Kamera görüntülerinden gidilen yolun kestirimi
|
|
|
- Esin İncesu
- 10 yıl önce
- İzleme sayısı:
Transkript
1 Dicle Üniversitesi Mühendislik Fakültesi dergisi mühendislikdergisi Cilt: 1, Sayı: 1, 3-9 Dicle Üniversitesi Mühendislik Fakültesi Aralık 2010 Cilt: 1, Sayı: 1, Aralık 2010 Kamera görüntülerinden gidilen yolun kestirimi M. Fatih AMASYALI*, Aykut MÜNÜK, Münir SALİ Yıldız Teknik Üniversitesi Bilgisayar Mühendisliği Bölümü, İstanbul, Türkiye Özet Çalışmada hareket eden bir nesne üzerine yerleştirilen bir kameradan alınan görüntülerle nesnenin 2 boyutlu ortamda gittiği yolun bulunması amaçlanmıştır.2 boyutlu gidilen yolun bulunmasında temel olarak izlenen yöntemlerden biri ve kamera görüntülerinden gidilen yolun kestiriminde kullanılan yöntem olan görüntü karelerinden ortak noktaların çıkarımı ve bu ortak noktalardaki yer değiştirmesinin bulunması ile hareketli nesnenin konumunun bulunması olmuşur. Metot olarak öncelikle kameradan alınan ardışık görüntülerdeki eşleşen SIFT (Scale-invariant feature transform- Ölçekten Bağımsız Öznitelik Dönüşümü) algoritmasının çıktıları olan kilit noktaları elde edilmektedir. Daha sonra bulunan kilit noktalardan eşleşen noktaların koordinat farklarının histogramları kullanılarak bu iki görüntü arasında nesnenin gittiği yoldaki mesafenin büyüklüğü ve gittiği yolun yönü belirlenmektedir ve gidilen yol 2 boyutlu uzayda yönlü doğru parçaları dizisiyle temsil edilmektedir. Bir cep telefonu kamerasıyla gerçek ortamlarda yapılan deneyler sonucunda gidilen yolun, hareketsiz ortamlarda başarılı, hareketli (kameranın bağlı olduğu nesne haricinde başka hareketli nesneler olduğu) ortamlarda ise gürültülü olarak belirlenebildiği görülmüştür. Ayrıca, gürültü oluşumunun nedeni ise hareketli olan nesnelerin üzerinde kilit noktaların bulunması ve bir sonraki görüntüde olan aynı hareketli nesne üzerindeki kilit noktaların bulunup eşleştirilmesidir. Bu yöntemin doğruluğu ise görsel odometri ile elde edilen sonuçlar ve tekerlek odometrim ile elde edilen sonuçların kümülatif hata toplamlarının karşılaştırılmasıyla ölçülebilmektedir. Anahtar Kelimeler: SIFT, Ölçekten Bağımsız Öznitelik Dönüşümü, Görsel Odometri, Kilit nokta, Odometre * Yazışmaların yapılacağı yazar: M. Fatih AMASYALI. [email protected] 5
2 M. F. Amasyalı, A. Münük, M. Sali Moving path estimation from video sequences Extended abstract The aim of the study is to determine the 2D trajectory of a moving object by utilizing images obtained by a camera which is inserted on the object. Initially, consecutively generated images from the camera were subjected to analysis using the SIFT algorithm a methodological step which allowed for the identification and computational description of the key points (interested point) that were to be used for the generation of the 2D trajectory. The ability to detect and match features across multiple views of a scene is a crucial first step in many computer vision algorithms for dynamic scene analysis. State-of-the-art methods such as SIFT perform successfully when applied to typical images taken by a digital camera or camcorder. However, these methods often fail to generate an acceptable number of features when applied to medical images, because such images usually contain large homogeneous regions with little color and intensity variation. Feature detection and description are possibly the most important steps in many computer vision algorithms. Distinctive image features can be used to establish matches across multiple images in a video sequence. Next, the length and direction of the object trajectory were determined by using histograms which facilitated the superimposition of the SIFT obtained key points and their corresponding points in real-time. More and more, the experiments conducted in real-time environment with a mobile phone camera, showed that the trajectory could successfully be determined if there are static objects surrounding the moving object and the camera; while the environment of the motile object is consisted of non-static objects, the determined trajectory is followed by a noisy background. The noise occurs as a result of the mapping of the key points of a motile object in the environment to the key points(interested point) corresponding to the same motile object but only few seconds later as the object moves to another position. Also, the accuracy of the method can be evaluated once the visual odometry results are compared for net cumulative error to the results obtained with wheel odometry. In other words, visual odometry makes use of an image sequence to estimate the motion of a robot and optionally the structure of the world. For example, the low-cost and small-size of cameras, combined with the high-information content of the images they capture make them ideal for robot platforms. In the meantime we compare different approaches within this framework and show that relative orientation is superior to using absolute orientation to estimate pose. We test our algorithm on outdoor and indoor environments as well as present results showing its effectiveness. SIFT method was used to detect the identical points of the successive frames. In addition to this, the histograms of the coordinate differences of the matched points are used for estimating the path. The respective pathway was represented in two dimensional spaces by directional combining of the matched (identical) points. The SIFT method has been utilized effectively on 2D grayscale images to identify and match invariant features. Furthermore, the SIFT method works efficiently for object recognition problems where a training image of the object of interest is given as well as the number of features extracted, or number of matches between consecutive views is a good indication for the success of the algorithm and If the number of extracted features or matches between conductive frames drops suddenly to a very low value, then it is very likely the image is blurry. Image blur is most of the time caused by fast robot rotation. Once the rotation is over, image come back to a good quality that allows extracting of a large number of features and matches. Blurry images causes by rotations are typically introduced for two or three frames. Thus, once a low number of features is detected we can stop visual odometry and wait for a good image. Once a good image is obtained, there is a very high probability. The goal of the experiment is to be able to achieve a comparison of the experimental path and theoretical path of a certain object that holding a camera. As a result the experimental results show, the path estimation by using successive images is applicable in static environments, but in the dynamic environments, the generated paths are very noisily. The merit of the proposed approach is that it retains the benefit of fast feature extraction methods and performs the more expensive robust image matching only when needed. Keywords: SIFT, Visual Odometry, Keypoint, Odometry 6
