DEÜ MÜHENDİSLİK FAKÜLTESİ FEN ve MÜHENDİSLİK DERGİSİ Cilt: 6 Sayı: 2 s Mayıs 2004



Benzer belgeler
BENZİNLİ BİR MOTORDA BENZİN+LPG KULLANIMININ PERFORMANS VE EMİSYONLARA ETKİSİ. Cenk SAYIN*, Mustafa ÇANAKÇI, İbrahim KILIÇASLAN ÖZET

ÇİFT YAKITLI (BENZİN + SIVILAŞTIRILMIŞ PETROLGAZI) BİR BENZİN MOTORUNUN İDEAL EMİSYON ÜRÜNLERİ

MJS

LPG Yakıtlı Motorda Hava Fazlalık Katsayısı Değişiminin Açık Kaynak Kodlu Modelleme Aracı ile İncelenmesi

ÇİFT YAKIT (BENZİN+LPG) KULLANIMININ MOTOR PERFORMANSI VE EMİSYONLAR ÜZERİNE ETKİSİNİN DENEYSEL ANALİZİ

BUJİ İLE ATEŞLEMELİ MOTORLARDA KISMİ GAZ KELEBEK AÇIKLIĞINDA LPG KULLANIMI ÜZERİNE DENEYSEL BİR ARAŞTIRMA

Halit YAŞAR. Doç. Dr. Makina Mühendisliği Bölümü Otomotiv Anabilim Dalı Öğretim Üyesi

BUJİ İLE ATEŞLEMELİ MOTORLARDA TEK NOKTA YAKIT ENJEKSİYON VE KARBÜRATÖR SİSTEMLERİNİN PERFORMANSA ETKİLERİ ÜZERİNE DENEYSEL BİR ARAŞTIRMA

İÇERİK. Amaç Yanma Dizel motorlardan kaynaklanan emisyonlar Dizel motor kaynaklı emisyonların insan ve çevre sağlığına etkileri Sonuç

Suat SARIDEMİR 1 Bülent ERYAKALI 2 TÜRKİYE.

Bölüm 2 Kirletici Maddelerin Oluşumu

Karbonmonoksit (CO) Oluşumu

Dizel Motorlarında Enjeksiyon Basıncı ve Maksimum Yakıt Miktarının Motor Performansı ve Duman Emisyonlarına Etkilerinin İncelenmesi

MOTORLAR. 1 Ders Adi: MOTORLAR 2 Ders Kodu: MAK Ders Türü: Seçmeli 4 Ders Seviyesi Lisans

Bölüm 3 Motor Çalışma Koşullarının Emisyonlara Etkisi

ÖZGEÇMİŞ. 1. Adı Soyadı : Orhan DURGUN İletişim Bilgileri Adres

EMME MANİFOLDUNDAKİ TÜRBÜLANS ARTIŞININ MOTOR PERFORMANSINA ETKİSİ ÜZERİNE DENEYSEL BİR ÇALIŞMA

Atık Kızartma Yağı Metil Esterinin Bir Dizel Motorunda, Motor Performansı ve Egzoz Emisyonlarına Etkisinin Araştırılması

SIKIŞTIRMA ORANININ BİR DİZEL MOTORUN PERFORMANS VE EMİSYONLARINA ETKİLERİ

Buji ile Ateşlemeli Bir Motorda Çalışma Parametrelerinin Egzoz Emisyonlarına Etkilerinin Deneysel Olarak İncelenmesi

İçten Yanmalı Motorların Doğalgazla Çalışır Hale Getirilmeleri ve Dönüştürülmüş Motorların Performans Parametrelerinin Analizi

GERÇEK YOL ŞARTLARINDA LPG VE BENZİNLE ÇALIŞAN İKİ TAŞITIN EMİSYON BAKIMINDAN KARŞILAŞTIRILMASI

DÜŞÜK GÜÇLÜ BİR MOTORDA FARKLI SIKIŞTIRMA ORANLARINDA LPG KULLANIMININ PERFORMANS VE EMİSYONLARA ETKİSİ

Benzin nitrometan karışımlarının özgül yakıt sarfiyatı ve emisyonlara etkisinin incelenmesi

MAKİNE VE TEÇHİZAT İŞLERİNDE İSG

BUJİ İLE ATEŞLEMELİ BİR MOTORDA HAVA FAZLALIK KATSAYISININ NO EMİSYONU VE KATALİTİK KONVERTÖR VERİMİNE ETKİSİNİN DENEYSEL OLARAK İNCELENMESİ

Journal of ETA Maritime Science

BURSA TEKNİK ÜNİVERSİTESİ MAKİNE MÜHENDİSLİĞİ BÖLÜMÜ MAKİNE LABORATUVAR DERSİ. Yakıt Püskürtme Sistemleri Deneyi

İÇTEN YANMALI MOTORLARDA SOĞUTMA SUYU SICAKLIĞININ MOTOR PERFORMANSINA ETKİLERİ ÜZERİNE DENEYSEL BİR ARAŞTIRMA

MAKİNE VE MOTOR DERS NOTLARI 4.HAFTA

DİZEL MOTORLARINDA DİZEL YAKITI + LPG KULLANIMININ PERFORMANS VE EMİSYONA ETKİSİ

Dokuz Eylül Üniversitesi, Mühendislik Fakültesi, Çevre Mühendisliği Bölümü, Buca/İZMİR. Yanma. Prof.Dr. Abdurrahman BAYRAM

