ORAN ORANTI ÖYS. = = yazılabilir. veya ALIŞTIRMALAR

Save this PDF as:
 WORD  PNG  TXT  JPG

Ebat: px
Şu sayfadan göstermeyi başlat:

Download "ORAN ORANTI 2 1 3 - - 4 4 2 1 1 2 ÖYS. = = yazılabilir. veya ALIŞTIRMALAR"

Transkript

1 YILLAR ÖYS ORAN ORANTI ve t. t. t.e zılilir. f Or: E z iri sıfır frklı ı iste iki çokluğu ölümüe or eir. Or irimsizir. Ortı : iki ve h fzl orı eşitliğie ortı eir. or ortı ORANTININ ÖZELLĐKLERĐ ALIŞTIRMALAR Örek( ),8 0,,8? Örek( ), Z, k? (C: 9 k ) ).. ) ve Örek( 3 ) 3? ve 39 3) Örek( )? 3 ) ± ± ± ± ) m 0 ve 0 k ± ± m k m 6) m 0. m : m k k, k. m : m ) m R, ± m ± m e 8) k : : e : :f k f 9) e f t. t. e t.f Örek( ).? Örek( 6 ) 3? (C: 36/) Örek( ), /? e Örek( 8 ) f e..? f

2 Örek( 9 ) 38?, 9 ve Örek( 8 )? 8 (C: /3) Örek( 0 ),,, sılrı 3 sırsıl hgi sılrl ortılıır? 3 Örek( )? 3 3 Örek( )? z z z z 8 6 (C: ) Örek( 3 ),,z R, z,,z i sırlı 0,3 0,6 0,8 Örek( 9 ) ::::z3 ortısı 9 ve z? 3 Örek( 0 )? 3 (C: 3) Örek( ) 3? 3 (C: 3) 3 Örek( ) k ve k 3 i isie eğeri eir? m Örek( 3 ) k ve k m i isie eğeri eir? (C: /) Örek( )? 3, 6, 0 Örek( ) ve 8 3 3? Örek( ),,z Z, ::z:3: ve.. z 0 z? (C: 0) Örek( 6 )? 3, Örek( ) 3 Örek( 6 ),, Z,,, i sırlı. (C: 8)? 6 Örek( ),, R, 0,3 0, 0,8 i e üük eğeri kçtır? Örek( )? 9

3 Örek( 8 ) z? z, 8 ve z t t Örek( 38 ) 3 ifesi ee eşittir? ( )(. ) Örek( 9 ) z9 ve z? z Örek( 30 ) m t olmk üzere t z.? t 3 Örek( 3 ) 3? Örek( 3 ) ve? ve ORANTI ÇEŞĐTLERĐ ) DOĞRU ORANTI: Bir çokluk rtrke iğeri e rtıor, iri zlırke iğeri e zlıors u iki çokluk oğru ortıır eir.(ur k ortı siti eir.) Örek( 39 ) işçi 0 prç iş prs, 6 işçi kç prç iş pr? (C: ) Örek( 0 ) () ile ( ) oğru ortılıır. ike 3 ike? (C: ) 9 Örek( 33 )? 3 (C: ) ²- Örek( 3 ),,z Z, ²² ve z z z² z? ) TERS ORANTI: Bir çokluk rtrke iğeri zlıor iri zlırke iğeri rtıors u çokluklr ters ortıır eir. (ur k ortı siti eir.) Örek( ) 6 işi ol ir çrk irim zm kez öerse 9 işi ol çrk irim zm kç kez öer? (C: 0) Örek( 3 ),, sm sılrı 39 i e z eğeri eir? Örek( ) ( ) ile (3) ters ortılıır. 3 ike ike? Örek( 36 ) 3m 3z. 3 3t z t m p z. r t p 3 r m? (C: /6) 3) KARIŞIK ORANTI sısı ile oğru, ile ters ortılı. k zılır.(k, ortı siti) 3 Örek( 3 )? 3 3 Örek( 3 ) () sısı ( ) ile oğru, (3) ile ters ortılıır. 3 ike 3 ike? (C: 9) 3