3 Kamera görüntülerinden gidilen yolun kestirimi Giriş Otonom robotların gerek gündelik hayatta (rehber robotlar, hastabakıcı robotlar vb.) gerekse insanların gitmelerinin zor, tehlikeli (uzay, afet sonrası yıkıntılar, bomba, mayın imha vb.) olduğu alanlarda kullanımı giderek artmaktadır. Otonom bir robotun bir ortamda iş görebilmesi için başlıca koşullardan biri nerede olduğunu bilmesidir. Başlangıçta bulunduğu yeri bildiği bir durumda bir hareket işaretine göre ilerleyen robotun yeni konumunu hesaplaması ideal ortamlarda (hatasız ölçümleme ve hatasız kontrol) sadece hareket işaretine göre mümkünken gerçek uygulamalarda giderek artan bir hataya sebep olmaktadır. Bu nedenle literatürde hareket işaretinin yanında ortamdan alınan ölçümlerin de (çevredeki engel, nesnelere uzaklık vb.) kullanıldığı istatistiki algoritmalar geliştirilmiştir (Haehnel vd., 2002). Bu algoritmalar ailesine Eşzamanlı Konumlandırma ve Harita Çıkarma (SLAM) adı verilmektedir. Bu algoritmalarda robotun bir sonraki konumu ve ortam algısı, önceki hareket işaretlerine, önceki konumuna ve önceki ortam algısına bağlı olasılıklar olarak hesaplanmaktadır. Robotun hareketinin dolayısıyla yeni konumunun hesaplanması için ortamdan alınabilen ölçümlere örnek olarak teker / paletin dönme sayısı, açısı, robotun etrafındaki cisimlere uzaklıkları, robotun üzerindeki bir kamera ile alınan görüntü verilebilir. Şekil 1 de Mars ta kullanılan otonom robotla yapılan bir deneyin sonuçları verilmiştir. Robot hareketinin tekerlerin dönme sayısıyla hesaplandığı durumla (Wheel odometry), kamera görüntüleriyle hesaplandığı durum (Visual odometry) yapılan hatalar cinsinden karşılaştırılmıştır. Ölçekler metre cinsindendir. Şekil 1 de görüldüğü gibi düzgün olmayan (kayalık) ortamlarda tekerlerle yapılan tahminlerin hatası, görsel odometriye göre çok daha yüksektir. Bunun sebebi tekerin dönmesine rağmen, robotun bu dönüş kadar yol alamamasıdır. Şekil 1. Kaya tırmanışı yaparken tekerlek ve görsel odometrinin hataları (yatay düzlem gidilen yol, düşey düzlem yapılan hata ) (cumulative failure of wheel and visual odometry for rock clinging) Literatürdeki Görsel odometri (robota bağlı bir kameradan alınan görüntüleri kullanarak robotun gittiği yolun kestirimi) sistemlerinin başarılarını, PARS grubu olarak geliştirdiğimiz robotların konumlandırma sistemlerine eklenmesi için kullandığımız metotlar ve yaptığımız deneyler bu çalışmanın içeriğini oluşturmaktadır. Çalışmanın 2. bölümünde Görsel odometri sistemini nasıl uyguladığımız, 3. bölümde görsel odometride kullanılan SIFT algoritması, 4. bölümde ise deneysel sonuçlarımız sunulmuştur. 5. bölümde bu süreçten öğrendiklerimiz ve gelecekte yapmayı planladıklarımız yer almaktadır. Çalışmanın önemi Bu çalışmada görsel odometrinin tekerlek odometriye göre kümülatif hatanın daha düşük çıktığı görülmektedir. Çalışma statik ve dinamik ortamda denenmiş ve sonuçları bize büyük ölçekte hareket yönümüzü kaybetmediğimizi ve görsel odometri ile yeni konumumuzun daha az hata ile belirlendiği görülmüştür. Haritalamada gidilen yolun tekerlek odometriye göre daha az hata ile kestirimi sağlanmıştır. 7
4 M. F. Amasyalı, A. Münük, M. Sali Görsel odometri Bir kamera ile çekilen bir videodan kameranın hareketinin kestirimi işlemi görsel odometri olarak tanımlanmaktadır. Bu çalışmamızda bir cep telefonu kamerasını sabit bir açıyla tutarak yürüyen bir insanın gittiği yol kestirilmiştir. Yapılan işlemin sözde kodu aşağıda verilmiştir. Kodda t zamanı, N videodaki imge sayısını göstermektedir. for t = 1 : N-1 Eşleşen aday noktalar = SIFT(imge(t), imge(t+1)) Eşleşen noktalar = Filtrele(Eşleşen aday noktalar) Hareket vektörü = Hareket Bul(Eşleşen noktalar) Yeni konum vektörü = Eski konum vektörü + Hareket vektörü end Algoritmanın her imge ikilisi için çalıştırılan ilk adımında 3. bölümde anlatılan SIFT algoritması ile iki imgedeki eşleşen noktalar bulunmuştur. Şekil 2 de örnek ardışık 2 imge üzerinde SIFT ile bulunan 34 nokta eşlemesi verilmiştir. Şekil 2. Ardışık 2 imgedeki eşleşen noktalar Algoritmanın 2 adımında yer alan filtreleme işleminde eşleşen tüm noktalardan yanlış eşlemeler çıkarılmıştır. Bunun için eşleşen noktaların iki imgedeki X ve Y boyutlarındaki koordinatlarının farkları önceden belirlenen bir eşik değerinden büyükse o nokta ikilisi eşleşen noktalar kümesinden çıkarılmıştır. Şekil 2 de böyle filtrelenen 1 adet nokta ikilisi vardır ve daire ile işaretlenmişlerdir. Algoritmanın 3. adımında eşleşen noktaların iki imgedeki X ve Y boyutlarındaki koordinat farklarının ortalaması alınarak X ve Y boyutlarındaki hareketin büyüklüğü ve yönü belirlenmektedir. Şekil 3 te iki boyutta bulunan histogramlar kullanılarak kameranın X boyutunda 0.5 birim, Y boyutunda ise -4 birim hareket ettiği bulunmaktadır. Şekil 3.Eşleşen noktaların X ve Y boyutlarındaki koordinat farklarının histogramları (histogram of matched keypoints for x and y coordinates) Algoritmanın son adımında ise 3. adımda bulunan hareket vektörü eski konum vektörüyle toplanarak yeni konum vektörü bulunmaktadır. Algoritmada gri seviyedeki 250*200 piksellik imgelerle çalışılmıştır. Algoritmanın çalışma hızı Pentium 4, 512 MB RAM lik bir makinede ortalama 1 imge/sn dir. Bu hız gerçek zamanlı bir çalışma için yeterlidir. Çalışmanın geliştirilme aşamasında karar verilmesi gereken konulardan birisi de kameranın çekim açısıydı. Kameranın çekim açısı belirlenirken, kameranın hareketiyle, ardışık imgeler arasında eşleşen noktaların koordinat farkı hareketlerinin birbirlerine en benzer oldukları açı aranmış ve en iyi açının yerin çekildiği (hareket düzlemine dik) açı olduğu bulunmuştur. Şekil 4 te kameranın yere paralel ve dik konumlarda olduğunda ardışık imgelerde eşleşen noktaların örnek hareketleri verilmiştir. 8
5 Kamera görüntülerinden gidilen yolun kestirimi Şekil 4. Kamera açısının eşleşen noktaların hareketleri üzerindeki etkisi, kamera açısı (a) hareket yönüne dik, (b) hareket yönüne paralel (according to camera s aspect, behaviors and sliding of keypoints) Hareket yönüne dik açıyla çekilen videolarda 4 farklı hareket için elde edilen hareket vektörleri Şekil 5 te gösterilmiştir. SIFT metodu tamamen homojen yüzeylerde belirgin noktalar bulamadığından dolayı Şekil 5 teki denemelerde zemine gazeteler serilmiştir. Robotların gerçek ortamlarında da tamamen homojen ortamlar olmadığından yapılan bu düzenleme yöntemin kullanılabilirliğini azaltmamaktadır. Ölçekten bağımsız öznitelik dönüşümü İki imgedeki aynı bölgelerin bulunması için literatürde birçok yöntem mevcuttur. Bu çalışmada bu işlem için Lowe (Lowe, 2004) tarafından önerilen Ölçekten Bağımız Öznitelik Dönüşümü SIFT seçilmiştir. Bunun sebebi yöntemin imgenin boyutundan, imgenin alındığı kameranın bakış açısından, imgenin alındığı ortamın ışık koşullarından, imgedeki nesnelerin açısından bağımsız olarak eşleme işlemini başarabilmesidir. SIFT algoritmasında temel olarak izlenilen 4 adım vardır (Serce vd., 2008): 1-Ölçeksel uzaydaki ekstrem(uç değer) noktaların tespiti 2-Kilit noktalarının belirlenmesi 3-Yönelim tespiti 4-Düğüm noktalarının niteliklendirilmesi Uç değer, ölçeksel uzayda sabit olan noktalardır. Ölçeksel uzay oluşturularak kilit nokta olabilecek noktalar tespit edilir ve bu noktaların Gauss filtresinden geçirilir, kenar tespit yöntemleri(log,dog,.. vb.) kullanılarak iki resim arasındaki fark elde edilir. Daha sonra düşük kontrasta sahip olan noktalar elenerek daha kararlı olan noktalar elde edilir. Yönelim tespiti ise düğüm noktalarının piksel-altı hassasiyetiyle konumlandırdıktan sonra bu noktaların yerel türevlerin yönleri kullanılarak yapılır. Ekstremlerin elde edilmesi Aynı nesnenin farklı pozisyonlarda tanınmasını sağlayacak olan kısımdır. Görüntü üzerinde birçok nokta tespiti yapılır fakat bu noktaların bazıları nesne ile ilgili olmadığından dolayı Gauss filtreleme fonksiyonu (Eşitlik 1) kullanarak ayıklanır. Şekil 5. 