OPAMPLAR OPERASYONEL KUVVETLENDİRİCİLER

Ebat: px
Şu sayfadan göstermeyi başlat:

Download "OPAMPLAR OPERASYONEL KUVVETLENDİRİCİLER"

Transkript

1 OPAMPLAR OPERASYONEL KUVVETLENDİRİCİLER Fairchild 1965 yılında, en çok kullanılan Ua709 elemanı piyasaya sunmuştur. Aslında başarısının yanında, bu elemanın birçok dezavantajları da vardı. Bu nedenle de ua741 olarak bilinen op-amp geliştirilmiştir. UA741 çok ucuz ve kolay kullanımı, ayrıca üstün yetenekleri nedeniyle tercih edilmiştir. Değişik firmalar da uaa741 dizaynlarını gerçekleştirmişlerdir. Örneğin Motorolo MCI741 National Semiconductor LM741 ve Texas Instruments SN72741 üretmişlerdir. Bütün bu (monolithic) tek elemanlı işlemsel kuvvetlendiriciler ua741 in eşdeğerleridir. Çünkü bunlar katologlarda da aynı özelliklere sahiptirler. Çoğunlukla insanlar opamp tan bahsediyorlarsa akıllarına gelen ilk eleman 741 olmaktadır. 741 elemanı endüstri standartlarına uygun hale getirilmiştir. Kural olarak yapacağınız dizaynlarda opamp kullanılmışsa bunların yerine 741 olarak devreyi kurabilirsiniz. Op-amp olarak 741 in kullanımını anlamışsanız diğer opampları da kolaylıkla kullanabilirsiniz. Sırası gelmişken 741 farklı versiyon numaralarına sahiptir. 741, 741A, 741C, 741E, 741N, ve diğerleri... Bu farklılıklar bunların gerilim kazançları, sıcaklık farklılıkları, gürültü seviyeleri ve diğer karakteristikleridir. 741C ( Ticari tipte bir elemandır.) çok ucuz ve çok geniş alanlarda kullanılmaktadır. Bunun giriş empedansı 2M Ω, gerilim kazancı ve çıkış empedansı 75 Ω dur. 741 İN ŞEMATİK DİYAGRAMI Şekil 15-1, 741 in basitleştirilimiş şematik diyagramını göstermektedir. Bu devre 741 in eşdeğer devresi olup sonradan üretilen op-ampların temelini teşkil eder. Devre dizaynlarında her türlü ayrıntılı özellikleri anlamaya ihtiyaç yoktur. Fakat op-amp ın nasıl çalıştığı hakkında genel bir fikre sahip olabilirsiniz. 741 in ardındaki temel düşünce şudur: Giriş katı Q1 ve Q2 PNP transistörlerinden oluşturulumuş bir fark kuvvetlendiricidir. Bildiğiniz gibi emiterdeki bağlantı elemanları nedeniyle bu devre, akım kaynağı olarak çalıştığı farz edilmiştir. 741 in içinde Q14 akım kaynağı olup emiter direnci yerine geçmektedir. R2 ve Q4 ün polarmasını kontrol ederek fark kuvvetlendiricinin akımını üretir. Fark kuvvetlendirici de kollektör direnci yerine normal direnç kullanarak bunu yük direnci yerine kullanabiliriz. Bu aktif yük Q4 için oldukça yüksek empedanslı bir akım kaynağı olarak çalışır. Bu sebepten fark kuvvetlendiricinin gerilim kazancı daha büyük olmaktadır. Beyz DC Dönüş Elemanları Şekil 15-1 de görüldüğü gibi giriş beyzleri boşluktadır. İşlemsel kuvvetlendirici her iki girişe beyz dirençleri ve toprak arasındaki DC bağlantılar yoksa çalışmayacaktır. Bu dönüş yolları işlemsel kuvvetlendiriciyi süren devrenin, Thevenin dirençleri tarafından temin edilir. Eğer sürücü devreler kapasitif kublajlı ise mutlaka beyz dönüş dirençlerine ihtiyaç vardır. Bu düşüncenin anahtarı her giriş için beyzden toprağa bir bağlantı olmalıdır. Eğer beyzden toğrağa da bir yol yoksa op-ampın transitörleri kesimde olacaktır. GİRİŞ EMPEDANSI Fark yükselticinin giriş empedansı şu şekilde ifade edilir. Rgiriş = 2β re

2 Fark yükselticideki ortak emiterli bağlantı nedeniyle işlemsel kuvvetlendirici oldukça yüksek giriş empedansına sahiptir. Örneğin 741 in giriş fark kuvvetlendirici (tail) akımı yaklaşık olarak 15uA dir. Her emiter bu akımın yarısını üzerinden akıtır. 25mV ré= = 3.33 kω 7,5uA 741 de girişteki her transistörün β sı tipik olarak β =300 olduğuna göre giriş empedansı: ri= 2 (300). (3,3K) = 2mΩ Bu 741 in kataloglarında tesbit edilen giriş direnci değeridir. Eğer daha yüksek giriş empedansları gerekiyorsa dizayn yapan kişi BIFET (fetgirişli) op-amp kullanma zorunluluğu vardır. Bu op-amp fet in ve bipolar transitörlerin bir araya getirilmesiyle oluşturulmuştur. Örneğin LF olarak modife edilmiş JFET kaynak takip edicinin çıkışı normal 741 op-amp sürmektedir. Bu kombinasyon 741 diğer karakteristikleri ile JFET kaynak takip edici giriş avantajlarını meydana getirmektedir. Bu sebepten LF13741 standart 741 için yedek olarak kullanılabilir. ŞEMATİK SEMBOLLER Bir op-ampın şematik sembolü Şekil 15-2 de görülmektedir. A op-ampın gerilim kazancıdır. Faz terslemeyen giriş V1, farz tersleyen giriş ise V2 dir Fark girişi Vgiriş = V1 - V2 V1, V2 gerilimleri ve çıkış gerilim noktalarına dikkat ediniz. Bunun anlamı ölçümlerin daima toprakla bu noktalar yapılmasıdır. Fark girişi Vgiriş iki giriş gerilimi V1, V2 arasındaki farktır. Biz çoğu zaman Şekil 15-2 de görülen toprak hattını çizerek göstermeyiz. Bunun anlamı toprak noktası olmasa da ölçülen değerlerin toprağa göre olmasıdır. Vçıkış = A. Vg,iriş Vçıkış Vgiriş = A 741 için A= dir ve çıkış empedansı Zçıkış = 75 Ω dur. Genellikle opampın çıkışına bağlanan yük direnci Zçıkış dan küçüktür. Vçıkış yaklaşık olarak Vth = Vçıkış değerine eşittir. Örnek 15-1 Bir 741 giriş gerilimi 1uv tur. Bu opampın çıkışındaki gerilim ne kadardır? Çözüm Giriş gerilimini, gerilim kazancı ile çarptığımızda 741C nin kazancı olduğuna göre çıkış gerilimi: Vçıkış = (1uV)= 0.1V Bu cevaptan op-amp çıkışına yük direnci bağlanmadığı farzedilmiştir. Eğer yük direnci kullanılmış ise Thevenin çıkış geriliminin bir kısmı bu yük üzerinde düşecektir. Eğer yük direnci op-amp çıkış direnci değerinden 100 defa daha fazla ise çıkış direnci üzerinde meydana gelen gerilim düşümünü ihmal edebilirsiniz. 741C nin çıkış empedansı 75 Ω olduğuna göre yük direnci 7,5 kω dan büyük ise yükleme etkisi dikkate alınmayabilir.

3 Örnek 15-2 Bir 741C nin çıkış gerilimi 5V ise kazancı olan op-ampın giriş gerilimi ne kadardır. 5V Vgiriş = = 50 uv OP-AMP KARAKTERİSTİKLERİ Op-amp bir yükselticidir. Ancak problemlerin analizinde ve op-amp devrelerinin dizaynlarında AC ve DC karakteristikleri gözönünde bulundurmamız gerekmektedir. Bu bölümde, ofset problemlerine ve opampın performansını etkileyen diğer karakteristikler açıklanacaktır. ÜÇ ÖNEMLİ KARAKTESTİK Daha evvel (CMRR) sinyali bastırma oranı tanımlanmıştı. 741C için CMRR= 90 Db düşük frekanslar için uygundur. Common mode sinyalinde arzı edilen sinyal 90Db daha büyüktür. Bunun anlamı yükseltilecek sinyal ortak gürültü CMRR nin Şekil da görüldüğü gibi azalmasına neden olur. Dikkat edilirse CMRR yaklaşık 1KHz de 75db, 10 KHz de 56db dir. Maksimum tepeden tepeye değeri yükselticinin çıkışından kırpılmadan alınan en büyük değerdir. Opampın girişinde herhangi bir sinyal yoksa çıkış ideal olarak sıfırdır. AC çıkış gerilimi pozitif ve negatif yönde salınım yapar. Yük direncinin Zçıkış empedansından büyük olması halinde çıkış gerilimi besleme geriliminde salınım yapar. Örneğin VCE = + 15 V ve V ve VEE = - 15 V olan devrede 10 kω luk yük direnci uçlarındaki gerilim 30 V olacaktır. Ancak bu gerilim 741C nin çıkış katından dolayı genelde 27V ve 10 kω yük direncinde 27V, 1 kω luk yük uçlarında 25 V ve 100 Ω yük uçlarındaki gerilim ise 7 V kadar olacaktır. FREKANS TEPKİSİ 741C nin Şekil 15-5c de küçük sinyal frekans tepkisi görülmektedir. Orta bandın gerilim kazancı dir. 741 in kritik frekansı fc= 10 Hz dir Şekilde görüldüğü gibi 10 Hz seviyesinde gerilim kazancı %70 kazanç değerini -3 db noktasından düşmektedir. Kritik frekansın üzerinde gerilim kazancı her dekat artışı için 20 db düşmektedir. Gerilim kazancının bire düştüğü frekans 1 MHz dir. Kataloglarda bu değer genellikle belirtilir. Çünkü bu değer op-ampın faydalı kazanç üst değerini temsil etmektedir. Örneğin kataloglarda 741C listelerinde f1= 1 MHz. Bunun anlamı 741C sinyali 1 MHz kadar yükselir. Bunun üzerindeki değerlerde çıkış azalmaya başlar. Örneğin LM318 in f1 = 15 MHz dir. Bunun anlamı op-amp 15 MHz e kadar çıkışında kazanç verebilir. Bunun üzerindeki değerlerde çıkış azalarak gider. YÜKSELME HIZI BOZULMASI ( Slew Rate ) Bir 741 in kompanzasyon kapasitesinden dolayı fark yükseltici çıkışı verilen slew rate değerinden daha hızlı değişemez. It Sr = Cc Bir 741C de It = 15 ma ve Cc = 30 pf tır. Bu sebepten 741 in slew rate yükselme hızı, 15 ma S r = = 0,5 V/us dir. 30 pf Bu 741C nin büyük sinyal sınırıdır. Bunun çıkış gerilimi 0,5 V/us den daha hızlı değişmez.