BİNEK ARAÇLARINDA SÜRÜŞ KOŞULLARININ KİRLETİCİ EGZOZ EMİSYONLARINA ETKİSİ

SEMİH AKBAŞ

ALTERNATİF ENERJİ KAYNAKLARI

MPI Enjeksiyon Sistemli Araçlarda LPG ve Benzin Kullanımının Taşıt Performansı ve Egzoz Emisyonlarına Etkisinin İncelenmesi

ENERJİ SİSTEMLERİ MÜHENDİSLİĞİ YAKIT KİMYASI DERSİ DOĞALGAZIN YAKIT OLARAK MOTORLU ARAÇLARDA KULLANILMASI

BUJİ İLE ATEŞLEMELİ BİR MOTORDA PROPAN VE FARKLI ORANLARDA PROPAN/BÜTAN KULLANIMININ PERFORMANSA ETKİLERİNİN DENEYSEL ANALİZİ

Diesel Motorlarında Doldurma Basıncının ve Egzoz Gazı Resirkülasyonunun Azot Oksit ve Partikül Madde Emisyonlarına Etkisi.

ÖZGEÇMİŞ VE ESERLER LİSTESİ

Kazan Bacalarında Meydana Gelen Enerji ve Ekserji Kayıpları

BUJİ ATEŞLEMELİ BİR MOTORDA ALTERNATİF YAKIT OLARAK SAF ETANOLUN KULLANILMASI

MOTORLAR-5 HAFTA GERÇEK MOTOR ÇEVRİMİ

Hidrojen Depolama Yöntemleri

MAKİNE MÜHENDİSLİĞİ BÖLÜM BAŞKANLIĞI DERS TANITIM BİLGİLERİ. İçten Yanmalı Makineler MK-412 4/Güz (2+0+0) 2 5

Dünya Enerji Konseyi Türk Milli Komitesi TÜRKİYE 10. ENERJİ KONGRESİ

Binaların Isı Merkezlerinde Bulunan Kalorifer Kazanlarının Yanma Havası ve Hava Fazlalık Katsayılarına Göre Yanma Gazlarının Özelliklerindeki Değişim

Bölüm 6 Emisyonların Kontrolu

Avrupa ve Amerika da uygulanan emisyon standartlarının incelenmesi Türkiye de uygulanan egzoz gazı emisyon kontrol yönetmeliğinin incelenmesi Emisyon

2-Emisyon Ölçüm Raporu Formatı

ESKİŞEHİR KENT MERKEZİ YANMA KAYNAKLI EMİSYON ENVANTERİ ÇALIŞMASI

Etanol Dizel Yakıt Karışımlarının Kısmi Homojen Dolgulu Bir Dizel Motorun Performansına Etkisi

TECHNOLOGICAL APPLIED SCIENCES Received: June Habib Gürbüz Accepted: March 2010

İÇTEN YANMALI MOTORLARDA ÇEVRİMSEL FARKLARIN ÖNEMİ

FARKLI ALKOL YAKITLARIN BUJİ ATEŞLEMELİ BİR MOTORUN PERFORMANS, EMİSYON VE YANMA KARAKTERİSTİKLERİNE ETKİSİNİN DENEYSEL İNCELENMESİ


DOĞAL GAZ YAKITLI BİR YANMA ODASINDA HAVA VE YAKIT SICAKLIKLARININ SICAKLIK, ENTALPİ VE ENTROPİ ÜZERİNDEKİ ETKİLERİNİN İNCELENMESİ

Tekirdağ İli Benzinli Araçlarının Egzoz Emisyonu Üzerine Bir Araştırma

TEKNOLOJĐK ARAŞTIRMALAR

BIYOETANOL- BENZIN KARIŞIMLARININ BAZI YAKIT ÖZELLIKLERININ BELIRLENMESI

ÖZGEÇMĠġ. YAZIŞMA ADRESİ: Uludağ Üniversitesi, Mühendislik Mimarlık Fakültesi, Otomotiv Mühendisliği Bölümü, Görükle Kampusu, BURSA

BRÜLÖR EĞİTİMİ. Rüştü Kasım BOZACI

İçten yanmalı motorlarda temel kavramlarının açıklanması Benzinli ve dizel motorların çalışma prensiplerinin anlatılması

Otto ve Dizel Çevrimlerinin Termodinamik Analizi. Bölüm 9: Gaz Akışkanlı Güç Çevrimleri

Benzine Powermax Katkısının Motor Performansına Etkisinin İncelenmesi

MAKİNE MÜHENDİSLİĞİNE GİRİŞ Ders 3

İÇTEN YANMALI MOTORLAR 2. BÖLÜM EK DERS NOTLARI

7. Krank Mili 8. Biyel Kolu 9. Pistonlar 10. Segmanlar 11. Kam Mili 12. Subaplar

ETANOL-BENZİN VE METANOL-BENZİN KARIŞIMLARININ BUJİ İLE ATEŞLEMELİ BİR MOTORUN YANMA PARAMETRELERİNE VE EGZOZ EMİSYONLARINA

Egzoz gazında bulunan ve havayı kirleten bileşenler egzoz emisyonları diye adlandırılır. Bu bileşenlerden bazıları şunlardır:

Deðiþik Oktan Sayýlý Yakýtlarýn Farklý Gaz Kelebeði Açýklýklarýndaki Motor Performansý ve Egzoz Emisyonlarý

ALKOL-BENZİN KARIŞIMLARININ KULLANILDIĞI BİR TAŞITTA YANMA VERİMİNİN İNCELENMESİ

Anahtar Kelimeler: Do al gaz, Alternatif enerji, Küresel ısınma, Yakıt tüketimi.