4 ) BĐLEŞĐK ORANTI: Đçie ikie fzl or ulu ortılr ileşik ortı eir. Örek( ) Üç iş mkiesi güe st çlışrk 0 prç iş üretiors iş mkiesi güe 6 st çlışrk kç prç iş üretir? (C: 3) Örek( ) k te işçii st çlışmsıl 0 güe itirileile ir iş, işçi sısı rttırılrk ve güe 0 st çlışılrk 0 güe itirilior. Bu göre k şğıkilere hgisi olilir? A) B) 0 C) 9 D) 8 E) ) DÖRDÜNCÜ ORANTILI: (ÖSYS 000) ortısı ele eile e örüü ortılı eir. Örek( 6 ),3 ve sılrıı örüü ortılısı kçtır? (C: 9) Örek( 0 ),3, ile ortılı ol üç oğl sıı kreleri toplmı küçük sı kçtır? Örek( ) Üç kişii şı 3,, ile ortılıır. Bu üç kişie şlrıl ters ortılı olrk pr ğıtılıor. Küçüğü lığı pr üükte 8 milo fzls, ort kç lir lmıştır? (C: ). Örek( ),, R içi oğruur? A) ile oğru ortılıır. B) ile C) ile ters D) ile oğru E) ile ters A.H. Örek( 3 ),.,. 3 ile rsıki ortı eir? (C: oğru) Örek( ),, reel sılrı sırsıl ve 3 ile oğru, ile ters ortılıırlr. 0,? (C:/) Örek( ) (), ( ) ve () sılrıı örüü ortılısı 6? (C: ) ÖRNEKLER Örek( 8 ) Bir kkl lelei (l), fıstık (f) l f 6 ve çekirek (ç) te, orı f 3 ç krıştırrk 80 gr lık ir krışım ele eior. Krışım kç grm fıstık vrır? Örek( 9 ) sısı ile oğru, ile ters ortılıır. 3, 0 ike 6 ve ike? (C: 6) Örek( ) Bir sııftki kız öğreileri sısı,, erkek öğreileri sısı,8 ile ortılıır. Bu sııft e z kç kız vrır? (C: ) Örek( 6 ) Üç rkş sırsıl ½,/3,/ sılrıl ters ortılı olrk pr ğıtılıor ort milo lıors ğıtıl toplm pr kç milour? (C: 3) Örek( ) sısı () ile oğru (3 ) ile ters ortılıır. ike 3 ike? (C: ) Örek( 8 ) Bir miktr pr,,z kişileri rsı,3, ile ortılı plştırılı ortı

5 siti k,,6,8 ile ters ortılı plştırılı k ortı siti m oluors? m Örek( 9 ),3, ile oğru ortılı ol üç sı sırsıl hgi sılrl ters ortılıır? Örek( 60 ) Biririi çevire üç işli çrkt iriisi kez öüğüe, ikiisi, üçüüsü 0 kez öüor. Toplm iş sısı 0 üük çrk kç işliir? Örek( 6 ) Üç işçi güe 6 st çlışrk prç işi 9 güe itiriorlrs, 6 işçi güe st çlışrk 0 prç işi kç güe itirir? Örek( 6 ) te işçi ir işi (3) güe pıor. Đşçi sısı rı ier iş miktrı 3 ktı çıkrs iş 36 güe itior. Bu göre? (C: 3) Örek( 63 ) Bir çuuk 9 eşit prç 0 k. ölüüors, eşit prç kç k. ölüür? (C: 0) Örek( 6 ) Bir kotörü 8 i lir ol i GSM opertörü ir kiklık kouşm üretii eelii 0 i lir olrk elirlemiştir. Bu göre kotörü ol ir kişi kç kik görüşme pilir? (C: 3, k) Örek( 6 ) işçi güe 8 er st çlışrk ir işi %30 uu güe itirior. Bu işçilere ı itelikteki kç işçi ktılırs, işi kl kısmı güe 6 st çlışrk güe itirileilir? (C: 9) Örek( 66 ) Bir öğrei ir kitı tmmıı stte okuilior. Bu öğrei kitı /3 üü stte okuiliğie göre? (C: ) Örek( 6 ) işçi güe 6 st çlışrk güe m² hlı örüor. Eş güçteki 8 işçi 0 m² lik hlıı güe st çlışrk kç güe örer? Örek( 68 ) Bir musluk oş ir hvuzu 8 stte oluruor. Muslukt irim zm k su miktrı %0 zlırs oş hvuz kç stte olr? Örek( 69 ) Bir tılı okul 00 öğreie 0 gü eteek kr ieek vrır. 30gü sor okul 0 öğrei rılıor. Kl ieek kl öğreilere kç gü eter? Örek( 0 ) Bir gezi guruuki kız öğreileri, erkek öğreilere orı 3/ tir. Guru erkek gelip 6 kız rılığı u or ¼ oluor. Gurupt ilki kç öğrei vrı? Örek( ) Bir gurupt öğrei vr. Bu guruptki kızlrı erkeklere orı A.H. olmz? A) / B) 3/ C) / D) /9 E) / KURAL; D, Doğru ortı --- T, Ters ortı ı göstersi ile D, ile z D ile z D ile T, ile z T ile z D ile D, ile z T ile z T ile T, ile z D ile z T ilişkisi vrır. z Örek( ),.z,, t. k 3 t oluğu göre A.H.Doğruur? A) ile z oğru ortılıır B) ile k ters ortılıır. C) z ile k oğru ortılıır. D) ile t oğru ortılıır. E) ile k oğru ortılıır. ORTALAMA ÇEŞĐTLERĐ ) ARĐTMETĐK ORTA te sıı ritmetik ortsı;

