ÖRNEK 14 1975 DEPREM YÖNETMELİĞİNE UYGUN OLARAK TASARLANMIŞ 4 KATLI KONUT BİNASININ DOĞRUSAL ELASTİK HESAP YÖNTEMİ İLE DEĞERLENDİRİLMESİ



Benzer belgeler
ÖRNEK 18 4 KATLI BETONARME PANSİYON BİNASININ GÜÇLENDİRİLMESİ ve DOĞRUSAL ELASTİK OLMAYAN YÖNTEM İLE DEĞERLENDİRİLMESİ

Örnek Güçlendirme Projesi. Joseph Kubin Mustafa Tümer TAN

d : Kirişin faydalı yüksekliği E : Deprem etkisi E : Mevcut beton elastisite modülü

BÖLÜM II C. BETO ARME BĐ ALARI DEĞERLE DĐRME VE GÜÇLE DĐRME ÖR EKLERĐ ÖR EK 12

MEVCUT BİNALARIN DEĞERLENDİRİLMESİ VE GÜÇLENDİRME PROJESİ HAZIRLANMASI İŞİ

YAPAN: ESKISEHIR G TIPI LOJMAN TARİH: REVİZYON: Hakan Şahin - ideyapi Bilgisayar Destekli Tasarım

BÖLÜM 7 MEVCUT BİNALARIN DEĞERLENDİRİLMESİ VE GÜÇLENDİRİLMESİ. sorular

RİSKLİ BİNALARIN DEĞERLENDİRİLMESİ ÜZERİNE BİR İNCELEME

TÜRKİYE DEKİ ORTA KATLI BİNALARIN BİNA PERFORMANSINA ETKİ EDEN PARAMETRELER

2007 DEPREM YÖNETMELİĞİ

RİSKLİ YAPILARIN TESPİT EDİLMESİNE İLİŞKİN ESASLAR. 5- Risk Tespit Uygulaması: Betonarme Bina

RİSKLİ BİNALARIN TESPİT EDİLMESİ HAKKINDA ESASLAR 5-Kontrol Uygulaması

RİSKLİ BİNALARIN TESPİT EDİLMESİ HAKKINDA ESASLAR 2-Genel Açıklamalar

RİSKLİ BİNALARIN TESPİT EDİLMESİ HAKKINDA ESASLAR 4-DBYBHY (2007)ve RBTE(2013) Karşılaştırılması

DEPREME DAVRANIŞI DEĞERLENDİRME İÇİN DOĞRUSAL OLMAYAN ANALİZ. NEJAT BAYÜLKE 19 OCAK 2017 İMO ANKARA ŞUBESİ

DEPREM BÖLGELERĐNDE YAPILACAK BĐNALAR HAKKINDA YÖNETMELĐK (TDY 2007) Seminerin Kapsamı

BETONARME-II (KOLONLAR)

DEPREME DAYANIKLI YAPI İNŞAATI SORULAR

Yapı Elemanlarının Davranışı

BETONARME YAPILARDA TAŞIYICI SİSTEM GÜVENLİĞİ

10 - BETONARME TEMELLER ( TS 500)

MEVCUT BETONAME BİNALARIN DEPREM GÜVENLİĞİNİN DEĞERLENDİRİLMESİ. (2007 Deprem Yönetmeliği Bölüm 7) φ 1/ρ = 0 φ y φ u Plastik mafsal kabulü:

BÖLÜM 2: DÜŞEY YÜKLERE GÖRE HESAP

MEVCUT BETONARME BİNALARIN DOĞRUSAL ELASTİK VE DOĞRUSAL ELASTİK OLMAYAN HESAP YÖNTEMLERİ İLE İNCELENMESİ ÜZERİNE BİR DEĞERLENDİRME

d E h G (Ek:RG-2/7/ ) EK-2 RİSKLİ YAPILARIN TESPİT EDİLMESİNE İLİŞKİN ESASLAR Simgeler

Proje Genel Bilgileri

BİLGİLENDİRME EKİ 7E. LİFLİ POLİMER İLE SARGILANAN KOLONLARDA DAYANIM VE SÜNEKLİK ARTIŞININ HESABI

BETONARME-I 5. Hafta KİRİŞLER. Onur ONAT Munzur Üniversitesi Mühendislik Fakültesi İnşaat Mühendisliği Bölümü, Tunceli

RİSKLİ YAPILARIN TESPİT EDİLMESİNE İLİŞKİN ESASLAR. 6- Risk Tespit Uygulaması: Yığma Bina

BÖLÜM 7 MEVCUT BİNALARIN DEĞERLENDİRİLMESİ VE GÜÇLENDİRİLMESİ

BETONARME-II ONUR ONAT HAFTA-1 VE HAFTA-II

BÖLÜM II D. YENİ YIĞMA BİNALARIN TASARIM, DEĞERLENDİRME VE GÜÇLENDİRME ÖRNEKLERİ

Dinamik Etki: Deprem Etkisi. Deprem Dayanımı için Tasarım. Genel Deprem Analizi Yöntemleri - 1

DEPREME DAYANIKLI YAPI TASARIMI

KISA KOLON TEŞKİLİNİN YAPI HASARLARINA ETKİSİ. Burak YÖN*, Erkut SAYIN

KESME BAKIMINDAN DOĞRU TASARLANMAMIŞ BETONARME PERDE DUVARLI YÜKSEK BİNALARIN DEPREM PERFORMANSI

RİSKLİ BİNALARIN TESPİT EDİLMESİNE İLİŞKİN ESASLAR 2 TEMMUZ.2013YÖNETMELİĞİ

Çok Katlı Perdeli ve Tünel Kalıp Binaların Modellenmesi ve Tasarımı

Süneklik Düzeyi Yüksek Perdeler TANIMLAR Perdeler, planda uzun kenarın kalınlığa oranı en az 7 olan düşey, taşıyıcı sistem elemanlarıdır.

KOLON HESABI. Kolonların eksenel yük değerleri,

ÇOK KATLI BETONARME YAPILARDA DEPREM PERFORMANSININ BELİRLENMESİ YÖNTEMLERİ VE GÜÇLENDİRME ÖNERİLERİ

BETONARME BİNALARIN DEPREM PERFORMANSININ BELİRLENMESİ İÇİN BİR YAKLAŞIM

GENEL KESİTLİ KOLON ELEMANLARIN TAŞIMA GÜCÜ (Ara donatılı dikdörtgen kesitler)

Erciyes Üniversitesi Fen Bilimleri Enstitüsü Dergisi 26(1): 1-6 (2010)

BETONARME YAPI TASARIMI -KOLON ÖN BOYUTLANDIRILMASI-

BÖLÜM 2: DÜŞEY YÜKLERE GÖRE HESAP

NETMELĐĞĐ. Cahit KOCAMAN Deprem Mühendisliği Şube Müdürü Deprem Araştırma Daire Başkanlığı Afet Đşleri Genel Müdürlüğü

D102 d= tarihinde yapılacak olan Proje Kontrol Sınavında (2. Vize) yanınızda sadece. D104 d=120 K109 K kat. 1.

RİSKLİ YAPILARIN TESPİT EDİLMESİNE İLİŞKİN ESASLAR. 2-Yönetmelik Altyapısı

BETONARME YAPI ELEMANLARINDA DONATI DÜZENLEME İLKELERİ

DÜSEY YÜKLERE GÖRE HESAP

DEPREM YÖNETMELİĞİ NDE ÖNGÖRÜLEN TAŞIYICI SİSTEM GÜVENLİK DÜZEYİ KONUSUNDA KARŞILAŞTIRMALI SAYISAL İNCELEME

2007 DEPREM YÖNETMELİĞİ NE GÖRE MEVCUT BİR YAPININ PERFORMANSININ BELİRLENMESİ VE BİR GÜÇLENDİRME ÖNERİSİ

ÇUKUROVA ÜNİVERSİTESİ FEN BİLİMLERİ ENSTİTÜSÜ

Temeller. Onur ONAT Tunceli Üniversitesi Mühendislik Fakültesi İnşaat Mühendisliği Bölümü, Tunceli

1- BELGELER 2- YAPI GENEL BİLGİLERİ BAŞLIKLAR 3- YAPIDAN BİLGİ TOPLANMASI 4- RİSKLİ YAPI TESPİT ANALİZİ 5- ZEMİN ETÜD RAPORU 6- YIĞMA YAPI ANALİZİ

RİSKLİ YAPILARIN TESPİT EDİLMESİNE İLİŞKİN ESASLAR. 4- Özel Konular

DEPREM HESABI. Doç. Dr. Mustafa ZORBOZAN

MEVCUT BETONAME BİNALARIN DEPREM GÜVENLİĞİNİN DEĞERLENDİRİLMESİ. (2007 Deprem Yönetmeliği Bölüm 7)

MUTO YÖNTEMİ. Çerçeve Sistemlerin Yatay Yüklere Göre Çözümlenmesi. 2. Katta V 2 = F 2 1. Katta V 1 = F 1 + F 2 1/31

Orta Doğu Teknik Üniversitesi İnşaat Mühendisliği Bölümü

DEPREM BÖLGELERİNDE YAPILACAK BİNALAR HAKKINDA YÖNETMELİK BÖLÜM 7 MEVCUT BİNALARIN DEĞERLENDİRİLMESİ VE GÜÇLENDİRİLMESİ

Türkiye Bina Deprem Yönetmeliği 2018 e Göre Dayanıma Göre Tasarım Kavramı

YAPAN: TARİH: REVİZYON: 6500HL-0026 Statik Net50 / K.T.Ü. İnşaat Mühendisliği Bölümü

Orion. Depreme Güvenli Yapı Tasarımı. PROTA Mühendislik. Bina Tasarım Sistemi. Joseph Kubin Mustafa Tümer TAN

A-A AKSI KİRİŞLERİ BETONARME HESAPLARI

İNŞ 320- Betonarme 2 Ders Notları / Prof Dr. Cengiz DÜNDAR Arş. Gör. Duygu BAŞLI

ÇUKUROVA ÜNİVERSİTESİ FEN BİLİMLERİ ENSTİTÜSÜ

B-B AKSI KİRİŞLERİ BETONARME HESAPLARI

DEPREME DAYANIKLI YAPI TASARIMI

RİSKLİ YAPILARIN TESPİT EDİLMESİNE İLİŞKİN ESASLAR

Betonarme Yapıların Deprem Performansının Belirlenmesi

TC. SAKARYA ÜNİVERSİTESİ MF İNŞAAT MÜHENDİSLİĞİ BÖLÜMÜ İNM 308 Depreme Dayanıklı Betonarme e Yapı Tasarımı Earthquake ELASTİK DEPREM YÜKLERİ

Binaların Deprem Dayanımları Tespiti için Yapısal Analiz

BÖLÜM - 2 DEPREM ETKİSİNDEKİ BİNALARIN TASARIM İLKELERİ (GENEL BAKIŞ)

RİSKLİ BİNALARIN TESPİT EDİLMESİ HAKKINDA ESASLAR 7-Örnekler 2. Çevre ve Şehircilik Bakanlığı Alt Yapı ve Kentsel Dönüşüm Hizmetleri Genel Müdürlüğü