4 Bildiğimiz gibi bir op-ampın yükselme hızı (slew rate) büyük sinyal yüksek frekans tepkisi sınırlar. Eğer sinüs dalganın yükseltilmesindeki başlangıç eğitimi op-ampın yükselme hızından daha büyük ise çıkış küçülmeye başlar ve girişteki sinüsodial dalga üçgen olarak görülmeye başlar. Daha evvel biz bu eşitliği güç band genişliği olarak ifade ettik. fmax = 2n Vp Bu yüksek frekansta yükselme hızı oranında bir bozulma olmadan 2n değerine bölünerek elde edilen tepe geriim değeridir. Faydalı olan alternatif eşitlik: Sr Sr Vp = 2n fmax Örnek 15-3 Şekil 15-6, 741C nin ayak numaralarını göstermektedir. 3 Nolu giriş faz çevirmeyen giriştir. 7 ve 4 nolu ayaklar güç kaynağı bağlantılarıdır. 6 nolu ayak ise çıkıştır. Bir 741C nin en kötü şartlar altında kataloglarda verilen değerleri VBE = 2 mv, lgiriş = 80 na ve Igiriş = 20 na En kötü durumdaki istenmeyen giriş gerilimi toplamı nedir? Çıkış ofset gerilimi nedir? Çözüm İstenmeyen giriş geriliminde iki farklı kompanent vardır. Önce farklı VBE eğrilerini etkileyen faktör. İkinci olarak farklı β da değerleri iki beyz gerilimini 3 ve 2 nolu ayaklardaki farkını transfer etmektedirler. Vgiriş = +2mV +(20nA). (220 kω) = +6.4mV Bunun anlamı istenmeyen giriş gerilimleri - 6,4 mv ile mv arasında herhangi bir yerde olabilir. En kötü durumda bunun büyüklüğü 6.4 mv olabilir. 741C lineer bölgede çalışıyorsa ve onun gerilim kazancı dir. Buna göre ofset gerilimini hesaplayacak olursak Vçıkış = (+ 6.4 mv) = +640V Bu cevap saçmalık örneği olarak ve azaltılması gereken bir değer olarak gözönüne alınmalıdır. Çünkü 640V imkansızdır. Bu saçma sonuçtan sonra şunu söyleyebiliriz: Sonuçta op-amp doyuma ulaşmıştır ve op-amp lineer bölgede çalışmaktadır ve bu doğrudur. Oysa bir 741C nin maksimum (tepe to tepe) tepeden tepeye vereceği çıkış +27 V olabilir. Yani -13,5 V ile +13,5 V volt arasında salınım yapar. Giriş gerilimi +6,4 V olduğu zaman op-ampın çıkışı 13,5 V ta gider. Giriş gerilimi olduğu zaman çıkış -13,5 V ta gider. Örnek 15-4 Bir önceki örnekte kullanılan katalog bilgilerini kullanarak op-amp çıkışını doyuma götürecek ofset giriş gerilimini bulunuz. Çözüm Pozitif taraftan bakılacak olursa op-amp +13,5 V doyuma ulaşmadan (swing) salınım yapılacaktır. Opamp kazancı olduğuna göre giriş gerilimi 13,5 V Vgiriş = =0,13 mv Bu en kötü durum olarak ifade edilen değerden 6,4mV tan çok küçüktür.

5 Örnek 15-5 Bir 741C nin yükselme hızı 0,5 V/usn dir Çıkış gerilimi tepe değeri 10 V ise band genişliği nedir? Çözüm Yükselme hızında bir bozulma olmadan hesaplanan maksimum değer 0,5 V/us fmax = =7,96 khz 2n. 10V Bu frekansta op-amp bozulmamış sinüsodial çıkış sinyali tepe değeri 10V tur. Eğer giriş frekansını 7,96 khz in üzerine çıkarırsanız çıkıştaki değerde bir azalım başlar. Girişin sinüsodial olmasına karşın çıkışta üçgen dalgalar görülmeye başlar. Örnek khz lik giriş sinyallerinde çıkışta alınan sinyallerin bozulmadan alınabilecek değeri nedir? 0,5 V/usn VP = =1,59 V 2n. (50 khz ) Bunun anlamı op-amp frekansı 50 khz ve giriş sinyalinin tepe değeri 1,59 V olan sinyalin çıkıştan bozulmadan alınabilir demektir. ENTEGRE DEVRELERİNİN DİĞER LİNEER KULLANIMLARI Aslında op-amplar çok önemli entegre devreleridir. Onları birçok değişik kullanımlar için genişletebilirsiniz. Burada birkaç kullanım özet olarak verilmiştir. SES YÜKSELTİCİLER Ön yükselticiler çıkış gücü 50mW tan daha az olan bu ses yükselticilerdir. Ön yükselticiler oldukça düşük gürültü seviyesine sahip olmalıdırlar. Çünkü bunlar ses sistemlerinin girişinde kullanılmakta olup, manyetik band kristallerden ve mikrofonlardan gelen zayıf sinyalleri yükseltmektedir. Entegre edilmiş ön yükselticiye örnek LM381 düşük gürültülü çiftli bir ön yükselticidir. Her bir yükseltici birbirinden tamamen farklıdır. LM381 in gerilim kazancı 112 db dir ve 10V da güç band genişliği 74kHz ve 9V tan 40V ta kadar pozitif besleme ile çalışır. Giriş empedansını 100 kω, çıkış empedansı 150 Ω du. Lm381 in giriş katı, fark kuvvetlendirici olup tekli çıkışa sahiptir. Ses güç yükselticiler çıkışlarından 500 mw tan fazla güç alınmaktadır. Bunlar phonograph yükselticiler AM, FM radyolar ve diğer kullanımları bulunur. LM380 bir örnektir. Bunun gerilim kazancı 34db band genişliği 100 khz ve çıkış gücü 8W tir. Video Yükselticiler Bir video veya geniş band yükseltici geniş bir frekans bandında sabit gerilimi kazancı düz bir tepki gösterir. Tipik olarak band genişliği MHz bölgesindedir. Video yükselticilerde DC yükselticiler gerekli değildir. Fakat çok düşük frekanslarda çok yüksek frekanslara kadar (range) değere sahiptirler. Örneğin bir çok osilaskoplarda frekans değeri 0 dan 100-MHz e kadar gider. Bu tür cihazlarda video yükselticiler kullanılması sinyal genliğini arttırır. Diğer bir örnek televizyon alıcılarıdır. Kullanılan frekans yaklaşık 0 dan 4MHz e kadardır. RF ve IF Yükselticiler Bir radyo frekans ( RF) yükseltici TV alıcılarında veya AM -FM alıcılarda umumiyetle ilk kattır. Orta frekans (IF) yükselticilerde tipik olarak orta katlardadırlar. Entegre devreler LM703 RF ve IF

6 yükselticiler aynı chip içinde bulunurlar. Yükselticiler ayarlı yapılmak suretiyle yalnız dar band frekansında kullanılabilirler. Bu televizyon ve radyo istasyonlarının arzu edilen sinyallerinin alınmasına (tuning) ayar devreleri ile mümkün kılar. Daha evvel bahsedildiği gibi büyük kondansatör ve self değerlerinin chip içine yerleştirilememesi nedeniyle dışarıdan LS ve CS elemanlar ayar yükselticilerine bağlanırlar. GERİLİM REGÜLATÖRLER Bölğm 4 te doğrultmalı güç kaynakları açıklanmıştı. Filtre işleminden sonra DC gerilimde biraz daha riplle kalmaktadır. Bu DC gerilim hat gerilimi ile orantılıdır. Hat gerilimi %10 değişirse bu da seviye de %10 luk değişmeye sebep olur. Birçok uygulamalarda %10 luk değişme DC gerilim değeri oldukça fazladır ve bu sebepten DC regülasyon gereklidir. Yeni entegre devrelerde LM340 serileri bu iş için kullanılmaktadır. Bu tipte chipler çıkış DC gerilimini %0,01 olarak hat geriliminin ve yük direncinin değişmesini tutarlar. Diğer bir özellik olarak pozitif ve negatif ayarlanabilen çıkış gerilimleri ve kısa devre koruma sağlarlar. OP-AMPLARIN TEMEL KULLANIMLARI İşlemsel kuvvetlendiriciler terim olarak analog bilgisayarların alan örneklerindendir. Bu tipteki yükselticiler matematiksel işlemlerin, toplama, çıkartma, çarpma, bölme, integral, türev ve logoritma alma gibi uygulamalarında başarılı bir şekilde kullanılmışıtır. Aslında op-amplar çok geniş bir alanda kullanılmalarına karşın hala orijinal isimleri kullanılmaktadır. Temelde op-amp yüksek gerilim kazancı DC fark kuvvetlendiriciler olup aşağıdaki karakteristikleri taşımaktadır. Sonsuz band genişliği, Sonsuz giriş empedansı, Sıfır çıkış empedansı, Şekil 15-8 a da görülen op-amp (+) pozitif noninvert ve (-) negatif invert girişli ve tek çıkışa sahiptir. İlave olarak op-amp normalde çift kaynaklı + 5 V dan + 18V a kadar gerilim uygulanan bir elemandır. Tek besleme kullanıldığında + 5 V dan +15 ve -5 V dan -15V a kadar toprakla arasında bağlantı yapılan bir beslemeye sahiptir Aslında op-amp tek bir pozitif polarite ile de beslenebilir. Ancak, op-ampların daha çok çift kaynakla beslemek adet olmuştur. Şekillerde besleme uçları bağlantı gösterilmeden görebilirsiniz. Daha evvel bahsedildiği gibi op-amp iki girişi sahiptir. Bu iki giriş arasındaki fonksiyon fark aşağıda izah edildiği gibidir. Eğer sinyal op-ampların (+) noninvert girişine uygulanmış ise çıkış girişte aynı fazda olacaktır. Giriş sinyali pozitife gittiği zaman çıkışta pozitife gider. Eğer sinyal op-ampların (-) girişine (invert) uygulanmış ise çıkış 180 C faz farklı olarak veya yarım saykıl olarak çıkacaktır.