4 farklı hareket için ardışık imge ikililerinden elde edilen hareket vektörleri Şekil 5 incelendiğinde kameranın gerçek hareketiyle, eşlenen noktalarla elde edilen hareket vektörünün uyumlu olduğu görülmektedir. G( x, y, ) ( x y ) / 2 [1/(2 )]* e (1) Eşitlik 1 de I: orijinal resim, G:değişken orantıya sahip Gauss fonksiyonu göstermek üzere Ölçeksel uzay fonksiyonu Eşitlik 2 de verilmiştir. L( x, y, k ) G( x, y, k )* I( x, y) (2) 9
6 M. F. Amasyalı, A. Münük, M. Sali Kilit noktaların belirlenmesi Görüntüde tespit edilen kilit noktalar kontrast değerleri baz alınarak elenir(düşük kontrasta sahip noktalar elenir). Bu işlemi yapmak için DOG metodu kullanılır. Tablo 1. Sabit ortamlarda yapılan çeşitli deney sonuçları Yönelim tespiti Bu adım, iki boyutlu düzlem üzerinde nesnedeki açısal değişiklikler için nesneyi kaybetmememizi sağlayacaktır. Bu evrede büyüklük ve yön hesaplanır. Düğüm(kilit) noktalarının niteliklendirilmesi Bu evrede ise üç boyutlu eksende görüntü içerisindeki nesnenin kaybı engellenir. Deneysel Sonuçlar Bu bölümde 2. Bölümde anlatılan adımlar uygulanarak sabit ve dinamik ortamlarda uygulanan metodun sonuçları verilmiştir. Tablo 1 de sabit, Tablo 2 de dinamik (görüntüye hareketli başka nesnelerinde girdiği) ortamlarda yalpan denemeler gösterilmiştir. Tablo 2. Dinamik ortamlarda yapılan çeşitli deney sonuçları Çalışmanın değerlendirilmesinde kullanılacak başarı ölçütü bulunan yolun, gerçek yola benzerliğidir. Tablo 1 ve 2 incelendiğinde sabit ortamlarda gerçek rota ile bulunan rotanın birbirine oldukça benzer olduğu, dinamik ortamlarda ise ana rotanın bir ölçüde korunduğu ancak oldukça gürültülü rotalar bulunduğu görülmektedir. Bununla birlikte kamera görüntülerinin bir insanın yürürken elinde tuttuğu bir kameradan alındığı düşünülürse, kameranın ilk sütunlarda verilen gerçek rotadaki kadar düzgün bir şekilde hareket ettirilmediği anlaşılacaktır. Tablo 1 deki rotalardaki küçük oynamaların, ellerin küçük hareketlerinden ve insan yürüyüşünün düzensiz salınımından ileri geldiği düşünülmektedir. 10
7 Kamera görüntülerinden gidilen yolun kestirimi Sonuç ve Gelecek Çalışmalar Bu çalışmamızda bir cep telefonu kamerasını hareket düzlemine dik tutarak yürüyen bir insanın gittiği yol kestirilmiştir. Bu işlem robotların üzerlerine bağlanan kameralardan alınan görüntülerle robotların gittikleri yolun hesaplanmasının bir benzeridir. Bunun için kameradan alınan ardışık imgelerdeki eşleşen noktalar SIFT algoritmasıyla bulunmuş ve eşleşen noktaların koordinatları arasındaki farklar kullanılarak gidilen yol hesaplanmıştır. Deneyler birbirinden 2 farklı (sabit ve dinamik) ortamda gerçekleştirilmiştir. Sabit ortamda gidilen yol başarılı bir şekilde tahmin edilirken, dinamik ortamda oldukça gürültülü olarak tahmin edilebilmiştir. Gelecek bir çalışma olarak, dinamik ortamlardaki problemin çözümü için eşleşen noktaların hareket vektörlerinin kümelenerek kameranın ve ortamdaki diğer nesnelerin hareket vektörlerinin birbirlerinden ayırt edilmesi düşünülmektedir. (dinamik ortam- yüksek hız) takılıp arabanın gittiği yolun bulunması bir başka gelecek araştırma alanı olarak düşünülmektedir. Kaynaklar Haehnel, D., Schulz, D., and Burgard, W., 2002, Map building with mobile robots in populated environments, International Conference on Intelligent Robots and Systems (IROS), Mark Maimone, Yang Cheng, Larry Matthies, 2007, Two Years of Visual Odometry on the Mars Exploration Rovers, Journal of Field Robotics, 24(3), David G. Lowe, 2004, Distinctive image features from scale-invariant keypoints, International Journal of Computer Vision, 60(2), Serce, H., Bastanlar, Y., Temizel, A., Yardimci, Y., 2008, On Detection of Edges and Interest Points for Omnidirectional Images in Spheria l Domain, SIU 2008, April, Didim, Turkey. Son yıllarda literatürde robotun konumunu ve çevresini daha iyi doğru hesaplayabilmesi için algılayıcı verilerini birleştirme yoluna gidilmektedir (sensor fusion). Bu yaklaşıma paralel olarak gelecek çalışmamızda gerçek robotumuz üzerinde lokalizasyon yaparken teker odometrisine bu çalışmada yapılmış olan görsel odometrinin eklenmesi planlanmaktadır. Bununla birlikte SIFT algoritması noktasal eşleştirmeler yaparak benzer noktaları bulmaktadır, bu işlem dokusal yüzeylerde işe yaramamaktadır. Bu olumsuz etkiden kurtulmak için bir imge segmentasyonu algoritması olan JSEG ile SIFT algoritmasının birbirleri ile senkronize çalışması veya yeni bir sentez sağlanarak çıkarılan özelliklerin benzerliklerine bağlı kilit noktaların eşleşmesi yanında dokusal yüzeylerinde eşleşmesi sağlanabilir. Deney ortamının büyütülüp kameranın bir otoyolda hareket eden bir arabanın üzerine 11
Kamera Görüntülerinden Gidilen Yolun Kestirimi ÖZET
Kamera Görüntülerinden Gidilen Yolun Kestirimi Aykut Münük 1, Münir Sali 1 ve M.Fatih Amasyalı 1 1 Yıldız Teknik Üniversitesi Bilgisayar Mühendisliği Bölümü, İstanbul, Türkiye ÖZET Çalışmada hareket eden
Yüz Tanımaya Dayalı Uygulamalar. (Özet)
4 Yüz Tanımaya Dayalı Uygulamalar (Özet) Günümüzde, teknolojinin gelişmesi ile yüz tanımaya dayalı bir çok yöntem artık uygulama alanı bulabilmekte ve gittikçe de önem kazanmaktadır. Bir çok farklı uygulama
Unlike analytical solutions, numerical methods have an error range. In addition to this
ERROR Unlike analytical solutions, numerical methods have an error range. In addition to this input data may have errors. There are 5 basis source of error: The Source of Error 1. Measuring Errors Data
GÖRÜNTÜSÜ ALINAN BİR NESNENİN REFERANS BİR NESNE YARDIMIYLA BOYUTLARININ, ALANININ VE AÇISININ HESAPLANMASI ÖZET ABSTRACT
GÖRÜNTÜSÜ ALINAN BİR NESNENİN REFERANS BİR NESNE YARDIMIYLA BOYUTLARININ, ALANININ VE AÇISININ HESAPLANMASI Hüseyin GÜNEŞ 1, Alper BURMABIYIK 2, Semih KELEŞ 3, Davut AKDAŞ 4 1 [email protected] Balıkesir
Otonom Bir Robotla Statik Ortamda Nesne Etiketleme ÖZET
Otonom Bir Robotla Statik Ortamda Nesne Etiketleme A. Alper Kaya 1, Yiğiter Yiğit 1 ve M. Fatih Amasyalı 1 1 Yıldız Teknik Üniversitesi, Bilgisayar Mühendisliği Bölümü, 34349 İstanbul, Türkiye ÖZET Bu
Bilgisayarla Görüye Giriş
Bilgisayarla Görüye Giriş Ders 7 SIFT ve Öznitelik Eşleme Alp Ertürk [email protected] Panorama Oluşturma Görüntü mozaikleme, panorama oluşturma gibi tüm uygulamalar için öncelikle ilgili görüntülerin
WEEK 11 CME323 NUMERIC ANALYSIS. Lect. Yasin ORTAKCI.