EK-2 RİSKLİ YAPILARIN TESPİT EDİLMESİNE İLİŞKİN ESASLAR

YAPILARDA HASAR TESPĐTĐ-II

BETONARME BİNALARIN FARKLI HESAP YÖNTEMLERİNE GÖRE PERFORMANS SINIRLARININ İNCELENMESİ ÜZERİNE BİR DEĞERLENDİRME

Çok Katlı Yapılarda Elverişsiz Deprem Doğrultuları

BETONARME YAPILARDA BETON SINIFININ TAŞIYICI SİSTEM DAVRANIŞINA ETKİSİ

11/10/2013 İNŞAAT MÜHENDİSLİĞİNE GİRİŞ BETONARME YAPILAR BETONARME YAPILAR

DEPREME DAYANIKLI YAPI TASARIMI

RİSKLİ BİNALARIN TESPİT EDİLMESİ HAKKINDA ESASLAR 5-Özel Konular

1975 Yönetmeliğine Göre Yapılmış Yapıların Türkiye 2007 Deprem Yönetmeliğine Göre Performans Değerlendirmesi

idecad Statik IDS v10 Programının TBDY 2018 Uyumluluğu

TBDY-2018: Türkiye Bina Deprem Yönetmeliği Anlamaya çalışmak

TMMOB - İNŞAAT MÜHENDİSLERİ ODASI İzmir Şubesi SEMİNER 13 ARALIK Betonarme Yapıların Deprem Performansının Belirlenmesi

BETONARME YAPI TASARIMI DERSİ Kolon betonarme hesabı Güçlü kolon-zayıf kiriş prensibi Kolon-kiriş birleşim bölgelerinin kesme güvenliği M.S.

BETONARME YAPI ELEMANLARINDA DONATI DÜZENLEME İLKELERİ

Temeller. Onur ONAT Munzur Üniversitesi Mühendislik Fakültesi İnşaat Mühendisliği Bölümü, Tunceli

DEPREME DAYANIKLI YAPI TASARIMI

ÇELİK YAPILARIN TASARIM, HESAP ve YAPIM ESASLARI. ÖRNEKLER ve TS648 le KARŞILAŞTIRILMASI

Türkiye Bina Deprem Yönetmeliği 2018 e Göre Tasarıma Kısa Bakış Betonarme Sistemlerin Modellenmesi, Analizi ve Boyutlandırılması

CS MÜHENDİSLİK PROJE YAZILIM HİZMETLERİ EUROCODE-2'ye GÖRE MOMENT YENİDEN DAĞILIM

BÖLÜM V. KİRİŞLERİN ve KOLONLARIN BETONARME HESABI. a-) 1.Normal katta 2-2 aksı çerçevesinin betonarme hesabının yapılması ve çizimlerinin. M x.

TAŞIYICI SİSTEM TASARIMI 1 Prof. Dr. Görün Arun

YÜKSEK LİSANS TEZİ. Özgür GÜN ÇUKUROVA ÜNİVERSİTESİ FEN BİLİMLERİ ENSTİTÜSÜ İNŞAAT MÜHENDİSLİĞİ ANABİLİM DALI. Danışman : Yrd.Doç.Dr.

Yapı Elemanlarının Davranışı

DEPREM BÖLGELERİNDE YAPILACAK BİNALAR HAKKINDA YÖNETMELİKTEN BAZI TABLO VE ŞEKİLLER

Transkript:

1975 DEPRE YÖNETELİĞİNE UYGUN OLARAK TASARLANIŞ 4 KATLI KONUT BİNASININ DOĞRUSAL ELASTİK HESAP YÖNTEİ İLE DEĞERLENDİRİLESİ AAÇ... 14/1 14.1. PERFORANS DÜZEYİNİN BELİRLENESİ... 14/1 14.2. BİNA ÖZELLİKLERİ VE ANALİZ ODELİ... 14/1 14.3. ANALİZ YÖNTEİ... 14/5 14.3.1. Analiz Yönteminin Seçimi... 14/6 14.3.2. Eşdeğer Deprem Yükü İle Analiz İçin Gerekli Şartların Kontrolü... 14/6 14.3.3. Eşdeğer Deprem Yükleri... 14/6 14.3.4. Analiz Sonuçları... 14/6 14.4. ELEAN KAPASİTELERİNİN HESABI... 14/7 14.4.1. Kiriş Kapasite Hesabı... 14/7 14.4.1.1. Kesme Kapasitesi... 14/7 14.4.1.2. oment Kapasitesi... 14/7 14.4.2. Örnek Kiriş İçin Kapasite Hesabı ( K104 )... 14/8 14.4.2.1. Kesme Kapasitesi... 14/8 14.4.2.2. oment Kapasitesi... 14/8 14.4.3. Kolon ve Perde Kapasite Hesabı... 14/9 14.4.3.1. Eksenel Kuvvet Hesabı (Bilgilendirme Eki 7A)... 14/9 14.4.3.2. Eksenel Kuvvet Üst Sınırı (Bilgilendirme Eki 7A.3.)... 14/9 14.4.3.3. oment Kapasitesi... 14/10 14.4.3.4. Kesme Kapasitesi... 14/10 14.4.4. Örnek Kolon İçin Kapasite Hesabı ( 1S7 )... 14/11 14.4.4.1. Eksenel Kuvvet Hesabı... 14/11 14.4.4.2. Eksenel Kuvvet Üst Sınırı... 14/11 14.4.4.3. oment Kapasitesi... 14/12 14.4.4.4. Kesme Kapasitesi... 14/12 14.5. ELEANLARDA GEVREK KIRILA KONTROLÜ... 14/13 14.5.1. Kiriş Gevrek Kırılma Kontrolü... 14/13 14.5.2. Kolon Gevrek Kırılma Kontrolü... 14/14 14.5.3. Perde Gevrek Kırılma Kontrolü... 14/16 14.5.4. Kolon-Kiriş Birleşim Bölgeleri Gevrek Kırılma Kontrolü... 14/16 14.6. ELEANLARIN DEPRE PERFORANSLARININ DEĞERLENDİRİLESİ... 14/17 14.6.1. Sünek Kirişlerin Performans Değerlendirmesi... 14/17 14.6.2. Sünek Kolonların Performans Değerlendirmesi... 14/18 14.6.3. Sünek Perdelerin Performans Değerlendirmesi... 14/19 14.6.4. Güçlendirilmiş Dolgu Duvarların Performans Değerlendirmesi... 14/19 14.6.5. Örnek Binada Kirişlerin Performans Değerlendirmesi... 14/20 14.6.6. Örnek Binada Kolonların Performans Değerlendirmesi... 14/23 14.7. BİNA PERFORANS DEĞERLENDİRESİ... 14/27 14.7.1. Hemen Kullanım (HK) Performans Düzeyi... 14/27 14.7.2. Can Güvenliği (CG) Performans Düzeyi... 14/27 14.7.3. Göçme Öncesi (GÖ) Performans Düzeyi... 14/28 14.7.4. Göçme Durumu... 14/28 14.7.5. Örnek Binanın Deprem Performansı... 14/28

AAÇ Burada sunulan örneğin temel amacı 2007 Deprem Yönetmeliği nin 7.5. Depremde Bina Performansının Doğrusal Elastik Hesap Yöntemleri ile Belirlenmesi Bölümünün ayrıntılı olarak açıklanmasıdır. 14.1. PERFORANS DÜZEYİNİN BELİRLENESİ Hedeflenen performans düzeyi, değerlendirilmesi yapılacak olan binanın kullanım amacı ve türüne göre değişiklik gösterir. Performans düzeyini belirleyen diğer bir faktör ise değerlendirilen binanın performans hedefine bağlı olarak göz önünde bulundurulan deprem etkisidir. 2007 Deprem Yönetmeliğinde (Yönetmelik) üç farklı deprem etkisi göz önüne alınmaktadır (Yönetmelik, Tablo 7.7). Deprem etkileri, yapının bulunduğu bölgenin zemin ve depremsellik özelliklerini yansıtan tasarım spektrumunun katsayılarla ölçeklendirilmesi ile ifade edilir. 50 yılda aşılma olasılığı % 50 olan deprem için Yönetmelik 2.4 de tanımlanan doğrusal elastik tasarım spektrumu (R a =1) 0.5 ile çarpılarak azaltılır. 50 yılda aşılma olasılığı % 10 olan deprem için Yönetmelik 2.4 de tanımlanan doğrusal elastik tasarım spektrumu değiştirilmeden kullanılır. 50 yılda aşılma olasılığı % 2 olan deprem için Yönetmelik 2.4 de tanımlanan doğrusal elastik tasarım spektrumu 1.5 ile çarpılarak büyütülür. Örneğin okul binaları, aşılma olasılığı 50 yılda %10 olan deprem altında Hemen Kullanım performans düzeyini ve aşılma olasılığı 50 yılda %2 olan deprem altında Can Güvenliği performans düzeyini sağlamak zorundadır. Değerlendirilmesi yapılacak olan bina konut binasıdır. Yönetmelik Tablo 7.7 ye göre konut binaları 50 yılda aşılma olasılığı %10 olan deprem etkisi altında Can Güvenliği (CG) performans düzeyini sağlamalıdır. Yapı elemanlarının ve yapının değerlendirilmesinde kullanılacak etki-kapasite oranı sınır değerleri, seçilen performans düzeyine (N, GV veya GÇ) bağlı olarak belirlenir (Yönetmelik Tablo 7.2-7.5). 14.2. BİNA ÖZELLİKLERİ VE ANALİZ ODELİ Deprem performans değerlendirilmesi yapılacak binanın üç boyutlu olarak modellenmesinde dikkat edilecek hususlar aşağıda belirtilmiştir: Kolon-kiriş birleşim bölgeleri (kolonun kiriş içinde, kirişin de kolon içinde kalan bölümü) sonsuz rijit elemanlar olarak modellenecektir (Şekil 14.1). Eleman sonlarının rijit olarak modellenmesi, sistemin rijitliği ile elemanların iç kuvvet ve şekildeğiştirme istemleri üzerinde doğrudan etkilidir. 14/1