7 Bunun anlaöı giriş sinyali pozitife gittiği zaman çıkış negatife gider veya girişin tersi olan çıkış alınır. Şekil da görülüyor. Bu bölümde op-amp devrelerin aktif olarak ve geri besleme elemanları ile çıkış sinyalinin giriş sinyaline göre nasıl değiştiğini, op-amp karakteristikleri üzerinde duracağız. TERSLEYİCİ YÜKSELTİCİ Op-ampın bir tersleyici yükseltici olarak kullanımı Şekil deki bağlantısında görülmektedir.ra ve geri besleme elemanı olarak isimlendirilir. Bu devre için her iki elemanda dirençtir. Giriş topraklanmıştır. direnci çıkış geriliminden geri besleme olarak tersleyici girişine bağlanmıştır. RA ve terimleri çıkış geriliminin saptanmasında kullanılır. Vçıkış =. Vgiriş RA Sonuç olarak gerilim kazancı, çıkış geriliminin giriş gerilimine oranıdır. V çıkış Gerilim kazancı = = V giriş RA GERİLİMİ TAKİP EDİCİ Gerilim takip edici bazen tampon emiter takip edici veya katod takip edici ile aynı fonksiyona sahiptir. Bu sebepten oldukça yüksek giriş empedansı ( 100 kω dan büyük ) ve çok düşük çıkış empedansı ( 750 Ω dan küçük ) değere sahiptir. Gerilim takip edici faz terslemeyen yükselticiye benzemekte ancak, RA= Sonsuz ve = 0 bu sebepten de gerilim kazancı daima eşittir. TOPLAMA YÜKSELTİCİSİ İki veya daha bağımsız giriş sinyalini toplamak istiyorsak toplama yükseltici devresini Şekil de kurmak gerekmektedir. Bu devre tersleyici yükseltici devreye iki girişi hariç V1 ve V2 aynıdır. Gerilim kazancı her giriş için geri besleme direnci ile giriş direnci tarafından sağlanır. V çıkış Gerilim kazancı A = = V1 R 1 V çıkış Gerilim kazancı AV = = V2 R2 Böylece çıkış gerilimi, R B V çıkış =. V1 +. V2 R 1 R2 Daha faydalı devre, Şekil da görülen devredir.

8 Aslında bu devre biraz daha karmaşık görülmektedir. Analiz oldukça basit olup, bu bölümde öğrendiklerimizle halledebiliriz. Önce V3 noktasının toprağa kısa devre olduğunu farz edelim. Bu durumda, devreniz toplama devresidir. Şekil de görüldüğü gibi toplama yükseltici çıkış gerilimi eşitliğinde verilmiştir. İkinci olarak giriş sinyalleri V1 ve V2 toprağa kısa devredir. Şimdi de bir faz terslemeyen yükseltici olup R1 ve R2 dirençleri paralel duruma getirmişti,r. Bu ifade Şekil de RA olarak görülmektedir. R1. R2 RA= R1 + R2 Gerçek faz terslemeyen giriş gerilimi ki op-amp V3 görür ki gerilim bölücü eşitliğinin V3 ile ilişkisidir. R4 V3=. V3 R3 + R4 Faz terslemeyen çıkış gerilimi eşitliğinden, RF Vçıkış = (1 + ) V3 RA Daha evvelki eşitlikleri nazarı dikkate alırsak; R1.R2.RF.R1+R1.R2 R4 İNTEGRAL V çıkış = ( ) ( ) V3 R1. R2 R3+R4 Tersleyici yükseltici devrenin geri besleme direncinin bir kondansatörle değiştirilmesi Şekil daki İntegral devresi oluşturulmuş olur. Giriş sinyali integral eğrisinin altındaki alanı temsil etmektedir. Çıkış gerilimi aşağıdaki eşitlikle verilmiştir. 1 Vçıkış = RA. C0 Vgiriş. DT 1 terimi en küçük giriş frekansı beklenen değere uygun olmalıdır. Böylece ; RA. C 1 RA. C = 2n F min İntegral sonuç olarak çıkışta ofset gerilimi yaratılmasına sebep olacaktır. Bunun sebebi de beyz akım ofsetidir. Çıkış ofset gerilimini minimuma indirebilmek için faz terslemeyen girişe RA değerinde bir dirençle toprağa bağlantı yapılır.

9 TÜREV DEVRESİ İntegral devresi olarak kullandığımız şemada girişe kondansatör çıkışa ise direnç ilave ettiğimizde yani integral devresindeki dirençle kondansatörü yer değiştirdiğimizde elde edilen devre türev devresidir. Türev çıkışı giriş sinyalinin türevi ile orantılıdır. Görülen devrede F= 2000 Hz, 2.5 V, üçgen dalga çıkış A 10 V kare dalgadır. Girişe verilen kare dalgalar çıkışa aşağıdaki görülen pasler biçiminde transfer edilecektir. F= 2 Khz V = 10 V V1 = 0.5 V Çıkış= 7V ÖZEN ÖZKAYA İTÜ OTOKON

ĠġLEMSEL KUVVETLENDĠRĠCĠLERĠN DOĞRUSAL UYGULAMALARI. NOT: Devre elemanlarınızın yanma ihtimallerine karşın yedeklerini de temin ediniz.

ĠġLEMSEL KUVVETLENDĠRĠCĠLERĠN DOĞRUSAL UYGULAMALARI. NOT: Devre elemanlarınızın yanma ihtimallerine karşın yedeklerini de temin ediniz. Deneyin Amacı: Kullanılacak Materyaller: ĠġLEMSEL KUVVETLENDĠRĠCĠLERĠN DOĞRUSAL UYGULAMALARI LM 741 entegresi x 1 adet 22kΩ x 1 adet 10nF x 1 adet 5.1 V Zener Diyot(1N4655) x 1 adet 100kΩ potansiyometre

Detaylı

T.C. ONDOKUZ MAYIS ÜNİVERSİTESİ MÜHENDİSLİK FAKÜLTESİ ELEKTRİK-ELEKTRONİK MÜHENDİSLİĞİ BÖLÜMÜ ELEKTRONİK LABORATUVARI-II DENEY RAPORU

T.C. ONDOKUZ MAYIS ÜNİVERSİTESİ MÜHENDİSLİK FAKÜLTESİ ELEKTRİK-ELEKTRONİK MÜHENDİSLİĞİ BÖLÜMÜ ELEKTRONİK LABORATUVARI-II DENEY RAPORU T.C. ONDOKUZ MAYIS ÜNİVERSİTESİ MÜHENDİSLİK FAKÜLTESİ ELEKTRİK-ELEKTRONİK MÜHENDİSLİĞİ BÖLÜMÜ ELEKTRONİK LABORATUVARI-II DENEY RAPORU İŞLEMSEL KUVVETLENDİRİCİLER ADI SOYADI: ÖĞRENCİ NO: GRUBU: Deneyin

Detaylı

ANALOG ELEKTRONİK - II. Opampla gerçekleştirilen bir türev alıcı (differantiator) çalışmasını ve özellikleri incelenecektir.

ANALOG ELEKTRONİK - II. Opampla gerçekleştirilen bir türev alıcı (differantiator) çalışmasını ve özellikleri incelenecektir. BÖLÜM 6 TÜREV ALICI DEVRE KONU: Opampla gerçekleştirilen bir türev alıcı (differantiator) çalışmasını ve özellikleri incelenecektir. GEREKLİ DONANIM: Multimetre (Sayısal veya Analog) Güç Kaynağı: ±12V

Detaylı

Karadeniz Teknik Üniversitesi Elektrik-Elektronik Mühendisliği Bölümü Elektronik Laboratuvarı I İŞLEMSEL YÜKSELTECİN TEMEL ÖZELLİKLERİ VE UYGULAMALARI

Karadeniz Teknik Üniversitesi Elektrik-Elektronik Mühendisliği Bölümü Elektronik Laboratuvarı I İŞLEMSEL YÜKSELTECİN TEMEL ÖZELLİKLERİ VE UYGULAMALARI Öğr. Gör. Oğuzhan ÇAKIR 377 42 03, KTÜ, 2010 Karadeniz Teknik Üniversitesi Elektrik-Elektronik Mühendisliği Bölümü Elektronik Laboratuvarı I İŞLEMSEL YÜKSELTECİN TEMEL ÖZELLİKLERİ VE UYGULAMALARI 1. Deneyin

Detaylı

Bölüm 14 Temel Opamp Karakteristikleri Deneyleri

Bölüm 14 Temel Opamp Karakteristikleri Deneyleri Bölüm 14 Temel Opamp Karakteristikleri Deneyleri 14.1 DENEYİN AMACI (1) Temel OPAMP karakteristiklerini anlamak. (2) OPAMP ın ofset gerilimini ayarlama yöntemini anlamak. 14.2 GENEL BİLGİLER 14.2.1 Yeni

Detaylı

BÖLÜM X OSİLATÖRLER. e b Yükselteç. Be o Geri Besleme. Şekil 10.1 Yükselteçlerde geri besleme

BÖLÜM X OSİLATÖRLER. e b Yükselteç. Be o Geri Besleme. Şekil 10.1 Yükselteçlerde geri besleme BÖLÜM X OSİLATÖRLER 0. OSİLATÖRE GİRİŞ Kendi kendine sinyal üreten devrelere osilatör denir. Böyle devrelere dışarıdan herhangi bir sinyal uygulanmaz. Çıkışlarında sinüsoidal, kare, dikdörtgen ve testere

Detaylı

DENEY 5: İŞLEMSEL YÜKSELTEÇLER ve UYGULAMA DEVRELERİ

DENEY 5: İŞLEMSEL YÜKSELTEÇLER ve UYGULAMA DEVRELERİ DENEY 5: İŞLEMSEL YÜKSELTEÇLER ve UYGULAMA DEVRELERİ Amaç: İşlemsel yükselteç uygulamaları Kullanılan Cihazlar ve Devre Elemanları: 1. Dirençler: 1k, 10k, 100k 2. 1 adet osiloskop 3. 1 adet 15V luk simetrik

Detaylı

Deney 3: Opamp. Opamp ın (işlemsel yükselteç) çalışma mantığının ve kullanım alanlarının öğrenilmesi, uygulamalarla pratik bilginin pekiştirilmesi.