Hidrojen - Metanol- Benzin Karışımlarının Deneysel İncelenmesi

ALTERNATİF YAKITLARIN VE İKİNCİL HAVA ENJEKSİYONUN KATALİTİK KONVERTÖR VERİMİNE ETKİSİNİN DENEYSEL OLARAK İNCELENMESİ.

Prof. Dr. Selim ÇETİNKAYA

Alkol Yakıtların Buji Ateşlemeli Motorlarda Kullanımının Performans ve Emisyonlara Etkisinin İncelenmesi

LÜLEBURGAZDAKİ BİNA DIŞ DUVARLARI İÇİN OPTİMUM YALITIM KALINLIĞININ BELİRLENMESİ VE MALİYET ANALİZİ

DİZEL MOTORLARINDA HİDROJENİN EK YAKIT OLARAK KULLANILIMININ MOTOR PERFORMANSINA ETKİSİNİN İNCELENMESİ ARAŞTIRMA MAKALESİ ÖZET

BUTANOL, ETANOL VE BENZİN KARIŞIMLARININ BUJİ İLE ATEŞLEMELİ MOTORLARDA ÖZGÜL YAKIT TÜKETİMİ VE EMİSYONA OLAN ETKİSİ

Otto motorun kısmi yüklerinde teorik minimum yakıt tüketimi

Tek silindirli bir dizel motorda atık biyodizel kullanımının motor performansı ve emisyonlarına etkisi

YAKIT OLARAK CH 4 KULLANAN DEĞİŞKEN SIKIŞTIRMA ORANLI BUJİ İLE ATEŞLEMELİ BİR MOTORUN İDEAL HAVA-YAKIT ÇEVRİM ANALİZİ İLE TEORİK SİMÜLASYONU

14th International Combustion Symposium (INCOS2018) April 2018

İÇTEN YANMALI MOTORLARDA MOMENT, GÜÇ ve YAKIT SARFİYATI KARAKTERİSTİKLERİNİN BELİRLENMESİ

Dizel Motorlarında Yanma Odası İçerisine Su Püskürtmenin Egzoz Emisyonlarına Etkisi

MOL KAVRAMI I. ÖRNEK 2

TÜPRAŞ HAM PETROL ÜNİTESİNDE ENERJİ ve EKSERJİ ANALİZİ

ISSN: e-journal of New World Sciences Academy 2009, Volume: 4, Number: 2, Article Number: 2A0015

FARKLI KATALIZÖR VE YIKAMA SUYU KULLANILAN KANOLA METIL ESTERININ DIZEL MOTORLARDA KULLANIMININ EMISYONLAR ÜZERINE ETKISI

Endüstriyel Kaynaklı Hava Kirliliği

ENERJİ YÖNETİMİ VE POLİTİKALARI

KANLIĞI ÇEVRE. Tamamlanması ERHAN SARIOĞLU ANTALYA 05-07/10/2010 ÇEVRE İZNİ / ÇEVRE İZİN VE LİSANSI

tmmob makina mühendisleri odası uygulamalı eğitim merkezi Buhar Kazanı Verim Hesapları Eğitimi

BACA GAZI DEVRİDAİMİ NOx lerin azaltılması için

SÜRDÜRÜLEBİLİR ENERJİ VE HİDROJEN ZEYNEP KEŞKEK ALTERNATİF ENERJİ KAYNAKLARI TEKNOLOJİSİ

ÖZGEÇMİŞ. Osmaniye Korkut Ata Üniversitesi Makine Mühendisliği Bölümü Osmaniye/Türkiye Telefon : /3688 Faks :

Dietil Eter-Dizel Karışımlarının Direkt Enjeksiyonlu Bir Dizel Motorunun Performans ve Emisyonlarına Etkisi

Propanol-Metanol Kullanılan Benzinli Motora Ait Egzoz Emisyon Karakteristikleri

YANMA. Derlenmiş Notlar. Mustafa Eyriboyun ZKÜ

Transkript:

DEÜ MÜENDİSLİK FAKÜLTESİ FEN ve MÜENDİSLİK DERGİSİ ilt: 6 Sayı: s. 3-4 Mayıs 4 ÇİFT YAKITLI (BENZİN + SIVILAŞTIRILMIŞ PETROL GAZI) BİR BENZİN MOTORUNUN İDEAL EMİSYON ÜRÜNLERİNE BAĞLI OLARAK OPTİMAL KARIŞIM ORANININ İNELENMESİ (INVESTIGATION OF OPTIMUM MIXTURE RATIO OF DUAL FUELS AORDING TO IDEALIZED ENGINE EMISSIONS RESULTING FROM TE OMBUSTION OF GASOLINE SUPPLEMENTED WIT LPG) enk SAYIN*, Mustafa ÇANAKÇI*, İbrahim KILIÇASLAN*, Necati ÖZSEZEN* ÖZET/ABSTRAT İçten yanmalı motorlarda, yakıt tüketimi ve egzoz emisyonlarını en az düzeye indirme çabaları, çift yakıtla çalışan motorlar üzerine yapılan çalışmaların başlangıç noktasını oluşturmaktadır. Bu çalışmada, çift yakıt (benzin+spg) kullanım oranına bağlı olarak yanma ürünlerinin değişimi, hazırlanan bir bilgisayar programı kullanarak hesaplanmış ve elde edilen sonuçlar yorumlanmıştır. Bu çalışma, gelecekte yapılacak deneysel çalışmalar için teorik alt yapı oluşturacaktır. To reduce brake specific fuel consumption and exhaust emissions in internal combustion engine is the start of the investigations on the engines that use dual fuels. This study discusses the results of dual fuel (gasoline+lpg) emissions calculated using a derived computer program. For future work, this theoretical study can be used as a guide for experimental study. ANATAR KELİMELER/KEY WORDS Çift yakıt, Egzoz emisyonu, Benzin motoru Dual fuel, Exhaust emission, Gasoline engine * Kocaeli Üniv., Teknik Eğitim Fakültesi, Makine Eğitimi Bölümü Anıtpark, İZMİT