WEEK 11 CME323 NUMERIC ANALYSIS Lect. Yasin ORTAKCI [email protected] 2 INTERPOLATION Introduction A census of the population of the United States is taken every 10 years. The following table
SBR331 Egzersiz Biyomekaniği
SBR331 Egzersiz Biyomekaniği Açısal Kinematik 1 Angular Kinematics 1 Serdar Arıtan [email protected] Mekanik bilimi hareketli bütün cisimlerin hareketlerinin gözlemlenebildiği en asil ve kullanışlı
MM103 E COMPUTER AIDED ENGINEERING DRAWING I
MM103 E COMPUTER AIDED ENGINEERING DRAWING I ORTHOGRAPHIC (MULTIVIEW) PROJECTION (EŞLENİK DİK İZDÜŞÜM) Weeks: 3-6 ORTHOGRAPHIC (MULTIVIEW) PROJECTION (EŞLENİK DİK İZDÜŞÜM) Projection: A view of an object
Yıldız Teknik Üniversitesi Fen Bilimleri Enstitüsü Bilgisayar Mühendisliği Bölümü. Bilgisayarla Görme. Final
Yıldız Teknik Üniversitesi Fen Bilimleri Enstitüsü Bilgisayar Mühendisliği Bölümü Bilgisayarla Görme Final Harris ve Moravec Köşe Belirleme Metotları Selçuk BAŞAK 08501008 Not: Ödevi hazırlamak için geliştirdiğim
İŞLETMELERDE KURUMSAL İMAJ VE OLUŞUMUNDAKİ ANA ETKENLER
ANKARA ÜNİVERSİTESİ SOSYAL BİLİMLER ENSTİTÜSÜ HALKLA İLİŞKİLER VE TANITIM ANA BİLİM DALI İŞLETMELERDE KURUMSAL İMAJ VE OLUŞUMUNDAKİ ANA ETKENLER BİR ÖRNEK OLAY İNCELEMESİ: SHERATON ANKARA HOTEL & TOWERS
First Stage of an Automated Content-Based Citation Analysis Study: Detection of Citation Sentences
First Stage of an Automated Content-Based Citation Analysis Study: Detection of Citation Sentences Zehra Taşkın, Umut Al & Umut Sezen {ztaskin, umutal, u.sezen}@hacettepe.edu.tr - 1 Plan Need for content-based
SIFT Metodu ile Hedef Takibi
SIFT Metodu ile Hedef Takibi Nazım ÖZGEN 1,.Müzeyyen SARITAŞ 1 Hava Kuvvetleri Komutanlığı, Çankaya, ANKARA [email protected] Gazi Üniversitesi, Elektrik-Elektronik Mühendisliği Böl., Maltepe-ANKARA [email protected]
POSITION DETERMINATION BY USING IMAGE PROCESSING METHOD IN INVERTED PENDULUM
POSITION DETERMINATION BY USING IMAGE PROCESSING METHOD IN INVERTED PENDULUM Melih KUNCAN Siirt Üniversitesi, Mühendislik-Mimarlık Fakültesi, Mekatronik Mühendisliği Bölümü, Siirt, TÜRKIYE [email protected]
GÖRÜNTÜ İŞLEME HAFTA 4 DÖNÜŞÜMLER UZAYSAL FİLTRELEME
GÖRÜNTÜ İŞLEME HAFTA 4 DÖNÜŞÜMLER UZAYSAL FİLTRELEME DERS İÇERİĞİ Histogram İşleme Filtreleme Temelleri HİSTOGRAM Histogram bir resimdeki renk değerlerinin sayısını gösteren grafiktir. Histogram dengeleme
3D INFORMATION EXTRACTION FROM DIGITAL AERIAL IMAGES WITH COMPUTER VISION AND PHOTOGRAMMETRIC SPACE INTERSECTION
DİJİTAL HAVA FOTOĞRAFLARINDAN BİLGİSAYARLA GÖRME VE UZAY ÖNDEN KESTİRME İLE 3B BİLGİ ÇIKARIMI S. ÖZDEMİR 1, F. KARSLI 2, H. ACAR 2, M. DİHKAN 2 1 Gümüşhane Üniversitesi, Mühendislik Mimarlık Fakültesi,
A UNIFIED APPROACH IN GPS ACCURACY DETERMINATION STUDIES
A UNIFIED APPROACH IN GPS ACCURACY DETERMINATION STUDIES by Didem Öztürk B.S., Geodesy and Photogrammetry Department Yildiz Technical University, 2005 Submitted to the Kandilli Observatory and Earthquake
COMPARING THE PERFORMANCE OF KINEMATIC PPP AND POST PROCESS KINEMATICS METHODS IN RURAL AND URBAN AREAS
KİNEMATİK PPP VE POST PROCESS KİNEMATİK YÖNTEMLERİNİN KIRSAL VE MESKUN ALANLARDAKİ PERFORMANSLARININ KARŞILAŞTIRILMASI A. CEYLAN 1, C.Ö. YİGİT 2, S. ALÇAY 1, B. N. ÖZDEMİR 1 1 Selçuk Üniversitesi, Mühendsilik
Research On Using a Mobile Terrestrial Photogrammetric Mapping System For The Determination Of Object Volumes
Harita Teknolojileri Elektronik Dergisi Cilt: 4, No: 3, 2012 (1-6) Electronic Journal of Map Technologies Vol: 4, No: 3, 2012 (1-6) TEKNOLOJİK ARAŞTIRMALAR www.teknolojikarastirmalar.com e-issn:1309-3983
Araziye Çıkmadan Önce Mutlaka Bizi Arayınız!
Monthly Magnetic Bulletin March 2014 z BOĞAZİÇİ UNIVERSITY KANDİLLİ OBSERVATORY and EARTHQUAKE RESEARCH INSTITUTE GEOMAGNETISM LABORATORY http://www.koeri.boun.edu.tr/jeofizik/default.htm Magnetic Results
HAREKET ANALizi SiSTEMLERiNDE ORTAYA ÇıKAN
Spor Bilimleri Dergisi Hacettepe J. ofsport Sciences 2004,15 (2),91-99 HAREKET ANALizi SiSTEMLERiNDE ORTAYA ÇıKAN HATALARıN DAGILIMI SAYISALLAŞTIRMADA Murat ÇlıLl, Serdar ARITAN Hacettepe Üniversitesi,
Veri toplama- Yersel Yöntemler Donanım
Veri toplama- Yersel Yöntemler Donanım Data Doç. Dr. Saffet ERDOĞAN 1 Veri toplama -Yersel Yöntemler Optik kamera ve lazer tarayıcılı ölçme robotu Kameradan gerçek zamanlı veri Doç. Dr. Saffet ERDOĞAN
Bilgisayarla Görüye Giriş
Bilgisayarla Görüye Giriş Ders 12 Video, Optik Akış ve Takip Alp Ertürk [email protected] Video Video, farklı zamanlarda alınan çerçeveler dizisidir Videolar, iki boyut uzamsal, üçüncü boyut zaman
İkili (Binary) Görüntü Analizi
İkili (Binary) Görüntü Analizi İkili görüntü analizine giriş Eşikleme (Thresholding) Matematiksel morfoloji Piksel ve komşulukları (neighborhoods) Bağlantılı bileşenler analizi (Connected components analysis)
RENK BİLEŞENLERİ YARDIMIYLA HAREKETLİ HEDEFLERİN GERÇEK ZAMANLI TESPİTİ
Journal of Naval Science and Engineering 2009, Vol 5, No2, pp 89-97 RENK BİLEŞENLERİ YARDIMIYLA HAREKETLİ HEDEFLERİN GERÇEK ZAMANLI TESPİTİ Öğr Kd Bnb Mustafa Yağımlı Elektrik/Elektronik Mühendisliği Bölümü,
TÜRKİYE NİN BİTKİ ÖRTÜSÜ DEĞİŞİMİNİN NOAA UYDU VERİLERİ İLE BELİRLENMESİ*
TÜRKİYE NİN BİTKİ ÖRTÜSÜ DEĞİŞİMİNİN NOAA UYDU VERİLERİ İLE BELİRLENMESİ* Determination the Variation of The Vegetation in Turkey by Using NOAA Satellite Data* Songül GÜNDEŞ Fizik Anabilim Dalı Vedat PEŞTEMALCI
Bilgisayar ne elde eder (görüntüden)? Dijital Görüntü İşleme Fevzi Karslı, KTÜ. 08 Ekim 2013 Salı 51