6 AO.... (!!. / ve / olrk prçlı) (C: ) Ö.O.S.A.O ) GEOMETRĐK ORTA (Ort ortı) te sıı geometrik ortsı 3 Örek( ) pozitif eğeri kçtır? ifesii e küçük (C: 3 ) G. O.... Ö.O.S.G.O. 3) HARMONĐK ORTA te sıı hrmoik ortsı; H. O..... Ö. O.S. H. O NOT: ve ı işretli iki sı olmk üzere u iki sı içi; NOT: iki sıı herhgi iki ortlmsı eşitse u iki sı eşittir Örek( ) (3 ) ile (8) sılrıı geometrik ortsı ile hrmoik ortsı eşitse? (C: ) Örek( 6 ) iki sıı ritmetik ortlmsı 0, geometrik ortlmsı üük sı kçtır? Örek( ) 9 sıı A.O sı ir. Bu sılr hgi sıı eklemeliiz ki ortlmlrı 8 olsu? (: ) (G.O)²(A.O).(H.O) ır. Đsp: (. )... Örek( 8 ) Bir guruu ş ortlmsı ir. Guruptki erkeği ş ortlmsı 6 ır. Blrı ş ortlmsı 9 oluğu göre gurupt kç kişi vrır? (C: 3) NOT: iki sıı ritmetik ortsı, geometrik ortsı im üük ve eşittir. ĐSP: ( ) 0 ( ) ( ) ( ) Örek( 3 ) R olmk üzere ifesii e küçük eğeri eir? Örek( 9 ) te sıı ortlmsı ir. Bu sılr toplmlrı 0 ol sı h ekleie ortlmlrı kç olur? Örek( 80 ) Aritmetik ortlmlrı / ol iki sıı kreleri frkı u iki sıı ort ortısı kçtır? (C: ) 6

7 Örek( 8 ) 3, 6, z ir. ile z i ritmetik ortsı, ile z i ort ortısı kçtır? (C: 6 ) Örek( 88 ) Toplmlrı 88 ol 0 sı ir kısmıı ritmetik ortlmsı, geri klı tür. O hle ortlmsı ol kç sı vrır? (C: ) Örek( 8 ) üç sıı ikişer ikişer geometrik ortsı, 3 ve 3 ir. u sılrı hrmoik ortsı 3.? (C: 6 3 ) Örek( 89 ) Đkişer ikişer ritmetik ortsı 6, ve 8 ol üç sıı e küçüğü kçtır? (C: ) Örek( 83 ) 6 ile 6 0 sılrıı hrmoik ortsı eir? (C: ) Örek( 90 ) Đki sıı geometrik ortsı 3 6 ır. Bu sılr iriile geometrik ortsı 3, iğerile geometrik ortsı 6 ol sı kçtır? (C: 8) Örek( 8 ) 6 8 ile 6 8 sılrıı ort ortısı eir? (C: ) Örek( 8 ) te sıı ritmetik ortsı tir. Bu sılrı her iri kr zltılırs ei ortlm kç olur? (C: ) ÖSS SORULARI: Örek( 9 ) Tek tür ml ürete ir tölee mkielere iri stte irim ml üretior. Aı süre içie u mkiei ktı ml ürete şk ir mkie, irim mlı kç stte üretir? (C: /) (ÖSS 003) Örek( 86 ) 3 ile geometrik ortsı 8? 9 sılrıı Örek( 9 ) Bir guruptki kız sporulrı ş ortlmsı, erkek sporulrı ş ortlmsı tür. Kızlrı sısı erkekleri sısıı ktı oluğu göre, u guruu ş ortlmsı lçtır? (C: 8) (ÖSS 003) Örek( 8 ) Arışık üç çift oğl sıı ritmetik ortsı tir. Bu sılr üüğü ile geometrik ortsı, küçüğü ile ritmetik ortsı ol oğl sı kçtır? (C: 8) Örek(93) Bir sııft mtemtik sıvı lığı pu,3 ve ol öğreilere 8 kişilik ir gurup oluşturulmuştur. Gurupt u üç pu her irii l e z ir öğrei ulumktır ve guruu pu ortlmsı /8 ir. Bu gurupt puı 3 ol e çok kç öğrei uluilir? (C: )