Sayfa No: 36. SAYIN, M. ÇANAKÇI, İ. KILIÇASLAN, N. ÖZSEZEN 1. GİRİŞ Dünya nüfus artışına paralel olarak artan enerji tüketimi yüzünden bilinen rezervlerin ancak 1.yüzyılın ortalarına kadar ihtiyacı karşılayabileceği iddiası, bilim dünyasında derin endişelere neden olmaktadır. Mevcut enerji kaynaklarının hızla tükenmekte olması, taşıtlarda kullanılabilecek alternatif yakıt tipleri konusunda araştırmalar yapılmasını gerektirmektedir (Gümüş ve Tekin, 1; Schoenmaker, 1996). Diğer taraftan hava kirliliğine neden olan hidrokarbon esaslı yakıtların yanması neticesinde açığa çıkan O, ve NO x ve partikül emisyonları atmosferi kirleterek ciddi sağlık problemleri oluşturmaktadırlar. Karbon ihtiva eden yakıtları yakan sabit, endüstriyel motorlar, enerji tesisleri ve evsel kazanlardan çıkan atık gazların hava kirliliği oluşumundaki katkıları her ne kadar büyükse de, yapılan istatistikler sonucunda büyük şehirlerde motorlu taşıtlardan kaynaklanan hava kirliliğinin toplam hava kirliliği içindeki payının % lere kadar ulaştığı bilinmektedir (Sharma ve Khara, 1; Şen vd., 1996). Son yıllarda artan çevre bilincine ve mevcut enerji kaynaklarının biteceği kuşkularına paralel olarak özellikle gelişmiş ülkelerde hükümetlerin yaptırımları, üniversitelerin yönlendirmeleri üretici firmaları çevreyi kirletmeyen, alternatif yakıtlı ve tahrikli ürünleri geliştirmeye sevk etmiştir. Bu nedenle otomotiv sektörü egzoz emisyonlarını aşağıya çekecek tedbirler almaya ve alternatif yakıtları kullanabilecek motorlar üretmeye başlamıştır (Gümüş ve Tekin, 1; Nichols, 198). Motorlu taşıt yakıtları içinde; sıvılaştırılmış petrol gazı (SPG) benzin ve dizele göre daha temiz egzoz emisyonu verdiği için bir çok ülkede kullanılmakta ve kullanımı teşvik edilmektedir. Ayrıca SPG, bazı ülkelerde benzin ve dizel yakıt fiyatlarına göre daha ucuz olması nedeniyle, kullanıcılar tarafından tercih edilmektedir (İçingür ve aksever, 1998; Ergeneman ve Soruşbay, 1996). SPG; Propan ( 3 ) ve Bütan ( 4 ) ın belirli oranlardaki karışımından oluşup, sıvılaştırılmış petrol gazları kelimelerinin baş harflerini ifade eder. Dünyadaki SPG üretiminin %61 i doğal gaz, %39 u ise petrol rafinerilerinden gelmektedir (TMMOB, 1999). SPG yakıtı bazı emisyonlar yönünden diğer yakıtlara göre daha temizdir. Özellikle O emisyonları benzine göre daha düşük değerlere inerken ve NO x miktarındaki düşüş daha az olmaktadır. Ayrıca SPG yakıtı içinde, benzin ve kurşunsuz benzine, oktan sayısını artırmak için katılan kurşun tetra etil bulunmamaktadır. Bu durum SPG yakıtının egzozdaki kirletici emisyonlarının azalmasını sağlamaktadır. Yakıt içerisinde kükürt bulunmaması nedeniyle, kükürt oksit emisyonu da söz konusu değildir. Ayrıca dizel motorlarında görülen is ve partikül emisyonları da oluşmaz (İçingür ve aksever, 1998). Latusek ve Burrham (1993) yaptıkları çalışmada iki ve dört zamanlı motorlarda, benzin ve sıvılaştırılmış petrol gazı yakıtını deneyerek emisyon değerlerini karşılaştırmışlardır. +NO x emisyonları %19,6 ve O emisyonları %7,4 oranında azalmıştır. Propan ve bütanın kendiliğinden tutuşma sıcaklığı benzine göre yüksektir. Bu nedenden dolayı, SPG yakıtının uygun emisyon değerleri için daha fazla ateşleme avansı gerektirmiştir. Ateşleme zaman ayarı ile NO x emisyonları artış eğilimi göstermiştir. İçingür ve aksever (1998), dört silindirli, dört zamanlı, buji ile ateşlemeli benzinli bir motorda SPG yakıt sistemi dönüşümü yapmış ve emisyon karakteristikleri incelemişlerdir. Bu çalışmada, gerek O ve gerekse değerlerine göre SPG yakıtlı çalışma şartlarının benzine göre daha iyi olduğu görülmektedir. Fakat SPG dönüşüm sistemlerinin kendi aralarındaki farklılıklardan dolayı emisyonlar arasında da farklılıklar oluşmuştur. Bayraktar ve Durgun (1999), buji ile ateşlemeli motorlarda yanma olayının motor performansı ve motor elemanlarına olası etkilerini teorik olarak incelemişlerdir. Böylece motor çevriminin, benzin ve SPG yakıtları için çeşitli çalışma koşullarında hesaplanabildiği