Bilgisayar ne elde eder (görüntüden)? 08 Ekim 2013 Salı 51 Zorluk 1: bakış açısı 2012, Selim Aksoy 08 Ekim 2013 Salı 52 Zorluk 2: aydınlatma 08 Ekim 2013 Salı 53 Zorluk 3: oklüzyon (ölü bölge oluşumu)
BOĞAZİÇİ UNIVERSITY KANDİLLİ OBSERVATORY and EARTHQUAKE RESEARCH INSTITUTE GEOMAGNETISM LABORATORY
Monthly Magnetic Bulletin May 2015 BOĞAZİÇİ UNIVERSITY KANDİLLİ OBSERVATORY and EARTHQUAKE RESEARCH INSTITUTE GEOMAGNETISM LABORATORY http://www.koeri.boun.edu.tr/jeomanyetizma/ Magnetic Results from İznik
ANKARA ÜNİVERSİTESİ MÜHENDİSLİK FAKÜLTESİ
ANKARA ÜNİVERSİTESİ MÜHENDİSLİK FAKÜLTESİ BİLGİSAYAR MÜHENDİSLİĞİ BÖLÜMÜ SANAL ARTIRILMIŞ VE AKILLI TEKNOLOJİLER (SAAT) LABORATUVARI SAAT Laboratuvarı Koordinatör: Yrd. Doç. Dr. Gazi Erkan BOSTANCI SAAT
ÖZET OTOMATİK KÖKLENDİRME SİSTEMİNDE ORTAM NEMİNİN SENSÖRLERLE HASSAS KONTROLÜ. Murat ÇAĞLAR
vii ÖZET OTOMATİK KÖKLENDİRME SİSTEMİNDE ORTAM NEMİNİN SENSÖRLERLE HASSAS KONTROLÜ Murat ÇAĞLAR Yüksek Lisans Tezi, Tarım Makinaları Anabilim Dalı Tez Danışmanı: Doç. Dr. Saadettin YILDIRIM 2014, 65 sayfa
PROJEM İSTANBUL ARAŞTIRMA PROJESİ BİLGİSAYARLI GÖRÜ VE SINIFLANDIRMA TEKNİKLERİYLE ARAZİ KULLANIMININ OTOMATİK OLARAK BULUNMASI
PROJEM İSTANBUL ARAŞTIRMA PROJESİ BİLGİSAYARLI GÖRÜ VE SINIFLANDIRMA TEKNİKLERİYLE ARAZİ KULLANIMININ OTOMATİK OLARAK BULUNMASI Proje Yüklenicisi: Yeditepe Üniversitesi Mühendislik ve Mimarlık Fakültesi
5 İki Boyutlu Algılayıcılar
65 5 İki Boyutlu Algılayıcılar 5.1 CCD Satır Kameralar Ölçülecek büyüklük, örneğin bir telin çapı, objeye uygun bir projeksiyon ile CCD satırının ışığa duyarlı elemanı üzerine düşürülerek ölçüm yapılır.
Çok Yönlü Araç Takibi ve Sayımı Uygulaması
Karaelmas Fen ve Müh. Derg. 7(2):622-626, 2017 Karaelmas Fen ve Mühendislik Dergisi Dergi web sayfası: http://fbd.beun.edu.tr Araştırma Makalesi Geliş tarihi / Received : 09.04.2016 Kabul tarihi / Accepted
T.C. SÜLEYMAN DEMİREL ÜNİVERSİTESİ FEN BİLİMLERİ ENSTİTÜSÜ ISPARTA İLİ KİRAZ İHRACATININ ANALİZİ
T.C. SÜLEYMAN DEMİREL ÜNİVERSİTESİ FEN BİLİMLERİ ENSTİTÜSÜ ISPARTA İLİ KİRAZ İHRACATININ ANALİZİ Danışman Doç. Dr. Tufan BAL YÜKSEK LİSANS TEZİ TARIM EKONOMİSİ ANABİLİM DALI ISPARTA - 2016 2016 [] TEZ
YZM 3217 YAPAY ZEKA DERS#10: KÜMELEME
YZM 317 YAPAY ZEKA DERS#10: KÜMELEME Sınıflandırma (Classification) Eğiticili (supervised) sınıflandırma: Sınıflandırma: Sınıf sayısı ve bir grup örneğin hangi sınıfa ait olduğunu bilinir Eğiticisiz (unsupervised)
TMMOB Harita ve Kadastro Mühendisleri Odası Ulusal Coğrafi Bilgi Sistemleri Kongresi 30 Ekim 02 Kasım 2007, KTÜ, Trabzon
TMMOB Harita ve Kadastro Mühendisleri Odası Ulusal Coğrafi Bilgi Sistemleri Kongresi 30 Ekim 02 Kasım 2007, KTÜ, Trabzon Lazer Tarama Verilerinden Bina Detaylarının Çıkarılması ve CBS İle Entegrasyonu
Sahne Geçişlerinin Geometrik Tabanlı olarak Saptanması
Sahne Geçişlerinin Geometrik Tabanlı olarak Saptanması 1 Giriş Binnur Kurt, H. Tahsin Demiral, Muhittin Gökmen İstanbul Teknik Üniversitesi, Bilgisayar Mühendisliği Bölümü, Maslak, 80626 İstanbul {kurt,demiral,gokmen}@cs.itu.edu.tr
EMBEDDED SYSTEMS CONTROLLED VEHICLE
EMBEDDED SYSTEMS CONTROLLED VEHICLE İbrahim TEMEL Danışman : Y. Doç. Dr. Rıfat EDİZKAN Elektrik Elektronik Mühendisliği Günümüzde kullanılan birçok gömülü sistemin uygulamaları çevremizde mevcuttur. Bu
Bulanık Mantık Tabanlı Uçak Modeli Tespiti
Bulanık Mantık Tabanlı Uçak Modeli Tespiti Hüseyin Fidan, Vildan Çınarlı, Muhammed Uysal, Kadriye Filiz Balbal, Ali Özdemir 1, Ayşegül Alaybeyoğlu 2 1 Celal Bayar Üniversitesi, Matematik Bölümü, Manisa
T.C. Hitit Üniversitesi. Sosyal Bilimler Enstitüsü. İşletme Anabilim Dalı
T.C. Hitit Üniversitesi Sosyal Bilimler Enstitüsü İşletme Anabilim Dalı X, Y, Z KUŞAĞI TÜKETİCİLERİNİN YENİDEN SATIN ALMA KARARI ÜZERİNDE ALGILANAN MARKA DENKLİĞİ ÖĞELERİNİN ETKİ DÜZEYİ FARKLILIKLARININ
THE IMPACT OF AUTONOMOUS LEARNING ON GRADUATE STUDENTS PROFICIENCY LEVEL IN FOREIGN LANGUAGE LEARNING ABSTRACT
THE IMPACT OF AUTONOMOUS LEARNING ON GRADUATE STUDENTS PROFICIENCY LEVEL IN FOREIGN LANGUAGE LEARNING ABSTRACT The purpose of the study is to investigate the impact of autonomous learning on graduate students
Bilgisayarla Görüye Giriş
Bilgisayarla Görüye Giriş Ders 6 Kenar, Köşe, Yuvarlak Tespiti Alp Ertürk [email protected] KENAR TESPİTİ Kenar Tespiti Amaç: Görüntüdeki ani değişimleri / kesintileri algılamak Şekil bilgisi elde
BBM Discrete Structures: Final Exam Date: , Time: 15:00-17:00
BBM 205 - Discrete Structures: Final Exam Date: 12.1.2017, Time: 15:00-17:00 Ad Soyad / Name: Ögrenci No /Student ID: Question: 1 2 3 4 5 6 7 8 9 10 11 Total Points: 6 16 8 8 10 9 6 8 14 5 10 100 Score:
LIDAR VERİSİNDEN ÇATI DÜZLEMLERİNİN OTOMATİK ÇIKARILMASI
133 [1066] LIDAR VERİSİNDEN ÇATI DÜZLEMLERİNİN OTOMATİK ÇIKARILMASI Nusret DEMİR Yrd.Doç.Dr., Akdeniz Üniversitesi, Uzay Bilimleri ve Teknolojileri Bölümü, Uzaktan Algılama Uygulama ve Araştırma Merkezi,07058,
Trafik Yoğunluk Harita Görüntülerinin Görüntü İşleme Yöntemleriyle İşlenmesi
Trafik Yoğunluk Harita Görüntülerinin Görüntü İşleme Yöntemleriyle İşlenmesi ISITES 2016 4 TH INTERNATIONAL SYMPOSIUM ON INNOVATIVE TECHNOLOGIES IN ENGINEERING AND SCIENCE Dr. G. Çiğdem Çavdaroğlu ISITES,
Çoklu Kordinat Sistemi
Çoklu Kordinat Sistemi Uçak pistte durduğu zaman burnunun kuleye göre kordinatı: (50, 5, 0), buna karşın uçağın kordinatlarına göre pozisyonu ise:(0,0,0). Benzer bir biçimde, kulenin tabanı kule kordinat
NOKTA BELİRLEME ALGORİTMALARI İLE OTOMATİK GÖRÜNTÜ EŞLEŞTIRME VE 3B KONUM TESPITI
