HACİMSEL FOTOVOLTAİK OLAY

Ebat: px
Şu sayfadan göstermeyi başlat:

Download "HACİMSEL FOTOVOLTAİK OLAY"

Transkript

1 YILDIZ TEKNİK ÜNİVERSİTESİ FEN-EDEBİYAT FAKÜLTESİ FİZİK BÖLÜMÜ BİTİRME TEZİ HACİMSEL FOTOVOLTAİK OLAY Tuğçe SOYŞEN Tez Danışmanı: Yrd. Doç. Dr. Rıza DEMİRBİLEK HAZİRAN 2008

2 İÇİNDEKİLER TEŞEKKÜR i ÖZET 1 BÖLÜM 1 FERROELEKTRİK VE PİEZOELEKTRİKLER 1.1.Ferroelektrik Kristaller Ferroelektriklerin Karakteristik Özellikleri Piezoelektrikler Piezoelektriklerin Kullanım Alanları 5 BÖLÜM 2 FOTOVOLTAİK OLAY 2.1.Fotovoltaik Olay Tanımı p-n Eklemi Dember Etkisi 9 BÖLÜM 3 HACİMSEL FOTOVOLTAİK OLAY 3.1.Hacimsel Fotovoltaik Olayın Tanımı Hacimsel Fotovoltaik Olayın Oluşumu Hacimsel Fotovoltaik Olayın Atomik Doğası Hacimsel Fotovoltaik Olayın Deneysel Uyumluluğu Simetri Merkezi Olmayan Kristallerde Magnetofotovoltaik olay Ferroelektrik Kristaldeki Hacimsel Fotovoltaik Olay ve Hacimsel Fotovoltaik Olayın Sayısal İncelemesi Fotovoltaik Tensörün Hesaplanması 21 BÖLÜM 4 HACİMSEL FOTOVOLTAİK OLAYIN UYGULAMALARI Holografi Holografi Olayının Oluşumu 23 KAYNAKLAR 28

3 TEŞEKKÜR İlk olarak tüm hayatım boyunca beni maddi ve manevi olarak destekleyen Anneme, Babama ve Ablama Üniversite hayatım boyunca iyi ve kötü tüm anlarımı paylaştığım, birlikte gülüp ağladığım canım arkadaşım Gülderen e Ve son olarak tezimin konu seçiminde, çalışmamda yardımlarını esirgemeyen her zaman güler yüzüyle beni dinleyen Sayın Yrd. Doç. Dr. Rıza Demirbilek e ve Holografi konusundaki yardımlarından dolayı Dr. Mehmet Kılıç a Teşekkürler Saygılarımla Tuğçe Soyşen Haziran, 2008 i

4 ÖZET Hazırlamış olduğum bu tezde Hacimsel Fotovoltaik Olayı ele aldım. Bu anlatımı yapmadan önce hacimsel fotovoltaik olayı daha iyi kavramak için katıların özelliklerini, ferroelektrik ve piezoelektrik kristallerin özelliklerini, fotovoltaik olay çeşitleri hakkında bilgi verdim. Tezimin en sonunda ise hacimsel fotovoltaik olayın en önemli uygulama alanı olan holografi hakkında bilgi verdim. Hacimsel fotovoltaik olayın diğer fotovoltaik olaylardan en büyük farkı ışık enerjisini, elektrik enerjisine çevirdikten sonra bu enerjiyi kullanmanın olanaksız olmasıdır. Fakat bu çevrimin başka kullanıldığı uygulama alanları vardır. Bu uygulama alanlarından en önemlisi holografidir. Holografi yönteminden birçok alanda yararlanılmaktadır. 1

5 BÖLÜM 1 FERROELEKTRİK VE PİEZOELEKTRİK 1.1 Ferroelektrik Kristaller [1] Ferroelektrik maddeler hem teorik hem de teknik açıdan önemlidirler. Çünkü genellikle dielektrik sabit değerleri sıcaklığa önemli bir şekilde bağlıdır. Bunlar arasında piezo-elektrik etki, piro-elektrik etki, elektro-optik etkiler sayılabilir. Ferroelektrikler kendiliğinden elektrik polarizasyona sahip maddelerdir. Bu elektrik polarizasyonu uygulanabilecek uygun bir elektrik alanı ile tersine çevrilebilir. Bu oluşum anahtarlama (switching) diye bilinir. Ferroelektrik malzemeler çok değişik elektriksel özellikler gösterir. Birçok katı malzemedeki bağlanma kuvveti elektrikseldir. Ferroelektrikler bu kuvvetlerin büyültülmüş doğasını gösterebilir ve ayrıca bununla yapılan çalışmalara kolaylık sağlayabilir. Ferroelektrik kelimesi ferromagnetik olgusundan çıkmıştır. Ferro kelimesi demir ile alakalı görünse de ferroelektrikler içinde demir maddesi yoktur. Rochelle tuzu ilk bilinen ferrolelektrik kristaldir. Ferroelektrikler tümüyle katıdır ve hiçbiri metal değildir. Tek kristal ferroelektrikler çoğunlukla çalışılmıştır yıllarında Wiiliam Gilbert mıknatısların özellikleri çalışmıştır. Daha sonraları 1850 yıllarında Weber ve Ewing ferroelektrikler üzerinde çalışmıştır de Weiss temel bir teori ortaya koymuştur. Buna karşılık 1921 yılında Valasek tarafından ferrolektrik özellik keşfedildi. Bu keşif Rochelle tuzu ile olmuştur. Şu an seksenden fazla bilinen ferroelektrik bulunmaktadır. 2

6 1.2 Ferroelektriklerin Karakteristik Özellikleri Ferroelektriklerin belli başlı özellikleri şunlardır: Tersinir polarizasyonları Anormal özellikleri Lineer olmayışları Birçok ferroelektrik belli bir sıcaklığının üstünde ferrolektrik özelliğini yitirir. Bu sıcaklığına geçiş sıcaklığı (transition temperature) denir. sıcaklığına yakın değerlerdeki anormal davranışlar tersinir polarizasyon kadar önemlidir. Fakat ferroelektrik için kesin bir kural değildir. Geçirgenlik katsayısı, sıcaklığında keskin bir şekilde en üst değerine ulaşır. Birçok ferroelektriğin geçirgenlik katsayısı değeri a çok yakın olmayan değerlerde de yüksektir. Geçirgenlik katsayısı bir çift elektrodu kristale bağlayarak ve uygun kristalin kapasitesini ölçmek için herhangi bir uygun a.c. methodu kullanılabilir. Ferroelektrik bir kristal bir dış elektrik alan olmadığı durumda bile elektrik dipol momenti göserir. Ferroelektrik durumdaki kristalde pozitif yük merkezi ile negatif yük merkezi çakışık değildir. Ferroelektrik durumda elektrik dipol momentinin elektrik alana karşı grafiği çizildiğinde bir histerezis eğrisi gözlenir. Normal dielektrik durumdaki bir kristale uygulanan elektrik alan önce yavaşça artırılıp sonra azaltıldığında gözle görünür bir histerezis oluşmaz. Bazı kristallerde uygulanan elektrik alan dielektrik bozulma sınırına kadarki maksimum değerine çıkarılsa bile elektrik dipol momentinde artış olmaz. Oysa bu tür kristallerde sıcaklık değiştiğinde kalıcı momentin değiştiği gözlenir. Bu tür kristallere piro-elektrik kristal denir. LiNbO 3 (Lityum niobat) kristali oda sıcaklığında piroelektriktir. Yüksek bir geçiş sıcaklığına (T c = 1480 K) ve yüksek bir satürasyon polarizasyonuna 3

7 (50µC/cm 2 ) sahiptir K dan daha yüksek sıcaklıklarda bir elektrik alan uygulayarak kalıcı polarizasyona sahip olabilirler. Geçiş sıcaklığı denilen bir sıcaklık değeri üstünde genellikle ferroelektrik durum kaybolur. Geçiş sıcaklığı üstünde kristalin para-elektrik olduğu söylenir. Paraelektrik terimi, mıknatıslanmadaki paramagnetizmaya benzediği için kullanılır, yani sıcaklık arttığında dielektrik sabitte ani bir düşüş gözlenir. 1.3 Piezoelektrikler [2] Piezoelektrik etki kavramı ilk kez Fransız mineralog René Just Haűy (1817) tarafından anılmış ve 1880 yılında Jacques-Pierre Curie kardeşlerin bazı kristaller üzerinde (kuvars, turmalin, topaz, Rochelle tuzu vs.) yaptıkları çalışmalar sonucunda bilimsel olarak kanıtlanmıştır. Piezoelektrik özellik gösteren bir malzemeye mekanik basınç uygulandığında malzemenin yüzeylerinde elektrik yüklerinin oluşmasına direkt piezoelektrik etki denir. Lippmann (1881) direkt etki gösteren malzemenin ters etki göstermesi gerektiğini öne sürmesinden sonra ters piezoelektrik Cune kardeşler tarafından aynı yıl deneysel olarak ispatlanmıştır. Ferroelektrik durumdaki tüm kristaller aynı zamanda piezoelektrik olurlar. Kristale uygulanan bir Z gerilmesi elektrik polarizasyonunu değiştirir. Benzer şekilde, kristale uygulanan bir elektrik alanı kristalin gerilmesine yol açar. Tek boyutlu şematik bir gösterimde piezoelektrik denklemler şöyle ifade edilebilir: Burada sırasıyla polarizasyonu, gerilme, piezoelektrik deformasyon sabiti, elektrik alanı, dielektrik alınganlık, elastik deformasyon sabiti ve elastik sabittir. Bu denklme CGS birim sistemine göre yazılmıştır eğer SI birim sistemine uygun yazılmak istenirse yerine alınmalıdır. Bu bağıntılar uygulanan bir gerilmede polarizasyonun ve uygulanan elektrik alanda elastik bir gerilmenin oluşumunu gösterirler. 4

8 Bir kristal ferroelektrik olmadan da piezoelektrik olabilir. Örneğin; kuartz ferroelektrik olmadığı halde piezoelektrik tir. BaTiO 3 (Baryum titanat) her iki özelliği de gösterir. Piezoelektrik gerilme sabitlerinin en genel tanımı şu şekilde yapılır: Burada ve olurlar. PZT sistemleri denilen polikristal (seramik) yapısındaki kurşun zirkonatkurşun titanat sistemleri, çok kuvvetli piezoelektrik çiftlenim elde etmekte kullanılırlar. Sentetik polivinil- lidenflüorit polimeri (PVF 2 ) kristal kuartza kıyasla beş kat daha piezoelektriktir. Kolayca bükülebilen ince PVF 2 filmleri ultrases aygıtlarda, ayrıca tıp alanında kan basıncı ve solunum ölçümlerinde kullanılırlar. Ultrases uygulamalarında piezoelektrik kristallerin yanıt fonksiyonu elektromekanik çiftlenim sabiti ile belirtilir. Bu sabitin karesi şöyle tanımlanır: 1.4 Piezoelektriklerin Kullanım Alanları: Piezoelektrik malzemeler, başlıca iki malzeme grubundan oluşur. Bunlar kuartz ve turmalin gibi doğal olarak piezoelektrik etki gösteren kristaller ile kutuplanma sonrasında piezoelektrik etki gösteren ferroelektrik malzemeler. Günümüzde birçok kristalin piezoelektrik özelliğinden yararlanılmakta ve her birinin kendine özgü özellikleriyle farklı kullanım alanları ortaya çıkmaktadır. Piezoelektrik kristaller, birçok elektronik donanımda, çakmaklarda, masa ve kol saatlerinde, akustik ve hassas ölçüm yapan mikroskoplarda, yüksek frekansta ses üretimi için ultrasonik aygıtlarda, yarı iletken ve entegre devre teknolojilerinde, en hassas termometrelerin yapımına kadar geniş bir yelpazede kullanılır. 5

