KİMYA LABORATUVARLARINDA KULLANILAN MALZEMELER

Benzer belgeler
KARADENİZ TEKNİK ÜNİVERSİTESİ FEN FAKÜLTESİ - KİMYA BÖLÜMÜ

Biz konsantrasyonun üç çeşit birimini inceleyeceğiz: a) Agırlıkça Yüzde Konsantrasyon: 100 gram çözeltide bulunan madde miktarıdır.

GENEL KİMYA. Yrd.Doç.Dr. Tuba YETİM

Çözelti iki veya daha fazla maddenin birbiri içerisinde homojen. olarak dağılmasından oluşan sistemlere denir.

Fiziksel özellikleri her yerde aynı olan (homojen) karışımlara çözelti denir. Bir çözeltiyi oluşturan her bir maddeye çözeltinin bileşenleri denir.

ÇÖZELTİ HAZIRLAMA. Kimyasal analizin temel kavramlarından olan çözeltinin anlamı, hazırlanışı ve kullanılışının öğrenilmesidir.

ÇÖZELTİLERDE YÜZDELİK İFADELER. Ağırlıkça yüzde (% w/w)

Erciyes Üniversitesi Gıda Mühendisliği Bölümü Gıda Analizleri ve Teknolojisi Laboratuvar Föyü Sayfa 1

5. GRUP KATYONLAR (Alkali grubu)

00213 ANALİTİK KİMYA-I SINAV VE ÇALIŞMA SORULARI

ÇÖZELTİLER VE ÇÖZELTİ KONSANTRASYONLARI 3.1. Çözeltiler için kullanılan temel kavramlar


1. BÖLÜM : ANALİTİK KİMYANIN TEMEL KAVRAMLARI

Aeresol. Süspansiyon. Heterojen Emülsiyon. Karışım. Kolloidal. Çözelti < 10-9 m Süspansiyon > 10-6 m Kolloid 10-9 m m

Bu tepkimelerde, iki ya da daha fazla element birleşmesi ile yeni bir bileşik oluşur. A + B AB CO2 + H2O H2CO3

Çözünürlük kuralları

Çözeltiler. MÜHENDİSLİK KİMYASI DERS NOTLARI Yrd. Doç. Dr. Atilla EVCİN. Yrd. Doç. Dr. Atilla EVCİN Afyonkarahisar Kocatepe Üniversitesi 2006

Doğal Rb elementinin atom kütlesi 85,47 g/mol dür ve atom kütleleri 84,91 g/mol olan 86 Rb ile 86,92 olan 87

KANTİTATİF ANALİTİK KİMYA PRATİKLERİ

ÇÖZÜNÜRLÜĞE ETKİ EDEN FAKTÖRLER

İLK ANYONLAR , PO 4. Cl -, SO 4 , CO 3 , NO 3

Erciyes Üniversitesi Gıda Mühendisliği Bölümü Gıda Analizleri ve Teknolojisi Laboratuvar Föyü Sayfa 1

Çözelti konsantrasyonları. Bir çözeltinin konsantrasyonu, çözeltinin belirli bir hacmi içinde çözünmüş olan madde miktarıdır.

KİMYA II DERS NOTLARI

Genel Kimya. Bölüm 7: ÇÖZELTİLER VE ÇÖZÜNÜRLÜK. Yrd. Doç. Dr. Mustafa SERTÇELİK Kafkas Üniversitesi Kimya Mühendisliği Bölümü

KONU: MOLEKÜLER BİYOLOJİDE TEMEL TEKNİKLER; Çözeltiler ve Tamponlar

BİYOKİMYASAL ÇÖZELTİLER

TURUNCU RENGĐN DANSI NASIL OLUR?

TOPRAK ALKALİ METALLER ve BİLEŞİKLERİ

Sulu Çözeltiler ve Kimyasal Denge

ÇÖZELTİ/MİX HAZIRLAMA ZENGİNLEŞTİRME (SPIKE) YAPMA

Gıdalarda Tuz Analizi

İÇERİK. Suyun Doğası Sulu Çözeltilerin Doğası

HACETTEPE ÜNĐVERSĐTESĐ ÖĞRETĐM TEKNOLOJĐLERĐ VE MATERYAL GELĐŞTĐRME KONU ANLATIMI. Hazırlayan: Hale Sümerkan. Dersin Sorumlusu: Prof. Dr.