8 (ÖSS 003) Örek( 9 ) A tesi TL e stıl klemlere te stı lırk TL öeior.bu göre, A.H. her zm oğruur? A) B) C) D) ²² E) ²² Örek( 99 ),, irer oğl sı ve 3 oluğu göre? (C: 6) (ÖSS-9) (ÖSS 00) Örek( 9 ) 3 ve 3 oluğu göre? (C : ) (ÖSS-000) Örek( 00 ) sıı ritmetik ortsı 9 ur. Bulr ritmetik ortlmsı ol 3 sı çıkrılıor. Gerie kl sıı toplmı kçtır? (C: 88) (ÖSS-9) Örek( 96 ) Etiket umrlrı,,3, ol ört kutu etiket umrlrıı krelerile ortılı miktr pr kouor. Kutulrki toplm pr TL oluğu göre olu kutu kç TL komuştur? (C: ) (ÖSS-99) Örek( 9 ) Bir miktr prı K,L,M kişileri sırsıl ve sılrıl oğru, 6 ile ters ortılı olrk plşıorlr. Bu göre A.H. Doğru? A) L, K ı iki ktı pr lır B) M, K ı üç ktı pr lır C) K, L i iki ktı pr lır D) E çok prı M lır E) E z prı K lır (ÖSS-98) Örek( 98 ) ve 00 oluğu göre işlemii souu kçtır? (C: 0) (ÖSS-9) HAZIRLAYAN ĐBRAHĐM HALĐL BABAOĞLU Mtemtik Öğretmei 8

ege yayıncılık Oran Orant Özellikleri TEST : 91 a + 3b a b = 5 2 0,44 0,5 = 0,22 oldu una göre, a + b en az kaçt r? A) 3 B) 11 C) 14 D) 15 E) 16

ege yayıncılık Oran Orant Özellikleri TEST : 91 a + 3b a b = 5 2 0,44 0,5 = 0,22 oldu una göre, a + b en az kaçt r? A) 3 B) 11 C) 14 D) 15 E) 16 Orn Ornt Özellikleri TEST : 91 1. 0,44 0,5 = 0,22 5. + 3 = 5 2 2. 3. 4. oldu un göre, kçt r? A) 0,2 B) 0,25 C) 0,5 D) 0,6 E) 0,75 y = 3 4 + y oldu un göre, y orn kçt r? A) 7 B) 1 C) 1 D) 7 E) 10 oldu un

Detaylı

Komisyon. ALES EŞİT AĞRILIK ve SAYISAL ADAYLARA TAMAMI ÇÖZÜMLÜ 10 DENEME ISBN 978-605-364-214-5

Komisyon. ALES EŞİT AĞRILIK ve SAYISAL ADAYLARA TAMAMI ÇÖZÜMLÜ 10 DENEME ISBN 978-605-364-214-5 Komisyon LES EŞİT ĞRILIK ve SYISL DYLR TMMI ÇÖZÜMLÜ 10 DENEME ISBN 97-605-36-1-5 Kitpt yer ln ölümlerin tüm sorumluluğu yzrın ittir. Pegem kdemi Bu kitın sım, yyın ve stış hklrı Pegem kdemi Yy. Eğt. Dn.

Detaylı

ORAN ORANTI ORAN ORANTI ORANTININ ÖZELLİKLERİ ÖRNEK - 1 TANIM. x ve y tamsayıdır. x y

ORAN ORANTI ORAN ORANTI ORANTININ ÖZELLİKLERİ ÖRNEK - 1 TANIM. x ve y tamsayıdır. x y ORAN ORANTI TANIM Anı irimden iki çokluğun iririle krşılştırılmsın orn denir. ornınd ve nı irimden olduğu için nin irimi oktur. ÖRNEK - 1 ve tmsıdır. = ve + = 0 olduğun göre, kçtır? A) 1 B) C) 0 9 D) 1

Detaylı

SAYI KÜMELERİ. Örnek...1 :

SAYI KÜMELERİ. Örnek...1 : SAYILAR SAYI KÜMELERİ RAKAM S yı l r ı i f d e e t m ek i ç i n k u l l n d ı ğ ı m ız 0,,,,,,6,7,8,9 semollerine rkm denir. DOĞAL SAYILAR N={0,,,...,n,...} k üm e s i n e d o ğ l s yı l r k üm e s i d

Detaylı

Yükseköğretime Geçiş Sınavı (Ygs) / 1 Nisan 2012. Matematik Soruları ve Çözümleri

Yükseköğretime Geçiş Sınavı (Ygs) / 1 Nisan 2012. Matematik Soruları ve Çözümleri Yükseköğretime Geçiş Sınvı (Ygs) / Nisn 0 Mtemtik Sorulrı ve Çözümleri. 0,5, işleminin sonuu kçtır? 0,5 0, A) 5 B) 5,5 C) 6 D) 6,5 E) 7 Çözüm 0,5 0,5, 0, 05 50 5.5.4 5.5. 4 4 0 5 .. 4.6 6 işleminin sonuu

Detaylı

A A A A A TEMEL MATEMAT K TEST. + Bu bölümdeki cevaplar n z cevap ka d ndaki "TEMEL MATEMAT K TEST " bölümüne iflaretleyiniz. 4.