9 BÖLÜM 2 FOTOVOLTAİK OLAY 2.1 Fotovoltaik Olay Tanımı [3] Fotovoltaik olay yarıiletken malzemelerden oluşmuş hücrelerle güneş ışınlarının direkt olarak elektrik enerjisine (DC) çevirebilen teknolojiye verilen isimdir. Fotovoltaik olay 1839 yılından beri bilinmesine rağmen, ilk modern fotovoltaik hücrenin yapımı ancak 1954 te ABD de Bell Laboratuarı nda gerçekleştirilmiştir. Fotovoltaik olay yarıiletken malzeme içinde oluşur. Fotovoltaik olayın oluştuğu iki mekanizma vardır. Bunlardan birincisi homojen olmayan yarıiletken kristalin ışınlanmasından kaynaklanır. Diğeri ise homojen yarıiletken kristallerdeki düzgün olmayan ışınlanmasından kaynaklanan Dember Effect olarak bilinen olaydır. 2.2 p-n Eklemi Bir n-tipi yarıiletkenle bir p-tipi yarıiletkenin temas durumunda bir p-n eklemi oluşur. Böyle bir eklem bir diyot gibi davrandığından önem taşır. Aynı cins öz yarıiletken içine yerleştilen yabancı katkı atomları sonucu meydana getirilen p-n eklemi ele alınırsa: Şekil 2.1 Yabancı katkı atomları sonucu meyadana getirilen p-n eklemi.[3] 6

10 Şekilde 2.1 de p-tipi yarıiletkenlerde değişik yoğunlukları p p ve p n ile, n-tipi yarıiletkenlerde elektron yoğunlukları n p ve n n ile gösterilmiştir. p tarafında fazladan hareketli boşluklar, n tarafında ise fazladan hareketli elektronlar vardır. Bunların yoğunluklarının aynı olmasına gerek yoktur. Elektriksel nötrlük, p tarafında kristal örgü içerisindeki (hareketsiz) negatif alıcı iyonlarla, n tarafında ise (hareketsiz))pozitif verici iyonlarla korunur. İki malzeme temas ettirildiğinde, p tarafındaki hareketli boşluklar n tarafına, n tarafındaki hareketli elektronlar da p tarafına geçme eğilimi gösterirler. Bu karışma, her iki malzemedeki Fermi enerjileri aynı düzeye ulaşıncaya kadar devam eder. Bu şu şekilde oluşur: Yük akışı, n tarafında (sağ taraf) kalan net pozitif yükler ile p tarafında (sol taraf) kalan negatif yükler, yayılmayı durduran bir elektrik alan oluşturana kadar sürer. n tarafı p tarafından daha yüksek bir potansiyelde, olur. Ancak elektronlar negatif yüke sahiptir, bu nedenle sağdaki elektronların enerjisi a düşer. Önce Sonra Şekil 2.2 Yarıiletkenlerin bir araya getirilmeden önceki ve sonraki enerji düzeyleri.[3] Şekil 2.2 de enerji grafikleri yardımı ile p-n eklemi incelenir. Yarıiletkenlerin bir araya getirilmeden önceki enerji düzeyleri gösterilmiştir. Aralık enerjileri aynıdır, çünkü her iki yarıiletken de aynı saf yarıiletkenin katkılanması ile oluşturulmuştur. Eklem oluşturulduğunda, iletim ve değerlik bantları sapar. İç potansiyel, Fermi enerjilerini aynı düzeye getirir. 7

11 Burada ve sırasıyla p-tipi ve n-tipi yarıiletkenlerin temas ettirilmeden önceki Fermi enerjileridir. Malzemeler temas ettirildikten sonra: uç değeridir. Burada ve sırasıyla, p-tipi ve n-tipi yarıiletkenlerin iletkenlik bandı Temas potansiyeli dışarıdan uygulanan bir potansiyel değildir; eklemin kendisine ait bir özelliktir. p-n ekleminden bir güneş pili ya da ışık yayan diyot olarak yararlanılır. freaknslı bir foton bir p-n eklemine çarparsa, fotonu soğuran değerlik bandındaki bir elektron iletkenlik bandına geçer. Elektron arkasında bir deşik, bir p taşıyıcısı bırakarak bir n taşıyıcısına dönüşür. iç temas potansiyeli elektronları ve deşikleri ayırır: n tarafındaki n taşıyıcıları ekleme doğru ilerlerken, p tarafındaki p taşıyıcıları da iç elektrik alan yönünde ekleme doğru ilerler. Yeni taşıyıcıların bu hareketi a zıt işaretli bir potansiyel farkı oluşturur. Bu nedenle bu potansiyel bir dış olmadığında bile eklem üzerinde bir ileri besleme voltajı gibi davranır. Bu fotovoltaik etki ile bir akım oluşturur ve bir dış dereye güç katar. Gereken tek şey eklemin birleşenlerine bağlanacak ir iletkendir. Silikon içerisinde 1200nm den kısa dalgaboylu fotonlar, bir fotovoltaik etki oluşturur. Güneş ışınlarını elektrik akımına dönüştüren güneş pilleri esasında p-n eklemidir. Işık toplama ve foton soğurmadaki sınırlamalardan dolayı, silikonda güneş enerjisinin teorik olarak en fazla %28 i elektrik enerjisine dönüşebilir. Pratikte silikon güneş pilleri %10 luk bir verimle çalışır. 8

12 2.3 Dember Etkisi Dember etkisinde homojen olan yarıiletken kristale düzgün olmayan bir ışınlanım yapılırsa oluşuyor. Dember etkisinin oluşma mekanizması şöyledir: Kristalin bazı kısımlarına ışık gönderilir bazı kısımlarına ışık gönderilmez. Böylece kristal içinde farklı mobiliteye sahip elektronlar oluşur. Kristalin ışık alan bölgesi ile ışık almayan bölgesi arasında bir potansiyel fark oluşur. Bu potansiyel fark genellikle yarıiletken kristalin derinliklerinde oluşur. Işık Aydınlık Kısım Karanlık Kısım Şekil 2.3 Yarıiletken kristale homojen olmayan ışınlama yapılması ile oluşan Dember Etkisi. 9

13 BÖLÜM 3 HACİMSEL FOTOVOLTAİK OLAY 3.1 Hacimsel Fotovoltaik Olayın Tanımı [4] Hacimsel fotovoltaik olay keşfedilmeden önce iki çeşit fotovoltaik olay biliniyordu. Birincisi Dember Etkisi olarak bilinen etkiden kaynaklanan fotovoltaik olaydı. Bu etki kristalde düzgün olmayan ışınlanmadan kaynaklanıyordu. Bu etkide fotovoltaik olay ışıkla uyarılımış taşıyıcıların difüzyonu ile ilgilidir. İkinci tip fotovoltaik etki kristaldeki dengede olmayan taşıyıcıların ayrılması ile ilgilidir. Bu fotovoltaik etkinin görüldüğü en bilinen durum p-n geçişleridir. Bu özellikle güneş pillerinde kullanılır. Tüm bu fotovoltaik olaylar ya homojen olmayan kristallerde ya da düzgün olmayan ışınlamalardan kaynaklanmaktadır. Her iki fotovoltaik etkide oluşan fotovoltaj band aralığının değerini aşmamaktadır ların ikinci yarısında hacimsel fotovoltaik olay keşfedildi. Bu etki ışınım altındaki simetri merkezi olmayan kristallerde oluşmuştur. Diğer fotovoltaik olaylara karşıt olarak hacimsel fotovoltaik olay düzgün ışınım altındaki homojen kristallerde gözlenmiştir. Hacimsel fotovoltaik olayın iki önemli özelliği vardır. Bunlardan birincisi ışık polarizasyonuna bağlılığı, ikincisi fotovoltajın binlerce voltaja ulaşmasıdır. Hacimsel fotovoltaik olay simetri merkezi olmayan kristallerde görülmüştür. Ve en önemlisi sadece 20 noktasal (piezoelektrik) simetri grubunda gözlenmiştir. Hacimsel fotovoltaik olay sadece ferroelektrik ve piezoelektrik kristallerde görülmüştür. 3.2 Hacimsel Fotovoltaik Olayın Oluşumu Hacimsel fotovoltaik olayın lineer olmayan optikle birçok benzerliği vardır. Hacimsel fotovoltaik olayda oluşan akım nin doğrusal ve dairesel olmak üzere iki bileşeni vardır. 10

14 Denklemdeki ışık şiddetini ifade etmektedir. Denklemin sol tarafındaki ifadesi lineer polarize ışık için hacimsel fotovoltaik etkiyi gösterir. Bu ifade rankı üç olan bir tensördür. Üç boyutlu ters çevrilme operatörü eğer bu terime uygulanırsa simetri merkezi olmayan kristaller dışında sıfır değeri alacağı görülür. Ayrıca bu tensör piezoelektriğe uygun bir tensördür. Denklemin sağ tarafındaki hacimsel fotovoltaik etkiyi gösterir. ifadesi ise dairesel polarize ışık için rankı iki olan tensördür. Bu terim dönen (optik olarak aktif olan) simetri merkezi olmayan kristallerde sıfır olmayan değere sahiptir. akımı ışık polarizasyonuna bağlıdır. Şekil 3.1 Fotovoltaik akım ve fotovoltaj nin ölçümünün şematik gösterimi. [4] Şekildeki elektrodlar eğer bağlı değilse, akım fotovoltajı üretilir. Bu fotovoltaj da şu denklemle gösterilir. 11

15 Denklemdeki karanlık geçirgenlik katsayısıdır, ise ışık geçirgenlik katsayısıdır. ise şekilde gösterildiği üzere elektrodlar arası uzaklıktır. Eğer ışık geçirgenlik veya karanlık geçirgenlik düşükse, fotovoltaik akım, elektrodlarda yüksek fotovoltaj üretir. Ayrıca bu fotovoltaj değeri elektrodlar arası mesafe ile orantılıdr. 3.3 Hacimsel Fotovoltaik Olayın Atomik Doğası Hacimsel fotovoltaik olayın atomik doğası simetri merkezi olamayan kristallerin fotouyarılmış taşıyıcılarının ayrıntılı denge prensibi ni bozmasıyla ilgilidir. Ayrıntılı denge prensibi şunu önerir: momentumlu düzeyden momentumlu düzeye elektronun geçiş olasılığı, ters geçiş olasılığı ya eşit olmalıdır. Simetri merkezi olan kristallerde (Ge, Si) bu prensip gerçekleşir. Ayrıca bu prensip fotovoltaik olayın doğasına da uygundur. Simetri merkezi olmayan kristallerde, ya eşit değildir. Bu prensibin bozulması, düzgün ışınımlanan kristallerde ve homojen kristallerdeki fotovoltaik etkinin görünmesini sağlayan elektron ve boşlukların momentum bölünmelerine sebep olur. Hacimsel fotovoltaik olaydaki ayrıntılı denge prensibinin bozulması üç değişik şekilde oluşabilir. Birincisi şekilde görüldüğü gibi asimetrik olan merkezdeki taşıyıcıların elastik olmayan saçılmalarından kaynaklanır. 12

16 Şekil 3.2 Asimetrik olan merkezdeki taşıyıcıların elastik olmayan saçılımları. [4] İkincisi asimetrik potansiyel ile katışıklı merkezlerin uyarılmasından oluşur. Şekil 3.3 Asimetrik potansiyel ile katışıklı merkezlerin uyarılması. [4] Üçüncüsü asimetrik olarak dağılmış merkezler arasındaki çoklu mekanik hareketten kaynaklanır. Şekil 3.4 Asimetrik dağılmış merkezler arasındaki çoklu mekanik hareket. [4] 13