4. GRUP KATYONLARI (TOPRAK ALKALİLERİ GRUBU)

Genel Anyonlar. Analitik Kimya Uygulama I

ÇÖZELTİLERDE DENGE (Asit-Baz)

Laboratuvara Giriş. Adnan Menderes Üniversitesi Tarımsal Biyoteknoloji Bölümü TBT 109 Muavviz Ayvaz (Yrd. Doç. Dr.)

ONDOKUZ MAYIS ÜNİVERSİTESİ MÜHENDİSLİK FAKÜLTESİ KİMYA MÜHENDİSLİĞİ BÖLÜMÜ ORGANİK KİMYA LABORATUVARI

DENEY I ÇÖZELTİ KONSANTRASYONLARI. Genel Bilgi

GIDALARIN BAZI FİZİKSEL NİTELİKLERİ

BÖLÜM 6 GRAVİMETRİK ANALİZ YÖNTEMLERİ

ANALİTİK KİMYA UYGULAMA II GİRİŞ

Genel Kimya Prensipleri ve Modern Uygulamaları Petrucci Harwood Herring 8. Baskı. Bölüm 4: Kimyasal Tepkimeler

GENEL KİMYA. Yrd.Doç.Dr. Tuba YETİM

Toprakta Kireç Tayini

Genel Kimya 101-Lab (4.Hafta) Asit Baz Teorisi Suyun İyonlaşması ve ph Asit Baz İndikatörleri Asit Baz Titrasyonu Deneysel Kısım

TİTRİMETRİ Konsantrasyon: Bir çözeltinin belirli bir hacminde çözünmüş olarak bulunan madde miktarıdır.

ÇÖZELTİLERİN KOLİGATİF ÖZELLİKLERİ

CaCO3 + CO2 + H2O. ISI MgCO3 + CO2 + H2O

kimyasal değişimin sembol ve formüllerle ifade edilmesidir.

YouTube:Kimyafull Gülçin Hoca Serüveni DERİŞİM BİRİMLERİ Ppm-ppb SORU ÇÖZÜMLERİ

T:C: UŞAK ÜNİVERSİTESİ İdari ve Mali İşler Daire Başkanlığı

ASİTLER- BAZLAR. Suyun kendi kendine iyonlaşmasına Suyun Otonizasyonu - Otoprotoliz adı verilir. Suda oluşan H + sadece protondur.

İnstagram:kimyaci_glcn_hoca SIVI ÇÖZELTİLER VE ÇÖZÜNÜRLÜK. kimyaci_glcn_hoca

4. ÇÖZÜNÜRLÜK. Çözünürlük Çarpımı Kçç. NaCl Na+ + Cl- (%100 iyonlaşma) AgCl(k) Ag + (ç) + Cl - (ç) (Kimyasal dengeye göre iyonlaşma) K = [AgCl(k)]

A- LABORATUAR MALZEMELERİ

ALKALİNİTE. 1 ) Hidroksitler 2 ) Karbonatlar 3 ) Bikarbonatlar

BAZ KARIŞIMLARININ VOLUMETRİK ANALİZİ

6. Aşağıdaki tablodan yararlanarak X maddesinin ne olduğunu (A, B,C? ) ön görünüz.

6.PPB (milyarda bir kısım) Kaynakça Tablo A-1: Çözelti Örnekleri... 5 Tablo B-1:Kolloidal Tanecikler... 8

KARIŞIMLARIN SINIFLANDIRILMASI

ÇÖZELTİLER ve DERİŞİM

ÇÖZÜNMÜŞ OKSİJEN TAYİNİ

Bir maddenin başka bir madde içerisinde homojen olarak dağılmasına ÇÖZÜNME denir. Çözelti=Çözücü+Çözünen

8. SINIF KĠMYA DENEYLERĠ

7-2. Aşağıdakileri kısaca tanımlayınız veya açıklayınız. a) Amfiprotik çözücü b) Farklandırıcı çözücü c) Seviyeleme çözücüsü d) Kütle etkisi