Deney 3: Opamp. Opamp ın (işlemsel yükselteç) çalışma mantığının ve kullanım alanlarının öğrenilmesi, uygulamalarla pratik bilginin pekiştirilmesi. Deneyin Amacı: Deney 3: Opamp Opamp ın (işlemsel yükselteç) çalışma mantığının ve kullanım alanlarının öğrenilmesi, uygulamalarla pratik bilginin pekiştirilmesi. A.ÖNBİLGİ İdeal bir opamp (operational-amplifier)

Detaylı

KOCAELİ ÜNİVERSİTESİ ELEKTRONİK VE HABERLEŞME MÜHENDİSLİĞİ ELEKTRONİK LAB 1 DERSİ İŞLEMSEL KUVVETLENDİRİCİ 1 DENEYİ. Amaç:

KOCAELİ ÜNİVERSİTESİ ELEKTRONİK VE HABERLEŞME MÜHENDİSLİĞİ ELEKTRONİK LAB 1 DERSİ İŞLEMSEL KUVVETLENDİRİCİ 1 DENEYİ. Amaç: KOCAELİ ÜNİVERSİTESİ ELEKTRONİK VE HABERLEŞME MÜHENDİSLİĞİ ELEKTRONİK LAB 1 DERSİ İŞLEMSEL KUVVETLENDİRİCİ 1 DENEYİ Amaç: Bu laboratuvarda, yüksek giriş direnci, düşük çıkış direnci ve yüksek kazanç özellikleriyle

Detaylı

Deneyle İlgili Ön Bilgi:

Deneyle İlgili Ön Bilgi: DENEY NO : 4 DENEYİN ADI :Transistörlü Akım ve Gerilim Kuvvetlendiriciler DENEYİN AMACI :Transistörün ortak emetör kutuplamalı devresini akım ve gerilim kuvvetlendiricisi, ortak kolektörlü devresini ise

Detaylı

EEM211 ELEKTRİK DEVRELERİ-I

EEM211 ELEKTRİK DEVRELERİ-I EEM211 ELEKTRİK DEVRELERİ-I Prof. Dr. Selçuk YILDIRIM Siirt Üniversitesi Elektrik-Elektronik Mühendisliği Kaynak (Ders Kitabı): Fundamentals of Electric Circuits Charles K. Alexander Matthew N.O. Sadiku

Detaylı

Şekil 6.1 Faz çeviren toplama devresi

Şekil 6.1 Faz çeviren toplama devresi 23 Deney Adı : İşlemsel Kuvvetlendiricinin Temel Devreleri Deney No : 6 Deneyin Amacı : İşlemsel kuvvetlendiricilerle en ok kullanılan devreleri gerekleştirmek, fonksiyonlarını belirlemek Deneyle İlgili

Detaylı

ENDÜSTRİYEL ELEKTRONİK İŞLEMSEL KUVVETLENDİRİCİLERİN LİNEER UYGULAMALARI HAKAN KUNTMAN EĞİTİM-ÖĞRETİM YILI

ENDÜSTRİYEL ELEKTRONİK İŞLEMSEL KUVVETLENDİRİCİLERİN LİNEER UYGULAMALARI HAKAN KUNTMAN EĞİTİM-ÖĞRETİM YILI ENDÜSTRİYEL ELEKTRONİK İŞLEMSEL KUVVETLENDİRİCİLERİN LİNEER UYGULAMALAR HAKAN KUNTMAN 03-04 EĞİTİM-ÖĞRETİM YL İşlemsel kuvvetlendiriciler, endüstriyel elektronik alanında çeşitli ölçü ve kontrol düzenlerinin

Detaylı

Mühendislik Fakültesi Elektrik-Elektronik Mühendisliği Bölümü

Mühendislik Fakültesi Elektrik-Elektronik Mühendisliği Bölümü HAZIRLIK ÇALIŞMALARI İŞLEMSEL YÜKSELTEÇLER VE UYGULAMALARI 1. 741 İşlemsel yükselteçlerin özellikleri ve yapısı hakkında bilgi veriniz. 2. İşlemsel yükselteçlerle gerçekleştirilen eviren yükselteç, türev

Detaylı

6. TRANSİSTÖRÜN İNCELENMESİ

6. TRANSİSTÖRÜN İNCELENMESİ 6. TRANSİSTÖRÜN İNCELENMESİ 6.1. TEORİK BİLGİ 6.1.1. JONKSİYON TRANSİSTÖRÜN POLARMALANDIRILMASI Şekil 1. Jonksiyon Transistörün Polarmalandırılması Şekil 1 de Emiter-Beyz jonksiyonu doğru yönde polarmalandırılır.

Detaylı

Şekil 5.1 Opamp Blok Şeması ve Eşdeğer Devresi

Şekil 5.1 Opamp Blok Şeması ve Eşdeğer Devresi DENEY NO :5 DENEYİN ADI :İşlemsel Kuvvetlendirici - OPAMP Karakteristikleri DENEYİN AMACI :İşlemsel kuvvetlendiricilerin performansını etkileyen belli başlı karakteristik özelliklerin ölçümlerini yapmak.

Detaylı

Elektrik Devre Lab

Elektrik Devre Lab 2010-2011 Elektrik Devre Lab. 2 09.03.2011 Elektronik sistemlerde işlenecek sinyallerin hemen hepsi düşük genlikli, yani zayıf sinyallerdir. Elektronik sistemlerin pek çoğunda da yeterli derecede yükseltilmiş

Detaylı

Bölüm 10 İşlemsel Yükselteç Karakteristikleri

Bölüm 10 İşlemsel Yükselteç Karakteristikleri Bölüm 10 İşlemsel Yükselteç Karakteristikleri DENEY 10-1 Fark Yükselteci DENEYİN AMACI 1. Transistörlü fark yükseltecinin çalışma prensibini anlamak. 2. Fark yükseltecinin giriş ve çıkış dalga şekillerini

Detaylı

AREL ÜNİVERSİTESİ DEVRE ANALİZİ

AREL ÜNİVERSİTESİ DEVRE ANALİZİ AREL ÜNİVERSİTESİ DEVRE ANALİZİ İŞLEMSEL KUVVETLENDİRİCİLER DR. GÖRKEM SERBES İŞLEMSEL KUVVETLENDİRİCİ İşlemsel kuvvetlendirici (Op-Amp); farksal girişi ve tek uçlu çıkışı olan DC kuplajlı, yüksek kazançlı

Detaylı

ELM 331 ELEKTRONİK II LABORATUAR DENEY FÖYÜ

ELM 331 ELEKTRONİK II LABORATUAR DENEY FÖYÜ ELM 33 ELEKTRONİK II LABORATUAR DENEY ÖYÜ DENEY 2 Ortak Emitörlü Transistörlü Kuvvetlendiricinin rekans Cevabı. AMAÇ Bu deneyin amacı, ortak emitörlü (Common Emitter: CE) kuvvetlendiricinin tasarımını,

Detaylı

Çukurova Üniversitesi Biyomedikal Mühendisliği

Çukurova Üniversitesi Biyomedikal Mühendisliği Çukurova Üniversitesi Biyomedikal Mühendisliği BMM309 Elektronik-2 Laboratuarı Deney Föyü Deney#6 İşlemsel Kuvvetlendiriciler (OP-AMP) - 2 Doç. Dr. Mutlu AVCI Arş. Gör. Mustafa İSTANBULLU ADANA, 2015 DENEY

Detaylı

KOCAELİ ÜNİVERSİTESİ ELEKTRONİK VE HABERLEŞME MÜHENDİSLİĞİ ELEKTRONİK LAB 1 DERSİ İŞLEMSEL KUVVETLENDİRİCİ - 2 DENEYİ

KOCAELİ ÜNİVERSİTESİ ELEKTRONİK VE HABERLEŞME MÜHENDİSLİĞİ ELEKTRONİK LAB 1 DERSİ İŞLEMSEL KUVVETLENDİRİCİ - 2 DENEYİ KOCAELİ ÜNİVERSİTESİ ELEKTRONİK VE HABERLEŞME MÜHENDİSLİĞİ ELEKTRONİK LAB 1 DERSİ İŞLEMSEL KUVVETLENDİRİCİ - 2 DENEYİ Amaç: Bu deneyde terslemeyen kuvvetlendirici, toplayıcı kuvvetlendirici ve karşılaştırıcı

Detaylı

DENEY 7 BJT KUVVETLENDİRİCİLERİN FREKANS CEVABI

DENEY 7 BJT KUVVETLENDİRİCİLERİN FREKANS CEVABI DENEY 7 BJT KUVVETLENDİRİCİLERİN FREKANS CEVABI A. Amaç Bu deneyin amacı; BJT kuvvetlendirici devrelerinin girişine uygulanan AC işaretin frekansının büyüklüğüne göre kazancının nasıl etkilendiğinin belirlenmesi,

Detaylı

DENEY 8: ORTAK EMİTERLİ YÜKSELTEÇ Deneyin Amacı

DENEY 8: ORTAK EMİTERLİ YÜKSELTEÇ Deneyin Amacı DENEY 8: ORTAK EMİTERLİ YÜKSELTEÇ 8.1. Deneyin Amacı Ortak emiter bağlı yükseltecin yüklü, yüksüz kazancını tespit etmek ve ortak emiter yükseltecin küçük sinyal modelini çıkartmak. 8.2. Kullanılacak Malzemeler

Detaylı

DENEY-4 İŞLEMSEL KUVVETLENDİRİCİLERİN DOĞRUSAL UYGULAMALARI

DENEY-4 İŞLEMSEL KUVVETLENDİRİCİLERİN DOĞRUSAL UYGULAMALARI DENEY-4 İŞLEMSEL KUVVETLENDİRİCİLERİN DOĞRUSAL UYGULAMALARI DENEYİN AMACI: Bu deneyde işlemsel kuvvetlendiricinin doğrusal uygulamaları incelenecek ve işlemsel kuvvetlendirici kullanılarak çeşitli matematiksel

Detaylı

DENEY 8. OPAMP UYGULAMALARI-II: Toplayıcı, Fark Alıcı, Türev Alıcı, İntegral Alıcı Devreler

DENEY 8. OPAMP UYGULAMALARI-II: Toplayıcı, Fark Alıcı, Türev Alıcı, İntegral Alıcı Devreler DENEY 8 OPAMP UYGULAMALARI-II: Toplayıcı, Fark Alıcı, Türev Alıcı, İntegral Alıcı Devreler 1. Amaç Bu deneyin amacı; Op-Amp kullanarak toplayıcı, fark alıcı, türev alıcı ve integral alıcı devrelerin incelenmesidir.