A A A A A TEMEL MATEMAT K TEST. + Bu bölümdeki cevaplar n z cevap ka d ndaki TEMEL MATEMAT K TEST  bölümüne iflaretleyiniz. 4. TEMEL MTEMT K TEST KKT! + u bölümde cevplyc n z soru sy s 40 t r + u bölümdeki cevplr n z cevp k d ndki "TEMEL MTEMT K TEST " bölümüne iflretleyiniz.. ( + )y + = 0 (b ) + 4y 6 = 0 denklem sisteminin çözüm

Detaylı

ORAN ve ORANTI-1 ORAN-ORANTI KAVRAMI. 1. = olduğuna göre, aşağıdaki ifadelerin. + c c sisteminin çözümüne. 3. olduğuna göre, nin değeri

ORAN ve ORANTI-1 ORAN-ORANTI KAVRAMI. 1. = olduğuna göre, aşağıdaki ifadelerin. + c c sisteminin çözümüne. 3. olduğuna göre, nin değeri ORAN ve ORANTI- ORAN-ORANTI KAVRAMI A) B) 9 C) 7 D) 5 E). olduğun göre, şğıdki ifdelerin hngisi d doğrudur? + d A) d + 4 + d C) 4 d E) 5 + 5 5 5 + d d + d B) n + m n + md D) d x y z. 4 5 sisteminin çözümüne

Detaylı

ORAN VE ORANTI. Aynı birimle ölçülen iki çokluğun bölme yoluyla karşılaştırılmasına oran denir. a nın b ye oranı; b

ORAN VE ORANTI. Aynı birimle ölçülen iki çokluğun bölme yoluyla karşılaştırılmasına oran denir. a nın b ye oranı; b 1 ORAN VE ORANTI ORAN: Ayı irimle ölçüle iki çokluğu ölme yoluyl krşılştırılmsı or eir. ı ye orı; şeklie gösterilir. 3 00gr 15m Örek 1:,,... 3 300gr 0m irer orır. 00gr 30m 5000TL Örek :,,,... ifeleri irer

Detaylı

MESUT ERCİYES TEMEL KAVRAMLAR YGS-LYS MATEMATİK DERS NOTLARI. deð er ile en küçük deðerin toplamý kaçtýr? 24) c nin alabileceðienbüyük deðer kaçý

MESUT ERCİYES TEMEL KAVRAMLAR YGS-LYS MATEMATİK DERS NOTLARI. deð er ile en küçük deðerin toplamý kaçtýr? 24) c nin alabileceðienbüyük deðer kaçý TEMEL KAVRAMLAR ),! N olmk üzere, ise. i lileeði ) Rkmlrýfrklýiki smklýfrklýdört doðl sýý e üük deðer ile e küçük deðeri toplmýkçtýr? toplmý 0 iseeüük sýefzl kç olilir? ),! N olmk üzere, ise. i lileeði

Detaylı

ğ Ş ğ ş ğ İ ö ç ö ö İ ğ ş ş ç ç ğ ç ğ ş ğ İ Ş Ü İş ö Ö ğ Öğ ş ğ ğ İ ö ö Çğ ö İ ö ç İ ş ş ş ç ş öğ ş Ş ğ ö ğ ş ö ğ İ ğ ö ş ş ş ğ ğ İ ş ğ çö ğ ğ ş ö öğ ç öği İ ğ ğ ğ ğ öğ ö ş ğ İ ç ş İ İ ğ ç İ İ Ö ÖĞ İ ğ

Detaylı

İ» Ö İ İ ğ ğ İ ğ ğ ğ ğ ğ ğ ğ ğ İ ö ö ç ğ ğ ğ ğ ğ Ö Ü Ü ğ ğ ğ ö ğ ğ ğ ğ ö ğ ğ İ İ İ İ ğ ğ ğ ö İ ğ ğ ğ ğ ğ ö ğ ğ ö ö ğ öğ ğ ğ ğ İ ö ç ç ğ ö ö ç ğ ç ç ğ ç ğ ö ç ğ ğ ğ ğ ğ ğ İ Ü Ş İ ö İ ğ ğ İ İ ğ ğ ğ ç ğ ğ

Detaylı

Ü Ö Ö ö ö Ü Ü Ö ö ç ç ö ç ö ç ç ö ö ö ö ö ç ö ö ç ç ç ç ç ç ö ö ö ö ç ç ö ç» ö ö ö ö ç ö ö ö ö ç ö ç ö ç ö ç ö ö ç ç ç ç ö ö ö ç ç ç ç ç ç ç ç ç ö ç ç ö ç ç ç ç ç ç ö ö ö ç ç ç ö ö ö ç ç ç ç ö ç ç ç ç