İnstagram:kimyaci_glcn_hoca H A 9.HAMLE SULU ÇÖZELTİLERDE DENGE ASİT VE BAZ DENGESİ 2.BÖLÜM. kimyaci_glcn_hoca

KĐMYA EĞĐTĐMĐ DERSĐ PROF.DR.ĐNCĐ MORGĐL

ERİME VE KAYNAMA NOKTASI TAYİNİ DENEYİ

Yrd. Doç. Dr. Serap YILMAZ

5) Çözünürlük(Xg/100gsu)

Yrd. Doç. Dr. Atilla EVCİN Afyonkarahisar Kocatepe Üiversitesi 2007 KLERİ DERS NOTLARI. Sıvı fazdan katı taneciklerin çökelmesi için çoğu reaksiyonlar

KİM-118 TEMEL KİMYA Prof. Dr. Zeliha HAYVALI Ankara Üniversitesi Kimya Bölümü

ÇÖZELTILERDE DENGE. Asitler ve Bazlar

ÜNİTE 9. Çözeltiler. Amaçlar. İçindekiler. Öneriler

HEDEF VE DAVRANIŞLAR:

NÖTRALĠZASYON TĠTRASYONLARI

TÜBİTAK-BİDEB YİBO ÖĞRETMENLERİ (FEN VE TEKNOLOJİFİZİK,KİMYA,BİYOLOJİ-VE MATEMATİK ) PROJE DANIŞMANLIĞI EĞİTİMİ ÇALIŞTAYLARI

DENEY 4. ASİT BAZ TİTRASYONLARI (indikatörlü, potansiyometrik)

Bölüm 5 Çalışma Soruları

Fe 3+ için tanıma reaksiyonları

Yükseltgenme-indirgenme tepkimelerinin genel ilkelerinin öğrenilmesi

Bileşikteki atomların cinsini ve oranını belirten formüldür. Kaba formül ile bileşiğin molekül ağırlığı hesaplanamaz.

EVDE BİYOTEKNOLOJİ. Yrd. Doç. Dr. Hüseyin UYSAL Adnan Menderes Üniversitesi Ziraat Fakültesi Tarımsal Biyoteknoloji Bölümü 4. Ders

KIM607 GENEL KİMYA DERSİ TİTRASYON DENEY FÖYÜ

FARMASÖTİK TEKNOLOJİ I «ÇÖZELTİLER»

KALSİYUM, MAGNEZYUM VE SERTLİK TAYİNİ

ATIKSULARDA FENOLLERİN ANALİZ YÖNTEMİ

Sulu Çözeltilerde Asit - Baz Dengesi

GENEL KİMYA 101 ÖDEV 3

HAZIRLAYAN Mutlu ŞAHİN. Hacettepe Fen Bilgisi Öğretmenliği

10. Sınıf Kimya Konuları KİMYANIN TEMEL KANUNLARI VE TEPKİME TÜRLERİ Kimyanın Temel Kanunları Kütlenin korunumu, sabit oranlar ve katlı oranlar

Örnek : 3- Bileşiklerin Özellikleri :

2+ 2- Mg SO 4. (NH 4 ) 2 SO 4 (amonyum sülfat) bileşiğini katyon ve anyonlara ayıralım.

Hidroklorik asit ve sodyum hidroksitin reaksiyonundan yemek tuzu ve su meydana gelir. Bu kimyasal olayın denklemi

5. ÇÖZÜNÜRLÜK DENGESİ

ASİT-BAZ DENGESİ ÖSS DE ÇIKMIŞ SORULAR

KATI ATIK ÖRNEKLERİNDE TOPLAM FOSFOR ANALİZ YÖNTEMİ

Suda çözündüğünde hidrojen iyonu verebilen maddeler asit, hidroksil iyonu verebilenler baz olarak tanımlanmıştır.