Detaylı

ANALOG ELEKTRONİK - II YÜKSEK GEÇİREN FİLTRE

ANALOG ELEKTRONİK - II YÜKSEK GEÇİREN FİLTRE BÖLÜM 7 YÜKSEK GEÇİREN FİLTRE KONU: Opamp uygulaması olarak; 2. dereceden Yüksek Geçiren Aktif Filtre (High-Pass Filter) devresinin özellikleri ve çalışma karakteristikleri incelenecektir. GEREKLİ DONANIM:

Detaylı

ANALOG FİLTRELEME DENEYİ

ANALOG FİLTRELEME DENEYİ ELEKTRİK-ELEKTRONİK MÜHENDİSLİĞİ BÖLÜMÜ ANALOG FİLTRELEME DENEYİ Ölçme ve telekomünikasyon tekniğinde sık sık belirli frekans bağımlılıkları olan devreler gereklidir. Genellikle belirli bir frekans bandının

Detaylı

Beyzi Ortak Yükselteç (BOB) Beyzi Ortak Bağlantının Statik Giriş Direnci. Giriş, direncini iki yoldan hesaplamak mümkündür:

Beyzi Ortak Yükselteç (BOB) Beyzi Ortak Bağlantının Statik Giriş Direnci. Giriş, direncini iki yoldan hesaplamak mümkündür: Beyzi Ortak Yükselteç (BOB) Beyz 'i ortak bağlantılı (kısaltılmışı BOB) yükselteç devresinde, transistörün beyz 'i giriş ve çıkışta ortaktır. Giriş, emiter ile beyz uçları arasından, çıkış ise, kollektör

Detaylı

Şekil 1.1: Temel osilatör blok diyagramı

Şekil 1.1: Temel osilatör blok diyagramı 1. OSİLATÖRLER 1.1. Osilatör Nedir? Elektronik iletişim sistemlerinde ve otomasyon sistemlerinde kare dalga, sinüs dalga, üçgen dalga veya testere dişi dalga biçimlerinin kullanıldığı çok sayıda uygulama

Detaylı

Deney 2: FARK YÜKSELTEÇ

Deney 2: FARK YÜKSELTEÇ Deney : FARK YÜKSELTEÇ Fark Yükselteç (Differential Amplifier: Dif-Amp) Fark Yükselteçler, çıkışı iki giriş işaretinin cebirsel farkıyla orantılı olan amplifikatörlerdir. O halde bu tip bir amplifikatörün

Detaylı

Şekil 1: Zener diyot sembol ve görünüşleri. Zener akımı. Gerilim Regülasyonu. bölgesi. Şekil 2: Zener diyotun akım-gerilim karakteristiği

Şekil 1: Zener diyot sembol ve görünüşleri. Zener akımı. Gerilim Regülasyonu. bölgesi. Şekil 2: Zener diyotun akım-gerilim karakteristiği ZENER DİYOT VE AKIM-GERİLİM KARAKTERİSTİĞİ Küçük sinyal diyotları, delinme gerilimine yakın değerlerde hasar görebileceğinden, bu değerlerde kullanılamazlar. Buna karşılık, Zener diyotlar delinme gerilimi

Detaylı

DENEY NO:2 BJT Yükselticinin Darbe Cevabı lineer kuvvetlendirme Yükselme Süresi Gecikme Çınlama Darbe üst eğilmesi

DENEY NO:2 BJT Yükselticinin Darbe Cevabı lineer kuvvetlendirme Yükselme Süresi Gecikme Çınlama Darbe üst eğilmesi DENEY NO:2 BJT Yükselticinin Darbe Cevabı Yükselticini girişine uygulanan işaretin şeklini bozmadan yapılan kuvvetlendirmeye lineer kuvvetlendirme denir. Başka bir deyişle lineer darbe kuvvetlendirmesi,

Detaylı

KOCAELİ ÜNİVERSİTESİ ELEKTRONİK VE HABERLEŞME MÜHENDİSLİĞİ ELEKTRONİK LAB 1 DERSİ İŞLEMSEL KUVVETLENDİRİCİ - 2 DENEYİ

KOCAELİ ÜNİVERSİTESİ ELEKTRONİK VE HABERLEŞME MÜHENDİSLİĞİ ELEKTRONİK LAB 1 DERSİ İŞLEMSEL KUVVETLENDİRİCİ - 2 DENEYİ KOCAELİ ÜNİVERSİTESİ ELEKTRONİK VE HABERLEŞME MÜHENDİSLİĞİ ELEKTRONİK LAB 1 DERSİ İŞLEMSEL KUVVETLENDİRİCİ - 2 DENEYİ Amaç: Bu deney, tersleyen kuvvetlendirici, terslemeyen kuvvetlendirici ve toplayıcı

Detaylı

DENEY NO 3. Alçak Frekans Osilatörleri

DENEY NO 3. Alçak Frekans Osilatörleri DENEY NO 3 Alçak Frekans Osilatörleri Osilatörler ürettikleri dalga şekillerine göre sınıflandırılırlar. Bunlardan sinüs biçiminde işaret üretenlerine Sinüs Osilatörleri adı verilir. Pek çok yapıda ve

Detaylı

T.C. ERCİYES ÜNİVERSİTESİ MÜHENDİSLİK FAKÜLTESİ MEKATRONİK MÜHENDİSLİĞİ BÖLÜMÜ ELEKTRONİK SİSTEMLER LABORATUVARI 1 OPAMP DEVRELERİ-2

T.C. ERCİYES ÜNİVERSİTESİ MÜHENDİSLİK FAKÜLTESİ MEKATRONİK MÜHENDİSLİĞİ BÖLÜMÜ ELEKTRONİK SİSTEMLER LABORATUVARI 1 OPAMP DEVRELERİ-2 T.C. ERCİYES ÜNİVERSİTESİ MÜHENDİSLİK FAKÜLTESİ MEKATRONİK MÜHENDİSLİĞİ BÖLÜMÜ ELEKTRONİK SİSTEMLER LABORATUVARI 1 OPAMP DEVRELERİ-2 DENEY SORUMLUSU Arş. Gör. Memduh SUVEREN MART 2015 KAYSERİ OPAMP DEVRELERİ

Detaylı

DENEY: 1.1 EVİREN YÜKSELTECİN DC DA ÇALIŞMASININ İNCELENMESİ

DENEY: 1.1 EVİREN YÜKSELTECİN DC DA ÇALIŞMASININ İNCELENMESİ DENEY: 1.1 EVİREN YÜKSELTECİN DC DA ÇALIŞMASININ İNCELENMESİ HAZIRLIK BİLGİLERİ: Şekil 1.1 de işlemsel yükseltecin eviren yükselteç olarak çalışması görülmektedir. İşlemsel yükselteçler iyi bir DC yükseltecidir.

Detaylı

Multivibratörler. Monastable (Tek Kararlı) Multivibratör

Multivibratörler. Monastable (Tek Kararlı) Multivibratör Multivibratörler Kare dalga veya dikdörtgen dalga meydana getiren devrelere MULTİVİBRATÖR adı verilir. Bu devreler temel olarak pozitif geri beslemeli iki yükselteç devresinden oluşur. Genelde çalışma

Detaylı

DENEY NO : 1 DENEY ADI : RF Osilatörler ve İkinci Dereceden Filtreler

DENEY NO : 1 DENEY ADI : RF Osilatörler ve İkinci Dereceden Filtreler RF OSİLATÖRLER VE İKİNCİ DERECEDEN FİLTRELER (1.DENEY) DENEY NO : 1 DENEY ADI : RF Osilatörler ve İkinci Dereceden Filtreler DENEYİN AMACI : Radyo Frekansı (RF) osilatörlerinin çalışma prensibi ve karakteristiklerini

Detaylı

TRANSİSTÖRLÜ YÜKSELTEÇLERDE GERİBESLEME

TRANSİSTÖRLÜ YÜKSELTEÇLERDE GERİBESLEME TRANSİSTÖRLÜ YÜKSELTEÇLERDE GERİBESLEME Amaç Elektronikte geniş uygulama alanı bulan geribesleme, sistemin çıkış büyüklüğünden elde edilen ve giriş büyüklüğü ile aynı nitelikte bir işaretin girişe gelmesi

Detaylı

KOB Statik Giriş Direnci. Kollektörü Ortak Yükselteç (KOB) Kollektörü Ortak Yükseltecin (KOB) Statik Karakteristikleri

KOB Statik Giriş Direnci. Kollektörü Ortak Yükselteç (KOB) Kollektörü Ortak Yükseltecin (KOB) Statik Karakteristikleri Kollektörü Ortak Yükselteç (KOB) Kollektörü ortak baglantılı yüselteçte, kollektör hem girişte hem de çıkışta ortaktır "Kollektörü ortak bağlantının" ilk harfleri alınarak "KOB" kısaltması üretilmiştir.

Detaylı

T.C. ERCİYES ÜNİVERSİTESİ MÜHENDİSLİK FAKÜLTESİ MEKATRONİK MÜHENDİSLİĞİ BÖLÜMÜ ELEKTRONİK SİSTEMLER LABORATUVARI 1 OPAMP DEVRELERİ-1

T.C. ERCİYES ÜNİVERSİTESİ MÜHENDİSLİK FAKÜLTESİ MEKATRONİK MÜHENDİSLİĞİ BÖLÜMÜ ELEKTRONİK SİSTEMLER LABORATUVARI 1 OPAMP DEVRELERİ-1 T.C. ERCİYES ÜNİVERSİTESİ MÜHENDİSLİK FAKÜLTESİ MEKATRONİK MÜHENDİSLİĞİ BÖLÜMÜ ELEKTRONİK SİSTEMLER LABORATUVARI 1 OPAMP DEVRELERİ-1 DENEY SORUMLUSU Arş. Gör. Memduh SUVEREN MART 2015 KAYSERİ OPAMP DEVRELERİ

Detaylı

ELEKTRONİK DEVRE ELEMANLARI

ELEKTRONİK DEVRE ELEMANLARI ELEKTRONİK DEVRE ELEMANLARI 1. Direnç Renk Kodları Direnç Renk Tablosu Renk Sayı Çarpan Tolerans SİYAH 0 1 KAHVERENGİ 1 10 ± %1 KIRMIZI 2 100 ± %2 TURUNCU 3 1000 SARI 4 10.000 YEŞİL 5 100.000 ± %0.5 MAVİ

Detaylı

BİLGİSAYARLI KONTROL OPERASYONAL AMFLİKATÖRLER VE ÇEVİRİCİLER

BİLGİSAYARLI KONTROL OPERASYONAL AMFLİKATÖRLER VE ÇEVİRİCİLER BÖLÜM 4 OPERASYONAL AMFLİKATÖRLER VE ÇEVİRİCİLER 4.1 OPERASYONEL AMPLİFİKATÖRLER (OPAMP LAR) Operasyonel amplifikatörler (Operational Amplifiers) veya işlemsel kuvvetlendiriciler, karmaşık sistemlerin

Detaylı

ELM202 ELEKTRONİK-II DERSİ LABORATUAR FÖYÜ

ELM202 ELEKTRONİK-II DERSİ LABORATUAR FÖYÜ TC SKRY ÜNERSTES TEKNOLOJ FKÜLTES ELEKTRK-ELEKTRONK MÜHENDSLĞ ELM22 ELEKTRONK-II DERS LBORTUR FÖYÜ DENEY YPTIRN: DENEYN DI: DENEY NO: DENEY YPNIN DI ve SOYDI: SINIFI: OKUL NO: DENEY GRUP NO: DENEY TRH

Detaylı

Küçük sinyal analizi transistörü AC domende temsilş etmek için kullanılan modelleri içerir.