Detaylı

İ Ç Ü ş ö ğ ş ö ğ Ü öğ ç ş Ö Ü ğ ç ö ç ş ş ğ Ğ ç ç ğ ğ ö ş İ ç Ü ç ş ö ğ ö ç ç ş ş İ ğ ş ğ ş ç ş ğ ş ç ş ğ ç ç ş ş ö ş Ö Ş Ö ğ ş ö ç ş ğ Ç Ü Ç ğ ş Ç ğ İ Ü İ Ü ö ş ş ş ğ ç ş ö ğ çö ğ ş ş ç ö ş ş ş ğ ç ş

Detaylı

Ş İ İ İ ç İ İ İ İ ç ç ç Ç ç ç ç ç İ Ö İ ç ç ç ç ç ç ç ç ç ç ç ç ç ç ç Ç ç ç ç ç ç Ö Ö ç ç ç ç Ö ç Ö ç ç ç ç ç ç ç Ç ç ç ç Ç ç ç ç ç ç Ç ç Ö ç ç ç ç Ç ç Ö Ç ç ç Ş ç ç Ç Ş ç İ ç ç ç ç ç ç ç ç ç ç ç ç ç ç

Detaylı

Ç Ü ö ö Ü ö ç Ö Ü ç ö ç ç Ğ ç ç ç ö ö ç ç Ü ç ö ö ç ç ç ç ç ç ö Ö Ş Ö ö ç Ç Ü Ç Ç Ü Ü ö ç ö ç ç ç ç ö ç ç ç ö ç ö ö ö ç ö ö Ü ç çö çö Ü ç çö Ö ö ö çö ç Ü ö ç ç ç çö ç ç ç ö ç çö çö ö ö ö ç Çö çö çö ö ç

Detaylı

Ü İ İ İ İ ö İ ö ğ ğ Ü ö Ş Ç ğ İç Ş Ç ğ Ü ö İ İ ğ Ü ö ğ Ü ö İ İ Ş Ç ğ İ İ ğ Ü ğ ğ ğ ç ç ö ğ ö ö ğ ğ ğ ö ç ç Ç Ç ö Ö ğ ğ ç ç Ş ğ ğ Üç Ç ğ ç ö Ş Ç ğ ğ Ş Ü ğ ğ Ş ğ ç ç ç ğ ö ö ğ ö ö İ ç ç ğ ğ Ü ö İ İ ğ Ş ğ

Detaylı

Ç ö Ü ğ ö Ş ç ç Ş Ü Ö Ü Ü ö Ü ğ ğ ö ö ç ç Ü ğ ç ç ğ ğ ğ Ü ğ ö ö Ş ö ç ğ ö ç ç ğ ç ç ö Ş Ş ö ğ ç Ç ç ö ö ç Ç ö ğ Ü ö ğ ğ ç ö ç ğ ç ğ ö ç ö ö Üç ğ ö ç ö ç ö ç ğ ö ğ ö ç Ç ğ ç ç ğ ö ö ç ç ç ğ ğ ç ğ ç ğ ç

Detaylı

Ç Ç ç Ğ ç Ö Ğ Ş ç Ö Ö Ğ Ğ Ö Ö Ç Ü ç Ç Ü ç Ö ç ç ç ç Ğ ç ç Ç Ç ç Ç Ü ç ç Ç ç ç ç Ö ç Ö Ö ç ç ç ç ç ç ç ç ç ç ç Ö Ş ç ç ç ç ç ç ç ç Ü ç ç Ü ç ç ç ç ç ç ç Ö Ç ç ç ç ç ç ç ç ç ç ç Ö ç ç Ğ Ç Ü ç ç Ç Ü ç ç Ç

Detaylı

ç Ğ Ü ç ö Ğ «ö ç ö ç ö ç ç ö ç ç ö ö ö ç ç ç ç ö ç ç ö ç ç ç ö ö ö ç ç ç Ç Ö Ü ç ç ç ç ç ç ç Ü ç ç ö ö ç ç ç ö ç ç ç ö ö ç ç ö Ç ç ö ç ç ç ç ç ç ç ç ç ç ç ç ç ç ç ç Ç ç ç ç ç ç Ü ö ç ç ç ç ç Ç Ç ç ç Ç

Detaylı

ö Ü Ü ö Ö ğ ğ ğ ö Ü Ş ö Ü Ğ ö Ü ö Ü ö ğ ö ğ ö ö ğ ğ Ş Ü ğ ö ğ ğ ğ ğ ğ Ş Ş ğ ö ğ ğ ğ ğ ğ ö ö Ş ğ Ç ğ Ç Ş ö Ç ö ğ Ç ğ ö ğ ö ö ğ ö ğ ö Ş ğ Ç ğ Ç ğ ğ Ç Ş ö ö ö ğ Ç Ş Ç ö ö ğ ğ ğ ğ Ü Ü ö ğ «ğ ğ ğ ö ö «ö ğ ğ