Fen ve Mühendislik Dergisi ilt : 6 Sayı : Sayfa No: 37 bir termodinamik çevrim modeli geliştirilmiştir. Çevrim modelinde yanma işlemi; bir türbülanslı alev yayılması matematik modeli kullanılarak hesaplanmıştır. Benzin ve SPG nin aynı ekivalans oranında bir taşıt motorunda, çeşitli çalışma koşulları için yapılan hesaplar sonucu; SPG ile elde edilen O ve NO mol oranları benzin ile elde edilenlerden daha düşük çıkmıştır.. MALZEME VE METODLAR Bu çalışmada çift yakıt (benzin+spg) ile çalışan bir motorun SPG kullanım oranına bağlı olarak yanma ürünlerindeki değişim Olikara ve Borman ın hazırladığı kimyasal yanma programı kullanılarak hesaplanmıştır (Olikara ve Borman, 199). Program Fortran programlama dilinde hazırlanmıştır. Bu bilgisayar programı, bir ya da daha fazla fazdan oluşan bir sistemin denge denklemini hesaplamaktadır. Gaz fazı; ideal gazların bir karışımı şeklinde ele alınmıştır. Program hakkında ayrıntılı bilgi bahsi geçen kaynakta mevcuttur. Kullanılan SPG oranına bağlı olarak oluşan karma yakıtın kapalı formülü, sıvı ve gaz yakıtın mol oranlarına bağlı olarak hesap edilmiş ve bu kapalı formüle göre yanma ürünleri hesaplanmıştır. Yakıt fazlalık katsayısı (YFK); emme zamanında bir çevrimde bir silindire giren yakıt miktarının, ideal durumda girebilecek yakıt miktarına oranı olarak tanımlanır. Benzin ve SPG kullanılarak, farklı sıcaklık (,,,, 3, 3 K) ve YFK (,6,7,8,9 ve 1) da dört yanma denklemi yanma ürünlerini hesaplamak için kullanılmıştır. Aşağıda açıklanacağı gibi, ilk olarak 1 mol benzinin yanması incelenerek elde edilen sonuçlar referans olarak alınmıştır. Benzinin miktarı her adım için % oranında azaltılarak yakıt enerjisini sabit bir değerde tutabilmek için SPG miktarı artırılmıştır..1. Stokiyometrik Yanma İlk olarak stokiyometrik yanma varsayılmıştır. Eşitlik 1 Çanakçı (1996) ya göre teşkil edilmiş olup, yakıcı performansı ile ilgili olan yanma sonu ürünleri arasında yanmamış,, O, NO ve serbest O yoktur (Çanakçı, 1996; Dülger, 1999; Çengel ve Boles, 1996). m m m ( N 4 4 n m + n + )( O + 3,76N ) = no + ( ) O + 3,76( n + ) (1) Böylece n m şeklindeki yakıtın tam yanması için gerekli hava miktarı, ürün ve reaktantlar (yakıt ve hava) a ait farklı atomların dengesiyle hesaplanabilir. Örneğin benzinin kimyasal formülü 6,93 14,8 olduğuna göre, benzinin hava ile stokiyometrik yanması için oluşturulan reaksiyon denklemi aşağıda gösterilmiştir. + + + + N () 6,9314,8,7( O 3,76N ) 6,93O 7,9 O 39, 74 SPG nin tam yanması ise: + 6 + N (3) 3,7,( O + 3,76N ) 3,7O + 4,7 O, 7 Benzin ve SPG nin tam yanması (her bir yakıtında 1 er mol olduğu düşünülürse): + 16 + N (4) 6,9314,8 3,7 +,6( O + 3,76N ),63O + 11,99 O 6, 1

Sayfa No: 38. SAYIN, M. ÇANAKÇI, İ. KILIÇASLAN, N. ÖZSEZEN.. Bir Mol Yakıtın Açığa Çıkardığı Enerji Miktarı Motora gönderilen 1 mol yakıtın enerjisi = M f * QLV dir. Burada Q LV ; yakıtın alt ısıl değeri (MJ/kg), M ise yakıtın bir molünün ağırlığıdır (kg/mol). Buna göre 1 mol benzinin f yakıt enerjisi aşağıdaki gibi bulunabilir (Borat ve Balcı, 1996; eywood, 1998). Benzinin alt ısıl değeri, Q LV = 44MJ / kg () Benzinin mol ağırlığı, M ; = [(6,93*1) + 14,8] 97,74g / mol f 6,93 14,8 = Sonuç olarak 1 mol benzinin yakıt enerjisi;,97kg / mol * 44MJ / kg = 4,7MJ / mol dür. (6) 1 mol SPG nin yakıt enerjisini bulursak (Borat ve Balcı, 1997): SPG nin alt ısıl değeri, Q LV = 4,84MJ / kg (7) SPG nin mol ağırlığı, M (Sharma ve Khara, 1); 3,7 f = [( 3,7 + 1) + ] = 3,8g / mol (8) Sonuç olarak SPG nin yakıt enerjisi;,38kg / mol * 4,84MJ / kg =,894MJ / mol dür. (9).3. Benzin-SPG Karışımının Kimyasal Enerjisi Stokiyometrik karışımlar için (FK=1) benzin+spg karışımının genel eşitliği: k n m km + lq + l p q + O N ) 4 ( kn + lp) + ( + 3,76 = km + lq ( kn + lp) + km + lq kn + lp) O + O + 3,76 () 4 ( Denklem, benzinin ( 6.93 14.8 ) karbon atom sayısı m=6,93, hidrojen atom sayısı n=14,8 ve SPG nin ( 3,7 ) karbon atom sayısı p=3,7, hidrojen atom sayısı q= alınarak düzenlendiğinde stokiyometrik benzin SPG karışımının genel kimyasal eşitliği, 14,8k + l k6,9314,8 + l3,7 + 76 4 14,8k + l 14,8k + l k + l O + O + 3,76 6,93k + 3,7l + 4 ( 6,93k + 3,7l) + ( O + 3, N ) = ( ) ( ) (11)