Kolon Kiriş Kolon Kiriş Kolon Çerçevenin üstten görünüşü Şekil 14.1. Rijit eleman sonu modellemesinin basit bir çerçeve üzerinde gösterimi odellemede ek dış merkezlik göz önüne alınmayacaktır. Değerlendirme yaparken bina hakkında gerekli bilgiye sahip olunduğu varsayıldığından kütle ve rijitlik merkezi de bilinmektedir. Bu nedenle ek dış merkezliği ayrıca hesaba katmaya gerek yoktur. Üç boyutlu modelin oluşturulmasında dikkat edilmesi gereken bir diğer önemli nokta ise elemanların çatlamış kesitlerine ait eğilme rijitliklerinin kullanılmasıdır. Yönetmelik 7.4.13 e göre kirişler ve kolon/perdeler için farklı çatlamış kesit katsayıları önerilmiştir. Kolon ve perdeler için tanımlanan çatlamış kesit katsayıları eksenel kuvvet seviyesine göre değişir. Çatlamış kesit eğilme rijitliklerine ait değerler aşağıda verilmiştir: Kirişler için 0.4 EI Kolon ve perdeler için 0.4 EI N D /(A c f cm ) 0.1 0.8 EI N D /(A c f cm ) 0.4 (Ara değerler için enterpolasyon yapılmalıdır) Burada N D düşey yük (G+nQ) analizi ile hesaplanan eksenel kuvvet tesiridir. n hareketli yük katılım katsayısıdır ve binanın kullanım amacına göre değişim göstermektedir. A c brüt kolon/perde alanını f cm ise beton mevcut basınç dayanımını simgelemektedir. Yapı sistemine yeni eklenecek güçlendirme perde veya kolonlarının çatlamış kesit katsayısı 0.4 alınabilir. Değerlendirilmesi yapılan bina 1975 Deprem Yönetmeliği ne göre tasarlanmış olup dört katlı çerçeve sisteminden oluşmaktadır. X-doğrultusunda simetrik olmasına karşın Y-doğrultusunda simetrik değildir. Kat yükseklikleri her katta 2.7 m dir. Döşeme kalınlığı 0.12 m dir. Binanın özelliklerine ve modellenmesine ait bilgiler aşağıda özetlenmiştir. Binanın Projesi (Var/Yok) Var Bilgi Düzeyi Kapsamlı Bilgi Düzeyi Katsayısı 1 Donatı Gerçekleşme Katsayısı 1 evcut Beton Dayanımı (Ortalama - Standart Sapma) 25 Pa E c (evcut Beton Elastisite odülü) 30,250 Pa evcut Çelik Dayanımı (Ortalama - Standart Sapma) 420 Pa Hareketli Yük Katılım Katsayısı (n) 0.3 Deprem Bölgesi 1 Zemin Tipi Z3 14/2

Şekil 14.2. Tipik kat planı (Boyutlar cm) 14/3

Şekil 14.3. 3 boyutlu analiz modeli Şekil 14.4. Örnek çerçeve (G Aksı; boyutlar cm) 14/4

Tipik kat planı ile kolon ve kiriş boyutları aşağıda verilmiştir. Kolon bx (mm) by (mm) S2 300 300 S3 300 350 S4 350 350 S5 300 300 S7 250 300 S8 300 350 S9 350 400 S10 250 300 S11 300 300 S13 300 250 S14 400 350 Kolon bx (mm) by (mm) S14A 400 450 S15 300 300 S17 250 300 S18 300 350 S19 350 400 S20 250 300 S22 300 300 S23 300 350 S24 350 350 S25 300 300 Kiriş b (mm) h (mm) Tüm Kirişler 250 500 Çatlamış kesit rijitlikleri G+nQ yüklemesi altındaki eksenel kuvvet etkileri için hesaplanmıştır. Kirişler için çatlamış kesit katsayısı 0.4 dür. Örnek olarak seçilen 1S7 kolonu için çatlamış kesit katsayısı; düşey yük analizi ile hesaplanan N D =433.34 kn ve N D /( Ac f cm ) = 433.34 1000 /(75000 25) = 0. 23 değeri göz önüne alınarak, enterpolasyonla 0.58 olarak hesaplanır. 14.3. ANALİZ YÖNTEİ Bina deprem performansının doğrusal elastik yöntem ile belirlenmesinde, düşey yükler altında ve deprem yükleri altında olmak üzere iki ayrı analiz yapılmalıdır. Düşey yük analizi G+nQ yüklemesi altında yapılır. Deprem yükleri altındaki yatay yük analizi için eşdeğer deprem yükü yöntemi (Yönetmelik 2.7) veya mod birleştirme yöntemi (Yönetmelik 2.8) kullanılmalıdır. Eşdeğer Deprem Yükü Yöntemi ile analizde Yönetmelik Bölüm 2.7 de belirtilen kurallara ek olarak dikkat edilmesi gereken hususlar şunlardır: Eşdeğer deprem yükünün uygulanabilmesi için yapının bodrum katlar üzerindeki toplam yüksekliği en fazla 25 m ve kat sayısı en fazla 8 olmalıdır. Ek dışmerkezliği göz önünde bulundurulmadan hesaplanan burulma düzensizliği katsayısı η bi 1.4 ten küçük olmalıdır. Hakim moda ait kütle katılımı % 70 ten fazla olmalıdır. Taban kesme kuvvetinin Yönetmelik Denk. 2.4 e göre hesabında R a = 1 ve I= 1 olarak alınacaktır ve denklemin sağ tarafı λ katsayısı ile çarpılacaktır. λ katsayısı birinci moda ait kütle katılımını göz önünde bulundurmak içindir. Bodrum hariç bir ve iki katlı binalarda 1.0, diğerlerinde 0.85 olarak alınır. Eşdeğer Deprem Yükü Yöntemi nin kullanılamaması durumunda od Birleştirme Yöntemi kullanılacaktır. od birleştirme yöntemi ile analizde R a = 1 alınacaktır. Yönetmelik Bölüm 2.8 deki hesap kuralları geçerlidir. 14/5

14.3.1. Analiz Yönteminin Seçimi Yatay deprem yükleri altında analiz için Eşdeğer Deprem Yükü Yöntemi seçilmiştir. İncelenen binada düşey yükler (G+nQ) altında doğrusal elastik analiz yapılmıştır. 14.3.2. Eşdeğer Deprem Yükü Yöntemi İle Analiz İçin Gerekli Şartların Kontrolü Bina 4 katlıdır ve toplam yüksekliği 10.8 m dir. Burulma düzensizliği kontrolü yapılmıştır. En büyük burulma düzensizliği katsayısı η bi X doğrultusunda yapılan analiz sonucu 1.0 ve Y doğrultusunda yapılan analiz sonucu 1.01 olarak hesaplanmıştır. Her iki değer de sınır değer olan 1.4 ten küçüktür. X doğrultusunda hakim moda ait periyod 0.74 saniye ve kütle katılım oranı %83 dür. Y doğrultusunda ise sırasıyla periyod ve kütle katılım oranları 0.75 saniye ve %76 dır. 14.3.3. Eşdeğer Deprem Yükleri Düşey yükler (G+nQ) ile uyumlu kat kütleleri ve bu kütlelerle uyumlu eşdeğer deprem yükleri hesaplanmış ve aşağıdaki tablolarda sunulmuştur. ΣW (kn) R a (T 1 ) I Ao T A (s) T B (s) λ 11026.64 1 1 0.4 0.15 0.6 0.85 T x (s) 0.74 T y (s) 0.75 S(T x ) (g) 2.11 S(T y ) (g) 2.09 Vt x (kn) 7924.97 Vt y (kn) 7840.32 ΔFN x (kn) 237.75 ΔFN y (kn) 235.21 Kat Kütle (ton) Ağırlık (W i ) (kn) Kat Yüksekliği (m) H i (m) W i *H i (knm) F ix (kn) F iy (kn) 1 300.41 2947.02 2.7 2.7 7956.96 857.33 848.17 2 300.41 2947.02 2.7 5.4 15913.92 1714.66 1696.34 3 300.41 2947.02 2.7 8.1 23870.88 2571.99 2544.51 4 222.79 2185.57 2.7 10.8 23604.15 2543.25 2516.08 14.3.4. Analiz Sonuçları Binanın 3 boyutlu şekildeğiştirme eğrileri +X ve +Y yönlerinde yapılan yatay yük analizi için aşağıda gösterilmiştir. Şekil 14.5. Binanın +X yönünde eşdeğer deprem yükü yöntemi ile yapılan deprem analizine göre 3 boyutlu şekildeğiştirme grafiği 14/6

Şekil 14.6. Binanın +Y yönünde eşdeğer deprem yükü yöntemi ile yapılan deprem analizine göre 3 boyutlu şekildeğiştirme grafiği Düşey yük (G+nQ) ve yatay yük analizlerinden elde edilen eleman iç kuvvetleri örnek olarak seçilen elemanlar için ilgili bölümlerde verilmiştir. 14.4. ELEAN KAPASİTELERİNİN HESABI Hesaplanan eleman kapasiteleri Bilgi Düzeyi Katsayısı ile çarpılmalıdır. Örnek bina için Bilgi Düzeyi Katsayısı 1 dir. 14.4.1. Kiriş Kapasite Hesabı 14.4.1.1. Kesme Kapasitesi Kiriş kesme kapasitesi TS500 deki kurallar çerçevesinde hesaplanacaktır. V r = 0. 52 f ctm b w d + A s sw f ywm d 14.4.1.2. oment Kapasitesi Pozitif yöndeki deprem yüklemesinde kirişlerin çalışma biçimi aşağıda gösterilmiştir: K i,alt K j,üst Kirişin i ucu için alt donatı çekmeye, üst donatı basınca çalışacaktır. j ucu için ise üst donatı çekmeye, alt donatı basınca çalışacaktır. i ve j uçlarında deprem doğrultusuyla uyumlu moment kapasiteleri buna göre hesaplanır. Negatif yöndeki yüklemede kiriş çalışma şekli yukarıdaki şeklin tam tersidir. oment kapasitelerinden ( Ki,alt, Kj,üst ), düşey yük (G+nQ) analizi ile kiriş uçlarında hesaplanan momentler ( Di ve Dj ) vektörel olarak çıkartılarak artık moment kapasiteleri ( Ai, Aj ) bulunur (Şekil 14.7). 14/7

K i,alt K j,üst D i D j A i ln A j V e V e Şekil 14.7. Kiriş uçlarında artık moment kapasitelerinin hesaplanması 14.4.2. Örnek Kiriş İçin Kapasite Hesabı ( K104 ) K104 kirişi mesnet donatıları ve etriye bilgisi aşağıdaki tabloda verilmiştir: 14.4.2.1. Kesme Kapasitesi i j esnet Gövde As i,üst 854 mm² As j,üst 854 mm² Etriye Etriye As i,alt 402 mm² As j,alt 402 mm² ø8/90 mm ø8/200 mm Kesme kapasitesi TS500 deki kurallar çerçevesinde; Asw Vr = 0. 52 f ctm bw d + f ywm d denklemi ile s 100.53 V r = 0.52 1.75 250 475 + 420 475 /1000 = 330. 79 kn olarak hesaplanır. 90 14.4.2.2. oment Kapasitesi oment kapasitesinin hesabında, göz önüne alınan deprem doğrultusunda; kirişin i ucu için alt donatı çekmeye üst donatı basınca çalışacaktır. j ucu için ise üst donatı çekmeye, alt donatı basınca çalışacaktır. i ve j uçlarında deprem doğrultusuyla uyumlu moment kapasiteleri buna göre hesaplanmıştır. Bu durumda K104 kirişi için: i K i,üst -149.64 knm K j,üst -149.64 knm K i,alt 73.55 knm K j,alt 73.55 knm oment kapasitelerinden ( Ki,alt, Kj,üst ), düşey yük analizi (G+nQ) sonucunda kiriş uçlarında hesaplanan momentler ( Di, Dj ) vektörel olarak çıkartılarak Artık oment Kapasiteleri ( Ai, Aj ) hesaplanır. i j Ki,alt 73.55 knm Kj,üst -149.64 knm D i -10.58 knm Dj -16.51kNm Ai 84.13 knm Aj -133.13 knm j 14/8