NOKTA BELİRLEME ALGORİTMALARI İLE OTOMATİK GÖRÜNTÜ EŞLEŞTIRME VE 3B KONUM TESPITI Hayrettin ACAR 1, Fevzi KARSLI 2 1 Arş. Gör., Karedeniz Teknik Üniversitesi, Harita Mühendisliği Bölümü, 61080, Trabzon,
ÇEVRESEL TEST HİZMETLERİ 2.ENVIRONMENTAL TESTS
ÇEVRESEL TEST HİZMETLERİ 2.ENVIRONMENTAL TESTS Çevresel testler askeri ve sivil amaçlı kullanılan alt sistem ve sistemlerin ömür devirleri boyunca karşı karşıya kalabilecekleri doğal çevre şartlarına dirençlerini
MOD419 Görüntü İşleme
MOD419 Görüntü İşleme Ders Kitabı: Digital Image Processing by Gonzalez and Woods Puanlama: %30 Lab. %20 Vize %10 Quizes %40 Final %60 devam mecburiyeti Görüntü İşleme ye Giriş Görüntü İşleme Nedir? Özellikle
Bilgisayarla Görüye Giriş
Bilgisayarla Görüye Giriş Ders 10 Nesne / Yüz Tespiti ve Tanıma Alp Ertürk [email protected] Nesne Tespiti Belirli bir nesnenin sahne içindeki konumunun tespitidir Tespit edilecek nesne önceden
Hacer ÖZYURT¹, Özcan ÖZYURT 2, Hasan KARAL 3
999 PERMÜTASYON- - E- Hacer ÖZYURT¹, Özcan ÖZYURT 2, Hasan KARAL 3 1 [email protected] 2 [email protected] 3 Yrd.Doç.Dr. [email protected] Özet: - - de - Anahtar kelimeler: e- Abstract: Conducted
DİNAMİK. Ders_9. Doç.Dr. İbrahim Serkan MISIR DEÜ İnşaat Mühendisliği Bölümü. Ders notları için: GÜZ
DİNAMİK Ders_9 Doç.Dr. İbrahim Serkan MISIR DEÜ İnşaat Mühendisliği Bölümü Ders notları için: http://kisi.deu.edu.tr/serkan.misir/ 2018-2019 GÜZ RİJİT CİSİMLERİN DÜZLEMSEL KİNEMATİĞİ: ÖTELENME&DÖNME Bugünün
Öğrencilere bilgisayar destekli titreşim analizi yeteğinin kazandırılması
Ders Öğretim Planı Dersin Kodu 50700 4222007 Dersin Seviyesi Lisans Dersin Adı BİLGİSAYAR DESTEKLİ TİTREŞİM SİMÜLASYONU Dersin Türü Yıl Yarıyıl AKTS Seçmeli 4 8 3 Dersin Amacı Öğrencilere bilgisayar destekli
Yrd. Doç. Dr. Aycan M. MARANGOZ. BEÜ MÜHENDİSLİK FAKÜLTESİ GEOMATİK MÜHENDİSLİĞİ BÖLÜMÜ JDF329 FOTOGRAMETRİ I DERSi NOTLARI
FOTOGRAMETRİ I GEOMETRİK ve MATEMATİK TEMELLER Yrd. Doç. Dr. Aycan M. MARANGOZ BEÜ MÜHENDİSLİK FAKÜLTESİ GEOMATİK MÜHENDİSLİĞİ BÖLÜMÜ JDF329 FOTOGRAMETRİ I DERSi NOTLARI http://geomatik.beun.edu.tr/marangoz/
Digital Görüntü Temelleri Görüntü Oluşumu
Digital Görüntü Temelleri Görüntü Oluşumu Işık 3B yüzeye ulaşır. Yüzey yansıtır. Sensör elemanı ışık enerjisini alır. Yoğunluk (Intensity) önemlidir. Açılar önemlidir. Materyal (yüzey) önemlidir. 25 Ekim
Argumentative Essay Nasıl Yazılır?
Argumentative Essay Nasıl Yazılır? Hüseyin Demirtaş Dersimiz: o Argumentative Essay o Format o Thesis o Örnek yazı Military service Outline Many countries have a professional army yet there is compulsory
GRAVİTE-MANYETİK VERİLERİNE ÇEŞİTLİ MODELLERLE YAKLAŞIM AN APPROACH FOR THE GRAVITY-MAGNETIC DATA WITH VARIOUS MODELS
GRAVİTE-MANYETİK VERİLERİNE ÇEŞİTLİ MODELLERLE YAKLAŞIM AN APPROACH FOR THE GRAVITY-MAGNETIC DATA WITH VARIOUS MODELS AŞÇI, M. 1, YAS, T. 1, MATARACIOĞLU, M.O. 1 Posta Adresi: 1 Kocaeli Ünirsitesi Mühendislik
Yrd. Doç. Dr. Aycan M. MARANGOZ. BEÜ MÜHENDİSLİK FAKÜLTESİ GEOMATİK MÜHENDİSLİĞİ BÖLÜMÜ JDF329 FOTOGRAMETRİ I DERSi NOTLARI
FOTOGRAMETRİ I GEOMETRİK ve MATEMATİK TEMELLER Yrd. Doç. Dr. Aycan M. MARANGOZ BEÜ MÜHENDİSLİK FAKÜLTESİ GEOMATİK MÜHENDİSLİĞİ BÖLÜMÜ JDF329 FOTOGRAMETRİ I DERSi NOTLARI http://geomatik.beun.edu.tr/marangoz/
Hafta 5 Uzamsal Filtreleme
BLM429 Görüntü İşlemeye Giriş Hafta 5 Uzamsal Filtreleme Yrd. Doç. Dr. Caner ÖZCAN If the facts don't fit the theory, change the facts. ~Einstein İçerik 3. Yeğinlik Dönüşümleri ve Uzamsal Filtreleme Temel
DEÜ MÜHENDİSLİK FAKÜLTESİ MÜHENDİSLİK BİLİMLERİ DERGİSİ Cilt: 16 Sayı: 48 sh. 9-20 Eylül 2014
DEÜ MÜHENDİSLİK FAKÜLTESİ MÜHENDİSLİK BİLİMLERİ DERGİSİ Cilt: 16 Sayı: 48 sh. 9-20 Eylül 2014 NESNE MODELLEME: VİDEO İMGELERİ KULLANILARAK F-MATRİSİNİN HESAPLANMASI (OBJECT MODELLING: CALCULATION OF F-MATRIX
İÇİNDEKİLER. Sayfa ÖNSÖZ... II ÖZET... VIII SUMMARY...IX ŞEKİL LİSTESİ... X TABLO LİSTESİ...XIX SEMBOL LİSTESİ...XX
İÇİNDEKİLER Sayfa ÖNSÖZ... II ÖZET... VIII SUMMARY...IX ŞEKİL LİSTESİ... X TABLO LİSTESİ...XIX SEMBOL LİSTESİ...XX 1. GENEL BİLGİLER...1 1.1. Giriş...1 1.2. Geçmişte Yapılan Çalışmalar...2 1.3. Bu Çalışmanın
Dersin Kodu Dersin Adı Dersin Türü Yıl Yarıyıl AKTS. 507001112001 MATEMATİK II Zorunlu 1 2 5
Ders Öğretim Planı Dersin Kodu Dersin Adı Dersin Türü Yıl Yarıyıl AKTS 507001112001 MATEMATİK II Zorunlu 1 2 5 Dersin Seviyesi Lisans Dersin Amacı Matematik bilgisini mühendislik problemlerini çözmede
0227130 FOTOGRAMETRİ KAMERA KALİBRASYONU ÖDEV YÖNERGESİ
0227130 FOTOGRAMETRİ Giriş: KAMERA KALİBRASYONU ÖDEV YÖNERGESİ 0227130 fotogrametri dersini alan öğrencilerin teorik dersleri izlemesinin yanında uygulamalı bir çalışma olan Kamera Kalibrasyonu Ödevi yapması
SERVİKAL YETMEZİĞİNDE MCDONALDS VE MODDIFIYE ŞIRODKAR SERKLAJ YÖNTEMLERININ KARŞILAŞTIRILMASI
İZMİR KATİP ÇELEBİ ÜNİVERSİTESİ ATATÜRK EĞİTİM ARAŞTIRMA HASTANESİ KADIN HASTALIKLARI VE DOĞUM ANABİLİM DALI EĞİTİM SORUMLUSU:PROF.DR.SEFA KELEKÇİ SERVİKAL YETMEZİĞİNDE MCDONALDS VE MODDIFIYE ŞIRODKAR
Uzaktan Algılama Uygulamaları
Aksaray Üniversitesi Uzaktan Algılama Uygulamaları Doç.Dr. Semih EKERCİN Harita Mühendisliği Bölümü [email protected] 2010-2011 Bahar Yarıyılı Uzaktan Algılama Uygulamaları GÖRÜNTÜ İŞLEME TEKNİKLERİ
ARAZİ ÖLÇMELERİ. Temel Ödev I: Koordinatları belirli iki nokta arasında ki yatay mesafenin
Temel ödevler Temel ödevler, konum değerlerinin bulunması ve aplikasyon işlemlerine dair matematiksel ve geometrik hesaplamaları içeren yöntemlerdir. öntemlerin isimleri genelde temel ödev olarak isimlendirilir.