Fen ve Mühendislik Dergisi ilt : 6 Sayı : Sayfa No: 39 Karşımın yakıt enerjisini sabit tutmak için denklem aşağıdaki gibi yazılabilir. k4,7 + l,89 = 4, 7MJ (1) Burada 4,7 ve,89 sırasıyla benzin ve SPG nin her bir molünün yakıt enerjileri (molar alt ısıl değerleri) dir. SPG nin mol sayısını hesaplamak için aşağıdaki eşitlik kullanılır. ( 4,7) 4,7 k l = (13),89 Örneğin benzin miktarı % oranında azaltılırsa,, mol SPG eklenir. (,9 * 4,7) 4,7 l = =, mol (14),89 Olikara/Borman programı yanma ürünlerini hacimsel kesirler olarak vermektedir. Yanma ürünlerinin birimlerini g/kw-h e dönüştürmek için denklem kullanılmıştır (Çanakçı, 1996). g ( x) = kw h ( ηlv 6,93 14,8 kg kmol M ( x) M )[1 + ( M 1+ ( M 3,7 kar yak * 3,7 9, 4 / M / M 6,93 6,93 14,8 ) 14,8 ) ( LV / LV ) 3,7 6,9 14,6 ( dön. fak.) ] () Eşitlik de MJ ü, kw-h e çevirmek için 3,6 sayısal değerine eşit olan dönüşüm faktörü kullanılmıştır. x, emisyon ürününü ve M alt indisle gösterilen verinin kütlesini ifade eder. η, ortalama % olarak kabul edilen motorun ısıl verimidir. LV ise alt indisle gösterilen yakıtın alt ısıl değeridir. Yanma ürünleri farklı sıcaklıklarda g/kw-h biriminde hesaplanırken, M kar, M yak, Mc 3,7 ve M 6,93 14,8, yakıt fazlalık katsayısı ve benzin (M 6,93 14,8 ) in yüzdesine bağlı olarak değişmektedir. Pentium III bilgisayar kullanarak Fortran programı çalıştırılmıştır. Sıcaklık ve YFK girilerek sonuçlar elde edilmiştir. Sıcaklıklar -3, YFK ise,6-1 arasında seçilmiştir. 3. BİLGİSAYAR SONUÇLARININ DEĞERLENDİRİLMESİ 3.1. Durum I (1 mol 6,93 14,8 ) I. durumda O nun miktarı YFK nın azalması ile düşmekte fakat, sıcaklığın artışı ile artmaktadır. Örnek olarak; 3 K sıcaklıkta ve stokiyometrik yanma (YFK=1) şartlarında O nun değeri 3,18 g/kw-h iken, aynı sıcaklıkta ve,6 YFK da 4,76 g/kw-h a düşmektedir.,6 YFK da ve K de O in değeri, g/kw-h dir. Benzer şekilde;,6 YFK ve 3 K sıcaklıktaki O değeri 3,79 g/kw-h olmaktadır. Aynı sıcaklıktaki O değerleri, karışım fakirleştikçe azalmaktadır. Bu durum için YFK ve sıcaklığa karşı hesaplanan kw-h başına O miktarları Şekil 1 de görülmektedir.

Sayfa No: 4. SAYIN, M. ÇANAKÇI, İ. KILIÇASLAN, N. ÖZSEZEN O 4 3 3 3 3,6,7,8,9 1 Şekil 1. O miktarının sıcaklık ve YFK nın fonksiyonu olarak değişimi (1 mol 6,93 14,8 ) NO x 3 3,6,7,8,9 1 Şekil. NO x miktarının sıcaklık ve YFK nın fonksiyonu olarak değişimi (1 mol 6,93 14,8 ) Benzer şekilde çizilen Şekil de görülen NO x emisyonları ise sıcaklık artışı ve YFK nın azalması ile artmaktadır. Örneğin; 3 K sıcaklık ve stokiyometrik yanmada, NO x emisyon değeri 7, g/kw-h iken, aynı sıcaklık ve,6 YFK da 16,93 g/kw-h olmaktadır.,6 YFK ve K sıcaklıkta NO x değeri 3, g/kw-h iken aynı YFK ve 3 K sıcaklıkta 1,44 g/kw-h olmaktadır.