Detaylı

İ İ İ İ İ İ İ İ İ İ Ö İ İ İ İ İ Ü Ç İ Ş Ş İ İ Ü İ İ İ İ İ İÇİ Ö Ö Ç Ç Ç İ Ü Çİ İ Ü Ü İ İ İ İ İ İ İİ İ Ç Ş İ İ İ İ Ü Çİ Ö İ Ü Çİ İ İ Ü İİ İ Ç Ö İ Ö İ Ç Ç İ Ç Ö İ İ İİ İ Ç Ç Ç Ü İ Ç İ Ç İ Ş Ç İ Ğ İ İ İ İ

Detaylı

Ç Ç ü Ş ç Ü İ İ İ İ İ Ü İ İ Ş ğ ü Ö ç ç ü ç İ Ü ç İ İ ü ç ü ç İç ö ö ö ö ü ü ü ü ü ü ö Ü İ Ö İ ç ö ğ ü ö ç ç ö ç ö ü ğ ğ Ş ç Ç Ç Ş ü ö ç ğ ç ü ü ü ö ö ü ö ü ü ü ğ ğ ç ğ ğ ü ü ü ç ö ğ ç ğ ö ğ ğ ğ ç ü ü

Detaylı

ç ğ ğ ğ ç ç ç ğ ç ğ ğ ç ğ ğ ç ğ ç ğ ğ ğ ç ğ ğ ç ğ ğ ç ç ğ ğ ğ Ü ç ğ ç ç ç ğ ç ç ğ ğ ğ ğ ğ ğ Ü ğ ğ ç ç ç ğ ç ğ ğ ç ğ ç ç ğ ğ ç ğ ğ ğ ğ ğ ç ğ ğ ğ ğ ç ğ ç ğ Ü ğ ğ ğ ç ç ğ ç ğ Ü ç ğ ğ ğ ç Ü ç ç ç ç ğ ç ğ ğ

Detaylı

İ İ İ Ğ İ İ İ İ Ğ Ğ Ş Ç Ş Ö Ş Ç İ Ç İ Ç Ş Ç Ü İ İ İ Ş Ş Ş Ş Ö Ç Ş Ş Ğ Ş Ç Ö Ş Ö Ö İ Ş Ç Ş Ş Ç Ş Ğ Ğ Ğ Ç İ Ğ Ş Ş Ç Ç Ş İ Ç Ş Ş Ş Ş İ Ğ Ö Ö Ş Ç Ş Ç Ş Ş Ş Ü Ö Ö Ö Ö Ö Ç Ç Ç Ö Ş Ç Ö Ö Ş İ İ Ç Ş Ş Ğ Ü Ş İ Ö

Detaylı

ç ç ö Ğ Ö Ş ö ü ü Ş ç ö ü ç ğ ü ç ç Ğ Ü Ü ÜĞÜ ç ö ö ü ç ü üç ç ğ ü ü Ş ğ ü ü üğü ç ö ö ü ç ü ö ç Ş Ş ü ü üğü Ğ Ğ Ş ü üğü Ğ ç ü ö ğ ü ö Ö Ü Ş ü ü ü Ğ ğ ü ö ğ ü ü üğü ğ Ö Ğ ğ ü ü ü ç ö ö ü ö ü ü ğ ç ç ö

Detaylı

ü ü ü ö ü ü Ö Ö Ö öğ öğ ü ü İ ç ö ü ü ü Ü ü ö ü ü ö ö ö ö ö ç ö ö ü ö ü İ Ö Ü ü ü ü ü ö ü ö ü ü ü ü ü ç ü ö ç Ö ü ç ö ö ö ü ü ö ö ö ç ü ç ö ç ö ö ü ö ö ç ü ç ç ö ü ü ü ü ö ü ü ö ü Ö Ö ö ü ü Ö ö ö ö ü ü

Detaylı

ü ü üğü ğ Ö ü ö üş ö İ ü ü üğü ş ğ ç İ ç Ş ç ş ğ ş ş ğ ç ö ç ğ ş ş ş ö ü ğ ş ğ ü ü üğü ü ğ ö ü ü üğü ş ğ ş ş ş ö ü ç ğ ö ü ğ ö ü ü üğü ş ö ğ ç ğ ü ü üğü ü ğ ü ü üğü ü ü ü üğ ü ğ ö ü ğ ş ö üş ü ü üğü ü

