR PIC16F877A mikrodenetleyicisinde üç adet zamanlayıcı/sayıcı

Detaylı

ÖĞRENME FAALİYETİ-1 ÖĞRENME FAALİYETİ 1

ÖĞRENME FAALİYETİ-1 ÖĞRENME FAALİYETİ 1 2 ÖĞRENME FAALİYETİ-1 AMAÇ ÖĞRENME FAALİYETİ 1 Mikrodenetleyiciyi ve çevre elemanlarını seçebilecek, dijital işlem için gerekli programı hatasız olarak yazabilecek, programı mikrodenetleyiciye yükleyebilecek

Detaylı

Analog Sayısal Dönüşüm

Analog Sayısal Dönüşüm Analog Sayısal Dönüşüm Gerilim sinyali formundaki analog bir veriyi, iki tabanındaki sayısal bir veriye dönüştürmek için, az önce anlatılan merdiven devresiyle, bir sayıcı (counter) ve bir karşılaştırıcı

Detaylı

ÖĞRENME FAALİYETİ-1 1. MİKRODENETLEYİCİ PROGRAMI YAZMA

ÖĞRENME FAALİYETİ-1 1. MİKRODENETLEYİCİ PROGRAMI YAZMA ÖĞRENME FAALİYETİ-1 AMAÇ ÖĞRENME FAALİYETİ-1 Uygun ortam sağlandığında kurulacak devre için eksiksiz olarak yapabileceksiniz. mikrodenetleyici programını ARAŞTIRMA Mikrodenetleyici çeşitlerini aaştırınız.

Detaylı

T.C. MİLLÎ EĞİTİM BAKANLIĞI MEGEP (MESLEKİ EĞİTİM VE ÖĞRETİM SİSTEMİNİN GÜÇLENDİRİLMESİ PROJESİ) ENDÜSTRİYEL OTOMASYON TEKNOLOJİLERİ

T.C. MİLLÎ EĞİTİM BAKANLIĞI MEGEP (MESLEKİ EĞİTİM VE ÖĞRETİM SİSTEMİNİN GÜÇLENDİRİLMESİ PROJESİ) ENDÜSTRİYEL OTOMASYON TEKNOLOJİLERİ T.C. MİLLÎ EĞİTİM BAKANLIĞI MEGEP (MESLEKİ EĞİTİM VE ÖĞRETİM SİSTEMİNİN GÜÇLENDİRİLMESİ PROJESİ) ENDÜSTRİYEL OTOMASYON TEKNOLOJİLERİ MİKRODENETLEYİCİ-3 ANKARA 2007 Milli Eğitim Bakanlığı tarafından geliştirilen

Detaylı

5.Eğitim E205. PIC16F628 ve PIC16F877 Hakkında Genel Bilgi IF THEN ELSE ENDIF HIGH-LOW GOTO-END- PAUSE Komutları Tanıtımı ve Kullanımı PIC16F628:

5.Eğitim E205. PIC16F628 ve PIC16F877 Hakkında Genel Bilgi IF THEN ELSE ENDIF HIGH-LOW GOTO-END- PAUSE Komutları Tanıtımı ve Kullanımı PIC16F628: 5.Eğitim E205 PIC16F628 ve PIC16F877 Hakkında Genel Bilgi IF THEN ELSE ENDIF HIGH-LOW GOTO-END- PAUSE Komutları Tanıtımı ve Kullanımı PIC16F628: PIC16F628 18 pine sahiptir.bu pinlerin 16 sı giriş / çıkış

Detaylı

Bu yürütme, Prof. Dr. Hakan ÜNDİL (Bir haftalık derse ait ders notudur)

Bu yürütme, Prof. Dr. Hakan ÜNDİL (Bir haftalık derse ait ders notudur) MİKROİŞLEMCİ (MİKROPROSESÖR - CPU) NEDİR? Mikroişlemci bir programının yapmak istediği işlemleri, (hafızada bulunan komutları) sırasıyla ile işleyerek icra eder (yürütür). Bu yürütme, 1. Komutun Program

Detaylı

DENEY-5. SABANCI ATL ÖĞRETMENLERİNDEN YAVUZ AYDIN ve UMUT MAYETİN'E VERDİKLERİ DESTEK İÇİN TEŞEKKÜR EDİYORUZ

DENEY-5. SABANCI ATL ÖĞRETMENLERİNDEN YAVUZ AYDIN ve UMUT MAYETİN'E VERDİKLERİ DESTEK İÇİN TEŞEKKÜR EDİYORUZ DENEY-5 SABANCI ATL ÖĞRETMENLERİNDEN YAVUZ AYDIN ve UMUT MAYETİN'E VERDİKLERİ DESTEK İÇİN TEŞEKKÜR EDİYORUZ 31 MİKRODENETLEYİCİDE KESME BİRİMİ Mikrodenetleyicinin değişik kaynaklardan gelen uyarıcı sinyaller

Detaylı

T.C. MİLLİ EĞİTİM BAKANLIĞI MEGEP (MESLEKÎ EĞİTİM VE ÖĞRETİM SİSTEMİNİN GÜÇLENDİRİLMESİ PROJESİ) BİLİŞİM TEKNOLOJİLERİ MİKRODENETLEYİCİ-3

T.C. MİLLİ EĞİTİM BAKANLIĞI MEGEP (MESLEKÎ EĞİTİM VE ÖĞRETİM SİSTEMİNİN GÜÇLENDİRİLMESİ PROJESİ) BİLİŞİM TEKNOLOJİLERİ MİKRODENETLEYİCİ-3 T.C. MİLLİ EĞİTİM BAKANLIĞI MEGEP (MESLEKÎ EĞİTİM VE ÖĞRETİM SİSTEMİNİN GÜÇLENDİRİLMESİ PROJESİ) BİLİŞİM TEKNOLOJİLERİ MİKRODENETLEYİCİ-3 ANKARA, 2008 Millî Eğitim Bakanlığı tarafından geliştirilen modüller;

Detaylı

PIC MCU ile UYGULAMALAR-II

PIC MCU ile UYGULAMALAR-II PIC MCU ile UYGULAMALAR-II ADC-DAC Uygulamaları Paralel LCD Uygulamaları Seri LCD Uygulamaları Step Motorlar DC Motorlar Servo Motorlar YRD.Doc..Dr.BÜLENT ÇOBANOĞLU ADC: Anolog-Digital Çevirici ADC, girişlerine

Detaylı

İçİndekİler. 1. Bölüm - Mİkro Denetleyİcİ Nedİr? 2. Bölüm - MİkroDenetleyİcİlerİ Anlamak

İçİndekİler. 1. Bölüm - Mİkro Denetleyİcİ Nedİr? 2. Bölüm - MİkroDenetleyİcİlerİ Anlamak XIII İçİndekİler 1. Bölüm - Mİkro Denetleyİcİ Nedİr? Mikrodenetleyici Tanımı Mikrodenetleyicilerin Tarihçesi Mikroişlemci- Mikrodenetleyici 1. İki Kavram Arasındaki Farklar 2. Tasarım Felsefesi ve Mimari

Detaylı