Fen ve Mühendislik Dergisi ilt : 6 Sayı : Sayfa No: 41 3.. Durum II (,9 mol 6,93 14,8 +,148 mol 3,7 ) II. durumda,9 mol 6,93 14,8 ve,148 mol 3,7 kullanılmıştır. Buna göre sıcaklık ve YFK değerlerine karşılık hesaplanan O ve NO x değerleri Şekil 3 ve 4 te görülmektedir. Yanma ürünleri içerisindeki O miktarı bundan önceki duruma benzer davranışlar göstermektedir. YFK ve sıcaklık azaldığında O miktarı da azalmaktadır. O 4 3 3,6,7,8,9 1 Şekil 3. O miktarının sıcaklık ve YFK nın fonksiyonu olarak değişimi. (,9 mol 6,93 14,8 +,148 mol 3,7 ) 3 3 NO x 3 3,6,7,8,9 1 Şekil 4. NO x miktarının sıcaklık ve YFK nın fonksiyonu olarak değişimi (,9 mol 6,93 14.8 +,148 mol 3,7 )

Sayfa No: 4. SAYIN, M. ÇANAKÇI, İ. KILIÇASLAN, N. ÖZSEZEN Stokiyometrik yanma şartlarında, K sıcaklıkta O değeri,1 g/kw-h iken 3 K de 8,638 g/kw-h olmaktadır. K sabit sıcaklıkta,,6 ve,9 YFK da O miktarı sırasıyla, g/kw-h ve 8,84 g/kw-h dır. Şekil 4 NO x sonuçlarını göstermektedir. NO x değerleri sıcaklığın artması ve YFK nın düşmesi ile artmaktadır. Örneğin; stokiyometrik yanma şartlarında, ve 3 K sıcaklıklarında NO x değerleri sırasıyla,1 g/kw-h ve 6,86 g/kw-h dır. K sıcaklıkta,,6 ve,9 YFK da NO x değerleri sırasıyla,963 ve 1,6 g/kwh dir. II. durum yanma ürünleri arasında daha az O ve NO x içermektedir. 3.3. Durum III (,8 mol 6,93 14,8 +,96 mol 3,7 ) III. durumda, yanma sonunda oluşan enerjinin sabit kalması için,96 mol 3,7 ilave edilmiştir. O ve NO x değerleri, farklı sıcaklık ve YFK da hesaplanmıştır. Aynı şekilde, O miktarı, YFK nın düşmesiyle azalmakta, sıcaklığın artması ile artmaktadır. Örneğin, stokiyometrik yanma şartlarında ve 3 K sıcaklıkta O değeri sırasıyla,193 g/kwh ve 3,181 g/kw-h dır. K sabit sıcaklıkta,9 ve,6 YFK da O değeri sırasıyla 8,138 ve, g/kw-h dır. Şekil 6 da verilen NO x emisyonları incelendiğinde benzer durum göze çarpmaktadır. NO x miktarı sıcaklığın artışı ve YFK nın düşmesi ile azalmaktadır. Örneğin stokiyometrik yanmada ve 3 K de emisyon değerleri sırasıyla,11 g/kw-h ve,149 g/kw-h dir. K sabit sıcaklıkta,9 ve,6 YFK da NO x miktarı sırasıyla 3,9 g/kw-h ve 8,43 g/kw-h olmaktadır. Sonuç olarak, emisyon değerlerinin önceki üç durumdan daha azdır. O 4 3 3,6,7,8,9 1 Şekil. O miktarının sıcaklık ve YFK nın fonksiyonu olarak değişimi (,8 mol 6,93 14,8 +,96 mol 3,7 ) 3 3

Fen ve Mühendislik Dergisi ilt : 6 Sayı : Sayfa No: 43 NO x 3 3,6,7,8,9 1 Şekil 6. NO x miktarının sıcaklık ve YFK nin fonksiyonu olarak değişimi (,8 mol 6,93 14,8 +,96 mol 3,7 ) 3.4. Durum IV (1,47 mol 3,7 ) Daha önceki durumlardaki gibi açığa çıkan enerji miktarının sabit olması için bu durumda 1,47 mol 3,7 kullanılmıştır. Bu yakıttaki (SPG) karbon ve hidrojen katsayıları önceki durumlara kıyasla çok daha az olduğu için emisyonlarda önemli azalmalar kaydedilmiştir. Bu sonuçlar Şekil 7 ve Şekil 8 de görülmektedir. O 4 3 3,6,7,8,9 1 Şekil 7. O miktarının sıcaklık ve YFK nın fonksiyonu olarak değişimi (1,47 mol 3,7 ) 3 3