Transkript:

T.C. KARADENİZ TEKNİK ÜNİVERSİTESİ FEN FAKÜLTESİ - KİMYA BÖLÜMÜ TEMEL KİMYA LABORATUVARI TRABZON - 2017

KİMYA LABORATUVARLARINDA KULLANILAN MALZEMELER 2 Erlen Mezür Balon joje Ayırma hunisi Huni Beher Metal-porselen spatül Saat camı Cam balon Soğutucu Nuçe erleni Piset Cam kroze Porselen kroze Porselen havan Buchner hunisi

3 Pens Metal maşa Spor Büret Cam pipet Bunzen beki Plastik pastör pipet Lastik puar Tahta maşa Filtre kâğıdı Deney Tüpü Petri Kabı Manyetik Karıştırıcı Vakumlu desikatör Koruyucu eldiven Masaüstü ph metre Amyant ve üçayak Fırın

4 Etüv Hassas terazi Su banyosu Çözeltiler ve Hazırlanmaları Çözeltiler en az iki farklı maddeden oluşan tek fazlı (homojen) karışımlardır. Bir çözeltinin kimyasal içeriğini gösteren ve en önemli özelliği derişimdir. Derişim, çeşitli birimlerle ifade edilen çözelti veya çözücünün birim miktarında çözünenin bağıl miktarını gösteren bir büyüklüktür. Derişim birimlerinin bir kısmı hacim temelinde, bir kısmı kütle temelinde, bir kısmı ise mol sayısı temelinde tanımlanmıştır. Bu birimlerin birbiri cinsinden karşılıklarının bulunması için çözünen ve çözücünün mol kütlesi değerlerinin yanı sıra çözeltinin yoğunluğunun bilinmesi çoğunlukla yeterli olabilmektedir. Hacim temelinde derişimi bilinen çözelti hazırlarken, çözeltiye eklenecek çözücü miktarı ile ilgilenilmezken, diğer derişim birimlerinde çözelti hazırlanırken, eklenecek çözücü miktarı da mutlaka hesaplanmalıdır. Hacim Bazındaki Derişimler: Molarite (M), Normalite (N), Hacimde kütlece % (a/v, w/v) Kütle Bazındaki Derişimler: Yüzde kütle (%a), Molalite (m), ppt, ppm, ppb Mol Bazındaki Derişimler: Yüzde mol ve mol kesri (fizikokimyasal büyüklükler için)

5 Çözeltilerin seyreltilmesi genel olarak çözünen/çözücü oranı şeklinde tanımlanabilen derişimin azaltılması anlamına geldiği için çözücü eklenerek, deriştirilmesi ise derişimin arttırılması anlamına geldiği için çözünen eklenerek veya çoğunlukla buhar basıncı yüksek olan çözücünün buharlaştırılarak uzaklaştırılmasıyla mümkün olabilmektedir. Hacim bazındaki çözeltilerin seyreltilmeleri kolayken (M1 V1 = M2 V2), kütle bazındaki derişim birimlerinde ise çok daha büyük hassasiyetle hazırlama kolaylığı ve balon jojeye ihtiyaç duyulmaması gibi kolaylıkları vardır. Çözelti Hazırlama ve Derişim Uygulamaları Çözelti derişimlerinin ifadesinde sıklıkla kullanılanlar; molarite, normalite, molalite, % kütle, % hacim, ppm, % mol ve mol kesridir. Çözelti yoğunluğunun bilinmesi gereken durumlarda pipetle bilinen hacimde alınan çözeltinin önceden darası alınmış veya elektronik terazide darası sıfırlanmış temiz ve kuru bir behere aktarılarak kütlesinin ölçülmesinden yararlanılacak, yoğunluğun kütle/hacim oluşu hatırlanacaktır. Derişim Birimleri Çözeltilerin derişiminin belirtilmesinde yaygın olarak kullanılan derişim birimi tanımları ve ilgili eşitlikleri aşağıda verilmiştir: 1. Molarite : 1 litre çözeltide çözünmüş olan maddenin mol sayısıdır. M = nçözünen / Vçözelti (litre cinsinden) 2. Normalite : 1 litre çözeltide çözünen maddenin eşdeğer gram sayısı N = nçözünen T / Vçözelti (litre) 3. Molalite : 1000 gram çözücüde çözünen maddenin mol sayısı m = nçözünen 1000 / gram cinsinden çözücünün miktarı 4. Kütle Yüzdesi : 100 gram çözeltide çözünmüş maddenin gram cinsinden miktarıdır. % a = (gçözünen / gçözelti) 100 5. Hacim Yüzdesi : 100 ml çözeltide çözünen maddenin hacim miktarıdır. % Hacim = (Vçözünen / Vçözelti) 100 6. Mol Kesri : Çözünenin mol sayısının çözeltideki bileşenlerin toplam mol sayısına oranıdır. X = nçözünen / ntoplam 7. Mol Yüzdesi : 100 mol çözeltideki mol sayısı cinsinden çözünen madde miktarıdır. % Mol = (nçözünen / nçözelti) 100