17 Şekil 3.5 Dönen kristallerdeki hacimsel fotovoltaik olay. [4] Şekilde dönen kristallerdeki hacimsel fotovoltaik olayın uygulamasını gösteriyor. Valans banttaki ( ) spin orbital yarılmaları, elektronların saat yönünde dairesel polarize ışık ( ) ile momentum ile uyarılmasıyla ortaya çıkar. Saatin ters yönündeki dairesel polarize ışık( ) ile momentumla elektronlar uyarılır. Böylece polarize ışığın işaretinin değişimi ile hacimsel fotovoltaik akımın yönü değişiyor. Bu ilk kez deneysel olarak teluryum (tellurium) kristallerinde yapılmıştır. Ayrıca bu tüm dönen kristallerde yapılabilir. Atomik mekanizmaya bağlı olarak, hacimsel fotovoltaik olay kristaldeki termik olmayan elektronların uyarılmasıyla ilgilidir. 14

18 Şekil 3.6 Simetri merkezi olmayan kristalin uyarılması durumu. [4] Şekilde simetri merkezi olmayan kristalin uyarılması elektronlar için asimetrik momentum dağılımı sağlar. Fotouyraılmış termik olmayan elektronlar enerji kaybeder ve düşük enerjili bandın kıyısına iner. Bu lık bir kayma ile sonuçlanır. nin tensörel büyüklüğü şöyle gösterilir: = Kuvantum verimi = Asimetrik uyarılmayı karakterize eder ve ayrıntılı denge prensibinin bozulmasıyla ilgilidir. = Elektron yükü Elektronun termik olmayan durumda yaşam süresi dir. Bu değer termik olan dengede olmayan durumdaki elektronun yaşam süresi ile karşılaştırıldığında çok küçüktür. Bununla beraber birçok angstroma ulaşabilir. Termik olmayan elektronun mobilitesi ( ), termik olmayan durumdaki elekronun mobilitesiyle karşılaştırıldığında ( ) daha büyüktür. = Termik olma süresi 15

19 Yüksek değerleri küçük etkin elektron yükü tarafından sağlanır. Sonuç olarak hacimsel fotovoltaik olay ışık enerjisinin elektriğe dönüşümünü sağlar. Fakat bu geçişin etkinliği çok düşüktür. Böylece, hacimsel fotovoltaik olayın baş uygulama alanı fotokırıcı ve fotosaptırıcı optiktir. Fotokırıcı ve fotosaptırıcı optikte şiddetli elektrik alanları meydana getiren ferroelektrik kristaller ve piezoelektrik kristaller kullanılır. 3.4 Hacimsel Fotovoltaik Olayın Deneysel Uyumluluğu Şekil 3.7 Kristalin polarize ışık ile aydınlatılması durumu. [4] Bir kristal dalga vektörü olan polarize bir ışık ile aydınlatılmıştır. Işık polarizasyonunun vektörü e, ekseniyle açısı yapmaktadır. Eğer hacimsel fotovoltaik olay akım modunda çalışılıyorsa, akımlar kristalografik yönlerde ( ) ye göre ölçülür. Ayrıca ölçümler manyetik alan altında yapılırsa, B manyetik alan şiddetini gösterir. (3.1) denklemine göre, polarizasyon vektörü e nin yönü hacimsel fotovoltaik akımın salınımı ile belirlenir. 16

20 Şekil 3.8 hacimsel fotovoltaik akımın a)linbo 3 : Fe b) p-gaas c) Kuartz kristali için açısal bağımlılığı. [4] Şekilde bazı maddelerin fotoakımının açısal bağımlılığı verilmiştir. Lityum niobat(linbo 3 ) ve kuvarzda hacimsel fotovoltaik olay katkılıdır. Örneğin F +2 merkezlerinin uyarılmasıyla oluşur. pgaas de ise hacimsel fotovoltaik olay özdendir. Ferroelektrik kristallerde kesin yönler vardır. Bu yönler hacimsel fotovoltaik olayın uyumlu olduğu doğal ışıklar boyuncadır. Piezoelektrik kristallerde bazı yönler yoktur ve hacimsel fotovoltaik olay sadece polarize ışıkta meydana gelir. Bütün bunlar denklem 4.1 ile betimlenmektedir. Yüksek iletkenlikli yarıiletkenlerde (GaAs), hacimsel fotovoltaik olay düşük voltajlar sağlar. Buna rağmen düşük karanlık geçirgenlikli ve düşük fotogeçirgenlikli dielektrik kristallerde(linbo 3 ) hacimsel fotovoltaik olay oldukça şiddetli alanlar sağlar. 17

21 Yüksek ışık şiddetlerinde LiNbO 3 :Fe de elektrik alan yaklaşık olarak 10-4 Vcm -1 e kadar varmaktadır. Bazı durumlarda bu alanlar çevre durumlarına göre sınırlandırılmıştır. 3.5 Simetri Merkezi Olmayan Kristallerde Magnetofotovoltaik Olay Hacimsel fotovoltaik akım Hall olayına benzer bir olaya neden olmaktadır. Bu sonuç, termik olmayan taşıyıcıların mobilitelerinin yüksek değerlerinden kaynaklanan hareketlerinden meydana gelir. Bu olaya magnetofotovoltaik olay denir. Ferroelektrik kristal veya piezoelektrik kristal manyetik alanda polarize ışıkla ışınlanırsa, (3.1) denklemindeki tasvire göre magnetofotovoltaik akım hem doğrusal hem dairesel bileşenlere sahip olur. Şekil 3.9 Işınımlanmış ZnS kristalinin magnetik alanın bileşenleri. [4] Şekilde ışınlanmış kübik ZnS kristalinin magnetik alanın iki bileşenini, polarizasyon açısı β nın fonksiyonu olarak verilmiştir. Hall bileşenleri kristal simetrisi tarafından açıya bağımlıdır. Bu deney termik olmayan taşıyıcıların mobilitesi için şu oranı ortaya koyar: değerleri den çok daha büyüktür. Bu deneysel olarak fotovoltaik olayı sağlar. Başka deyişle hacimsel fotovoltaik olay şu iki durumla mümkündür: 18

22 Birincisi simetri merkezi olmayan kristalleri kullanmakla, ikincisi termik olmayan durumları uyarmakla. 3.6 Ferroelektrik Kristaldeki Hacimsel Fotovoltaik Olay ve Hacimsel Fotovoltaik Olayın Sayısal İncelemesi [5] Ferroelektrik kristal için hacimsel fotovoltaik olayın sayısal incelmeleri yapılmıştır. Bu çalışmalar analitik olarak işlem yapmakta tercih edilen basit iki boyutlu LCAO model üzerine kurulmuştur. Hacimsel fotovoltaik olay simetri merkezi olmayan kristalin elektromanyetik ışınımı absorbe etmesinden dolayı kaynaklanan normal akımın meydana gelmesiyle ilgilidir. Bu olayın hacimsel özelliği şöyle gösterilmektedir: = Akım bileşeni = Şiddet = sıklık = Birim polarizasyon vektörü üçüncü rank tensördür. Ferroelektrik kristal için H. Presting ve R. Von Baltz yi hesaplamışlardır. Bu hesaplamayı yaparken iki boyutlu LCAO modeli kullanarak aşağıdaki yolları ve işlemleri yapmışlardır: Bu modeli kurarken eşit sayıda (N tane) iki tür atomdan (A ve B) oluşan ferroelektrik kristal kullanılmıştır. Analitik olarak kolay işlem yapılabilen bir model kurmak için şu durumların olmasını varsaymışlardır: 1) Her atom s orbitaline sahip ve enerjileri E A >E B olacak şekilde olmalı ve şu dalga fonksiyonuna sahip olmalıdırlar. 19

23 2) Sadece en yakın A ve B atomlarının dalga boylarının üst üste binmesi düşünüldü, diğerleri ihmal edildi. 3) Örgü bükülme parametresi sabit olarak alınmıştır. 4) Kinetik enerjinin T = 0 olduğu anda, sistem yalıtkandır. (3.8) denkleminden Bloch Kuramı ile taban temel fonksiyon seti kurulur: Tek elektron Hamiltonu şöyle olur: Bu Hamilton ya göre diagonaldır. Örnek olarak H nin ayırt edici durumları şöyle gösterilebilir: v de valans ve iletkenlik bandını temsil eder. kristaldeki atomların yerlerini sabitler. kuantum numarasına göre H şöyle 2 2 lik matrisle gösterilebilir: Burada (3.8) ve (3.9) denkleminin ortogonal olduğu farz edilmiştir ve (3.12) matrisinin diagonal elemanlarının kristal alana katkısı ihmal edilmiştir. Örgü bükülme parametresi alınmıştır. İki katlı integral kullanarak şöyle bir sonuç elde edilmiştir. 20

24 Band yapısı diagonallik kullanılarak şöyle elde edilmiştir: yasak band enerjisini verir. Kristalde kendiliğinden oluşan polarizasyon toplam dipol momentin kristalin hacmine(v) bölümüyle elde edilebilir. Seçilen parametrelerle polarizasyon şöyle çıkmıştır. 3.7 Fotovoltaik Tensörün Hesaplanması Fotovoltaik tensörün nin hesaplanması şu formülle yapılmıştır:, Fermi fonksiyonunu gösterir. serbest elektron kütlesi ve yüküdür. Buna uygun olarak elde edilen kırınım indisini gösterir. 21

25 BÖLÜM 4 HACİMSEL FOTOVOLTAİK OLAYIN UYGULAMALARI 4.1 Holografi [6] Uzayda bir cismin varlığına ait enformasyon bize genellikle ses veya ışık dalgaları halinde ulaşır. Holografi, cisimlerden gelen dalgalardaki enformasyonu belirli bir şekilde depo edip bu enformasyonda hiçbir kayıp olmadan tekrar ortaya çıkartmayı sağlayan bir tekniktir. Tekniğe Holografi adını bu konuda ilk çalışmaları yapan Dennis Gabor vermiştir. Yunancada holos bütün ve gramma haber, mesaj anlamına gelmektedir. Hologram bir cisimden gelen dalgaya ait toplam enformasyonu yani hem genlik hem faz değerlerini kaydeder. İstendiğinde bu kayıt ortamından orijinal dalga yeniden elde edilir. Dennis Gabor 1948 de yayınlanan ilk makalesinde holografik kayıt esaslarını ortaya koymuştur. Normal fiziksel detektörler ve kayıt ortamları sadece dalga şiddeti ye hassas olduklarından fazı kaydedilemez. Cisimden gelen ışık dalgası kendisi ile frekans ve faz bakımından uyumlu (koherent) bir referans dalgası ile girişim yaptığında meydana getirilebilen dalga şiddeti sadece bu dalgaların teker teker şiddetlerine bağlı olmayıp aralarındaki faz farkına da bağlıdır. Bu ise holografinin esasını teşkil etmektedir. Optik mercekler birkaç asır önce keşfedilmiş ve optik görüntülerin yardımı ile nasıl meydana getirilebileceği 1900 yılından önce tamamen çözümlenmişti. Bundan sonra fotoğraf tekniği büyük bir ilerleme kaydetmiştir. Fotoğraf ve holografi teknikleri arasında prensip bakımından çok büyük bir fark bulunmaktadır. Fotoğraf tekniğinde, görüntü iki boyutlu bir dağılım olarak kaydedilir. Her sahnede ışığın yansıtıldığı çok sayıda nokta mevcuttur. Bu noktalardan çıkan çeşitli dalgaların meydana getirdiği tek kompleks dalgaya cisim dalgası denir. Bu kompleks dalga, fotoğraf tekniğinde optik bir mercek yardımı ile dönüştürülerek radyasyon yapan cismin görüntüsü elde edilir. Holografi tekniğinde ise cismin optik olarak meydana getirilmiş görüntüsü değil, cisim dalgasının kendisi kaydedilir. Bu kayıt uygun şekilde yeniden aydınlatıldığında zaman orijinal cisim dalgasını tekrar meydana getirmek mümkündür. 22