Yıldız Teknik Üniversitesi Fen Bilimleri Enstitüsü Bilgisayar Mühendisliği Bölümü. Bilgisayarla Görme. Proje
Yıldız Teknik Üniversitesi Fen Bilimleri Enstitüsü Bilgisayar Mühendisliği Bölümü Bilgisayarla Görme Proje Renk ve Şekil Temelli Trafik İşareti Tespiti Selçuk BAŞAK 08501008 1. Not: Ödevi hazırlamak için
Website review m.iyibahis.net
Website review m.iyibahis.net Generated on September 14 2017 12:04 PM The score is 54/100 SEO Content Title Best10 Canlı Bahis Sitesi, Best 10 Canlı Casino Oyunları ve Poker Length : 73 Ideally, your title
Görüntü İşlemeye Giriş Introduction to Image Processing. Doç. Dr. Aybars UĞUR
Görüntü İşlemeye Giriş Introduction to Image Processing Doç. Dr. Aybars UĞUR 2013 1 İçerik Görüntü ve Piksel Görüntü Türleri Görüntü İşleme Görüntü İşlemenin Amaçları Görüntü İyileştirme Görüntü Analizi
ANALYSIS OF THE RELATIONSHIP BETWEEN LIFE SATISFACTION AND VALUE PREFERENCES OF THE INSTRUCTORS
VII. Uluslar ANALYSIS OF THE RELATIONSHIP BETWEEN LIFE SATISFACTION AND VALUE PREFERENCES OF THE INSTRUCTORS [email protected], [email protected] ÖZET incelenmesidir. Çal demo Anahtar Kelimeler:
BÖLÜM 12 STUDENT T DAĞILIMI
1 BÖLÜM 12 STUDENT T DAĞILIMI 'Student t dağılımı' ya da kısaca 't dağılımı'; normal dağılım ve Z dağılımının da içerisinde bulunduğu 'sürekli olasılık dağılımları' ailesinde yer alan dağılımlardan bir
Giyilebilir Teknolojiler ve Solar Enerjili Şapka Uygulaması
Giyilebilir Teknolojiler ve Solar Enerjili Şapka Uygulaması 1 Necip Fazıl Bilgin, 2 Bülent Çobanoğlu and 3 Fatih Çelik 2 Faculty of Technology, Department of Mechatronic Engineering, Sakarya University,
İkili (Binary) Görüntü Analizi
İkili (Binary) Görüntü Analizi İkili görüntü analizine giriş Eşikleme (Thresholding) Matematiksel morfoloji Piksel ve komşulukları (neighborhoods) Bağlantılı bileşenler analizi (Connected components analysis)
(1971-1985) ARASI KONUSUNU TÜRK TARİHİNDEN ALAN TİYATROLAR
ANABİLİM DALI ADI SOYADI DANIŞMANI TARİHİ :TÜRK DİLİ VE EDEBİYATI : Yasemin YABUZ : Yrd. Doç. Dr. Abdullah ŞENGÜL : 16.06.2003 (1971-1985) ARASI KONUSUNU TÜRK TARİHİNDEN ALAN TİYATROLAR Kökeni Antik Yunan
Makbul Re y Tefsirinin Yöneldiği Farklı Alanlar. The Different Fields Twords That The Commentary By Judgement Has Gone
Ahmet ALABALIK *1 Özet Bilindiği üzere re y tefsiri makbul ve merdut olmak üzere iki kısma ayrılır. Bu makalede makbul olan re y tefsirlerindeki farklı yönelişleri ele aldık. Nitekim re y tefsiri denildiğinde
Kelebek Görüntülerin Sınıflandırılmasında Yeni Yerel İkili Örüntüler
Kelebek Görüntülerin Sınıflandırılmasında Yeni Yerel İkili Örüntüler Yılmaz KAYA 1, Lokman KAYCİ 2 1 Bilgisayar Mühendisliği Bölümü, Siirt Üniversitesi, 56100 Siirt 2 Biyoloji Bölümü, Siirt Üniversitesi,
Mean Shift Ve Gaussian Filtre İle Gölge Tespiti Shadow Detection With Mean Shift And Gaussian Filter
Mean Shift Ve Gaussian Filtre İle Gölge Tespiti Shadow Detection With Mean Shift And Gaussian Filter Yunus SANTUR 1, Haluk DİLMEN 1, Semiha MAKİNİST 2, M. Fatih TALU 1 1 Bilgisayar Bölümü Mühendislik Fakültesi
YAPAY SİNİR AĞLARI YÖNTEMİ İLE PAFTALARININ SAYISALLAŞTIRILMASI ARTIFICIAL NEURAL NETWORKS METHOD FOR MAP DIGITIZATION
YAPAY SİNİR AĞLARI YÖNTEMİ İLE PAFTALARININ SAYISALLAŞTIRILMASI Y.ŞİŞMAN 1, H. DEMİRTAŞ 2 1 Ondokuz Mayıs Üniversitesi, Harita Mühendisliği Bölümü, 55139, Samsun/TÜRKİYE [email protected] 2 Sağlık Bakanlığı,
TİMAK-Tasarım İmalat Analiz Kongresi 26-28 Nisan 2006 - BALIKESİR ÇOK YÖNLÜ TEKERLEKLERE SAHİP BİR MOBİL ROBOTUN TASARIMI VE MODELİNİN GERÇEKLEŞTİRİLMESİ Servet SOYGÜDER 1, Hasan ALLİ 1 1 Fırat Üniversitesi,
12. HAFTA BLM323 SAYISAL ANALİZ. Okt. Yasin ORTAKCI. [email protected]
1. HAFTA BLM33 SAYISAL ANALİZ Okt. Yasin ORTAKCI [email protected] Karabük Üniversitesi Uzaktan Eğitim Uygulama ve Araştırma Merkezi DIVIDED DIFFERENCE INTERPOLATION Forward Divided Differences
CCD KAMERA KULLANARAK SAYISAL GÖRÜNTÜ İŞLEME YOLUYLA GERÇEK ZAMANLI GÜVENLİK UYGULAMASI
CCD KAMERA KULLANARAK SAYISAL GÖRÜNTÜ İŞLEME YOLUYLA GERÇEK ZAMANLI GÜVENLİK UYGULAMASI Serhan COŞAR [email protected] Oğuzhan URHAN [email protected] M. Kemal GÜLLÜ [email protected] İşaret ve Görüntü
THE EFFECT TO GEOREFERENCING ACCURACY OF CONTROL TARGETS IN TERRESTRIAL LASER SCANNING APPLICATIONS
YERSEL LAZER TARAMA UYGULAMALARINDA KONTROL HEDEFLERİNİN KONUMLANDIRMA DOĞRULUĞUNA ETKİSİ K. GÜMÜŞ 1, H.ERKAYA 2 1 Niğde Üniversitesi, Mühendislik Fakültesi, Harita Mühendisliği Bölümü, Ölçme Tekniği Anabilim
Sevim Yasemin ÇİÇEKLİ 1, Coşkun ÖZKAN 2
1078 [1025] LANDSAT 8'İN ADANA SEYHAN BARAJ GÖLÜ KIYI ÇİZGİSİNİN AYLIK DEĞİŞİMİNİN BELİRLENMESİNDE KULLANILMASI Sevim Yasemin ÇİÇEKLİ 1, Coşkun ÖZKAN 2 1 Arş. Gör., Erciyes Üniversitesi, Harita Mühendisliği
Seri kablo bağlantısında Windows95/98/ME'ten Windows 2000'e bağlantı Windows95/98/ME - NT4 bağlantısına çok benzer.