6 DENEY - 1 ÇÖZELTİ HAZIRLAMA Bir madde ikinci bir madde içerisinde molekülleri veya iyonları halinde dağıldığında meydana gelen karışıma çözelti adı verilir. İyonları veya molekülleri halinde dağılan maddeye çözünen madde; maddeyi çözen ikinci maddeye de çözücü adı verilir. Çözeltideki çözünmüş olan maddenin miktarını belirtmek için "konsantrasyon" terimi kullanılır. Şekil 1. Çözelti hazırlama Burada konsantrasyonun üç türünü inceleyeceğiz: a. Yüzde konsantrasyon, b. Molarite, c. Normalite. a) % Konsantrasyon: Ağırlıkça ve hacimce olmak üzere ikiye ayrılır. (1) Ağırlıkça % Konsantrasyon (m/m): 100 gram çözeltide çözünen maddenin g olarak miktarıdır. 100 g, ağırlıkça % 5 lik NaCl çözeltisi hazırlayınız. Yani, 100 g çözeltide; 5 g NaCl, 95 g su olmalıdır. Buna göre bir kap içine (beher, erlen, balon joje) 5 g NaCl tartılır, üzerine 95 g saf su (veya 95 ml suyun yoğunluğu d 1 g/cm 3 ) ilâve edilip karıştırılır. (2) Hacimce % Konsantrasyon (v/v): 100 ml çözeltide çözünmüş olan maddenin ml olarak miktarıdır. Hacimce % 10'luk 50 ml etanol çözeltisi hazırlayınız. 100 ml çözelti hazırlayacak olsaydık 10 ml alkol ve 90 ml su gerekecekti. 50 ml çözelti olduğu için bu miktarların yarısı alınırsa, çözelti hazırlanmış olur. Bir mezür veya balon joje'ye 5 ml alkol ve 45 ml su ilâve edilir. b) Molarite: 1 litre çözeltide çözünmüş olan maddenin mol sayısıdır. 1 M'lık 1000 ml NaCl çözeltisi nasıl hazırlanır? (m A NaCl = 23 + 35,5 = 58,5 g/mol.

7 1 mol, yani 58,5 g NaCl alınıp 1 L lik balon jojeye konur. Üzerine bir miktar saf su ilâve edilip tamamen çözülür. Daha sonra işaret çizgisine kadar saf su ile doldurulur. Böylece 1 M 1000 ml NaCl çözeltisi hazırlanmış olur. 1 M lik NaCl çözeltisinden 0,2 M 250 ml çözelti nasıl hazırlanır? Bu bir seyreltme işlemidir. Bunun için aşağıdaki seyreltme denklemi kullanılır. M 1.V 1 = M 2.V 2 1 x V1 = 0,2 x 250 V1 = 50 ml (1 M'lık çözeltiden 50 ml alınıp saf su ile bir balon jojede 250 ml'ye tamamlanır) % 36'lık ve yoğunluğu d=1.18 g/cm 3 olan HCl çözeltisinden 0,10 M ve 250 ml HCl çözeltisi nasıl hazırlanır? (m A HCl = 1 + 35,5 = 36,5 g/mol) Önce bu çözeltideki saf HCl miktarını bulalım (ilk çözeltiyi 1000 ml kabul edelim). m = % d V m = 0.36 x 1.18 g/cm 3 x 1000 ml m = 424,8 g m 424.8 g HCl in mol sayısı (n) = = = 11.6 mol MA 36.5 g/mol 11.6 mol Molarite (M) = = 11.6 mol/l (Molar = M) 1.00 L Seyreltme denkleminden: M 1.V 1 = M 2.V 2 11.6 x V1 = 0.10 x 250 V1 = 2.2 ml (İlk HCl çözeltisinden 2.2 ml alınıp bir balon jojede saf su ile 250 ml ye tamamlanır). c) Normalite: 1 litre çözeltide çözünmüş olan maddenin eşdeğer-gram sayısına denir. Tesir Değerliği (t): Asitlerde proton (H + ) sayısı, bazlarda (OH - ) iyonu sayısı, tuzlarda ise pozitif yüklü iyon sayısıdır. N= m t m A V N = M x t 0.2 N 250 ml NaOH çözeltisi nasıl hazırlanır? (m A NaOH = 40 g/mol) NaOH in tesir değerliği t = 1 dir.