26 Holografinin pratik olarak uygulanması ilk olarak 1948 de Gabor tarafından gerçekleştirildi. Kullanılan radyasyon ışıktı. Cıva buharlı lambadan elde edilen ışık filtre edilerek monokromatik hale getirildi. Uyumluluk için bir iğne deliği aydınlatıldı. Cisim olarak alfanumerik karakterleri kullanıldı. 4.2 Holografi Olayının Oluşumu Hologram iki koherent ışık demetinin (cisim dalga demeti ve referans dalga demeti) bir foto duyarlı plaka üzerine düşürülmesiyle elde edilen girişim desenidir(şekil 4.1). Oluşan bu girişim deseni genlik veya faz deseni içerir. Görüntünün oluşması için referans dalga demetinin tekrar hologram üzerine düşürülmesi gerekir. Fotografik plaka (hologram) Referans dalgası Cisim dalgası x y z Şekil 4.1 Cisim dalgası ve referans dalgasının aynı eksende olduğu hologram (on-axis hologram). 23

27 Holografinin birçok kullanım alanı vardır. Bunlardan bazıları: Posta pulu Kredi ve ATM kartları Kimlik kartları Araç ruhsatları Konser ve gösteri biletleri CD ve kasetler İlaç Her tür yedek parça Hediyelik eşya Oyuncak Promosyon Kıymetli evraklar Pasaport ve hisse senetleri Etiketler Promosyon Olarak Basılan İşler Resim Kırtasiye Güvenlik Dokümanları Kart/ID Belgeleri Ürün veya Marka Belgeleri Kuyumculuk Giyim Hediye, teşvik ediciler, prim Satın alma gösteri noktası Ticari show gösterilerinde Holografinin kullanıldığı özel bir uygulama alanı da hacim hologramlarına bilgi depolanmasıdır (kaydıdır). Holografik bilgi depolama yöntemi gelecek vaat edici bir optik bilgi saklama yöntemidir. Bu yöntem diğer yöntemlere göre, Küçük hacimli bir bilgi saklama ortamında büyük miktarda bilgi saklama imkânı, Saklanmış bilgiye hızlı ulaşım Hızlı data transfer kapasitesi Uzun zamanlı bilgi saklama ve arşivleme imkânı sağlamaktadır. Holografide ve holografik bilgi depolanmasında önemli bir problem kayıt ortamıdır. Kayıt ortamında arzu edilen özelliklerden bazıları şunlardır: yüksek çözünürlük, yüksek duyarlılık (kayıt esnasındaki düşük ışılamaya karşılık yüksek kırınım verimliliğinin hologramda oluşması), uzun ömür, düşük ışık saçıcılığı, kırılma indisi ve soğurmadaki değişimin büyük olması. Standart olarak kullanılan bazı malzemeler olarak gümüş halojen foto grafik malzemeler, dikromat jelâtin plaka, foto polimer plaka, termo plastikler, inorganik foto kromik malzemeler sayılabilir. 24

28 Foto kırıcı kristaller holografik depolama için mükemmel malzemelerdir. Homojen olmayan görünür ışık yüklerin iletkenlik veya değerlik bandına taşınmasını sağlar. Bu yükler difüzyon, sürüklenme(drift) ve hacimsel fotovoltaik etkiden dolayı elektrik akım yoğunluğu oluşturur veya değişimine neden olur. Sonuç olarak bu elektronlar boş tuzaklar tarafından tuzaklanır. Oluşan elektrik alan elektro-optik etki sonucu kırılma indisinde modülasyona neden olacaktır. İletkenlik bandı 2 /3 Fe + + Değerlik bandı LiNbO 3 : Fe kristali Şekil 4.2 Demir katkılı lithiumniobat( LiNbO 3 : Fe ) kristali Elektro optik kristallerde ilk foto kırıcı etki lithiumniobat( LiNbO 3 ) kristalinde gözlenmiştir. Bu malzeme için bilinen katkılardan biri demirdir (Şekil 4.2). Görünür ışığın LiNbO 3 : Fe katkılı kristaline düşürülmesi sonucu yükler iletkenlik bandına taşınacaktır, 2 Fe + ve 3 Fe + Diğer foto kırıcı malzemelerden birkaçı aşağıda gösterilmiştir: yük taşıyıcı kaynak ve tuzaklarıdır. Barium titanat BaTiO 3 Strontium-Bariumniobat: Sr x Ba 1-x NbO 6 (SBN) Lithium tantalat (LiTaO 3 ) Potasium niobat (KNbO 3 ) Bazı yarıiletkenler (GaAs, CdTe, InP) Yıldız Teknik Üniversitesi optik spektroskopi çalışma grubu tarafından çift katkılanmış LiNbO 3 : Fe : Mn kristali ile yapılan holografik kayıt denemelerinin deneysel ve simulasyon sonucu elde edilen kırınım verimliliğinin zamana göre 25

29 değişimi grafikleri şekil 4.3 ve 4.4 de gösterilmiştir. Kırınım verimliliği, kırınıma uğrayan ışığın şiddeti ile iletilen ışığın şiddetinin oranı olarak tanımlanır. Fe:Mn:LiNbO 3 Diffraction efficiency 0,030 0,024 0,018 0,012 Recording, λ= nm λ s ~400 nm Pre-illumination with λ ~400 nm, ~4 h Readout λ=647.1 nm 0,006 Recording Reading 0, time, min. TCHRLiNbO Şekil 4.3 LiNbO 3 : Fe : Mn kristalinin deney sonucu elde edilen kırınım verimliliğinin zamana göre değişimi. 2.5 x 10-3 Fe : Mn : LiNbO 3 2 Diffraction efficiency Recording Reading time x 10 4 Şekil 4.4 LiNbO 3 : Fe : Mn kristalinin simulasyon sonucu elde edilen kırınım verimliliğinin zamana göre değişimi 26

30 Hatırlanacağı gibi yük taşıyıcı kuvvetleri sürüklenme (drift), hacimsel fotovoltaik etki ve difüzyon idi. LiNbO 3 kristali için yük taşıyıcı kuvvetlerinden hacimsel fotovoltaik etki (akım) baskın kuvvettir ve difüzyona göre çok büyüktür. Bu nedenle difüzyon etkisi kuramsal modellemelerde ve dolayısıyla simulasyon çalışmalarında ihmal edilir. 27

31 KAYNAKLAR [1] Burfoot, Jack C., 1967 Ferroelectrics An Introduction to the Physical Principles, Department of Physics, Queen Mary College, London University, London [2] Ikeda, Takura, 1996 Fundamentals of Piezoelectricity, Oxford University Press [3] Fishbane, Paul M., Thornton, Stephen T. Ve Gasiorowicz Stephen, 1998 Temel Fizik 1, 2. Basım [4] Fridkin, V. M., 2001 Bulk Photovoltaic Effect in Noncentrosymmetric Crystals, Crystallography Reports, Vol.46, No. 4, 2001 [5] Presting, H. ve R. von Baltz 1982 Bulk Photovoltaic Effect in a Ferroelectric Crystal, phys. Stat. Sol. 112,559 [6] Yazgan, Bingül ve Akyel, Cevdet, 1978 Holografi ve Mühendislikte Uygulama Alanları, İstanbul Teknik Üniversitesi Kütüphanesi, İstanbul 28

İÇİNDEKİLER 1: KRİSTALLERDE ATOMLAR...

İÇİNDEKİLER 1: KRİSTALLERDE ATOMLAR... İÇİNDEKİLER Bölüm 1: KRİSTALLERDE ATOMLAR... 1 1.1 Katıhal... 1 1.1.1 Kristal Katılar... 1 1.1.2 Çoklu Kristal Katılar... 2 1.1.3 Kristal Olmayan (Amorf) Katılar... 2 1.2 Kristallerde Periyodiklik... 2

Detaylı

Dielektrik malzeme DİELEKTRİK ÖZELLİKLER. Elektriksel Kutuplaşma. Dielektrik malzemeler. Kutuplaşma Türleri 15.4.2015. Elektronik kutuplaşma

Dielektrik malzeme DİELEKTRİK ÖZELLİKLER. Elektriksel Kutuplaşma. Dielektrik malzemeler. Kutuplaşma Türleri 15.4.2015. Elektronik kutuplaşma Dielektrik malzeme DİELEKTRİK ÖZELLİKLER Dielektrik malzemeler; serbest elektron yoktur, yalıtkan malzemelerdir, uygulanan elektriksel alandan etkilenebilirler. 1 2 Dielektrik malzemeler Elektriksel alan

Detaylı

1. Hologram türleri. 2. Hologram malzemeleri

1. Hologram türleri. 2. Hologram malzemeleri 1. Hologram türleri 2. Hologram malzemeleri Hologramların sınıflandırılması Hologramların sınıflandırılması Işığı geçirmesine göre Geçirgen hologramları (transmission holograms) Yansıma hologramları (reflexion

Detaylı

H a t ı r l a t m a : Şimdiye dek bilmeniz gerekenler: 1. Maxwell denklemleri, elektromanyetik dalgalar ve ışık

H a t ı r l a t m a : Şimdiye dek bilmeniz gerekenler: 1. Maxwell denklemleri, elektromanyetik dalgalar ve ışık H a t ı r l a t m a : Şimdiye dek bilmeniz gerekenler: 1. Maxwell denklemleri, elektromanyetik dalgalar ve ışık 2. Ahenk ve ahenk fonksiyonu, kontrast, görünebilirlik 3. Girişim 4. Kırınım 5. Lazer, çalışma

Detaylı

12. Ders Yarıiletkenlerin Elektronik Özellikleri

12. Ders Yarıiletkenlerin Elektronik Özellikleri 12. Ders Yarıiletkenlerin lektronik Özellikleri T > 0 o K c d v 1 Bu bölümü bitirdiğinizde, Yalıtkan, yarıiletken, iletken, Doğrudan (direk) ve dolaylı (indirek) bant aralığı, tkin kütle, devingenlik,

Detaylı

Holografi. kısa bir giriş

Holografi. kısa bir giriş Holografi kısa bir giriş İçerik Giriş Holografinin kavramları Holografik görüntülemenin kavramları Holografinin dayandığı ğ fiziksel etkiler (olaylar) Holografinin tarihçesi Holografik süreçte basit girişim

Detaylı

Bir katı malzeme ısıtıldığında, sıcaklığının artması, malzemenin bir miktar ısı enerjisini absorbe ettiğini gösterir. Isı kapasitesi, bir malzemenin

Bir katı malzeme ısıtıldığında, sıcaklığının artması, malzemenin bir miktar ısı enerjisini absorbe ettiğini gösterir. Isı kapasitesi, bir malzemenin Bir katı malzeme ısıtıldığında, sıcaklığının artması, malzemenin bir miktar ısı enerjisini absorbe ettiğini gösterir. Isı kapasitesi, bir malzemenin dış ortamdan ısı absorblama kabiliyetinin bir göstergesi

Detaylı

İstatistiksel Mekanik I

İstatistiksel Mekanik I MIT Açık Ders Malzemeleri http://ocw.mit.edu 8.333 İstatistiksel Mekanik I: Parçacıkların İstatistiksel Mekaniği 2007 Güz Bu materyallerden alıntı yapmak veya Kullanım Şartları hakkında bilgi almak için

Detaylı

Bir iletken katı malzemenin en önemli elektriksel özelliklerinden birisi, elektrik akımını kolaylıkla iletmesidir. Ohm kanunu, akım I- veya yükün

Bir iletken katı malzemenin en önemli elektriksel özelliklerinden birisi, elektrik akımını kolaylıkla iletmesidir. Ohm kanunu, akım I- veya yükün Bir iletken katı malzemenin en önemli elektriksel özelliklerinden birisi, elektrik akımını kolaylıkla iletmesidir. Ohm kanunu, akım I- veya yükün geçiş hızının, uygulanan voltaj V ile aşağıdaki şekilde