14.4.3. Kolon ve Perde Kapasite Hesabı 14.4.3.1. Eksenel Kuvvet Hesabı (Yönetmelik Bilgilendirme Eki 7A) Düşey yük analizi ile hesaplanan eksenel kuvvet (N D ) ve moment ( D ) çifti etkileşim diyagramına yerleştirilir. Eşdeğer deprem yükü yöntemi ile yapılan yatay yük analizi ile hesaplanan eksenel kuvvet istemi (N E ) ve moment ( E ), düşey yük analizi ile hesaplanan eksenel kuvvet ve moment istemlerine eklenir ve etkileşim diyagramına yerleştirilir (N D +N E, D + E ). İki nokta bir doğru ile birleştirilir (Şekil 14.8). Doğrunun etkileşim diyagramını kestiği nokta kolonun ilgili ucundaki eksenel kuvvet istemini (N K ) ve bu kuvvetle uyumlu moment kapasitesini ( K ) verir (Şekil 14.8). Bazı durumlarda (N D +N E, D + E ) noktası etkileşim diyagramının içerisinde kalmaktadır. Böyle bir durum etki-kapasite oranının 1 den küçük olduğunun göstergesidir. (Etki-kapasite oranları eleman değerlendirilmesi kısmında detaylı olarak açıklanacaktır.) Eksenel Kuvvet Hesabı 3500 3000 2500 2000 N (kn) K j, N K j Di, N Di 1500 1000 Dj, N Dj Ki, N Ki Dj + E j, N D j +N E j 500 Di + Ei, N Di +N Ei 0-250.00-200.00-150.00-100.00-50.00 0.00 50.00 100.00 150.00 200.00 250.00-500 -1000 (knm) Şekil 14.8. Eksenel kuvvet hesabının grafiksel gösterimi 14.4.3.2. Eksenel Kuvvet Üst Sınırı (Yönetmelik Bilgilendirme Eki 7A.3.) Deprem yüklemesi altında kirişlerin moment kapasitelerine ulaştığı kabulüne dayanır. İki ucu da deprem yüklemesi altında moment kapasitesine ulaşan bir kirişin uçlarında Ai Aj oluşacak kesme kuvveti Ve = denklemi ile hesaplanır. ln V e, yatay yük (R a =1) ve düşey yüklerin (G+nQ) birleşik etkisi altında yapılan analiz ile hesaplanan kesme istemiyle karşılaştırılır. Küçük olan değer V e olarak kullanılır. V e, bir kirişten bağlı olduğu kolona ya da perdeye eksenel kuvvet olarak aktarılır. Pozitif yöndeki deprem yüklemesi göz önünde bulundurulursa, V e kirişin i ucuna bağlanan kolona veya perdeye çekme; j ucuna bağlanan kolona veya perdeye ise basınç kuvveti olarak aktarılır. Kat seviyesinde; kolonun veya perdenin eksenel kuvvet istemi o elemana sağdan ve soldan saplanan kirişlerden aktarılan V e kesme kuvvetlerinin 14/9

toplamıdır. Bir kolonun ya da perdenin kiriş kapasiteleriyle uyumlu eksenel kuvvet istemi ise üst katlardan aktarılan eksenel kuvvet istemlerinin toplamıdır. V e 3,1 V e 3,2 3 i j i j N e 3= V e 3,1 + V e 3,2 i V e 2,1 V e 2,2 2 j i j N e 2= N e 3 +V e 2,1 + V e 2,2 i V e 1,1 V e 1,2 1 j i j N e 1= N e 2 +V e 1,1 + V e 1,2 Şekil 14.9. Kirişlerden kolonlara veya perdelere aktarılan düşey kuvvetler Kolon ve perdeler için eksenel kuvvet üst sınırı, burada anlatılan yöntemle bulunan eksenel kuvvet N e ve düşey yük (G+nQ) analizi ile hesaplanan eksenel kuvvet N D nin birleşik etkisi (N D +N e ) altında hesaplanır. 14.4.3.1 de anlatılan yöntem ile hesaplanan eksenel kuvvetler, eksenel kuvvet üst sınırı ile karşılaştırılır. Küçük olan değer kolon veya perdeler için yapılacak moment kapasitesi hesaplarında esas alınır. 14.4.3.3. oment Kapasitesi Kolon ve perdelerin moment kapasitesi belirlenen eksenel kuvvet altında etkileşim diyagramından yararlanılarak hesaplanır. 14.4.3.4. Kolon Kesme Kapasitesi Kolon kesme kapasitesi TS500 deki kurallar çerçevesinde hesaplanacaktır. Kolon kesme kapasitesi kolon orta bölgesi için hesaplanır. 14.4.3.4. Perde Kesme Kapasitesi V r N = 0.52 fctm bw d 1+ γ A K c A + s Perde kesme kapasitesi TS500 deki kurallar çerçevesinde aşağıdaki denklemle hesaplanır. V = A 0.65 f + ρ f ) r ch sw ( ctm sh ywk f ywm d 14/10

14.4.4. Örnek Kolon İçin Kapasite Hesabı ( 1S7 ) 14.4.4.1. Eksenel Kuvvet Hesabı 1S7 kolonunun eksenel kuvvet istemi ve bu istemle uyumlu moment kapasitesi aşağıda hesaplanmıştır: 1S7 i ucu j ucu Açıklama N D (kn) 433.34 433.34 Düşey Yük Analizi (G+nQ) D (knm) -3.79 5.11 Düşey Yük Analizi (G+nQ) N E (kn) -832.05-832.05 Yatay Yük Analizi E (knm) 242.55-194.68 Yatay Yük Analizi N D +N E (kn) -398.71-398.71 D + E (knm) 238.76-189.57 N K (kn) 181.41 140.21 Eksenel kuvvet istemi K (knm) 63.37-59.94 oment kapasitesi 1S7 i 3500.00 3000.00 2500.00 2000.00 N (kn) 1500.00 1000.00 500.00 0.00-300.00-200.00-100.00 0.00 100.00 200.00 300.00-500.00-1000.00 (knm) Şekil 14.10. 1S7 kolonu i ucu için hesaplanan eksenel kuvvet 1S7 j 3500.00 3000.00 2500.00 2000.00 N (kn) 1500.00 1000.00 500.00 0.00-300.00-200.00-100.00 0.00 100.00 200.00 300.00-500.00-1000.00 (knm) Şekil 14.11. 1S7 kolonu j ucu için hesaplanan eksenel kuvvet 14.4.4.2. Eksenel Kuvvet Üst Sınırı Kiriş uçlarının deprem doğrultusu ile uyumlu moment kapasitelerine ulaştığı varsayımı ile kiriş uçlarından kolonlara aktarılacak eksenel kuvvetler hesaplanır. 14/11

V e 4,1 (----) V e 4,2 (K404) V e4 (V e 4,1 +V e 4,2 ) N e 4 (V e4 ) (4S7) 0-53.63 kn -53.63 kn -53.63 kn V e 3,1 (----) V e 3,2 (K304) V e3 (V e 3,1 +V e 3,2 ) N e 3 (V e4 +V e3 ) (3S7) 0-54.17 kn -54.17 kn -107.81 kn V e 2,1 (----) V e 2,2 (K204) V e2 (V e 2,1 +V e 2,2 ) N e 2 (V e4 +V e3 +V e2 ) (2S7) 0-71.29 kn -71.29 kn -179.11 kn V e 1,1 (----) V e 1,2 (K104) V e1 (V e 1,1 +V e 1,2 ) N e 1 (V e4 +V e3 +V e2 +V e1 ) (1S7) 0-70.55 kn -70.55 kn -249.66 kn Ai Aj Örneğin K104 kirişinden 1S7 ye aktarılan eksenel kuvvet; Ve = eşitliğinden ln 84.13 ( 133.13) V e1,2 = = 70.55 kn olarak hesaplanır. Deprem yönü ile uyumlu olarak 3.08 V e1,2 kesme kuvveti 1S7 kolonuna çekme olarak aktarılacağından - alınır. V e1,1 ve V e1,2 değerleri düşey yükler ile birlikte R a =1 alınarak depremden hesaplanan toplam kesme kuvveti ile karşılaştırılır; küçük olan kullanılır. 1S7 kolonuna bağlanan kirişlerden aktarılan eksenel kuvvet V e1 = V e1,1 + V e1,2 olarak hesaplanır. 1S7 kolonuna kiriş kapasiteleriyle uyumlu olarak aktarılan toplam eksenel kuvvet N e 1 = V e1 + V e2 + V e3 + V e4 dir. 1S7 kolonunun eksenel kuvvet üst sınırı, düşey yük (G+nQ) analizi ile hesaplanan eksenel kuvvet ile deprem doğrultusu ile uyumlu kiriş kapasitelerinden gelen eksenel kuvvetin birleşik etkisidir. Aşağıdaki tabloda 1S7, 2S7, 3S7, 4S7 kolonlarının hesaplanan eksenel kuvvet üst sınırları verilmiştir. Kolon N D (G+nQ) (kn) N e (kn) N K (N D +N e ) (kn) 1S7 433.34-249.66 183.68 2S7 315.99-179.11 136.89 3S7 197.80-107.81 89.99 4S7 80.41-53.63 26.77 Basınç altında eksenel kuvvet üst sınırı aşılmamıştır (181.41 < 183.68). NOT: N E ; eksenel kuvvet hesabı yapılırken (14.4.4.1.) yatay yük analizi ile hesaplanan kolon eksenel kuvvet istemini göstermektedir. N e ise eksenel kuvvet üst sınırı hesabında (14.4.4.2.) kirişlerden kolona aktarılan kiriş moment kapasiteleriyle uyumlu olarak hesaplanan eksenel kuvveti göstermektedir. 14.4.4.3. oment Kapasitesi 1S7 kolonunun moment kapasitesi, i ucu için hesaplanan eksenel kuvvet etkisi N K =181.41 altında, K =63.37 knm ve j ucu için hesaplanan eksenel kuvvet etkisi N K =140.21 altında, K =59.94 knm olarak hesaplanmıştır. 14.4.4.4. Kesme Kapasitesi Kolon kesme kapasiteleri TS500 deki kurallar çerçevesinde 14/12