8 m A 40 Eşdeğer gram sayısı (veya ekivalent) = = = 40 t 1 m t N = m = m A V N m A V t = 0.2 x 40 x 0.250 1 m = 2 g SORULAR 1. % 80 lik bir alkol çözeltisinden; % 20 lik, 500 ml çözelti nasıl hazırlarsınız? 2. 450 g lık bir KCl çözeltisinde; 60.376 g KCl bulunduğuna göre bu çözelti % kaçlıktır? 3. % 98 lik, d=1.89 g/cm 3 olan H 2 SO 4 den, a) 2 M lık 1000 ml ve 0.5 M lık 500 ml b) 0.2 N lik 1000 ml ve 0.4 N lik 100 ml çözelti nasıl hazırlarsınız?

9 DENEY - 2 ÇÖKTÜRME REAKSİYONLARI Bazı maddeler suda çok iyi çözünürken bazıları ise hiç çözünmezler. İnorganik maddeler suda çözünen ve suda çözünmeyenler olarak ikiye ayrılır. Suda Çözünenler: Tüm Lityum bileşikleri (LiCl, LiF, Li 2 SO 4... gibi) Tüm Sodyum bileşikleri (NaCl, NaNO 3, Na 2 SO 4, Na 2 CO 3, NaCH 3 COO, Na 3 PO 4... gibi) Tüm Potasyum bileşikleri (KCl, KI, KNO 3... gibi) Tüm Sezyum bileşikleri (CsCl, CsNO 3... gibi) + Tüm NH 4 (amonyum) bileşikleri (NH 4 Cl, NH 4 Br, NH 4 NO 3, (NH 4 ) 2 SO 4... gibi) Tüm Klorat (ClO - 3 ), asetat (CH 3 COO - ) ve nitrat (NO - 3 ) bileşikleri: Ca(ClO 3 ) 2, Mg(ClO 3 ) 2, Pb(CH 3 COO) 2, NH 4 CH 3 COO, Pb(NO 3 )2... gibi Ayrıca asit tuzları (HS -, HCO - 3, HPO -2 4, H 2 PO - 4 ) (Sr(HS)2, Mg(HCO3)2, CaHPO4, Ba(H2PO4)2... gibi) suda çözünür. Suda Çözünmeyenler: Hg 2 Cl 2, SrSO 4, BaSO 4, Ag 2 SO 4, PbSO 4, HgSO 4. Bazı hidroksit ve karbonatlar da suda çözünmezler: Mg(OH) 2, MgCO 3, Ca(OH) 2, CaCO 3, BaCO 3, SrCO 3, Al(OH) 3, Fe(OH) 3. Bunlardan başka S -2, SO -2-3 -2 + 3, PO 4, CrO 4 bileşikleri (1. Grup katyonlarla ve NH 4 bileşikleri hariç) BaCrO 4, Ca 3 (PO 4 ) 2, CoS, FeS, Cr 2 (SO 3 ) 3... gibi suda çözünmezler. Fakat bahsedilen çözünme kurallarına aykırı olarak; HgCl 2, Ba(OH) 2, Sr(OH) 2 ve BaS suda tamamen çözünür. Bu deneyde iki ayrı çözelti birbiriyle karıştırılarak çökme olayı gözlenecektir. Bir deney tüpüne BaCl 2 çözeltisi, ikinci deney tüpüne de Na 2 SO 4 çözeltisi hazırlanır. Biri diğerinin üzerine dökülerek karıştırılır. Beyaz, bulanık BaSO 4 çözeltisi gözlenir. Burada 2Na + ve 2Cl - iyonu hiç bir değişime uğramadıkları için reaksiyonun net iyonik denkleminde gösterilmezler. Buna göre net iyonik denklem şöyledir:

10 Ba 2+ (aq) + SO 4-2 (aq) BaSO 4 (k) Aynı şekilde diğer maddelerin de tek tek çözeltilerini hazırlayarak birbiri ile karıştırıp çökelme olup olmadığını gözleyiniz ve net iyonik denklemlerini yazınız. NaCl(aq) + AgNO 3 (aq) CaCl 2 + Na 2 CO 3 BaCl 2 + Na 2 CrO 4 AlCl3 + KOH Ba(OH) 2 + NaCl MgSO 4 + Sr(OH) 2 CaCl 2 + Na 2 HPO 4 NH 4 Cl + Hg(NO 3)2 Hg(NO 3 ) 2 + NH 4 Cl Pb(CH 3 COO) 2 + Na 2 SO 4 Bu çözeltileri hazırlayıp birbiriyle karıştırdıktan sonra çökelme olup olmadığını gözleyiniz ve net iyonik denklemlerini defterinize yazınız. Şekil 2. PbI 2 ün çöktürülmesi

11 DENEY - 3 BASİT DESTİLASYON (DAMITMA) Bir sıvının buhar basıncının dış basınca eşit olduğu sıcaklığa o sıvının kaynama noktası denir. Bir sıvının kaynama noktası dış basınca bağlıdır. Dış basınç düşürülürse kaynama noktası da düşer. Genellikle kaynama noktasını gösterirken basınç da belirtilmelidir. Örneğin su 760 mm Hg basınçta 100 C de kaynar. Ayrıca bir bileşiğin kaynama noktası, bileşiğin molekül ağırlığına ve moleküller arası çekim kuvvetlerine de bağlıdır. Kaynama noktasında olan bir sıvıya daha fazla ısı verilirse sıvının sıcaklığı artmaz. Fakat verilen ısı sıvının buhar haline dönüşmesini sağlar ve sıcaklık sıvının tamamen buhar halinde uzaklaşmasına kadar sabit kalır. Sıvıların yukarıda açıklandığı gibi ısı yardımıyla buhar haline dönüşmesi, buharın da tekrar yoğunlaştırılarak sıvı haline dönüştürülerek saflaştırılması işlemine destilasyon (damıtma) denir. Kaynama noktası sıvıların saflık kontrolü için karakteristik bir fiziksel özelliktir. Aşağıdaki şekildeki gibi bir basit destilasyon düzeneği kurulur. Destilasyon balonuna kaynama noktaları birbirinden farklı sıvılardan oluşan bir çözelti veya bir katı-sıvı çözeltisi konduktan sonra balonun içine birkaç kaynama taşı atılır. Daha sonra balonun ağzına mantar yardımıyla bir termometre takılır. Balonun diğer ucuna geri soğutucu takıldıktan sonra balon yavaş yavaş ısıtılır. Bu sırada sıcaklık sürekli olarak termometreden kontrol edilmelidir. Sıvı-sıvı çözeltilerde önce kaynama noktası düşük olan sıvılar destillenir ve ayrılır. Katı-sıvı çözeltilerde ise çözücü, kaynama noktasında destillenir ve ayrılır. Bazı sıvıların kaynama noktaları : Etil alkol : 78 C Benzen : 80 C Aseton : 56 C H 2 O : 100 C 1: Isıtıcı tabla 2: Destilasyon balonu 3: Destilasyon boynu 4: Termometre 5: Soğutucu 6: Su girişi 7: Su çıkışı 8: Toplama balonu 9: Vakum çıkışı 10: Alonj 11: Isı kontrolü 12: Karıştırıcı kontrolü 13: Isıtıcı / karıştırıcı 14: Isıtma banyosu 15: Manyet veya kaynama taşları 16: Soğutma banyosu Şekil 3. Basit destilasyon düzeneği