Sayfa No: 44. SAYIN, M. ÇANAKÇI, İ. KILIÇASLAN, N. ÖZSEZEN Sadece 3,7 nin yanmasında sıcaklık ve YFK nın artması ile O miktarı da artmaktadır. Örneğin, stokiyometrik yanma şartlarında ve 3 K de O in miktarı sırasıyla,96 g/kw-h ve 7,79 g/kw-h dır. K sabit sıcaklıkta,9 ve,6 YFK da O in değeri 6,6 g/kw-h ve 4,3 g/kw-h dır. NO x emisyonlarındaki artış ise sıcaklığın artması ile doğru YFK nın artması ile ters orantılı olarak değişmektedir. Örneğin stokiyometrik yanma şartlarında ve 3 K de NO x miktarı sırasıyla 4,937 g/kw-h ve 7,176 g/kw-h dır. 3 K sabit sıcaklıkta,7 ve,9 YFK da NO x değeri sırasıyla 13,334 g/kw-h ve 8,649 g/kw-h dır. Sadece SPG ( 3,7 ) kullanımındaki O ve NO x emisyonları, farklı oranlardaki iki yakıt ( 6,93 14,8 ve 3,7 ) karışımının emisyonlarından her durumda daha az olduğu görülmektedir. NO x 3 3,6,7,8,9 1 Şekil 8. NO x miktarının sıcaklık ve YFK nın fonksiyonu olarak değişimi (1,47 mol 3,7 ) 4. SONUÇ Benzin ve SPG kullanılan 4 yanma denklemi, farklı sıcaklık ve YFK da yanma ürünlerini hesaplamak için kullanılmıştır. Tüm durumlar Olikara/Borman bilgisayar programı ile hesaplanmıştır. İlk olarak stokiyometrik yanma şartlarında ve altı farklı sıcaklıktaki 1 mol benzinin yanması incelenerek elde edilen sonuçlar referans olarak alınmıştır. Adım adım benzinin miktarı azaltılarak yakıt enerjisini sabit bir değerde tutabilmek için SPG miktarı artırılmıştır. SPG içindeki karbon oranı benzin yakıtındaki karbon oranındakinden daha düşüktür. Bu temel sebepten dolayı sunulan tüm durumlar için; SPG miktarının artırılmasıyla O in azaldığı belirgin bir şekilde görülmektedir. O değeri aynı zamanda sıcaklık ve YFK da bağlıdır. Bu emisyonun en az miktarı 1,47 mol 3,7 için hesaplanmıştır. NO x miktarı SPG ilavesiyle azalmaktadır. İkili yakıtları (benzin+spg) kapsayan her durum için en iyi sonuçlar % benzin +1,47 mol 3,7 şartlarında elde edilmektedir.

Fen ve Mühendislik Dergisi ilt : 6 Sayı : Sayfa No: 4 Sunulan bu çalışmada günümüz araçlarında SPG ve benzin ( 6,93 14,8 ) kullanımı emisyonlar açısından karşılaştırılacak olursa, SPG kullanımıyla emisyonlarda önemli iyileşmeler sağlanacağı kesindir. İçten yanmalı motorların neden olduğu egzoz emisyonlarını en az düzeye indirme çabaları, çift yakıtlı motor düşüncesinin başlangıç noktasını oluşturmaktadır. Günümüzde dizel motorlarında, çift yakıtlı motor (dizel+doğal gaz) üretimi ile egzoz emisyonlarında önemli iyileşmeler sağlanmıştır. Bu çalışma, benzin yakıtı kullanılan taşıtlarda henüz araştırma aşamasında olan çift yakıtlı (benzin+lpg) motor tasarımı ile egzoz emisyonlarının önemli ölçüde azaltılacağı sonucunu ortaya koymaktadır. KAYNAKLAR Bayraktar., Durgun O. (1999): Buji İle Ateşlemeli Motorlarda Gaz Yakıtların Kullanımının Yanma ve Motor Performansı Üzerine Etkileri, İstanbul, 6. Uluslar Arası Yanma Sempozyumu, s. 73-8. Borat O., Balcı M. (1996): Yanma Bilgisi, Ankara, Gazi Üniversitesi Teknik Eğitim Fakültesi Yayınları, s. 9-94. Borat O., Balcı M. (1997): İçten Yanmalı Motorlar, Ankara, Gazi Üniversitesi Teknik Eğitim Fakültesi Yayınları, s. 18-19. Çanakçı M. (1996): Idealized Engine Emissions Resulting from The ombustion of Isooctane Supplemented with ydrogen, Tennesse, Ms Thesis, Vanderbilt University. Çengel Y., Boles M (1996): Mühendislik Yaklaşımıyla Termodinamik, USA, McGraw- ill, s. 661-66. Dülger Z. (1999): İçten Yanmalı Motorlar, İzmit, Kocaeli Üniversitesi Mühendislik Fakültesi Yayınları, No. 11, s. 8-9. Ergeneman M., Soruşbay. (1996): Benzin Motorlu Taşıtların LPG Kullanımına Dönüşümü, Ankara, Mühendis Makine, ilt. 37, Sayı. 441, s. -36. Gümüş M., Tekin M. (1): Çift Yakıtlı (Dizel+Doğal Gaz) Dizel Motorunun Yanma Ürünleri Analizi, Bursa, TMMOB Makine Mühendisleri Odası VII. Otomotiv ve Yan Sanayi Sempozyumu, s. 96-1. eywood J. B. (1998): Internal ombustion Engines, USA, McGraw-ill, International Editions, p. 4-63. İçingür Y., aksever R. (1998): Benzinli Motorlarda Sıvılaştırılmış Petrol Gazının Performans ve Emisyonlara Etkisinin Deneysel Analizi, Ankara, Politeknik Dergisi, Sayı. 3, s. 67-76. Latusek P., ve Burrham R. (1993): Key Success Factors for Automotive Use of LPG, Japan, The 6th World LPG onference, p. 44-6. Nichols R. (198): Application of Alternative Fuels, SAE Paper 873. Olikara., Borman G. (199): A omputer Program for alculating Properties of Equilibrium ombustion Products with Some Applications to the Engines, SAE Paper 7468. Schoenmaker P. (1996): LPG: Alternative to Urban Public Transportation in The Future, İstanbul, 1. Ulusal Ulaşım Sempozyumu, s. 344-4. Sharma P., Khara M. (1): Modeling of Vehicular Exhaust-A Review, Transportation Research Part, p. 179-198. Şen Z., Şahin A. (1996): Future Prospects of Fossil and Alternative Energy Sources, Trabzon, Proceedings of the 1st Int. Energy and Environment Symposium, p.37-43. TMMOB (1999): Araçlarda LPG Dönüşümü, Ankara, s. 4.