V r N = 0.52 f ctm bw d 1 + γ A c + A s sw f ywm d denklemi ile hesaplanmıştır. 1S7 kolonunun kesme kapasitesi; kolonda düşük olan eksenel kuvvet N= 140.21 kn alınarak 140.21 1000 150.8 V r = 0.52 1.75 300 225 1+ 0.07 + 420 225 /1000 = 189. 05kN 75000 120 olarak hesaplanır. s kolon orta bölgesindeki etriye aralığıdır. 14.5. ELEANLARDA GEVREK KIRILA KONTROLÜ Yapısal elemanların performansının belirlenmesinde öncelikle elemanların kırılma türüne karar verilir. Bir elemanda kesme kırılması eğilme kırılmasından önce oluşuyorsa bu eleman gevrek, oluşmuyorsa sünek olarak hasar görecektir. Yapı elemanlarında kırılma türünün belirlenmesi için öncelikle kesme istemleri ve kapasiteleri hesaplanarak gevrek kırılma kontrolü yapılmalıdır. 14.5.1. Kiriş Gevrek Kırılma Kontrolü Kiriş uçlarındaki kesme istemi (kapasite kesmesi), moment kapasiteleriyle ( Ki,alt, Kj,üst ) uyumlu kesme kuvveti ile düşey yük analizi ile hesaplanan kesme kuvvetlerinin (V dy i, V dy j ) birleşik etkisidir. V e (kesme istemi) nin hesabında pekleşmeli moment kapasiteleri yerine pekleşmesiz moment kapasiteleri kullanılacaktır (Şekil 14.12). i ucu için V ei = V dyi Ki, alt + ln Kj, üst ; j ucu için V ej = V dyj Kj, alt + + ln Kj, üst K i,alt K j,üst l n V dy i V dy j ( K i,alt + K j,üst )/ l n ( K i,alt + K j,üst )/ l n Şekil 14.12. Kiriş uçlarındaki kesme istemlerinin hesaplanması Hesaplanan kesme istemleri yatay yük (R a =1) ve düşey yüklerin (G+nQ) birleşik etkisi altında yapılan analiz ile hesaplanan kesme istemiyle karşılaştırılır. Küçük olan değer V e olarak kullanılır. Kiriş uçlarında hesaplanan kesme istemleri, mevcut malzeme dayanımları kullanılarak TS500 e göre hesaplanan kiriş kesme kapasitesi V r ile karşılaştırılır. Uçlarındaki kesme istemleri kesme kapasitesinden küçük olan kirişler sünek olarak hasar gören kiriş olarak tanımlanır. Örnek: Kiriş uçlarındaki kesme istemlerinin hesaplanışı K104 kirişi için aşağıda gösterilmiştir. K104 kirişinin net açıklığı l n =3.08 m dir. 14/13

Ki, alt + Kj, üst 73.55 + 149.69 i ucu için Vei = Vdyi = 25.15 = 47. 33 kn l ve n 3.08 Kj, alt + Kj, üst 73.55 + 149.69 j ucu için Vej = Vdyj + = 29.53 + = 102. 11 kn l olarak n 3.08 hesaplanır. K i,alt (knm) 73.55 V dy,i (G+nQ) (kn) 25.15 V ei (kn) 47.43 V ri (kn) 330.79 SÜNEK K j,üst (knm) 149.64 V dy,j (G+nQ) (kn) 29.53 V ej (kn) 102.11 V rj (kn) 330.79 SÜNEK K104 kirişinin iki ucunda da kesme istemi, hesaplanan kesme kapasitesinden küçük olduğundan K104 kirişi sünek olarak hasar gören kiriş tir. 14.5.2. Kolon Gevrek Kırılma Kontrolü Kolon kesme istemi (kapasite kesmesi), kiriş moment kapasiteleriyle uyumlu olarak hesaplanır. Bunun için kolonun alt ve üst uçlarında kolon-kiriş kapasite oranı KKO (düğüm noktasındaki kolon moment kapasiteleri toplamının, düğüm noktasındaki kiriş moment kapasiteleri toplamına oranı) değerlerine bakılır. Bir birleşim bölgesinde KKO değeri 1 den büyükse (kolonlar kirişlerden güçlü ise); bağlanan kirişlerin moment kapasiteleri toplamı, bağlanan kolonların alt ve üst ucuna rijitlikleri oranında dağıtılır. K j,üst alt 3S K i,alt 2 i j i j Örneğin şekildeki 2S kolonunun pozitif yöndeki deprem yüklemesi için kesme istemi şu şekilde hesaplanır: ( + ) üst, deprem üst = Ki, alt Kj, üst üst, deprem + alt, deprem üst i K j,üst j alt 1 2S üst i K i,alt j üst ün hesabındaki üst,deprem 2S kolonunun üst ucunda yatay yük analizi ile hesaplanan moment; alt,deprem ise 3S kolonunun alt ucunda yatay yük analizi ile hesaplanan momenttir. Ki,alt ve Kj,üst ise 2S kolonunun üst ucuna bağlanan kirişlerin deprem yönü ile uyumlu çalışan moment kapasiteleridir. 1S ( + ) üst, deprem alt = Ki, alt Kj, üst üst, deprem + alt, deprem Şekil 14.13. Kolonlar için kesme isteminin hesaplanışı alt ın hesabındaki üst,deprem 1S kolonunun üst ucunda yatay yük analizi ile hesaplanan moment, alt,deprem ise 2S kolonunun alt ucunda yatay yük analizi ile hesaplanan momenttir. Ki,alt ve Kj,üst 2S kolonunun alt ucuna bağlanan kirişlerin deprem yönü ile uyumlu çalışan moment kapasiteleridir. 14/14

V e (kesme istemi) nin hesabında pekleşmeli moment kapasiteleri yerine pekleşmesiz moment kapasiteleri kullanılacaktır. Birleşim bölgesinde KKO değerinin 1 den küçük olması durumunda birleşim bölgesine bağlanan kolonların ilgili uçlarına gelebilecek maksimum moment, kolonların eksenel kuvvet istemleriyle uyumlu moment kapasiteleridir. Örneğin şekildeki 2 numaralı birleşim bölgesinde KKO değeri 1 den küçük olsaydı 2S kolonu için üst, daha önce 14.4.4.1 ve 14.4.4.2 bölümlerinde anlatıldığı şekilde hesaplanan eksenel kuvvet istemiyle uyumlu moment kapasitesi olacaktı. alt ve üst hesaplandıktan sonra kolon kesme istemi bulunur: V e = ( + ) alt l n üst Kolon kesme istemi V e, TS500 e göre hesaplanan kolon kesme kapasitesi V r ile karşılaştırılır. Kesme istemleri kesme kapasitesinden küçük olan kolonlar sünek olarak hasar gören kolon olarak tanımlanır. Örnek: 1S7 kolonunun kesme isteminin hesaplanışı aşağıda gösterilmiştir. 1S7 kolonunun üst ucunda kolon moment kapasiteleri toplamının kiriş moment 59.33 + 63.44 kapasiteleri toplamına oranı KKO = = 1. 67 >1 olarak hesaplanmıştır. 73.55 + 0 KKO değerinin 1 den büyük olması bu düğüm noktasındaki kolonların kirişlerden daha güçlü olduğunu, bir başka deyişle kolona aktarılacak maksimum kesme kuvvetinin, kolona bağlanan kirişler tarafından aktarılacak momentten kaynaklanacağını gösterir. Bu moment en büyük değerini kirişler moment kapasitesine ulaştığında alır. KKO değerinin 1 den büyük oluşu kirişlerin moment kapasitelerine ulaşacağını göstermektedir. Düğüm noktasında kiriş moment kapasitelerinin toplamı kolon uçlarına rijitlikleri oranında paylaştırılır. alt,deprem düğüm noktasına üstten bağlanan kolonun alt ucunda R a =1 alınarak uygulanan yatay yüklerden gelen moment, üst,deprem ise düğüm noktasına alttan bağlanan kolonun üst ucundaki R a =1 alınarak yapılan yatay yük analizi ile hesaplanan momenttir. ( + ) üst, deprem üst = Ki, alt Kj, üst üst, deprem + alt, deprem 2S7 ( + ) üst, deprem alt = Ki, alt Kj, üst üst, deprem + alt, deprem alt 1 üst i K i,alt K104 V e = ( + ) alt l n üst alt 1S7 14/15

1S7 kolonunun alt ucunda alt moment kapasitesine eşittir. 4S7 kolonun üst ucunda KKO değeri 1 den küçüktür üst moment kapasitesine eşittir. Aşağıdaki tabloda 1S7, 2S7, 3S7, 4S7 kolonlarının kesme istemlerinin hesaplanışı özetlenmiştir. 1S7 2S7 3S7 4S7 Ki K i,alt (----) Kj,üst (----) deprem,alt (1S7) deprem,üst (-) alt KKO V e V r KONTROL 63.37 knm - - 242.55 knm - 63.37 knm - Kj K i,alt (K104) K j,üst (----) deprem,alt (2S7) deprem,üst (1S7) üst KKO 44.88 kn 189.05 kn SÜNEK 59.94 knm 73.55 knm - 210.32 knm 194.68 knm 35.35 knm 1.67 Ki K i,alt (K104) K j,üst (----) deprem,alt (2S7) deprem,üst (1S7) alt KKO V e V r KONTROL 59.94 knm 73.55 knm - 210.32 knm 194.68 knm 38.20 knm 1.67 Kj K i,alt (K204) K j,üst (----) deprem,alt (3S7) deprem,üst (2S7) üst KKO 37.16 kn 189.05 kn SÜNEK 59.94 knm 73.55 knm - 146.73 knm 213.06 knm 43.56 knm 1.56 Ki K i,alt (K204) K j,üst (----) deprem,alt (3S7) deprem,üst (2S7) alt KKO V e V r KONTROL 56.35 knm 73.55 knm - 146.73 knm 213.06 knm 29.99 knm 1.56 Kj K i,alt (K304) K j,üst (----) deprem,alt (4S7) deprem,üst (3S7) üst KKO 31.35 kn 186.42 kn SÜNEK 56.35 knm 56.62 knm - 70.77 knm 156.36 knm 38.97 knm 1.85 Ki K i,alt (K304) K j,üst (----) deprem,alt (4S7) deprem,üst (3S7) alt KKO V e V r KONTROL 49.17 knm 56.62 knm - 70.77 knm 156.36 knm 17.64 knm 1.85 Kj K i,alt (K404) K j,üst (----) deprem,alt (----) deprem,üst (4S7) üst KKO 30.37 kn 181.18 kn SÜNEK 49.17 knm 56.62 knm - - 81.83 knm 49.17 knm 0.88 14.5.3. Perde Gevrek Kırılma Kontrolü Perde kesme istemi, deprem yüklemesinden gelen elastik kesme istemi V D nin, eksenel kuvvet istemiyle uyumlu moment kapasitesi K nin yatay yük analizi ile hesaplanan elastik moment istemi D ye oranı ile ölçeklenmesiyle hesaplanır. K ve D değerleri perdenin bodrum kattan sonraki ilk katı için hesaplanan değerlerdir. K Ve = VD D Perde kesme istemi V e ; TS500 e göre hesaplanan perde kesme kapasitesi V r ile karşılaştırılır. Kesme istemleri kesme kapasitesinden küçük olan ve yüksekliği (H w ) genişliğinin (L w ) iki katından büyük olan perdeler sünek olarak hasar gören perde olarak tanımlanır. 14.5.4. Kolon-Kiriş Birleşim Bölgeleri Gevrek Kırılma Kontrolü Birleşim bölgelerinin kesme kapasitesi Yönetmelik 3.5.2.2 ye göre hesaplanır. Yönetmelik Denk.(3.12) veya Yönetmelik Denk(3.13) deki kesme kapasitesi hesabında f cd yerine mecut beton basınç dayanımı kullanılır. Yönetmelik Denk.(3.11) deki V kol ; birleşim bölgesinde birleşen kolonların hesaplanan kesme istemlerinin küçük olanıdır. Kesme kuvveti isteminin kesme dayanımından küçük olduğu birleşimler kesme dayanımı yeterli olarak tanımlanır. Tersi durumda birleşim bölgesi ve birleşim bölgesine bağlanan tüm elemanlar gevrek olarak hasar gören eleman olarak tanımlanır. Örnek: 1S7 kolonunun üst ucundaki birleşim bölgesinin kesme kontrolü aşağıda gösterilmiştir. 1S7 kolonunun üst ucundaki birleşim bölgesi kuşatılmamış birleşim bölgesidir. Vr = 0. 45 b h f cm (Yönetmelik Denk. 3.13) ile V r = 0.45 300 250 25 /1000 = 843. 75 olarak hesaplanır. ( ) kn 14/16