Detaylı

2. Işık Dalgalarında Kutuplanma:

2. Işık Dalgalarında Kutuplanma: KUTUPLANMA (POLARİZASYON). Giriş ve Temel ilgiler Işık, bir elektromanyetik dalgadır. Elektromanyetik dalgalar maddesel ortamlarda olduğu gibi boşlukta da yayılabilirler. Elektromanyetik dalgaların özellikleri

Detaylı

LÜMİNESANS MATERYALLER

LÜMİNESANS MATERYALLER LÜMİNESANS MATERYALLER Temel Prensipler, Uygulama Alanları, Işıldama Eğrisi Özellikleri Prof. Dr. Niyazi MERİÇ Ankara. Üniversitesi Nükleer Bilimler Enstitüsü meric@ankara.edu.tr Enerji seviyeleri Pauli

Detaylı

ALETLİ ANALİZ YÖNTEMLERİ

ALETLİ ANALİZ YÖNTEMLERİ ALETLİ ANALİZ YÖNTEMLERİ Infrared (IR) ve Raman Spektroskopisi Yrd. Doç. Dr. Gökçe MEREY TİTREŞİM Molekülleri oluşturan atomlar sürekli bir hareket içindedir. Molekülde: Öteleme hareketleri, Bir eksen

Detaylı

ALETLİ ANALİZ YÖNTEMLERİ

ALETLİ ANALİZ YÖNTEMLERİ ALETLİ ANALİZ YÖNTEMLERİ UV-Görünür Bölge Moleküler Absorpsiyon Spektroskopisi Yrd. Doç.Dr. Gökçe MEREY GENEL BİLGİ Çözelti içindeki madde miktarını çözeltiden geçen veya çözeltinin tuttuğu ışık miktarından

Detaylı

Modern Fiziğin Teknolojideki Uygulamaları

Modern Fiziğin Teknolojideki Uygulamaları 40 Modern Fiziğin Teknolojideki Uygulamaları 1 Test 1 in Çözümleri 1. USG ve MR cihazları ile ilgili verilen bilgiler doğrudur. BT cihazı c-ışınları ile değil X-ışınları ile çalışır. Bu nedenle I ve II.

Detaylı

Sensörler Öğr. Gör. Erhan CEMÜNAL Thomas Alva Edison

Sensörler Öğr. Gör. Erhan CEMÜNAL Thomas Alva Edison Sensörler Öğr. Gör. Erhan CEMÜNAL Sıkı bir çalışmanın yerini hiç bir şey alamaz. Deha yüzde bir ilham ve yüzde doksandokuz terdir. Thomas Alva Edison İçerik TEMEL ELEKTRONİK KAVRAMLARI Transdüser ve Sensör

Detaylı

BÖLÜM 2. FOTOVOLTAİK GÜNEŞ ENERJİ SİSTEMLERİ (PV)

BÖLÜM 2. FOTOVOLTAİK GÜNEŞ ENERJİ SİSTEMLERİ (PV) BÖLÜM 2. FOTOOLTAİK GÜNEŞ ENERJİ SİSTEMLERİ (P) Fotovoltaik Etki: Fotovoltaik etki birbirinden farklı iki malzemenin ortak temas bölgesinin (common junction) foton radyasyonu ile aydınlatılması durumunda

Detaylı

A.Ü. GAMA MYO. Elektrik ve Enerji Bölümü GÜNEŞ ENERJİSİ İLE ELEKTRİK ÜRETİMİ 5. HAFTA

A.Ü. GAMA MYO. Elektrik ve Enerji Bölümü GÜNEŞ ENERJİSİ İLE ELEKTRİK ÜRETİMİ 5. HAFTA A.Ü. GAMA MYO. Elektrik ve Enerji Bölümü GÜNEŞ ENERJİSİ İLE ELEKTRİK ÜRETİMİ 5. HAFTA İçindekiler 3. Nesil Güneş Pilleri Çok eklemli (tandem) güneş pilleri Kuantum parçacık güneş pilleri Organik Güneş

Detaylı

Manyetik Alan. Manyetik Akı. Manyetik Akı Yoğunluğu. Ferromanyetik Malzemeler. B-H eğrileri (Hysteresis)

Manyetik Alan. Manyetik Akı. Manyetik Akı Yoğunluğu. Ferromanyetik Malzemeler. B-H eğrileri (Hysteresis) Manyetik Alan Manyetik Akı Manyetik Akı Yoğunluğu Ferromanyetik Malzemeler B-H eğrileri (Hysteresis) Kaynak: SERWAY Bölüm 29 http://mmfdergi.ogu.edu.tr/mmfdrg/2006-1/3.pdf Manyetik Alan Manyetik Alan

Detaylı

Fotovoltaik Teknoloji

Fotovoltaik Teknoloji Fotovoltaik Teknoloji Bölüm 4: Fotovoltaik Teknolojinin Temelleri Fotovoltaik Hücre Fotovoltaik Etki Yarıiletken Fiziğin Temelleri Atomik Yapı Enerji Bandı Diyagramı Kristal Yapı Elektron-Boşluk Çiftleri

Detaylı

Yarıiletken devre elemanlarında en çok kullanılan maddeler;

Yarıiletken devre elemanlarında en çok kullanılan maddeler; 1.. Bölüm: Diyotlar Doç.. Dr. Ersan KABALCI 1 Yarı iletken Maddeler Yarıiletken devre elemanlarında en çok kullanılan maddeler; Silisyum (Si) Germanyum (Ge) dur. 2 Katkı Oluşturma Silisyum ve Germanyumun

Detaylı

Harici Fotoelektrik etki ve Planck sabiti deney seti

Harici Fotoelektrik etki ve Planck sabiti deney seti Deneyin Temeli Harici Fotoelektrik etki ve Planck sabiti deney seti Fotoelektrik etki modern fiziğin gelişimindeki anahtar deneylerden birisidir. Filaman lambadan çıkan beyaz ışık ızgaralı spektrometre

Detaylı

MALZEME BİLGİSİ DERS 7 DR. FATİH AY. www.fatihay.net fatihay@fatihay.net

MALZEME BİLGİSİ DERS 7 DR. FATİH AY. www.fatihay.net fatihay@fatihay.net MALZEME BİLGİSİ DERS 7 DR. FATİH AY www.fatihay.net fatihay@fatihay.net GEÇEN HAFTA KRİSTAL KAFES NOKTALARI KRİSTAL KAFES DOĞRULTULARI KRİSTAL KAFES DÜZLEMLERİ DOĞRUSAL VE DÜZLEMSEL YOĞUNLUK KRİSTAL VE

Detaylı

CALLİSTER - SERAMİKLER

CALLİSTER - SERAMİKLER CALLİSTER - SERAMİKLER Atomik bağı ağırlıklı olarak iyonik olan seramik malzemeler için, kristal yapılarının atomların yerine elektrikle yüklü iyonlardan oluştuğu düşünülebilir. Metal iyonları veya katyonlar

Detaylı

BÖLÜM 4: MADDESEL NOKTANIN KİNETİĞİ: İMPULS ve MOMENTUM

BÖLÜM 4: MADDESEL NOKTANIN KİNETİĞİ: İMPULS ve MOMENTUM BÖLÜM 4: MADDESEL NOKTANIN KİNETİĞİ: İMPULS ve MOMENTUM 4.1. Giriş Bir önceki bölümde, hareket denklemi F = ma nın, maddesel noktanın yer değiştirmesine göre integrasyonu ile elde edilen iş ve enerji denklemlerini

Detaylı

Endüstriyel Sensörler ve Uygulama Alanları Kalite kontrol amaçlı ölçme sistemleri, üretim ve montaj hatlarında imalat sürecinin en önemli aşamalarındandır. Günümüz teknolojisi mükemmelliği ve üretimdeki

Detaylı

Işığın Modülasyonu. 2008 HSarı 1

Işığın Modülasyonu. 2008 HSarı 1 şığın Mdülasynu 008 HSarı 1 Ders İçeriği Temel Mdülasyn Kavramları LED şık Mdülatörler Elektr-Optik Mdülatörler Akust-Optik Mdülatörler Raman-Nath Tipi Mdülatörler Bragg Tipi Mdülatörler Magnet-Optik Mdülatörler

Detaylı

İletken, Yalıtkan ve Yarı İletken

İletken, Yalıtkan ve Yarı İletken Diyot, transistör, tümleşik (entegre) devreler ve isimlerini buraya sığdıramadağımız daha birçok elektronik elemanlar, yarı iletken malzemelerden yapılmışlardır. Bu kısımdaki en önemli konulardan biri,

Detaylı

Malzemelerin elektriksel özellikleri

Malzemelerin elektriksel özellikleri Malzemelerin elektriksel özellikleri OHM yasası Elektriksel iletkenlik, ohm yasasından yola çıkılarak saptanabilir. V = IR Burada, V (gerilim farkı) : volt(v), I (elektrik akımı) : amper(a) ve R(telin

Detaylı

FZM 220. Malzeme Bilimine Giriş

FZM 220. Malzeme Bilimine Giriş FZM 220 Yapı Karakterizasyon Özellikler İşleme Performans Prof. Dr. İlker DİNÇER Fakültesi, Fizik Mühendisliği Bölümü 1 Atomsal Yapı ve Atomlararası Bağ1 Ders Hakkında FZM 220 Dersinin Amacı Bu dersin

Detaylı

BÖLÜM 7. Piezoelektrik, Pyroelektrik ve Ferroelektrik Malzemeler

BÖLÜM 7. Piezoelektrik, Pyroelektrik ve Ferroelektrik Malzemeler Piezoelektrik, Pyroelektrik ve Ferroelektrik Malzemeler Malzemenin elektriksel davranışları anlatılırken bazı malzemelerde ortaya çıkan ve bu özellikleri nedeni ile farklı uygulamalarda kullanılabilen

Detaylı

Atomlar, dış yörüngedeki elektron sayısını "tamamlamak" üzere, aşağıdaki iki yoldan biri ile bileşik oluştururlar:

Atomlar, dış yörüngedeki elektron sayısını tamamlamak üzere, aşağıdaki iki yoldan biri ile bileşik oluştururlar: ATOMUN YAPISI VE BAĞLAR Atomun en dış yörüngesinde dönen elektronlara valans elektronlara adi verilir (valance: bağ değer). Bir atomun en dış yörüngesinde 8'e yakın sayıda elektron varsa, örnek klor: diğer

Detaylı

Magnetic Materials. 7. Ders: Ferromanyetizma. Numan Akdoğan.