12 DENEY - 4 ALEV DENEMELERİ Çöktürme yolu ile ayrılıp (renk v.b. özellikleri bakımından) kolayca tanınamayan bazı katyonlar için daha belirleyici olan alev denemelerine başvurulur. Alevde uyarılan atomların elektronları daha yüksek enerji seviyelerine çıkarlar (absorpsiyon). Kararlı bir durum olmayan bu halden tekrar eski enerji seviyelerine dönerken elektronlar almış oldukları enerjiyi ışınlar halinde yayınlar (emisyon). Bu ışınların dalga boyları her element için farklıdır. Eğer bu atomların ışınlarının dalga boyları görünür bölgede (400-800 nm) ise alev denemesinde bu ışınlar çıplak gözle görülebilir. Birden fazla element bir arada olduğu durumda ışınlar birbirine karışabileceğinden ve bazı ışınların dalga boyu görünür bölge dışında olabileceğinden filtreler ve spektroskop denilen aletlerle analiz yapılır. Buna spektral analiz denir. MA (k) (metal tuzu) M + (su) + H 2 O + ISI M + (su) + A - (su) M o (g) M o (g) + ISI M * (g) (uyarılmış hal) M o (g) + ISI E M * (g) _ e s E 2 E 2 > E 1 + E E = h = h c M o (g) _ e - E E 1 = h c E

13 Platin tel derişik HCl e batırılıp aleve tutularak temizlenir. Bu işlem birkaç kez tekrarlanır (alevde artık renk vermeyen tel temizlenmiş sayılır). Platin tel HCl ile ıslatılıp önceden karbonatları halinde çöktürülmüş Ba +2, Sr +2, Cu +2 v.b. tuzlara batırılır ve aleve tutulur. Tel üzerindeki HCl ile uçucu klorür bileşiği haline geçen madde, alevde uyarılır ve ışın yaymaya başlar. Gözlenen renk bileşikteki katyonun tanınmasını sağlar. Bazı katyonların alev denemesinde verdikleri renkler aşağıda belirtilmiştir: Na + : Sarı Sr +2 : Fes kırmızısı Ba +2 : Sarı-yeşil Li + : Karmen kırmızısı K + : Viyole Ca +2 : Tuğla kırmızısı Gerekli malzemeler: Bunsen beki, platin tel, saat camı, kobalt camı, HCl, KCl, NaCl, LiCl, BaCl 2, CaCl2, SrCl2 Şekil 4. a) Li + b) Na + c) K + d) Rb + katyonlarının alev denemeleri

14 DENEY - 5 ASİT - BAZ REAKSİYONU ve ph TAYİNİ Tanımlar : Asit : Kısaca sulu çözeltisine H + iyonu veren maddelerdir. Baz : Sulu çözeltilerine OH - iyonu veren maddelerdir. İndikatör : Dönüm noktasını belirlemek amacıyla kullanılan maddelerdir. Verilen numuneden (HCl) bir pipet yardımıyla 5 ml alınır ve bir erlene aktarılır. Üzerine 50 ml saf su ve birkaç damla fenol ftalein damlatılarak büret içinde bulunan 0.2 M NaOH ile titre edilir. Erlen içindeki çözelti kalıcı pembe renk alınca titrasyona son verilir. Bu noktada erlen içindeki asit, ilâve edilen baz ile tam olarak nötralleşmiştir. Bu noktaya dönüm noktası denir. Dönüm noktasına kadar harcanan 0,2 M NaOH in hacmi büretten okunur (V 1 ). Çözeltinin normalitesi aşağıdaki denklem kullanılarak bulunur: M 1.V 1 = M 2.V 2 (M 1 = 0,2 ; V 2 = OKU ; M 2 =? ; V 2 = 5 ml) ph tayininde, ph = - log[h + ] formülü kullanılır. 4 deney tüpü alınır. Her birine ayrı ayrı HCl, HNO 3, H 2 SO 4 ve NaOH konur. Asit olanların üzerine metiloranj, baz olanların üzerine fenolftalein damlatılır. Renk dönüşümleri not edilir. Şekil 5. Titrasyon düzeneği ve menüsküsün okunması

DENEY RAPORU ÖRNEĞİ Fakülte : Deneyin Yapılış Tarihi Bölüm : No : Adı Soyadı : Deney No : Deneyin Adı : Deneyin hakkında laboratuvar föyünüzdeki açıklamalar ve yapılışı... Laboratuvar sorumlunuzdan öğrendiğiniz önemli açıklamalar... Sizin deney sırasındaki gözlemleriniz... Varsa hesaplamalar.