Birleşim bölgesindeki kesme istemi ise Ve =.25 f ym ( As1 + As2 ) Vkol Denk.(3.11) ile V e ( 1.25 420 ( 402 + 0) 37.16 1000) /1000 = 173. 89 kn 1 (Yönetmelik = olarak hesaplanır. Birleşim bölgesine bağlanan kolonların kesme istemleri V kol, 1S7 = 44.88 kn ve V kol, 2S7 = 37.16 kn dur. Birleşim bölgesinin kesme isteminin hesaplanmasında V kol olarak bu iki kolon kesme isteminden küçük olan V kol, 2S7 = 37.16 kn alınmıştır. Kesme istemi kesme kapasitesinden küçük olduğundan birleşim bölgesinin kesme dayanımı yeterlidir. Aşağıdaki tabloda örnek olarak seçilen çerçevedeki birleşim bölgelerinin kesme kontrolleri özetlenmiştir. BİRLEŞİ Ve (kn) Vr (kn) KONTROL BİRLEŞİ Ve (kn) Vr (kn) KONTROL 1S7 173.89 843.75 YETERLİ 3S7 131.33 843.75 YETERLİ 1S8 546.78 1181.25 YETERLİ 3S8 433.99 1181.25 YETERLİ 1S9 546.80 1575 YETERLİ 3S9 411.77 1575 YETERLİ 1S10 374.13 843.75 YETERLİ 3S10 298.33 843.75 YETERLİ 2S7 179.70 843.75 YETERLİ 4S7 131.33 843.75 YETERLİ 2S8 564.27 1181.25 YETERLİ 4S8 433.99 1181.25 YETERLİ 2S9 561.34 1575 YETERLİ 4S9 411.78 1575 YETERLİ 2S10 384.14 843.75 YETERLİ 4S10 298.33 843.75 YETERLİ 14.6. ELEANLARIN DEPRE PERFORANSLARININ DEĞERLENDİRİLESİ Sünek kiriş, kolon ve perdelerin etki-kapasite oranı (r), deprem etkisi altında R a =1 alınarak hesaplanan kesit momentinin kesit artık moment kapasitesine bölünmesi ile elde edilir. Eleman uçları için hesaplanan r değerleri seçilen performans düzeyine ait r sınır değerleriyle karşılaştırılarak elemanın hasar düzeyi belirlenir. Etki-kapasite oranı, deprem yüklemesinden kaynaklanan momentin ( E ) artık moment kapasitesine ( A ) oranıdır. Artık moment kapasitesi, kesit moment kapasitesi ile düşey yük analizi ile hesaplanan momentin vektörel farkıdır. Şekil 14.14. Kesit hasar bölgeleri 14.6.1. Sünek Kirişlerin Performans Değerlendirmesi Kiriş uçları için r değerleri hesaplanır. r değerleri seçilen performans düzeyine ait r sınır değerleriyle karşılaştırılarak kirişin hasar düzeyi belirlenir. 14/17

Kiriş uçları için hesaplanacak r sınır değerlerini donatı oranı, kesitteki mevcut sargının özelliği ve kesme istemi belirler. Çekme donatısı oranıyla (ρ) basınç donatısı oranı (ρ ) arasındaki farkın denge donatısı oranından (ρ b ) küçük olması durumu kesitin denge altı olduğunu gösterir ki bu da sünek davranışın göstergesidir. (ρ-ρ )/ρ b oranı arttıkça süneklik azalacak, dolayısıyla r sınır değeri azalacaktır. Kesitte kullanılan sargı donatısının Yönetmelik 3.2.8 de tarif edilen özel deprem etriye ve çirozları olarak düzenlenmiş olması ve Yönetmelik 3.4.4 deki koşulları sağlaması, kesitte sargılamanın var olduğunu gösterir. Aksi durumda sargılama ihmal edilerek r sınır değeri hesaplanır. Sargı etkisi sünekliği artırır. Yüksek kesme istemi kesit davranışının sünekliğini olumsuz etkiler. Bu nedenle artan kesme istemi r sınır değerini de azaltır. Aşağıda sünek kirişler için hasar sınırları verilmiştir (Yönetmelik, Tablo 7.2). 14.6.2. Sünek Kolonların Performans Değerlendirmesi Kolon uçları için r değerleri hesaplanır. r değerleri seçilen performans düzeyine ait r sınır değerleriyle karşılaştırılarak kolonun hasar düzeyi belirlenir. Kolon uçları için hesaplanacak r sınır değerlerini eksenel kuvvet istemi, kesitteki mevcut sargının özelliği ve kesme istemi belirler. Eksenel kuvvet istemi kolon davranışını doğrudan etkiler. Eksenel kuvvet arttıkça kolon davranışının sünekliği azalır. Bu nedenle artan eksenel kuvvet istemiyle r sınır değerleri azalır. Buradaki eksenel kuvvet istemi 14.4.4.1 ve 14.4.4.2 Kolon/Perde Eksenel Kuvvet Hesabı bölümlerinde anlatıldığı şekilde hesaplanan eksenel kuvvet istemidir. Kesitte kullanılan sargı donatısının Yönetmelik 3.2.8 de tarif edilen özel deprem etriye ve çirozları olarak düzenlenmiş olması ve Yönetmelik 3.3.4 deki koşulları sağlaması, kesitte sargılamanın var olduğunu gösterir. Aksi durumda sargılama ihmal edilerek r sınır değeri hesaplanır. Sargı etkisi sünekliği artırır. Yüksek kesme istemi kesit davranışınının sünekliğini azaltır. Bu nedenle artan kesme istemi r sınır değerini de azaltır. Aşağıda sünek kolonlar için hasar sınırları verilmiştir (Yönetmelik, Tablo 7.3). 14/18

14.6.3. Sünek Perdelerin Performans Değerlendirmesi Perde uçları için r değerleri hesaplanır. Sünek perdelerin etki-kapasite oranı (r), deprem yüklemesi altındaki moment isteminin, kesit artık moment kapasitesine bölünmesi ile elde edilir. H w /L w <2.0 koşulunu sağlayan betonarme perdelerin etki-kapasite oranı (r), deprem etkisi altında hesaplanan kesme kuvvetinin kesme kapasitesine oranı olarak hesaplanır. Hesaplanan r değerleri seçilen performans düzeyine ait r sınır değerleriyle karşılaştırılarak perdenin hasar düzeyi belirlenir. Perde uçları için hesaplanacak r sınır değerlerini perde uç bölgesinde sargılamanın olup olmadığı belirler. Kesitte kullanılan sargı donatısının Yönetmelik 3.2.8 de tarif edilen özel deprem etriye ve çirozları olarak düzenlenmiş olması ve Yönetmelik 3.6.5.2 deki koşulları sağlaması kesitte sargılamanın var olduğunu gösterir. Aksi durumda sargılama ihmal edilerek r sınır değeri hesaplanır. Aşağıda sünek perdeler için hasar sınırları verilmiştir (Yönetmelik, Tablo 7.4). Ancak Hw/Lw<2.0 koşulunu sağlayan betonarme perdelerde, aşağıdaki tabloda verilen sınır değerler (r sınır ), [1+H w /L w )/3] 0.5 katsayısı ile çarpılarak küçültülecektir. 14.6.4. Güçlendirilmiş Dolgu Duvarların Performans Değerlendirmesi Güçlendirilmiş dolgu duvarların etki-kapasite oranı (r), deprem yüklemesi altındaki kesme isteminin kesme dayanımına oranıdır. Köşegen çubuklar ile modellenen güçlendirilmiş dolgu duvarlarda oluşan kesme kuvvetleri, çubuğun eksenel kuvvetinin yatay bileşeni olarak gözönüne alınır. Aşağıda güçlendirilmiş dolgu duvarlar için hasar sınırları verilmiştir (Yönetmelik, Tablo 7.5). 14/19

14.6.5. Örnek Binada Kirişlerin Performans Değerlendirmesi Örnek olarak K104 kirişi seçilmiştir. Etki kapasite oranı r, R a =1 alınarak yapılan yatay yük analizi ile hesaplanan momentin ( E ) artık moment kapasitesine ( A = K - D ) oranıdır. Kiriş uçları için Can Güvenliği (CG) performans düzeyine ait r sınır değerleri hesaplanır. Kirişin iki ucunda da sargılama var dır. i ucu için; ρ=0.003216; ρ =0.006832 ; f 0.003 cm 25 0.003 2 5 ( 0.85 ) Es E ρ b = k1 = 0.85 0.85 = 0.025297 f ( 0.003 ) ym Es + f ym 420 0.003 2E5 + 420 ρ ρ' ve = 0. 14 olarak hesaplanır. i ucundaki kesme istemi V ei = 47.43 kn olarak ρ b V 47.43 1000 daha önce hesaplanmıştı. Buna göre = = 0. 23 olarak bw d fctm 250 475 1.75 ρ ρ' hesaplanır. Yönetmelik Tablo 7.2 ye göre 0. 0 ve V 0.65 olduğundan Can Güvenliği için r sınır değeri 7 olarak bulunur. i ucu bw d fctm 476.44 için r = = 5.66 olarak hesaplanır. 73.55 j ucu için; ( 10.58) ρ=0.006832; ρ =0.003216 ; f 0.003 cm 25 0.003 2 5 ( 0.85 ) Es E ρ b = k1 = 0.85 0.85 = 0.025297 f ( 0.003 ) ym Es + f ym 420 0.003 2E5 + 420 ρ ρ' ve = 0. 14 olarak hesaplanır. j ucundaki kesme istemi V ej = 102.11 kn olarak ρ b V 102.11 1000 daha önce hesaplanmıştı. Buna göre = = 0. 49 olarak bw d fctm 250 475 1.75 ρ ρ' hesaplanır. Yönetmelik Tablo 7.2 ye göre 0.0 0. 5 ve V 0.65 olduğundan Can Güvenliği için r sınır değeri doğrusal enterpolasyon bw d fctm 471.42 yapılarak 6.43 olarak bulunur. j ucu için r = = 3. 55 olarak 149.64 ( 16.51) hesaplanır. K104 kirişinin her iki ucu da ileri hasar bölgesine geçmemiştir. Diğer hasar sınırlarına ait r sınır değerleri hesaplanıp r değerleriyle karşılaştırılarak kiriş uçlarındaki hasar durumu belirlenir. 14/20 ρ b ρ b