Seri kablo bağlantısında Windows95/98/ME'ten Windows 2000'e bağlantı Windows95/98/ME NT4 bağlantısına çok benzer. Direkt Kablo desteğini Windows95/98'e yükledikten sonra, Windows95 for Direct Cable Client
Bilgisayarla Görme (EE 430) Ders Detayları
Bilgisayarla Görme (EE 430) Ders Detayları Ders Adı Ders Kodu Dönemi Ders Saati Uygulama Saati Laboratuar Saati Kredi AKTS Bilgisayarla Görme EE 430 Her İkisi 3 0 0 3 5 Ön Koşul Ders(ler)i EE 275, MATH
Teşekkür. BOĞAZİÇİ UNIVERSITY KANDİLLİ OBSERVATORY and EARTHQUAKE RESEARCH INSTITUTE GEOMAGNETISM LABORATORY
Monthly Magnetic Bulletin October 2015 BOĞAZİÇİ UNIVERSITY KANDİLLİ OBSERVATORY and EARTHQUAKE RESEARCH INSTITUTE GEOMAGNETISM LABORATORY http://www.koeri.boun.edu.tr/jeomanyetizma/ Magnetic Results from
"Farklı?-Evrensel Dünyada Kendi Kimliğimizi Oluşturma" İsimli Comenius Projesi Kapsamında Yapılan Anket Çalışma Sonuçları.
"Farklı?-Evrensel Dünyada Kendi Kimliğimizi Oluşturma" İsimli Comenius Projesi Kapsamında Yapılan Anket Çalışma Sonuçları. Survey Results Which Were Done in Comenius Project named'' Different? Building
Konforun Üç Bilinmeyenli Denklemi 2016
Mimari olmadan akustik, akustik olmadan da mimarlık olmaz! Mimari ve akustik el ele gider ve ben genellikle iyi akustik görülmek için orada değildir, mimarinin bir parçası olmalı derim. x: akustik There
Günay Deniz D : 70 Ekim finansal se krizler, idir. Sinyal yakl. temi. olarak kabul edilebilir. Anahtar Kelimeler:
finansal se krizler, idir. Sinyal yakl olarak kabul edilebilir. temi Anahtar Kelimeler: 63 THE PREDICTABILITY OF CRISES: THE CASE OF THE CRISIS OF 2008 ABSTRACT The economic crises in the World, especially
Bağlaç 88 adet P. Phrase 6 adet Toplam 94 adet
ÖNEMLİ BAĞLAÇLAR Bu liste YDS için Önemli özellikle seçilmiş bağlaçları içerir. 88 adet P. Phrase 6 adet Toplam 94 adet Bu doküman, YDS ye hazırlananlar için dinamik olarak oluşturulmuştur. 1. although
SICAKLIK VE ENTALP KONTROLLÜ SERBEST SO UTMA UYGULAMALARININ KAR ILA TIRILMASI
Türk Tesisat Mühendisleri Derne i / Turkish Society of HVAC & Sanitary Engineers 8. Uluslararası Yapıda Tesisat Teknolojisi Sempozyumu / 8. International HVAC +R Technology Symposium 12-14 Mayıs 2008,
OpenZeka MARC. Mini Otonom Araç Yarışması
OpenZeka MARC Mini Otonom Araç Yarışması Hakkımızda Open Zeka, NVIDIA Derin Öğrenme Kurumu ve NVIDIA Embedded Türkiye partneri olarak yeni nesil yapay zeka algoritmaları ve sensörleri kullanarak akıllı
HİDROGRAFİK ÖLÇMELERDE ÇOK BİMLİ İSKANDİL VERİLERİNİN HATA ANALİZİ ERROR BUDGET OF MULTIBEAM ECHOSOUNDER DATA IN HYDROGRAPHIC SURVEYING
HİDROGRAFİK ÖLÇMELERDE ÇOK BİMLİ İSKANDİL VERİLERİNİN HATA ANALİZİ N.O. AYKUT Yıldız Teknik Üniversitesi, İnşaat Fakültesi, Harita Mühendisliği Bölümü, Ölçme Tekniği Anabilim Dalı, İstanbul, [email protected]
AUTOMATIC EXTRACTION OF BUILDING OBLIQUE ROOF FROM DENSE IMAGE MATCHING POINT CLOUDS WITH HIGH RESOLUTION COLOUR- INFRARED IMAGES
BİNA EĞİK ÇATILARININ YÜKSEK ÇÖZÜNÜRLÜKLÜ RENKLİ-KIZILÖTESİ GÖRÜNTÜLERDEN ÜRETİLEN YOĞUN NOKTA BULUTLARINDAN OTOMATİK ÇIKARILMASI H. ACAR 1, M. ÖZTÜRK 2, F. KARSLI 1, M. DİHKAN 1 1 Karadeniz Teknik Üniversitesi,
TOMRUK HACMİNİN TAHMİNİNDE KULLANILAN CENTROID METOD VE DÖRT STANDART FORMÜLÜN KARŞILAŞTIRILMASI
Süleyman Demirel Üniversitesi Orman Fakültesi Dergisi Seri: A, Sayı: 1, Yıl: 2002, ISSN: 1302-7085, Sayfa:115-120 TOMRUK HACMİNİN TAHMİNİNDE KULLANILAN CENTROID METOD VE DÖRT STANDART FORMÜLÜN KARŞILAŞTIRILMASI
MONITORING COASTAL STRUCTURES THROUGH RADAR INTERFEROMETRY TECHNIQUE
RADAR İNTERFEROMETRİ TEKNİĞİ KIYI YAPILARINDAKİ DEFORMASYONLARIN İZLENMESİ H.Ş. KUTOĞLU 1, İ.H. ÖZÖLÇER 1, H. KEMALDERE 1 1 Bülent Ecevit Üniversitesi, Afet Uygulama ve Araştırma Merkezi, Zonguldak, İstanbul,
Regresyon. Regresyon korelasyon ile yakından ilişkilidir
Regresyon Regresyona Giriş Regresyon korelasyon ile yakından ilişkilidir Regresyon bir bağımlı değişken ile (DV) bir veya daha fazla bağımsız değişken arasındaki doğrusal ilişkiyi inceler. DV için başka
İZDÜŞÜM. İzdüşümün Tanımı ve Önemi İzdüşüm Metodları Temel İzdüşüm Düzlemleri Noktanın İzdüşümü Doğrunun İzdüşümü Düzlemlerin İz Düşümleri
ÖĞR. GÖR.ÖMER UÇTU İZDÜŞÜM İzdüşümün Tanımı ve Önemi İzdüşüm Metodları Temel İzdüşüm Düzlemleri Noktanın İzdüşümü Doğrunun İzdüşümü Düzlemlerin İz Düşümleri İzdüşümün Tanımı ve Önemi İz düşüm: Bir cismin