Küçük sinyal analizi transistörü AC domende temsilş etmek için kullanılan modelleri içerir. Küçük Sinyal Analizi Küçük sinyal analizi transistörü AC domende temsilş etmek için kullanılan modelleri içerir. 1. Karma (hibrid) model 2. r e model Üretici firmalar bilgi sayfalarında belirli bir çalışma

Detaylı

DENEY NO : 4 DENEY ADI : Darbe Genişlik Demodülatörleri

DENEY NO : 4 DENEY ADI : Darbe Genişlik Demodülatörleri DENEY NO : 4 DENEY ADI : Darbe Genişlik Demodülatörleri DENEYİN AMACI :Darbe Genişlik Demodülatörünün çalışma prensibinin anlaşılması. Çarpım detektörü kullanarak bir darbe genişlik demodülatörünün gerçekleştirilmesi.

Detaylı

DENEY NO: 7 İŞLEMSEL KUVVETLENDİRİCİ VE UYGULAMALARI. Malzeme ve Cihaz Listesi:

DENEY NO: 7 İŞLEMSEL KUVVETLENDİRİCİ VE UYGULAMALARI. Malzeme ve Cihaz Listesi: 1 DENEY NO: 7 İŞLEMSEL KUVVETLENDİRİCİ VE UYGULAMALARI Malzeme ve Cihaz Listesi: 1. 70 direnç 1 adet. 1 k direnç adet. 10 k direnç adet 4. 15 k direnç 1 adet 5. k direnç 1 adet. 47 k direnç adet 7. 8 k

Detaylı

EEM220 Temel Yarıiletken Elemanlar Çözümlü Örnek Sorular

EEM220 Temel Yarıiletken Elemanlar Çözümlü Örnek Sorular EEM220 Temel Yarıiletken Elemanlar Çözümlü Örnek Sorular Kaynak: Fundamentals of Microelectronics, Behzad Razavi, Wiley; 2nd edition (April 8, 2013), Manuel Solutions. Bölüm 5 Seçme Sorular ve Çözümleri

Detaylı

YÜKSELTEÇLER Ö Ğ R. G Ö R. D R. E S R A B İ L A L Ö N D E R

YÜKSELTEÇLER Ö Ğ R. G Ö R. D R. E S R A B İ L A L Ö N D E R Ö Ğ R. G Ö R. D R. E S R A B İ L A L Ö N D E R 2 0 1 5 RF YÜKSELTEÇLERİ SINIFLANDIRMA 1. Dar bant akortlu RF yükselteçleri 2. Geniş bant akortlu RF yükselteçleri 3. Entegre devreli RF yükselteçleri IF

Detaylı

Geçmiş yıllardaki vize sorularından örnekler

Geçmiş yıllardaki vize sorularından örnekler Geçmiş yıllardaki vize sorularından örnekler Notlar kapalıdır, hesap makinesi kullanılabilir, öncelikle kağıtlardaki boş alanları kullanınız ve ek kağıt gerekmedikçe istemeyiniz. 6 veya 7.ci sorudan en

Detaylı

KOCAELİ ÜNİVERSİTESİ TEKNİK EĞİTİM FAKÜLTESİ ELEKTRİK ÖĞRETMENLİĞİ ELK 435 ENDÜSTRİYEL ELEKTRONİK LABORATUAR UYGULAMALARI

KOCAELİ ÜNİVERSİTESİ TEKNİK EĞİTİM FAKÜLTESİ ELEKTRİK ÖĞRETMENLİĞİ ELK 435 ENDÜSTRİYEL ELEKTRONİK LABORATUAR UYGULAMALARI KOCAELİ ÜNİERSİTESİ TEKNİK EĞİTİM FAKÜLTESİ ELEKTRİK ÖĞRETMENLİĞİ 4. SINIF ELK 435 ENDÜSTRİYEL ELEKTRONİK LABORATUAR UYGULAMALARI HAZIRLAYANLAR Doç.Dr. Engin ÖZDEMİR Arş.Gör. Mehmet UÇAR EKİM 2009 İÇİNDEKİLER

Detaylı

EEME210 ELEKTRONİK LABORATUARI

EEME210 ELEKTRONİK LABORATUARI Dicle Üniversitesi Mühendislik Fakültesi Elektrik Elektronik Mühendisliği Bölümü EEME210 ELEKTRONİK LABORATUARI DENEY 02: ZENER DİYOT ve AKIM GERİLİM KARAKTERİSTİĞİ 2014-2015 BAHAR Grup Kodu: Deney Tarihi:

Detaylı

BÖLÜM 2 İKİNCİ DERECEDEN FİLTRELER

BÖLÜM 2 İKİNCİ DERECEDEN FİLTRELER BÖLÜM İKİNİ DEEEDEN FİLTELE. AMAÇ. Filtrelerin karakteristiklerinin anlaşılması.. Aktif filtrelerin avantajlarının anlaşılması.. İntegratör devresi ile ikinci dereceden filtrelerin gerçeklenmesi. TEMEL

Detaylı

ELK273 Elektrik ve Elektronik Mühendisliğinin Temelleri Ders 8- AC Devreler. Yard.Doç.Dr. Ahmet Özkurt.

ELK273 Elektrik ve Elektronik Mühendisliğinin Temelleri Ders 8- AC Devreler. Yard.Doç.Dr. Ahmet Özkurt. ELK273 Elektrik ve Elektronik Mühendisliğinin Temelleri Ders 8- AC Devreler Yard.Doç.Dr. Ahmet Özkurt Ahmet.ozkurt@deu.edu.tr http://ahmetozkurt.net İçerik AC ve DC Empedans RMS değeri Bobin ve kondansatörün

Detaylı

DENEY 9: JFET KARAKTERİSTİK EĞRİLERİ

DENEY 9: JFET KARAKTERİSTİK EĞRİLERİ DENEY 9: JFET KARAKTERİSTİK EĞRİLERİ 9.1. Deneyin Amacı Bir JFET transistörün karakteristik eğrilerinin çıkarılıp, çalışmasının pratik ve teorik olarak öğrenilmesi 9.2. Kullanılacak Malzemeler ve Aletler

Detaylı

ADIYAMAN ÜNĠVERSĠTESĠ MÜHENDĠSLĠK FAKÜLTESĠ ELEKTRĠK-ELEKTRONĠK MÜHENDĠSLĠĞĠ BÖLÜMÜ DEVRE ANALĠZĠ LABORATUVARI-II DENEY RAPORU

ADIYAMAN ÜNĠVERSĠTESĠ MÜHENDĠSLĠK FAKÜLTESĠ ELEKTRĠK-ELEKTRONĠK MÜHENDĠSLĠĞĠ BÖLÜMÜ DEVRE ANALĠZĠ LABORATUVARI-II DENEY RAPORU ADIYAMAN ÜNĠVERSĠTESĠ MÜHENDĠSLĠK FAKÜLTESĠ ELEKTRĠK-ELEKTRONĠK MÜHENDĠSLĠĞĠ BÖLÜMÜ DEVRE ANALĠZĠ LABORATUVARI-II DENEY RAPORU DENEY NO : DENEYĠN ADI : DENEY TARĠHĠ : DENEYĠ YAPANLAR : RAPORU HAZIRLAYANIN

Detaylı

Şekil Sönümün Tesiri

Şekil Sönümün Tesiri LC Osilatörler RC osilatörlerle elde edilemeyen yüksek frekanslı osilasyonlar LC osilatörlerle elde edilir. LC osilatörlerle MHz seviyesinde yüksek frekanslı sinüsoidal sinyaller elde edilir. Paralel bobin

Detaylı

T.C. ERCİYES ÜNİVERSİTESİ MÜHENDİSLİK FAKÜLTESİ MEKATRONİK MÜHENDİSLİĞİ BÖLÜMÜ ELEKTRONİK SİSTEMLER LABORATUVARI 1

T.C. ERCİYES ÜNİVERSİTESİ MÜHENDİSLİK FAKÜLTESİ MEKATRONİK MÜHENDİSLİĞİ BÖLÜMÜ ELEKTRONİK SİSTEMLER LABORATUVARI 1 T.C. ERCİYES ÜNİVERSİTESİ MÜHENDİSLİK FAKÜLTESİ MEKATRONİK MÜHENDİSLİĞİ BÖLÜMÜ ELEKTRONİK SİSTEMLER LABORATUVARI 1 BJT TRANSİSTÖRÜN AC KUVVETLENDİRİCİ ve ON-OFF ANAHTARLAMA ELEMANI OLARAK KULLANILMASI

Detaylı

KIRIKKALE ÜNİVERSİTESİ

KIRIKKALE ÜNİVERSİTESİ KIRIKKALE ÜNİVERSİTESİ ELEKTRİK-ELEKTRONİK MÜHENDİSLİĞİ BÖLÜMÜ SAYISAL ELEKTRONİK LAB. DENEY FÖYÜ DENEY 4 OSİLATÖRLER SCHMİT TRİGGER ve MULTİVİBRATÖR DEVRELERİ ÖN BİLGİ: Elektronik iletişim sistemlerinde

Detaylı

DENEY 5- TEMEL İŞLEMSEL YÜKSELTEÇ (OP-AMP) DEVRELERİ

DENEY 5- TEMEL İŞLEMSEL YÜKSELTEÇ (OP-AMP) DEVRELERİ DENEY 5 TEMEL İŞLEMSEL YÜKSELTEÇ (OPAMP) DEVRELERİ 5.1. DENEYİN AMAÇLARI İşlemsel yükselteçler hakkında teorik bilgi edinmek Eviren ve evirmeyen yükselteç devrelerinin uygulamasını yapmak 5.2. TEORİK BİLGİ

Detaylı

Deney 1: Transistörlü Yükselteç

Deney 1: Transistörlü Yükselteç Deneyin Amacı: Deney 1: Transistörlü Yükselteç Transistör eşdeğer modelleri ve bağlantı şekillerinin öğrenilmesi. Transistörün AC analizi yapılarak yükselteç olarak kullanılması. A.ÖNBİLGİ Transistörün

Detaylı

ANALOG ELEKTRONİK BİPOLAR TRANSİSTÖR

ANALOG ELEKTRONİK BİPOLAR TRANSİSTÖR ANALOG LKTONİK Y.Doç.Dr.A.Faruk AKAN ANALOG LKTONİK İPOLA TANSİSTÖ 35 Yapısı ve Sembolü...35 Transistörün Çalışması...35 Aktif ölge...36 Doyum ölgesi...37 Kesim ölgesi...37 Ters Çalışma ölgesi...37 Ortak

Detaylı

ELEKTRONİK 1 KUTUPLAMA DEVRELERİ HAZIRLIK SORULARI

ELEKTRONİK 1 KUTUPLAMA DEVRELERİ HAZIRLIK SORULARI ELEKTRONİK 1 KUTUPLAMA DEVRELERİ HAZIRLIK SORULARI SORU 1: Şekil 1 de çıkış özeğrileri ve DC yük doğrusu verilmiş olan transistör kullanılarak bir ortak emetörlü yükselteç gerçekleştirilmek istenmektedir.