+X ve +Y deprem yönleri için yapılan değerlendirme sonucu kirişlerin hasar durumları tablo ve grafik olarak aşağıda verilmiştir. (Örnek olarak yalnızca ilk kat için iki yönde eleman hasar durumları gösterilmiştir) +X Yönü Deprem Yüklemesi için Kiriş Hasar Durumu +X Yönü 1. Kat Kiriş Hasar Durumu 12.00 10.00 r 8.00 6.00 4.00 2.00 0.00 K101 i K101 j K102 i K102 j K103 i K103 j K104 i K104 j K105 i K105 j K106 i K106 j K107 i K107 j K108 i K108 j K109 i K109 j K110 i K110 j K111 i K111 j K112 i K112 j K113 i K113 j K114 i K114 j K132 i K132 j K133 i K133 j r N GV GÇ Şekil 14.15. + X yönü 1. kat kiriş hasar durumu Kiriş r r s,n r s,gv r s,gç Kesit Performans Eleman Performans K101 i 5.18 3 7 10 K101 j 3.98 3 6.55 9.32 K102 i 5.32 3 7 10 K102 j 5.03 3 6.55 9.32 K103 i 3.93 3 7 10 K103 j 4.33 3 6.55 9.32 K104 i 5.66 3 7 10 K104 j 3.55 3 6.43 9.14 K105 i 5.68 3 7 10 K105 j 5.09 3 6.43 9.14 K106 i 3.50 3 7 10 K106 j 3.70 3 6.43 9.14 K107 i 5.98 3 7 10 K107 j 5.17 3 6.52 9.28 K108 i 6.48 3 7 10 K108 j 6.44 3 6.67 9.51 K109 i 5.64 3 7 10 K109 j 3.52 3 6.43 9.14 K110 i 5.61 3 7 10 K110 j 5.05 3 6.43 9.14 K111 i 3.49 3 7 10 K111 j 3.69 3 6.43 9.14 K112 i 5.15 3 7 10 K112 j 3.93 3 6.55 9.32 K113 i 5.23 3 7 10 K113 j 4.98 3 6.55 9.32 14/21

r ÖRNEK 14 Kiriş r r s,n r s,gv r s,gç Kesit Performans Eleman Performans K114 i 3.92 3 7 10 K114 j 4.31 3 6.55 9.32 K132 i 2.11 3 7 10 inimum Hasar K132 j 6.38 3 6.75 9.63 K133 i 2.11 3 7 10 inimum Hasar K133 j 6.38 3 6.75 9.63 +Y Yönü Deprem Yüklemesi için Kiriş Hasar Durumu +Y Yönü 1. Kat Kiriş Hasar Durumu 12 10 8 6 4 r N GV GÇ 2 0 K115 i K115 j K116 i K116 j K117 i K117 j K118 i K118 j K119 i K119 j K120 i K120 j K121 i K121 j K122 i K122 j K123 i K123 j K124 i K124 j K125 i K125 j K126 i K126 j K127 i K127 j K128 i K128 j K129 i K129 j K130 i K130 j K131 i K131 j Şekil 14.16. + Y yönü 1. kat kiriş hasar durumu Kiriş r r s,n r s,gv r s,gç Kesit Performans Eleman Performans K115 i 5.36 3 7 10 K115 j 5.22 3 6.6 9.39 K116 i 3.05 3 7 10 K116 j 4.37 3 6.6 9.39 K117 i 2.86 3 7 10 inimum Hasar K117 j 4.13 3 6.6 9.39 K118 i 4.76 3 7 10 K118 j 6.05 3 6.56 9.35 K119 i 5.92 3 7 10 K119 j 6.13 3 6.46 9.19 K120 i 4.17 3 7 10 K120 j 5.66 3 6.32 8.98 K121 i 4.23 3 7 10 K121 j 6.26 3 6.46 9.19 K122 i 5.51 3 7 10 K122 j 5.90 3 6.27 8.91 K123 i 5.28 3 7 10 K123 j 5.34 3 6.29 8.93 K124 i 4.19 3 7 10 K124 j 8.58 2.91 6.01 8.61 İleri Hasar İleri Hasar K125 i 3.64 3 7 10 K125 j 5.78 3 6.29 8.93 K126 i 5.33 3 7 10 K126 j 6.04 3 6.32 8.98 14/22

Kiriş r r s,n r s,gv r s,gç Kesit Performans Eleman Performans K127 i 4.99 3 7 10 K127 j 6.10 3 6.71 9.57 K128 i 4.64 3 7 10 K128 j 4.77 3 6.71 9.57 K129 i 6.46 3 7 10 K129 j 5.70 3 6.71 9.57 K130 i 5.12 3 7 10 K130 j 5.41 3 6.71 9.57 K131 i 4.58 3 7 10 K131 j 6.03 3 6.52 9.28 14.6.6. Örnek Binada Kolonların Performans Değerlendirmesi Örnek olarak 1S7 kolonu seçilmiştir. Etki kapasite oranı r, R a =1 alınarak uygulanan yatay yük analizi ile hesaplanan momentin ( E ) artık moment kapasitesine ( A = K - D ) oranıdır. Kolon uçları için Can Güvenliği (CG) performans düzeyine ait r sınır değerleri hesaplanır. Kolonun iki ucunda da sargılama var dır. i ucu için; Eksenel kuvvet istemi N K = 181.41 kn olarak daha önce hesaplanmıştı. Buna göre N K 181.41 1000 = = 0.10 olarak hesaplanır. i ucundaki kesme istemi V ei = 44.88 Ac fcm 75000 25 V 44.88 1000 kn olarak daha önce hesaplanmıştı. Buna göre = = 0. 38 bw d fctm 300 225 1.75 olarak hesaplanır. N K V Yönetmelik Tablo 7.3 e göre 0. 1 ve 0. 65 olduğundan Can Ac fcm bw d fctm 242.55 Güvenliği için r sınır değeri 6 olarak bulunur. i ucu için r = = 3. 61olarak 63.37 ( 3.79) hesaplanır. j ucu için; Eksenel kuvvet istemi N K = 140.21 kn olarak daha önce hesaplanmıştı. Buna göre N K 140.21 1000 = = 0.07 olarak hesaplanır. j ucundaki kesme istemi V ej = 44.88 Ac fcm 75000 25 V 44.88 1000 kn olarak daha önce hesaplanmıştı. Buna göre = = 0. 38 bw d fctm 300 225 1.75 olarak hesaplanır. 14/23

N K V Yönetmelik Tablo 7.3 e göre 0. 1 ve 0. 65 olduğundan Can Ac fcm bw d f ctm 194.68 Güvenliği için r sınır değeri 6 olarak bulunur. j ucu için r = = 3. 55 olarak 59.94 (5.11) hesaplanır. 1S7 kolonunun iki ucu da ileri hasar bölgesine geçmemiştir. Diğer hasar sınırlarına ait r sınır değerleri hesaplanıp r değerleriyle karşılaştırılarak kolon uçlarındaki hasar durumu belirlenir. +X ve +Y yönünde yapılan değerlendirme sonucu kolonların hasar durumları tablo ve grafik olarak aşağıda verilmiştir. (Örnek olarak yalnızca ilk kat için iki yönde eleman hasar durumları gösterilmiştir) +X Yönü Deprem Yüklemesi için Kolon Hasar Durumu +X Yönü 1. Kat Kolon Hasar Durumu 9.00 8.00 7.00 r 6.00 5.00 4.00 3.00 2.00 1.00 0.00 1S02 i 1S02 j 1S03 i 1S03 j 1S04 i 1S04 j 1S05 i 1S05 j 1S07 i 1S07 j 1S08 i 1S08 j 1S09 i 1S09 j 1S10 i 1S10 j 1S11 i 1S11 j 1S13 i 1S13 j 1S14 i 1S14 j 1S14A i 1S14A j 1S15 i 1S15 j 1S17 i 1S17 j 1S18 i 1S18 j 1S19 i 1S19 j 1S20 i 1S20 j 1S22 i 1S22 j 1S23 i 1S23 j 1S24 i 1S24 j 1S25 i 1S25 j r N GV GÇ Şekil 14.17. + X yönü 1. kat kolon hasar durumu Kolon r r s,n r s,gv r s,gç Kesit Performans Eleman Performans V/V kat (%) 1S02 i 3.75 3 6 8 1S02 j 3.66 3 6 8 3.51 1S03 i 3.64 2.42 4.84 6.83 1S03 j 3.14 2.42 4.84 6.83 5.61 1S04 i 3.43 2.35 4.68 6.63 1S04 j 2.54 2.35 4.68 6.63 6.86 1S05 i 2.99 2.31 4.62 6.62 1S05 j 2.11 2.31 4.62 6.62 inimum Hasar 3.37 1S07 i 3.61 3 6 8 1S07 j 3.55 3 6 8 2.51 1S08 i 3.65 2.48 4.95 6.92 1S08 j 3.02 2.48 4.95 6.92 5.41 1S09 i 3.13 2.42 4.83 6.79 1S09 j 2.22 2.42 4.83 6.79 inimum Hasar 7.02 1S10 i 2.82 2.13 4.26 6.26 1S10 j 2.13 2.13 4.25 6.25 2.30 14/24

Kolon r r s,n r s,gv r s,gç Kesit Performans Eleman Performans V/V kat (%) 1S11 i 2.98 2.36 4.73 6.73 1S11 j 1.72 2.35 4.70 6.70 inimum Hasar 2.74 1S13 i 4.27 2.95 5.90 7.90 1S13 j 4.08 3 6 8 3.63 1S14 i 4.12 2.54 5.07 7.00 1S14 j 2.76 2.54 5.07 7.00 9.34 1S14A i 3.59 2.38 4.77 6.77 1S14A j 1.76 2.33 4.66 6.66 inimum Hasar 8.71 1S15 i 2.98 2.36 4.73 6.73 1S15 j 1.72 2.35 4.70 6.70 inimum Hasar 2.74 1S17 i 3.59 3 6 8 1S17 j 3.52 3 6 8 2.49 1S18 i 3.59 2.48 4.95 6.92 1S18 j 2.98 2.48 4.95 6.92 5.33 1S19 i 3.12 2.42 4.83 6.79 1S19 j 2.21 2.42 4.83 6.79 inimum Hasar 6.99 1S20 i 2.81 2.13 4.26 6.26 1S20 j 2.13 2.13 4.25 6.25 inimum Hasar 2.29 1S22 i 3.92 3 6 8 1S22 j 3.63 3 6 8 3.48 1S23 i 3.65 2.49 4.99 6.99 1S23 j 3.16 2.49 4.99 6.99 5.51 1S24 i 3.41 2.35 4.68 6.63 1S24 j 2.52 2.35 4.68 6.63 6.81 1S25 i 2.97 2.31 4.62 6.62 1S25 j 2.10 2.31 4.62 6.62 inimum Hasar 3.35 +Y Yönü Deprem Yüklemesi için Kolon Hasar Durumu +Y Yönü 1. Kat Kolon Hasar Durumu 9 8 7 r 6 5 4 3 2 1 0 1S02 i 1S02 j 1S03 i 1S03 j 1S04 i 1S04 j 1S05 i 1S05 j 1S07 i 1S07 j 1S08 i 1S08 j 1S09 i 1S09 j 1S10 i 1S10 j 1S11 i 1S11 j 1S13 i 1S13 j 1S14 i 1S14 j 1S14A i 1S14A j 1S15 i 1S15 j 1S17 i 1S17 j 1S18 i 1S18 j 1S19 i 1S19 j 1S20 i 1S20 j 1S22 i 1S22 j 1S23 i 1S23 j 1S24 i 1S24 j 1S25 i 1S25 j r N GV GÇ Şekil 14.18. + Y yönü 1. kat kolon hasar durumu 14/25