Magnetic Materials. 7. Ders: Ferromanyetizma. Numan Akdoğan. Magnetic Materials 7. Ders: Ferromanyetizma Numan Akdoğan akdogan@gyte.edu.tr Gebze Institute of Technology Department of Physics Nanomagnetism and Spintronic Research Center (NASAM) Moleküler Alan Teorisinin

Detaylı

KARABÜK ÜNİVERSİTESİ Öğretim Üyesi: Doç.Dr. Tamila ANUTGAN 1

KARABÜK ÜNİVERSİTESİ Öğretim Üyesi: Doç.Dr. Tamila ANUTGAN 1 KARABÜK ÜNİVERSİTESİ Öğretim Üyesi: Doç.Dr. Tamila ANUTGAN 1 Elektriksel olaylarla ilgili buraya kadar yaptığımız, tartışmalarımız, durgun yüklerle veya elektrostatikle sınırlı kalmıştır. Şimdi, elektrik

Detaylı

Malzemeler elektrik yükünü iletebilme yeteneklerine göre 3 e ayrılırlar. İletkenler Yarı-iletkenler Yalıtkanlar

Malzemeler elektrik yükünü iletebilme yeteneklerine göre 3 e ayrılırlar. İletkenler Yarı-iletkenler Yalıtkanlar Malzemeler elektrik yükünü iletebilme yeteneklerine göre 3 e ayrılırlar. İletkenler Yarı-iletkenler Yalıtkanlar : iletkenlik katsayısı (S/m) Malzemelerin iletkenlikleri sıcaklık ve frekansla değişir. >>

Detaylı

Enerji Band Diyagramları

Enerji Band Diyagramları Yarıiletkenler Yarıiletkenler Germanyumun kimyasal yapısı Silisyum kimyasal yapısı Yarıiletken Yapım Teknikleri n Tipi Yarıiletkenin Meydana Gelişi p Tipi Yarıiletkenin Meydana Gelişi Yarıiletkenlerde

Detaylı

12. SINIF KONU ANLATIMLI

12. SINIF KONU ANLATIMLI 12. SINIF KONU ANLATIMLI 3. ÜNİTE: DALGA MEKANİĞİ 2. Konu ELEKTROMANYETİK DALGA ETKİNLİK VE TEST ÇÖZÜMLERİ 2 Elektromanyetik Dalga Testin 1 in Çözümleri 1. B manyetik alanı sabit v hızıyla hareket ederken,

Detaylı

Temel Elektrik Elektronik. Seri Paralel Devrelere Örnekler

Temel Elektrik Elektronik. Seri Paralel Devrelere Örnekler Temel Elektrik Elektronik Seri Paralel Devrelere Örnekler Temel Elektrik Elektronik Seri Paralel Devrelere Örnekler Temel Elektrik Elektronik Yarıiletken Elemanlar Kullandığımız pek çok cihazın üretiminde

Detaylı

MALZEME BİLGİSİ. Katı Eriyikler

MALZEME BİLGİSİ. Katı Eriyikler MALZEME BİLGİSİ Dr.- Ing. Rahmi ÜNAL Konu: Katı Eriyikler 1 Giriş Endüstriyel metaller çoğunlukla birden fazla tür eleman içerirler, çok azı arı halde kullanılır. Arı metallerin yüksek iletkenlik, korozyona

Detaylı

Girişim; iki veya daha fazla dalganın üst üste binerek, yeni bir dalga şeklinde sonuç

Girişim; iki veya daha fazla dalganın üst üste binerek, yeni bir dalga şeklinde sonuç GİRİŞİM Girişim olayının temelini üst üste binme (süperpozisyon) ilkesi oluşturur. Bir sistemdeki iki farklı olay, birbirini etkilemeden ayrı ayrı ele alınarak incelenebiliyorsa bu iki olay üst üste bindirilebilinir

Detaylı

Danışman: Yard. Doç. Dr. Metin Özgül

Danışman: Yard. Doç. Dr. Metin Özgül Hazırlayan:Nida EMANET Danışman: Yard. Doç. Dr. Metin Özgül 1 ELEKTROSERAMİK NEDİR? Elektroseramik terimi genel olarak elektronik, manyetik ve optik özellikleri olan seramik malzemeleri ifade etmektedir.

Detaylı

Fizik II Elektrik ve Manyetizma Akım, Direnç ve Elektromotor Kuvvet

Fizik II Elektrik ve Manyetizma Akım, Direnç ve Elektromotor Kuvvet Ders Hakkında Fizik-II Elektrik ve Manyetizma Dersinin Amacı Bu dersin amacı, fen ve mühendislik öğrencilerine elektrik ve manyetizmanın temel kanunlarını lisans düzeyinde öğretmektir. Dersin İçeriği Hafta

Detaylı

ELEKTRİKSEL ÖZELLİKLER

ELEKTRİKSEL ÖZELLİKLER ELEKTRİKSEL ÖZELLİKLER İletkenlik Elektrik iletkenlik, malzeme içerisinde atomik boyutlarda yük taşıyan elemanlar (charge carriers) tarafından gerçekleştirilir. Bunlar elektron veya elektron boşluklarıdır.

Detaylı

1. Kristal Diyot 2. Zener Diyot 3. Tünel Diyot 4. Iºýk Yayan Diyot (Led) 5. Foto Diyot 6. Ayarlanabilir Kapasiteli Diyot (Varaktör - Varikap)

1. Kristal Diyot 2. Zener Diyot 3. Tünel Diyot 4. Iºýk Yayan Diyot (Led) 5. Foto Diyot 6. Ayarlanabilir Kapasiteli Diyot (Varaktör - Varikap) Diyot Çeºitleri Otomotiv Elektroniði-Diyot lar, Ders sorumlusu Yrd.Doç.Dr.Hilmi KUªÇU Diðer Diyotlar 1. Kristal Diyot 2. Zener Diyot 3. Tünel Diyot 4. Iºýk Yayan Diyot (Led) 5. Foto Diyot 6. Ayarlanabilir

Detaylı

Doç.Dr.Vildan BiLGiN. Çanakkale Onsekiz Mart Üniversitesi Fen Edebiyat Fakültesi - Fizik Bölümü

Doç.Dr.Vildan BiLGiN. Çanakkale Onsekiz Mart Üniversitesi Fen Edebiyat Fakültesi - Fizik Bölümü Doç.Dr.Vildan BiLGiN Çanakkale Onsekiz Mart Üniversitesi Fen Edebiyat Fakültesi - Fizik Bölümü vbilgin@comu.edu.tr İÇERİK; Moleküller ve Katılar, Katıların Bant Yapısı ve Elektriksel İletkenlik, Yarıiletkenler,

Detaylı

FİZ4001 KATIHAL FİZİĞİ-I

FİZ4001 KATIHAL FİZİĞİ-I FİZ4001 KATIHAL FİZİĞİ-I Bölüm 3. Örgü Titreşimleri: Termal, Akustik ve Optik Özellikler Dr. Aytaç Gürhan GÖKÇE Katıhal Fiziği - I Dr. Aytaç Gürhan GÖKÇE 1 Bir Boyutlu İki Atomlu Örgü Titreşimleri M 2

Detaylı

GÜNEŞ PİLLERİ (FOTOVOLTAİK PİLLER) I. BÖLÜM

GÜNEŞ PİLLERİ (FOTOVOLTAİK PİLLER) I. BÖLÜM GÜNEŞ PİLLERİ (FOTOVOLTAİK PİLLER) I. BÖLÜM Prof. Dr. Olcay KINCAY Y. Doç. Dr. Nur BEKİROĞLU Y. Doç. Dr. Zehra YUMURTACI İ ç e r i k Genel bilgi ve çalışma ilkesi Güneş pili tipleri Güneş pilinin elektriksel

Detaylı

4. ÜNİTE ALTERNATİF AKIMDA GÜÇ

4. ÜNİTE ALTERNATİF AKIMDA GÜÇ 4. ÜNİTE ALTERNATİF AKIMDA GÜÇ KONULAR 1. Ani Güç, Ortalama Güç 2. Dirençli Devrelerde Güç 3. Bobinli Devrelerde Güç 4. Kondansatörlü Devrelerde Güç 5. Güç Üçgeni 6. Güç Ölçme GİRİŞ Bir doğru akım devresinde

Detaylı

ÜNİTE 5 KLASİK SORU VE CEVAPLARI (TEMEL ELEKTRONİK) Transformatörün tanımını yapınız. Alternatif akımın frekansını değiştirmeden, gerilimini

ÜNİTE 5 KLASİK SORU VE CEVAPLARI (TEMEL ELEKTRONİK) Transformatörün tanımını yapınız. Alternatif akımın frekansını değiştirmeden, gerilimini ÜNİTE 5 KLASİK SORU VE CEVAPLARI (TEMEL ELEKTRONİK) Transformatörün tanımını yapınız. Alternatif akımın frekansını değiştirmeden, gerilimini alçaltmaya veya yükseltmeye yarayan elektro manyetik indüksiyon

Detaylı

12. SINIF KONU ANLATIMLI

12. SINIF KONU ANLATIMLI 12. SINIF KONU ANLATIMLI 3. ÜNİTE: DALGA MEKANİĞİ 2. Konu ELEKTROMANYETİK DALGA ETKİNLİK VE TEST ÇÖZÜMLERİ 2 Elektromanyetik Dalga Etkinlik A nın Yanıtları 1. Elektromanyetik spektrum şekildeki gibidir.

Detaylı

Doç. Dr. Sabri KAYA Erciyes Üni. Müh. Fak. Elektrik-Elektronik Müh. Bölümü. Ders içeriği

Doç. Dr. Sabri KAYA Erciyes Üni. Müh. Fak. Elektrik-Elektronik Müh. Bölümü. Ders içeriği ANTENLER Doç. Dr. Sabri KAYA Erciyes Üni. Müh. Fak. Elektrik-Elektronik Müh. Bölümü Ders içeriği BÖLÜM 1: Antenler BÖLÜM 2: Antenlerin Temel Parametreleri BÖLÜM 3: Lineer Tel Antenler BÖLÜM 4: Halka Antenler

Detaylı

- 1 - ŞUBAT KAMPI SINAVI-2000-I. Grup. 1. İçi dolu homojen R yarıçaplı bir top yatay bir eksen etrafında 0 açısal hızı R

- 1 - ŞUBAT KAMPI SINAVI-2000-I. Grup. 1. İçi dolu homojen R yarıçaplı bir top yatay bir eksen etrafında 0 açısal hızı R - - ŞUBT KMPI SINVI--I. Grup. İçi dolu omojen yarıçaplı bir top yatay bir eksen etrafında açısal ızı ile döndürülüyor e topun en alt noktası zeminden yükseklikte iken serbest bırakılıyor. Top zeminden

Detaylı

Malzemelerin Deformasyonu

Malzemelerin Deformasyonu Malzemelerin Deformasyonu Malzemelerin deformasyonu Kristal, etkiyen kuvvete deformasyon ile cevap verir. Bir malzemeye yük uygulandığında malzeme üzerinde çeşitli yönlerde ve çeşitli şekillerde yükler

Detaylı

Optik Özellikler. Elektromanyetik radyasyon

Optik Özellikler. Elektromanyetik radyasyon Optik Özellikler Işık malzeme üzerinde çarptığında nasıl bir etkileşme olur? Malzemelerin karakteristik renklerini ne belirler? Neden bazı malzemeler saydam ve bazıları yarısaydam veya opaktır? Lazer ışını

Detaylı

ALETLİ ANALİZ YÖNTEMLERİ

ALETLİ ANALİZ YÖNTEMLERİ ALETLİ ANALİZ YÖNTEMLERİ Spektroskopiye Giriş Yrd. Doç. Dr. Gökçe MEREY SPEKTROSKOPİ Işın-madde etkileşmesini inceleyen bilim dalına spektroskopi denir. Spektroskopi, Bir örnekteki atom, molekül veya iyonların

Detaylı

Ders 2- Temel Elektriksel Büyüklükler

Ders 2- Temel Elektriksel Büyüklükler Ders 2- Temel Elektriksel Büyüklükler Yard.Doç.Dr. Ahmet Özkurt Ahmet.ozkurt@deu.edu.tr http://ahmetozkurt.net Yük Elektriksel yük maddelerin temel özelliklerinden biridir. Elektriksel yükün iki temel

Detaylı

DENEY 6 TUNGSTEN FİTİLLİ AMPUL VE YARIİLETKEN DİYOT

DENEY 6 TUNGSTEN FİTİLLİ AMPUL VE YARIİLETKEN DİYOT YALITKAN YARI- İLETKEN METAL DENEY 6 TUNGSTEN FİTİLLİ AMPUL VE YARIİLETKEN DİYOT Amaç: Birinci deneyde Ohmik bir devre elemanı olan direncin uçları arasındaki gerilimle üzerinden geçen akımın doğru orantılı

Detaylı

Atomdan e koparmak için az ya da çok enerji uygulamak gereklidir. Bu enerji ısıtma, sürtme, gerilim uygulama ve benzeri şekilde verilebilir.