Detaylı

İşlemsel Yükselteçler

İşlemsel Yükselteçler İşlemsel Yükselteçler Bölüm 5. 5.1. Giriş İşlemsel yükselteçler aktif devre elemanlarıdır. Devrede gerilin kontrollü gerilim kaynağı gibi çalışırlar. İşlemsel yükselteçler sinyalleri toplama, çıkarma,

Detaylı

ALÇAK FREKANS GÜÇ YÜKSELTEÇLERİ VE ÇIKIŞ KATLARI

ALÇAK FREKANS GÜÇ YÜKSELTEÇLERİ VE ÇIKIŞ KATLARI ALÇAK FREKANS GÜÇ YÜKSELTEÇLERİ VE ÇIKIŞ KATLARI Giriş Temel güç kuvvetlendiricisi yapılarından olan B sınıfı ve AB sınıfı kuvvetlendiricilerin çalışma mantığını kavrayarak, bu kuvvetlendiricileri verim

Detaylı

DENEY FÖYÜ 7: Seri ve Paralel Rezonans Devreleri

DENEY FÖYÜ 7: Seri ve Paralel Rezonans Devreleri DENEY FÖYÜ 7: Seri ve Paralel Rezonans Devreleri Deneyin Amacı: Seri ve paralel rezonans devrelerini incelemek, devrelerin karakteristik parametrelerini hesaplamak ve ölçmek, rezonans eğrilerini çizmek.

Detaylı

DENEY 1: DĠRENÇLERĠN SERĠ/PARALEL/KARIġIK BAĞLANMASI VE AKIM, GERĠLĠM ÖLÇÜLMESĠ

DENEY 1: DĠRENÇLERĠN SERĠ/PARALEL/KARIġIK BAĞLANMASI VE AKIM, GERĠLĠM ÖLÇÜLMESĠ Numara : Adı Soyadı : Grup Numarası : DENEY 1: DĠRENÇLERĠN SERĠ/PARALEL/KARIġIK BAĞLANMASI VE AKIM, GERĠLĠM ÖLÇÜLMESĠ Amaç: Teorik Bilgi: Ġstenenler: Aşağıda şemaları verilmiş olan 3 farklı devreyi kurarak,

Detaylı

4. Bölüm: Çift Jonksiyonlu Transistörler (BJT) Doç. Dr. Ersan KABALCI

4. Bölüm: Çift Jonksiyonlu Transistörler (BJT) Doç. Dr. Ersan KABALCI 4. Bölüm: Çift Jonksiyonlu Transistörler (BJT) Doç. Dr. Ersan KABALC 1 Transistör Yapısı İki tip transistör vardır: pnp npn pnp Transistörün uçları: E - Emiter B - Beyz C - Kollektör npn 2 Transistör Yapısı

Detaylı

BC237, BC338 transistör, 220Ω, 330Ω, 4.7KΩ 10KΩ, 100KΩ dirençler ve bağlantı kabloları Multimetre, DC güç kaynağı

BC237, BC338 transistör, 220Ω, 330Ω, 4.7KΩ 10KΩ, 100KΩ dirençler ve bağlantı kabloları Multimetre, DC güç kaynağı DENEY 7: BJT ÖNGERİLİMLENDİRME ÇEŞİTLERİ 7.1. Deneyin Amacı BJT ön gerilimlendirme devrelerine örnek olarak verilen üç değişik bağlantının, değişen β değerlerine karşı gösterdiği çalışma noktalarındaki

Detaylı

BJT (Bipolar Junction Transistor) nin karakteristik eğrilerinin incelenmesi

BJT (Bipolar Junction Transistor) nin karakteristik eğrilerinin incelenmesi DENEY 5: BJT NİN KARAKTERİSTİK EĞRİLERİ 5.1. Deneyin Amacı BJT (Bipolar Junction Transistor) nin karakteristik eğrilerinin incelenmesi 5.2. Kullanılacak Aletler ve Malzemeler 1) BC237C BJT transistör 2)

Detaylı

REZONANS DEVRELERİ. Seri rezonans devreleri bir bobinle bir kondansatörün seri bağlanmasından elde edilir. RL C Rc

REZONANS DEVRELERİ. Seri rezonans devreleri bir bobinle bir kondansatörün seri bağlanmasından elde edilir. RL C Rc KTÜ, Elektrik Elektronik Müh. Böl. Temel Elektrik aboratuarı. Giriş EZONNS DEVEEİ Bir kondansatöre bir selften oluşan devrelere rezonans devresi denir. Bu devre tipinde selfin manyetik enerisi periyodik

Detaylı

ÜNİTE 4 KLASİK SORU VE CEVAPLARI (TEMEL ELEKTRONİK)

ÜNİTE 4 KLASİK SORU VE CEVAPLARI (TEMEL ELEKTRONİK) ÜNİTE 4 KLASİK SORU VE CEVAPLARI (TEMEL ELEKTRONİK) Transistörü tanımlayınız. Beyz ucundan geçen akıma göre, emiter-kollektör arasındaki direnci azaltıp çoğaltabilen elektronik devre elemanına transistör

Detaylı

YÜZÜNCÜ YIL ÜNİVERSİTESİ ELEKTRİK ELEKTRONİK MÜHENDİSLİĞİ BÖLÜMÜ ANALOG ELEKTRONİK DENEY RAPORU

YÜZÜNCÜ YIL ÜNİVERSİTESİ ELEKTRİK ELEKTRONİK MÜHENDİSLİĞİ BÖLÜMÜ ANALOG ELEKTRONİK DENEY RAPORU YÜZÜNCÜ YIL ÜNİVERSİTESİ ELEKTRİK ELEKTRONİK MÜHENDİSLİĞİ BÖLÜMÜ ANALOG ELEKTRONİK DENEY RAPORU DENEY NO : DENEYİN ADI : YAPILIŞ TARİHİ: GRUP ÜYELERİ : 1. 2. 3. DERSİN SORUMLU ÖĞRETİM ÜYESİ: Yrd. Doç.

Detaylı

ELEKTRONİK DEVRELER LABORATUARI I DENEY 3

ELEKTRONİK DEVRELER LABORATUARI I DENEY 3 T.C. İSTANBUL ÜNİVERSİTESİ MÜHENDİSLİK FAKÜLTESİ ELEKTRİK ELEKTRONİK MÜHENDİSLİĞİ BÖLÜMÜ ELEKTRONİK DEVRELER LABORATUARI I DENEY 3 TRANSİSTÖRLÜ KUVVETLENDİRİCİLERİN TASARIMI VE TEST EDİLMESİ 2: AÇIKLAMALAR

Detaylı

KISIM 1 ELEKTRONİK DEVRELER (ANALİZ TASARIM - PROBLEM)

KISIM 1 ELEKTRONİK DEVRELER (ANALİZ TASARIM - PROBLEM) İÇİNDEKİLER KISIM 1 ELEKTRONİK DEVRELER (ANALİZ TASARIM - PROBLEM) 1. BÖLÜM GERİBESLEMELİ AMPLİFİKATÖRLER... 3 1.1. Giriş...3 1.2. Geribeselemeli Devrenin Transfer Fonksiyonu...4 1.3. Gerilim - Seri Geribeslemesi...5

Detaylı

ELM202 ELEKTRONİK-II DERSİ LABORATUAR FÖYÜ

ELM202 ELEKTRONİK-II DERSİ LABORATUAR FÖYÜ TC SAKARYA ÜNİVERSİTESİ TEKNOLOJİ FAKÜLTESİ ELEKTRİK-ELEKTRONİK MÜHENDİSLİĞİ ELM202 ELEKTRONİK-II DERSİ LABORATUAR FÖYÜ DENEYİ YAPTIRAN: DENEYİN ADI: DENEY NO: DENEYİ YAPANIN ADI ve SOYADI: SINIFI: OKUL

Detaylı

EEM 202 DENEY 9 Ad&Soyad: No: RC DEVRELERİ-II DEĞİŞKEN BİR FREKANSTA RC DEVRELERİ (FİLTRELER)

EEM 202 DENEY 9 Ad&Soyad: No: RC DEVRELERİ-II DEĞİŞKEN BİR FREKANSTA RC DEVRELERİ (FİLTRELER) EEM 0 DENEY 9 Ad&oyad: R DEVRELERİ-II DEĞİŞKEN BİR FREKANTA R DEVRELERİ (FİLTRELER) 9. Amaçlar Değişken frekansta R devreleri: Kazanç ve faz karakteristikleri Alçak-Geçiren filtre Yüksek-Geçiren filtre

Detaylı

Çukurova Üniversitesi Biyomedikal Mühendisliği

Çukurova Üniversitesi Biyomedikal Mühendisliği Çukurova Üniversitesi Biyomedikal Mühendisliği BMM22 Elektronik- Laboratuvarı Deney Föyü Deney#0 BJT ve MOSFET li Kuvvetlendiricilerin Frekans Cevabı Doç. Dr. Mutlu AVCI Arş. Gör. Mustafa İSTANBULLU ADANA,

Detaylı

Op-Amp Uygulama Devreleri

Op-Amp Uygulama Devreleri Op-Amp Uygulama Devreleri Tipik Op-amp devre yapıları şunları içerir: Birim Kazanç Arabelleği (Gerilim İzleyici) Evirici Yükselteç Evirmeyen Yükselteç Toplayan Yükselteç İntegral Alıcı Türev Alıcı Karşılaştırıcı