Kolon r r s,n r s,gv r s,gç Kesit Performans Eleman Performans V/V kat (%) 1S02 i 2.50 2.52 5.05 7.05 inimum Hasar 1S02 j 1.60 2.52 5.05 7.05 inimum Hasar inimum Hasar 2.76 1S03 i 2.84 2.24 4.48 6.48 1S03 j 1.51 2.24 4.48 6.48 inimum Hasar 4.23 1S04 i 2.70 2.20 4.39 6.39 1S04 j 1.34 2.20 4.39 6.39 inimum Hasar 4.82 1S05 i 2.53 2.37 4.74 6.74 1S05 j 1.50 2.37 4.74 6.74 inimum Hasar 2.86 1S07 i 4.04 2.72 5.44 7.44 1S07 j 3.30 2.72 5.44 7.44 3.64 1S08 i 3.95 2.50 4.99 6.99 1S08 j 2.85 2.56 5.12 7.12 5.87 1S09 i 3.84 2.49 4.96 6.89 1S09 j 2.12 2.49 4.96 6.89 inimum Hasar 8.10 1S10 i 3.69 2.43 4.86 6.86 1S10 j 3.17 2.43 4.86 6.86 3.95 1S11 i 3.64 2.48 4.96 6.96 1S11 j 3.19 2.48 4.96 6.96 4.65 1S13 i 3.15 2.46 4.92 6.92 1S13 j 2.57 2.46 4.92 6.92 2.79 1S14 i 3.18 2.55 5.11 7.11 1S14 j 1.77 2.55 5.11 7.11 inimum Hasar 6.23 1S14A i 4.56 2.72 5.44 7.44 1S14A j 1.73 2.72 5.44 7.44 inimum Hasar 9.37 1S15 i 3.97 2.62 5.25 7.25 1S15 j 3.36 2.62 5.25 7.25 4.65 1S17 i 3.47 2.48 4.95 6.93 1S17 j 2.98 2.48 4.95 6.93 3.63 1S18 i 3.67 2.45 4.91 6.90 1S18 j 2.69 2.45 4.91 6.90 5.80 1S19 i 3.60 2.42 4.81 6.72 1S19 j 2.12 2.48 4.94 6.85 inimum Hasar 8.10 1S20 i 4.27 2.72 5.44 7.44 1S20 j 3.87 2.87 5.74 7.74 3.95 1S22 i 3.23 2.96 5.91 7.91 1S22 j 2.16 3 6 8 inimum Hasar 2.75 1S23 i 3.77 2.76 5.53 7.53 1S23 j 2.17 2.96 5.93 7.93 inimum Hasar 4.18 1S24 i 3.56 2.77 5.54 7.54 1S24 j 1.83 2.96 5.92 7.92 inimum Hasar 4.83 1S25 i 3.04 2.77 5.54 7.54 1S25 j 1.75 2.77 5.54 7.54 inimum Hasar 2.85 14/26

14.7. BİNA PERFORANS DEĞERLENDİRESİ Eleman performans düzeylerinin belirlenmesinin ardından binanın hedeflenen performans düzeyini sağlayıp sağlamadığı kontrol edilir. Bu kontrol üç parametreyle yapılır: Hedeflenen performans düzeyine ait r sınır değerlerini sağlamayan kolonların taşıdığı kesme kuvvetinin kat kesme kuvvetine yüzde olarak oranı, Göz önüne alınan deprem yönünde; hedeflenen performans düzeyine ait r sınır değerlerini sağlamayan kirişlerin deprem yönündeki toplam kiriş sayısına yüzde olarak oranı, Göreli kat ötelemeleri. Performans düzeylerine göre göreli kat ötelemeleri sınırları aşağıda verilmiştir. Performans düzeylerinin kabul kriterleri aşağıda anlatılmıştır: 14.7.1. Hemen Kullanım (HK) Performans Düzeyi Hemen Kullanım Performans Düzeyi, deprem sonrası binanın güvenli bir biçimde işlevini sürdürebildiğini ve yapının deprem öncesi tasarım dayanım ve rijitliğini koruduğunu kabul eder. Herhangi bir katta, uygulanan her bir deprem doğrultusu için yapılan hesap sonucunda kirişlerin en fazla %10 u Bölgesi ne geçebilir, ancak diğer taşıyıcı elemanlarının tümü inimum Hasar Bölgesi ndedir. Eğer varsa, gevrek olarak hasar gören elemanların güçlendirilmeleri kaydı ile, bu durumdaki binaların Hemen Kullanım Performans Düzeyi nde olduğu kabul edilir. Göreli kat ötelemesi oranının sınırı 0.01 dir. 14.7.2. Can Güvenliği (CG) Performans Düzeyi Eğer varsa, gevrek olarak hasar gören elemanların güçlendirilmeleri kaydı ile, aşağıdaki koşulları sağlayan binaların Can Güvenliği Performans Düzeyi nde olduğu kabul edilir: (a) Herhangi bir katta, uygulanan her bir deprem doğrultusu için yapılan hesap sonucunda, ikincil (yatay yük taşıyıcı sisteminde yer almayan) kirişler hariç olmak üzere, kirişlerin en fazla %30'u ve kolonların aşağıdaki (b) paragrafında tanımlanan kadarı İleri Hasar Bölgesi ne geçebilir. (b) İleri Hasar Bölgesi ndeki kolonların, her bir katta kolonlar tarafından taşınan kesme kuvvetine toplam katkısı %20 nin altında olmalıdır. En üst katta İleri Hasar Bölgesi ndeki kolonların kesme kuvvetleri toplamının, o kattaki tüm kolonların kesme kuvvetlerinin toplamına oranı en fazla %40 olabilir. 14/27

(c) Diğer taşıyıcı elemanların tümü inimum Hasar Bölgesi veya Bölgesi ndedir. Ancak, herhangi bir katta alt ve üst kesitlerinin ikisinde birden inimum Hasar Sınırı aşılmış olan kolonlar tarafından taşınan kesme kuvvetlerinin, o kattaki tüm kolonlar tarafından taşınan kesme kuvvetine oranının %30 u aşmaması gerekir (Doğrusal elastik yöntemle hesapta, alt ve üst düğüm noktalarının ikisinde birden Yönetmelik Denk. (3.3) ün sağlandığı kolonlar (KKO > 1.2) bu hesaba dahil edilmezler). Göreli kat ötelemesi oranının sınırı 0.03 dür. 14.7.3. Göçme Öncesi (GÖ) Performans Düzeyi Gevrek olarak hasar gören tüm elemanların Göçme Bölgesi nde olduğunun gözönüne alınması kaydı ile, aşağıdaki koşulları sağlayan binaların Göçme Öncesi Performans Düzeyi nde olduğu kabul edilir: (a) Herhangi bir katta, uygulanan her bir deprem doğrultusu için yapılan hesap sonucunda, ikincil (yatay yük taşıyıcı sisteminde yer almayan) kirişler hariç olmak üzere, kirişlerin en fazla %20 si Göçme Bölgesi ne geçebilir. (b) Diğer taşıyıcı elemanların tümü inimum Hasar Bölgesi, Bölgesi veya İleri Hasar Bölgesi ndedir. Ancak, herhangi bir katta alt ve üst kesitlerinin ikisinde birden inimum Hasar Sınırı aşılmış olan kolonlar tarafından taşınan kesme kuvvetlerinin, o kattaki tüm kolonlar tarafından taşınan kesme kuvvetine oranının %30 u aşmaması gerekir (Doğrusal elastik yöntemle hesapta, alt ve üst düğüm noktalarının ikisinde birden Yönetmelik Denk. (3.3) ün sağlandığı kolonlar (KKO> 1.2) bu hesaba dahil edilmezler). (c) Binanın mevcut durumunda kullanımı can güvenliği bakımından sakıncalıdır. Göreli kat ötelemesi oranının sınırı 0.04 tür. 14.7.4. Göçme Durumu Bina Göçme Öncesi Performans Düzeyi ni sağlayamıyorsa Göçme Durumu ndadır. Binanın kullanımı can güvenliği bakımından sakıncalıdır. 14.7.5. Örnek Binanın Deprem Performansı Değerlendirilmesi yapılan bina konut binası olduğundan hedeflenen performans düzeyi Can Güvenliği (CG) dir. +X Yönünde hiçbir katta ileri hasar bölgesi nde bulunan kiriş yoktur. +Y Yönünde ise birinci katta bir kiriş ileri hasar bölgesi nde, ikinci katta ise bir kiriş ileri hasar bölgesindedir. İki yönde de hiçbir katta ileri hasar bölgesinde bulunan kolon yoktur. Göreli kat ötelemeleri her iki yönde Can Güvenliği performans düzeyi için belirlenen sınırın altındadır. 1975 Deprem Yönetmeliğine uygun olarak tasarlanmış 4 katlı konut binası Can Güvenliği performans düzeyini sağlamaktadır. Aşağıdaki tablolarda bina performans değerlendirilmesi özetlenmiştir. 14/28

+X Yönü + Y Yönü Kat Kolon % Sınır % Kiriş % Sınır % Kolon % Sınır % Kiriş % Sınır % 1 0.00 20.00 0.00 30.00 0.00 20.00 5.88 30.00 2 0.00 20.00 0.00 30.00 0.00 20.00 5.88 30.00 3 0.00 20.00 0.00 30.00 0.00 20.00 0.00 30.00 4 0.00 40.00 0.00 30.00 0.00 40.00 0.00 30.00 +X Yönü + Y Yönü Kat H i (m) δ maks δ maks /H i δ maks δ maks /H i 1 2.7 0.03865 0.01431 0.03859 0.01429 2 2.7 0.04974 0.01842 0.05156 0.01910 3 2.7 0.04153 0.01538 0.0428 0.01585 4 2.7 0.02256 0.00836 0.02346 0.00869 Sınır 0.03 14/29