Atomdan e koparmak için az ya da çok enerji uygulamak gereklidir. Bu enerji ısıtma, sürtme, gerilim uygulama ve benzeri şekilde verilebilir. TEMEL ELEKTRONİK Elektronik: Maddelerde bulunan atomların son yörüngelerinde dolaşan eksi yüklü elektronların hareketleriyle çeşitli işlemleri yapma bilimine elektronik adı verilir. KISA ATOM BİLGİSİ Maddenin

Detaylı

Işıma Şiddeti (Radiation Intensity)

Işıma Şiddeti (Radiation Intensity) Işıma Şiddeti (Radiation Intensity) Bir antenin birim katı açıdan yaydığı güçtür U=Işıma şiddeti [W/sr] P or =Işıma yoğunluğu [ W/m 2 ] Örnek-4 Bir antenin güç yoğunluğu Olarak verildiğine göre, ışıyan

Detaylı

Hazırlayan: Tugay ARSLAN

Hazırlayan: Tugay ARSLAN Hazırlayan: Tugay ARSLAN ELEKTRİKSEL TERİMLER Nikola Tesla Thomas Edison KONULAR VOLTAJ AKIM DİRENÇ GÜÇ KISA DEVRE AÇIK DEVRE AC DC VOLTAJ Gerilim ya da voltaj (elektrik potansiyeli farkı) elektronları

Detaylı

Ankara Üniversitesi Fen Fakültesi Fizik Bölümü 7. Hafta. Aysuhan OZANSOY

Ankara Üniversitesi Fen Fakültesi Fizik Bölümü 7. Hafta. Aysuhan OZANSOY FİZ102 FİZİK-II Ankara Üniversitesi Fen Fakültesi Fizik Bölümü 7. Hafta Aysuhan OZANSOY Bölüm 6: Akım, Direnç ve Devreler 1. Elektrik Akımı ve Akım Yoğunluğu 2. Direnç ve Ohm Kanunu 3. Özdirenç 4. Elektromotor

Detaylı

SCHRÖDİNGER: Elektronun yeri (yörüngesi ve orbitali) birer dalga fonksiyonu olan n, l, m l olarak ifade edilen kuantum sayıları ile belirlenir.

SCHRÖDİNGER: Elektronun yeri (yörüngesi ve orbitali) birer dalga fonksiyonu olan n, l, m l olarak ifade edilen kuantum sayıları ile belirlenir. . ATOMUN KUANTUM MODELİ SCHRÖDİNGER: Elektronun yeri (yörüngesi ve orbitali) birer dalga fonksiyonu olan n, l, m l olarak ifade edilen kuantum sayıları ile belirlenir. Orbital: Elektronların çekirdek etrafında

Detaylı

Malzemelerin Elektriksel ve Manyetik Özellikleri

Malzemelerin Elektriksel ve Manyetik Özellikleri Malzemelerin Elektriksel ve Manyetik Özellikleri Malzemelerin fiziksel davranışları, çeşitli elektrik, manyetik, optik, ısıl ve elastik özelliklerle tanımlanır. Bu özellikler çoğunlukla, atomik yapı (elektronik

Detaylı

BÖLÜM 2 ATOMİK YAPI İÇERİK. Atom yapısı. Bağ tipleri. Chapter 2-1

BÖLÜM 2 ATOMİK YAPI İÇERİK. Atom yapısı. Bağ tipleri. Chapter 2-1 BÖLÜM 2 ATOMİK YAPI İÇERİK Atom yapısı Bağ tipleri 1 Atomların Yapıları Atomlar başlıca üç temel atom altı parçacıktan oluşur; Protonlar (+ yüklü) Nötronlar (yüksüz) Elektronlar (-yüklü) Basit bir atom

Detaylı

ATOMİK YAPI. Elektron Yükü=-1,60x10-19 C Proton Yükü=+1,60x10-19 C Nötron Yükü=0

ATOMİK YAPI. Elektron Yükü=-1,60x10-19 C Proton Yükü=+1,60x10-19 C Nötron Yükü=0 ATOMİK YAPI Elektron Yükü=-1,60x10-19 C Proton Yükü=+1,60x10-19 C Nötron Yükü=0 Elektron Kütlesi 9,11x10-31 kg Proton Kütlesi Nötron Kütlesi 1,67x10-27 kg Bir kimyasal elementin atom numarası (Z) çekirdeğindeki

Detaylı

4 ELEKTRİK AKIMLARI. Elektik Akımı ve Akım Yoğunluğu. Elektrik yüklerinin akışına elektrik akımı denir. Yük

4 ELEKTRİK AKIMLARI. Elektik Akımı ve Akım Yoğunluğu. Elektrik yüklerinin akışına elektrik akımı denir. Yük 4 ELEKTRİK AKIMLARI Elektik Akımı ve Akım Yoğunluğu Elektrik yüklerinin akışına elektrik akımı denir. Yük topluluğu bir A alanı boyunca yüzeye dik olarak hareket etsin. Bu yüzeyden t zaman aralığında Q

Detaylı

Akım ve Direnç. Bölüm 27. Elektrik Akımı Direnç ve Ohm Kanunu Direnç ve Sıcaklık Elektrik Enerjisi ve Güç

Akım ve Direnç. Bölüm 27. Elektrik Akımı Direnç ve Ohm Kanunu Direnç ve Sıcaklık Elektrik Enerjisi ve Güç Bölüm 27 Akım ve Direnç Elektrik Akımı Direnç ve Ohm Kanunu Direnç ve Sıcaklık Elektrik Enerjisi ve Güç Öğr. Gör. Dr. Mehmet Tarakçı http://kisi.deu.edu.tr/mehmet.tarakci/ Elektrik Akımı Elektrik yüklerinin

Detaylı

ERCİYES ÜNİVERSİTESİ FEN BİLİMLERİ ENSTİTÜSÜ FİZİK ANABİLİM DALI

ERCİYES ÜNİVERSİTESİ FEN BİLİMLERİ ENSTİTÜSÜ FİZİK ANABİLİM DALI Dersin Kodu FIZ508 Spektroskopik Analiz Yöntemleri (II) Kredisi (T P K) (3 0 3) 2-Bahar Atomik spektroskopi, infrared absorpsiyon spektroskopisi, raman spektroskopisi, nükleer magnetik rezonans spektroskopisi,

Detaylı

DİELEKTRİKLER 5.1 ELEKTRİK ALANI İÇİNDEKİ YALITKAN ATOMUNUN DAVRANIŞI

DİELEKTRİKLER 5.1 ELEKTRİK ALANI İÇİNDEKİ YALITKAN ATOMUNUN DAVRANIŞI 83 V. BÖLÜM DİELEKTRİKLER 5.1 ELEKTRİK ALANI İÇİNDEKİ YALITKAN ATOMUNUN DAVRANIŞI Yalıtkanlarda en dış yörüngedeki elektronlar çekirdeğe güçlü bağlı olup serbest elektrik yükü içermez. Mükemmel bir Yalıtkan

Detaylı

KARADENİZ TEKNİK ÜNİVERSİTESİ MADEN MÜHENDİSLİĞİ BÖLÜMÜ MADEN İŞLETME LABORATUVARI

KARADENİZ TEKNİK ÜNİVERSİTESİ MADEN MÜHENDİSLİĞİ BÖLÜMÜ MADEN İŞLETME LABORATUVARI DENEY ADI: EĞİLME (BÜKÜLME) DAYANIMI TANIM: Eğilme dayanımı (bükülme dayanımı veya parçalanma modülü olarak da bilinir), bir malzemenin dış fiberinin çekme dayanımının ölçüsüdür. Bu özellik, silindirik

Detaylı

ATOMİK YAPI. Elektron Yükü=-1,60x10-19 C Proton Yükü=+1,60x10-19 C Nötron Yükü=0

ATOMİK YAPI. Elektron Yükü=-1,60x10-19 C Proton Yükü=+1,60x10-19 C Nötron Yükü=0 ATOMİK YAPI Atom, birkaç türü birleştiğinde çeşitli molekülleri, bir tek türü ise bir kimyasal öğeyi oluşturan parçacıktır. Atom, elementlerin özelliklerini taşıyan en küçük yapı birimi olup çekirdekteki

Detaylı

ELEKTRONİK DEVRE TASARIM LABORATUARI-I MOSFET YARI İLETKEN DEVRE ELEMANININ DAVRANIŞININ İNCELENMESİ

ELEKTRONİK DEVRE TASARIM LABORATUARI-I MOSFET YARI İLETKEN DEVRE ELEMANININ DAVRANIŞININ İNCELENMESİ ELEKTRONİK DEVRE TASARIM LABORATUARI-I MOSFET YARI İLETKEN DEVRE ELEMANININ DAVRANIŞININ İNCELENMESİ Yrd. Doç. Dr. Özhan ÖZKAN MOSFET: Metal-Oksit Yarıiletken Alan Etkili Transistor (Geçidi Yalıtılmış

Detaylı

ITAP Fizik Olimpiyat Okulu

ITAP Fizik Olimpiyat Okulu 4 Ekim esmi Sınaı (rof. Dr. entsisla Dimitro) Soru. X ekseni yönünde hareket eden noktasal bir cismin hızı, bulunduğu noktanın x koordinatının fonksiyonu olarak grafikte çizilmiştir. Bu grafiğe göre koordinat

Detaylı

Elektromanyetik Işıma Electromagnetic Radiation (EMR)

Elektromanyetik Işıma Electromagnetic Radiation (EMR) Elektromanyetik Işıma Electromagnetic Radiation (EMR) Elektromanyetik ışıma (ışık) bir enerji şeklidir. Işık, Elektrik (E) ve manyetik (H) alan bileşenlerine sahiptir. Light is a wave, made up of oscillating

Detaylı

YAKLAŞIM SENSÖRLERİ (PROXIMITY) Endüktif, Kapasitif ve Optik Yaklaşım Sensörleri

YAKLAŞIM SENSÖRLERİ (PROXIMITY) Endüktif, Kapasitif ve Optik Yaklaşım Sensörleri YAKLAŞIM SENSÖRLERİ (PROXIMITY) Endüktif, Kapasitif ve Optik Yaklaşım Sensörleri Sanayi fabrika otomasyonunda proximity (yaklasım) sensorler kullanılır. Porximity sensorler profesyonel yapıda cevre sartlarından

Detaylı

tayf kara cisim ışınımına

tayf kara cisim ışınımına 13. ÇİZGİ OLUŞUMU Yıldızın iç kısımlarından atmosfere doğru akan ışınım, dalga boyunun yaklaşık olarak sürekli bir fonksiyonudur. Çünkü iç bölgede sıcaklık gradyenti (eğimi) küçüktür ve madde ile ışınım

Detaylı

MEKANİZMA TEKNİĞİ (1. Hafta)

MEKANİZMA TEKNİĞİ (1. Hafta) Giriş MEKANİZMA TEKNİĞİ (1. Hafta) Günlük yaşantımızda çok sayıda makina kullanmaktayız. Bu makinalar birçok yönüyle hayatımızı kolaylaştırmakta, yaşam kalitemizi artırmaktadır. Zaman geçtikce makinalar

Detaylı

Bugün için Okuma: Bölüm 1.5 (3. Baskıda 1.3), Bölüm 1.6 (3. Baskıda 1.4 )

Bugün için Okuma: Bölüm 1.5 (3. Baskıda 1.3), Bölüm 1.6 (3. Baskıda 1.4 ) 5.111 Ders Özeti #4 Bugün için Okuma: Bölüm 1.5 (3. Baskıda 1.3), Bölüm 1.6 (3. Baskıda 1.4 ) Ders #5 için Okuma: Bölüm 1.3 (3. Baskıda 1.6 ) Atomik Spektrumlar, Bölüm 1.7 de eģitlik 9b ye kadar (3. Baskıda