Detaylı

RF MİKROELEKTRONİK GÜRÜLTÜ

RF MİKROELEKTRONİK GÜRÜLTÜ RF MİKROELEKTRONİK GÜRÜLTÜ RASTGELE BİR SİNYAL Gürültü rastgele bir sinyal olduğu için herhangi bir zamandaki değerini tahmin etmek imkansızdır. Bu sebeple tekrarlayan sinyallerde de kullandığımız ortalama

Detaylı

DENEY-3. FET li Yükselticiler

DENEY-3. FET li Yükselticiler DENEY-3 FET li Yükselticiler Deneyin Amacı: Bir alan etkili transistor ün (FET-Field Effect Transistor) kutuplanması ve AF lı bir kuvvetlendirici olarak incelenmesi. (Ayrıca azaltıcı tip (Depletian type)

Detaylı

MOSFET. MOSFET 'lerin Yapısı

MOSFET. MOSFET 'lerin Yapısı MOSFET MOSFET 'lerin Yapısı JFET 'ler klasik transistörlere göre büyük bir gelişme olmasına rağmen bazı limitleri vardır. JFET 'lerin giriş empedansları klasik transistörlerden daha fazla olduğu için,

Detaylı

Mekatronik Mühendisliği Lab1 (Elektrik-Elektronik) Seri ve Paralel RLC Devreleri

Mekatronik Mühendisliği Lab1 (Elektrik-Elektronik) Seri ve Paralel RLC Devreleri YILDIZ TEKNİK ÜNİVERSİTESİ MAKİNA FAKÜLTESİ MEKATRONİK MÜHENDİSLİĞİ BÖLÜMÜ ELEKTRİK-ELEKTRONİK LABORATUARI (LAB I) DENEY 3 Deney Adı: Seri ve Paralel RLC Devreleri Öğretim Üyesi: Yard. Doç. Dr. Erhan AKDOĞAN

Detaylı

Öğrenci No Ad ve Soyad İmza DENEY 3. Tümleşik Devre Ortak Source Yükselteci

Öğrenci No Ad ve Soyad İmza DENEY 3. Tümleşik Devre Ortak Source Yükselteci Öğrenci No Ad ve Soyad İmza Masa No DENEY 3 Tümleşik Devre Ortak Source Yükselteci Not: Solda gösterilen devre Temel Yarı İletken Elemanlar dersi laboratuvarında yaptığınız 5. deneye ilişkin devre olup,

Detaylı

ALAN ETKİLİ TRANSİSTÖR

ALAN ETKİLİ TRANSİSTÖR ALAN ETKİLİ TRANİTÖR Y.oç.r.A.Faruk BAKAN FET (Alan Etkili Transistör) gerilim kontrollu ve üç uçlu bir elemandır. FET in uçları G (Kapı), (rain) ve (Kaynak) olarak tanımlanır. FET in yapısı ve sembolü

Detaylı

EEM220 Temel Yarıiletken Elemanlar Çözümlü Örnek Sorular

EEM220 Temel Yarıiletken Elemanlar Çözümlü Örnek Sorular EEM220 Temel Yarıiletken Elemanlar Çözümlü Örnek Sorular Kaynak: Fundamentals of Microelectronics, Behzad Razavi, Wiley; 2nd edition (April 8, 2013), Manuel Solutions. Bölüm 3 Seçme Sorular ve Çözümleri

Detaylı

8. FET İN İNCELENMESİ

8. FET İN İNCELENMESİ 8. FET İN İNCELENMESİ 8.1. TEORİK BİLGİ FET transistörler iki farklı ana grupta üretilmektedir. Bunlardan birincisi JFET (Junction Field Effect Transistör) ya da kısaca bilinen adı ile FET, ikincisi ise

Detaylı

BÖLÜM IX DALGA MEYDANA GETİRME USULLERİ

BÖLÜM IX DALGA MEYDANA GETİRME USULLERİ BÖLÜM IX DALGA MEYDANA GETİRME USULLERİ 9.1 DALGA MEYDANA GETİRME USÜLLERİNE GİRİŞ Dalga üreteçleri birkaç hertzden, birkaç gigahertze kadar sinyalleri meydana getirirler. Çıkışlarında sinüsoidal, kare,

Detaylı

Sensörler Öğr. Gör. Erhan CEMÜNAL Thomas Alva Edison

Sensörler Öğr. Gör. Erhan CEMÜNAL Thomas Alva Edison Sensörler Öğr. Gör. Erhan CEMÜNAL Sıkı bir çalışmanın yerini hiç bir şey alamaz. Deha yüzde bir ilham ve yüzde doksandokuz terdir. Thomas Alva Edison İçerik TEMEL ELEKTRONİK KAVRAMLARI Transdüser ve Sensör

Detaylı

Çukurova Üniversitesi Biyomedikal Mühendisliği

Çukurova Üniversitesi Biyomedikal Mühendisliği Çukurova Üniversitesi Biyomedikal Mühendisliği BMM333 Elektronik-2 Laboratuarı Deney Föyü Deney#1 BJT'li Fark Kuvvetlendiricisi Doç. Dr. Mutlu AVCI Arş. Gör. Mustafa İSTANBULLU ADANA, 2017 DENEY 1 BJT'li

Detaylı

EEME210 ELEKTRONİK LABORATUARI

EEME210 ELEKTRONİK LABORATUARI Dicle Üniversitesi Mühendislik Fakültesi Elektrik Elektronik Mühendisliği Bölümü EEME210 ELEKTRONİK LABORATUARI DENEY 06: BJT TRANSİSTÖR ile KÜÇÜK SİNYAL YÜKSELTECİ 2014-2015 BAHAR Grup Kodu: Deney Tarihi:

Detaylı

SICAKLIK KONTROLLÜ HAVYA

SICAKLIK KONTROLLÜ HAVYA SICAKLIK KONTROLLÜ HAVYA Dirençler sıcaklığa bağımlıdır. Havyanın ısıtıcı direnci de istisna değildir. Böylece her havyanın sıcaklığı kontrol edilebilir. Ancak, elde 24V la çalışan bir havya olmalıdır

Detaylı

Şekil 7.1. (a) Sinüs dalga giriş sinyali, (b) yarım dalga doğrultmaç çıkışı, (c) tam dalga doğrultmaç çıkışı

Şekil 7.1. (a) Sinüs dalga giriş sinyali, (b) yarım dalga doğrultmaç çıkışı, (c) tam dalga doğrultmaç çıkışı DENEY NO : 7 DENEY ADI : DOĞRULTUCULAR Amaç 1. Yarım dalga ve tam dalga doğrultucu oluşturmak 2. Dalgacıkları azaltmak için kondansatör filtrelerinin kullanımını incelemek. 3. Dalgacıkları azaltmak için

Detaylı

Algılayıcılar (Sensors)

Algılayıcılar (Sensors) Algılayıcılar (Sensors) Sayısal işlem ve ölçmeler sadece elektriksel büyüklüklerle yapılmaktadır. Genelde teknik ve fiziksel büyüklükler (sıcaklık, ağırlık kuvveti ve basınç gibi) elektrik dalından olmayan

Detaylı

DENEY NO:1 DENEYİN ADI: 100 Hz Hz 4. Derece 3dB Ripple lı Tschebyscheff Filtre Tasarımı

DENEY NO:1 DENEYİN ADI: 100 Hz Hz 4. Derece 3dB Ripple lı Tschebyscheff Filtre Tasarımı DENEY NO:1 DENEYİN ADI: 100-200 4. Derece 3dB Ripple lı Tschebyscheff Filtre Tasarımı DENEYİN AMACI: Bu deneyi başarıyla tamamlayan her öğrenci 1. Filtre tasarımında uyulması gereken kuralları bilecek

Detaylı

(BJT) NPN PNP

(BJT) NPN PNP Elektronik Devreler 1. Transistörler 1.1 Giriş 1.2 Bipolar Jonksiyon Transistörler (BJT) 1.2.1 Bipolar Jonksiyon Transistörün Çalışması 1.2.2 NPN Transistörün Yükselteç Olarak Çalışması 1.2.3 PNP Transistörün

Detaylı

DENEY TARİHİ RAPOR TESLİM TARİHİ NOT

DENEY TARİHİ RAPOR TESLİM TARİHİ NOT DENEY 3 SERİ VE PARALEL RLC DEVRELERİ Malzeme Listesi: 1 adet 100mH, 1 adet 1.5 mh, 1 adet 100mH ve 1 adet 100 uh Bobin 1 adet 820nF, 1 adet 200 nf, 1 adet 100pF ve 1 adet 100 nf Kondansatör 1 adet 100

Detaylı

YILDIZ TEKNİK ÜNİVERSİTESİ MAKİNE FAKÜLTESİ MEKATRONİK MÜHENDİSLİĞİ BÖLÜMÜ MEKATRONİK MÜHENDİSLİĞİNE GİRİŞ DERSİ. Işığı Takip Eden Kafa 2 Nolu Proje

YILDIZ TEKNİK ÜNİVERSİTESİ MAKİNE FAKÜLTESİ MEKATRONİK MÜHENDİSLİĞİ BÖLÜMÜ MEKATRONİK MÜHENDİSLİĞİNE GİRİŞ DERSİ. Işığı Takip Eden Kafa 2 Nolu Proje YILDIZ TEKNİK ÜNİVERSİTESİ MAKİNE FAKÜLTESİ MEKATRONİK MÜHENDİSLİĞİ BÖLÜMÜ MEKATRONİK MÜHENDİSLİĞİNE GİRİŞ DERSİ Işığı Takip Eden Kafa 2 Nolu Proje Proje Raporu Hakan Altuntaş 11066137 16.01.2013 İstanbul

Detaylı

MARMARA ÜNİVERSİTESİ TEKNİK EĞİTİM FAKÜLTESİ ELEKTRONİK-BİLGİSAYAR BÖLÜMÜ ELEKTRONİK 3 LAB. DENEY FÖYLERİ

MARMARA ÜNİVERSİTESİ TEKNİK EĞİTİM FAKÜLTESİ ELEKTRONİK-BİLGİSAYAR BÖLÜMÜ ELEKTRONİK 3 LAB. DENEY FÖYLERİ MARMARA ÜNİVERSİTESİ TEKNİK EĞİTİM FAKÜLTESİ ELEKTRONİK-BİLGİSAYAR BÖLÜMÜ ELEKTRONİK 3 LAB. DENEY FÖYLERİ İŞLEMSEL KUVVETLENDİRİCİLER 16 AMAÇ 1. Eviren işlemsel kuvvetlendirici devresini öğrenmek. 2. Evirmeyen

Detaylı