Detaylı

Elektromanyetik Dalga Teorisi

Elektromanyetik Dalga Teorisi Elektromanyetik Dalga Teorisi Ders-2 Dalga Denkleminin Çözümü Düzlem Elektromanyetik Dalgalar Enine Elektromanyetik Dalgalar Kayıplı Ortamda Düzlem Dalgalar Düzlem Dalgaların Polarizasyonu Dalga Denkleminin

Detaylı

ELASTİSİTE TEORİSİ I. Yrd. Doç Dr. Eray Arslan

ELASTİSİTE TEORİSİ I. Yrd. Doç Dr. Eray Arslan ELASTİSİTE TEORİSİ I Yrd. Doç Dr. Eray Arslan Mühendislik Tasarımı Genel Senaryo Analitik çözüm Fiziksel Problem Matematiksel model Diferansiyel Denklem Problem ile ilgili sorular:... Deformasyon ne kadar

Detaylı

ERCİYES ÜNİVERSİTESİ MÜHENDİSLİK FAKÜLTESİ ENERJİ SİSTEMLERİ MÜHENDİSLİĞİ BÖLÜMÜ

ERCİYES ÜNİVERSİTESİ MÜHENDİSLİK FAKÜLTESİ ENERJİ SİSTEMLERİ MÜHENDİSLİĞİ BÖLÜMÜ ERCİYES ÜNİVERSİTESİ MÜHENDİSLİK FAKÜLTESİ ENERJİ SİSTEMLERİ MÜHENDİSLİĞİ BÖLÜMÜ DENEY FÖYÜ DENEY ADI AC AKIM, GERİLİM VE GÜÇ DENEYİ DERSİN ÖĞRETİM ÜYESİ DENEY SORUMLUSU DENEY GRUBU: DENEY TARİHİ : TESLİM

Detaylı

Elektronik-I. Yrd. Doç. Dr. Özlem POLAT

Elektronik-I. Yrd. Doç. Dr. Özlem POLAT Elektronik-I Yrd. Doç. Dr. Özlem POLAT Kaynaklar 1-"Electronic Devices and Circuit Theory", Robert BOYLESTAD, Louis NASHELSKY, Prentice-Hall Int.,10th edition, 2009. 2- Elektronik Cihazlar ve Devre Teorisi,

Detaylı

Elektromanyetik ışınlar ve dalga boyları

Elektromanyetik ışınlar ve dalga boyları Elektromanyetik ışınlar ve dalga boyları İnsan gözü, dalga boyu 380-780 nanometreye kadar olan elektromanyetik dalgaları ışık olarak algılar. EBO 304- Ölçme ve Enstrümantasyon 2 Işığa duyarlı eleman çeşitleri

Detaylı

Elektrik ve Magnetizma

Elektrik ve Magnetizma Elektrik ve Magnetizma 1.1. Biot-Sawart yasası Üzerinden akım geçen, herhangi bir biçime sahip iletken bir tel tarafından bir P noktasında üretilen magnetik alan şiddeti H iletkeni oluşturan herbir parçanın

Detaylı

Doç. Dr. Sabri KAYA Erciyes Üni. Müh. Fak. Elektrik-Elektronik Müh. Bölümü. Ders içeriği

Doç. Dr. Sabri KAYA Erciyes Üni. Müh. Fak. Elektrik-Elektronik Müh. Bölümü. Ders içeriği ANTENLER Doç. Dr. Sabri KAYA Erciyes Üni. Müh. Fak. Elektrik-Elektronik Müh. Bölümü Ders içeriği BÖLÜM 1: Antenler BÖLÜM 2: Antenlerin Temel Parametreleri BÖLÜM 3: Lineer Tel Antenler BÖLÜM 4: Halka Antenler

Detaylı

A.Ü. GAMA MYO. Elektrik ve Enerji Bölümü GÜNEŞ ENERJİSİ İLE ELEKTRİK ÜRETİMİ 8. HAFTA

A.Ü. GAMA MYO. Elektrik ve Enerji Bölümü GÜNEŞ ENERJİSİ İLE ELEKTRİK ÜRETİMİ 8. HAFTA A.Ü. GAMA MYO. Elektrik ve Enerji Bölümü GÜNEŞ ENERJİSİ İLE ELEKTRİK ÜRETİMİ 8. HAFTA İçindekiler Fotovoltaik Sistemlerde Elektrik Oluşumu Fotovoltaik Sistemlerde Elektrik Üretimi Üstünlükleri Fotovoltaik

Detaylı

Atom. Atom 9.11.2015. 11 elektronlu Na. 29 elektronlu Cu

Atom. Atom 9.11.2015. 11 elektronlu Na. 29 elektronlu Cu Atom Maddelerin en küçük yapı taşlarına atom denir. Atomlar, elektron, nötron ve protonlardan oluşur. 1.Elektronlar: Çekirdek etrafında yörüngelerde bulunurlar ve ( ) yüklüdürler. Boyutları çok küçüktür.

Detaylı

PV PANELLERİN YAPISI VE PANELLERDEN ELEKTRİK ÜRETİMİNE SICAKLIĞIN ETKİSİ

PV PANELLERİN YAPISI VE PANELLERDEN ELEKTRİK ÜRETİMİNE SICAKLIĞIN ETKİSİ PV PANELLERİN YAPISI VE PANELLERDEN ELEKTRİK ÜRETİMİNE SICAKLIĞIN ETKİSİ Taner ÇARKIT Elektrik Elektronik Mühendisi tanercarkit.is@gmail.com Abstract DC voltage occurs when light falls on the terminals

Detaylı

DENEY 3 : TRANSİSTÖR KARAKTERİSTİKLERİ. Amaç : Bipolar Transistörlerin çalışmasını teorik ve pratik olarak öğrenmek.

DENEY 3 : TRANSİSTÖR KARAKTERİSTİKLERİ. Amaç : Bipolar Transistörlerin çalışmasını teorik ve pratik olarak öğrenmek. Ön Hazırlık: Deneyde yapılacaklar kısmının giriş aşamasındaki 1. adımda yapılacakları; multisim, proteus gibi simülasyon programı ile uygulayınız. Simülasyonun ekran çıktısı ile birlikte yapılması gerekenleri

Detaylı

1.ÜNİTE MODERN ATOM TEORİSİ -2.BÖLÜM- ATOMUN KUANTUM MODELİ

1.ÜNİTE MODERN ATOM TEORİSİ -2.BÖLÜM- ATOMUN KUANTUM MODELİ 1.ÜNİTE MODERN ATOM TEORİSİ -2.BÖLÜM- ATOMUN KUANTUM MODELİ Bohr Modelinin Yetersizlikleri Dalga-Tanecik İkiliği Dalga Mekaniği Kuantum Mekaniği -Orbital Kavramı Kuantum Sayıları Yörünge - Orbital Kavramları

Detaylı

Elektromanyetik Dalga Teorisi

Elektromanyetik Dalga Teorisi Elektromanyetik Dalga Teorisi Ders-1 Diferansiyel Formda Maxwell Denklemleri İntegral Formda Maxwell Denklemleri Fazörlerin Kullanımı Zamanda Harmonik Alanlar Malzeme Ortamı Dalga Denklemleri Michael Faraday,

Detaylı

Geometrik nivelmanda önemli hata kaynakları Nivelmanda oluşabilecek model hataları iki bölümde incelenebilir. Bunlar: Aletsel (Nivo ve Mira) Hatalar Çevresel Koşullardan Kaynaklanan Hatalar 1. Aletsel

Detaylı

Sensörler. Yrd.Doç.Dr. İlker ÜNAL

Sensörler. Yrd.Doç.Dr. İlker ÜNAL Sensörler Yrd.Doç.Dr. İlker ÜNAL Basınç Sensörleri Üzerlerine düşen basınçla orantılı olarak fiziki yapılarında meydana gelen değişimden dolayı basınç seviyesini ya da basınç değişimi seviyesini elektriksel

Detaylı

Temel Kavramlar. Elektrik Nedir? Elektrik nedir? Elektrikler geldi, gitti, çarpıldım derken neyi kastederiz?

Temel Kavramlar. Elektrik Nedir? Elektrik nedir? Elektrikler geldi, gitti, çarpıldım derken neyi kastederiz? Temel Kavramlar Elektrik Nedir? Elektrik nedir? Elektrikler geldi, gitti, çarpıldım derken neyi kastederiz? 1 Elektriksel Yük Elektrik yükü bu dış yörüngede dolanan elektron sayısının çekirdekteki proton

Detaylı

Kuantum Mekaniğinin Varsayımları

Kuantum Mekaniğinin Varsayımları Kuantum Mekaniğinin Varsayımları Kuantum mekaniği 6 temel varsayım üzerine kurulmuştur. Kuantum mekaniksel problemler bu varsayımlar kullanılarak (teorik/kuramsal olarak) çözülmekte ve elde edilen sonuçlar

Detaylı

GENEL KİMYA. Yrd.Doç.Dr. Tuba YETİM

GENEL KİMYA. Yrd.Doç.Dr. Tuba YETİM GENEL KİMYA ATOMUN ELEKTRON YAPISI Bohr atom modelinde elektronun bulunduğu yer için yörünge tanımlaması kullanılırken, kuantum mekaniğinde bunun yerine orbital tanımlaması kullanılır. Orbital, elektronun

Detaylı

BASMA DENEYİ MALZEME MÜHENDİSLİĞİ BÖLÜMÜ. 1. Basma Deneyinin Amacı

BASMA DENEYİ MALZEME MÜHENDİSLİĞİ BÖLÜMÜ. 1. Basma Deneyinin Amacı 1. Basma Deneyinin Amacı Mühendislik malzemelerinin çoğu, uygulanan gerilmeler altında biçimlerini kalıcı olarak değiştirirler, yani plastik şekil değişimine uğrarlar. Bu malzemelerin hangi koşullar altında

Detaylı

Tanımlar, Geometrik ve Matemetiksel Temeller. Yrd. Doç. Dr. Saygın ABDİKAN Yrd. Doç. Dr. Aycan M. MARANGOZ. JDF329 Fotogrametri I Ders Notu

Tanımlar, Geometrik ve Matemetiksel Temeller. Yrd. Doç. Dr. Saygın ABDİKAN Yrd. Doç. Dr. Aycan M. MARANGOZ. JDF329 Fotogrametri I Ders Notu FOTOGRAMETRİ I Tanımlar, Geometrik ve Matemetiksel Temeller Yrd. Doç. Dr. Saygın ABDİKAN Yrd. Doç. Dr. Aycan M. MARANGOZ JDF329 Fotogrametri I Ders Notu 2015-2016 Öğretim Yılı Güz Dönemi İçerik Tanımlar

Detaylı

Valans elektronları kimyasal reaksiyona ve malzemenin yapısına katkı sağlar.

Valans elektronları kimyasal reaksiyona ve malzemenin yapısına katkı sağlar. Valans Elektronları Atomun en dış kabuğundaki elektronlara valans elektron adı verilir. Valans elektronları kimyasal reaksiyona ve malzemenin yapısına katkı sağlar. Bir atomun en dış kabuğundaki elektronlar,

Detaylı

1. Yarı İletken Diyotlar Konunun Özeti

1. Yarı İletken Diyotlar Konunun Özeti Elektronik Devreler 1. Yarı İletken Diyotlar 1.1 Giriş 1.2. Yarı İletkenlerde Akım Taşıyıcılar 1.3. N tipi ve P tipi Yarı İletkenlerin Oluşumu 1.4. P-N Diyodunun Oluşumu 1.5. P-N Diyodunun Kutuplanması

Detaylı