Detaylı

ü Ğ İ Ğ ü İ ç ü ü ü ç Ç ü ü ç Ç ü ü ç ü ü Ü Ç Ü ç ü ü ü ü ü ç Ç ü ü ç İ ü Ğ Ş İ İ ü Ğ İ Ğ ü İ Ö üçü ü Ö Ö ü Ö ü İ İ Ş Ğ İ İĞİ ü ü ü Ğİ İ Ğ İ Ğ ü Ö Ö Ü İĞİ ü Ü İ İ Ğİ ü ü Ğ İ İ İ İ İ İ ç ü ç ü ç ü ü ç ü

Detaylı

İ Ç Ü ş ö üü ş ş ö üü Ü ü ü ö ü ç ü ü ü Ö Ü Ü Ö ç ç ş ş ç ç ü İ ü ç Ü ç ş ö üü ö ü ü ç ş ş ü ş ş ç ş ş ü ü ü ç ü ş ü ç Ş ü Ü ç ü ü ü ç ş ş ö ş Ö ş Ö ş ö ü ç ş Ç Ü Ç ş Ç İ Ü İ Ü Ş ş ü ş ö çü ü Ç Ü ü ö ş

Detaylı

İ Ç Ü ö üğü İ Ö ö üğü Ş ü öğ ü ç Ç ü ü ü Ç Ü ç ğ ç ğ Ğ ç Ş ğ ç ö ğ ğ ü ç Ü Ç ö üğü ö ü ü İİ Ç ğ ü ğ ç ğ ü ü ü ç ü ü Ş ü ğ ç ü ü ç ü ü ç ö Ö Ş Ö ğ ö ü ç ğ İ Ç Ü Ç ğ Ç ğ Ü Ü İ ü ç ğ ğ ğ ğ ğ ğ ç Ç ç ü ç Ş

Detaylı

Ç Ü ğ Ç ç Ğ ç Ü ç ğ ç ğ ğ ç ğ ç ç ğ ç ç Ö Ş Ö ğ ç ğ Ç Ü Ç ğ Ç ğ Ü Ü Ç Ü ğ ğ Ü ğ ç Ç ğ Ü ç ç ğ Ğ Ğ ç ç ğ ğ ğ ğ ğ Ğ Ğ Ğ Ğ Ğ Ş Ş Ç Ö Ö ç Ç ğ ç ç ğ ç ğ ç ç ç ğ ç ç ç Ü ç ç ç ğ Ö Ü Ç Ş Ş ç Ö ç ğ ğ ğ ç ğ ğ ğ

Detaylı

İ Ç Ü ö üğü İ ö üğü ü öğ ü ü ü ü Ö ği İ ü ö İ ğ Ğ Ü Ç ö üğü ö ü ü Ç ğ ü ğ Ş ğ ü ü ü ü ü ğ ö ü ü ü ü ü ö Ö Ş Ö ğ ö ü Ç ğ İ Ç Ü Ç ğ ğ Ü Ü ü «ü ö üğü İ Ü Ö Ü İ Ş İ Ü ü ö ü ö ğ ü İ «Ö ü ö ü İ ğ Ş ü Ş ö ö ü

Detaylı

Ü ş ğ ğ Ü ş Ç ğ ş ş Ç ğ ş Ü ğ Ü ş ğ Ü Ç ğ ğ Ü ğ ğ ğ ş ğ ğ ğ ş ş ğ ş ş ş Ç Ç Ö ş ğ ş ş ğ ş ğ ğ ş Ü Ç ğ ş ğ ş ş ğ Ü ğ ş ş ğ ş ş ş ş ş ş ğ ğ ş ş ş ş ş ş ş Ü ğ ş ş Ü Ç ğ Ç Ç ş ş ş ğ ş Ö ÇÜ Ö ş ğ Ö ş ş ğ ş

Detaylı

ç ü ü ç ç ş İ Ç Ü ş İ Ç Ü ç ş ü İ Ç Ü ş ş ç ş ü Ö ü Ö İş ş ç İ Ç Ü ş ş ç ü ç ş ş İ Ç Ü ş ç Ü İ Ç Ü İ Ç Ü ü ç ş ş ş İ Ç Ü ç ü ş İ Ç Ü İş ş ş ü ş İ Ç Ü ş ü ş üç ü ş ş ş ç ü ü ç ş ş ş ş ü ş ü ü ş ç ü ç ç

Detaylı

ğ ğ Ö ğ ğ ğ ğ ğ ğ ğ ğ ğ ğ ğ ğ ğ ğ Ö ğ ğ ğ ğ

ğ ğ Ö ğ ğ ğ ğ ğ ğ ğ ğ ğ ğ ğ ğ ğ ğ Ö ğ ğ ğ ğ İ Ş Ş İ İ Ö İ ğ ğ ğ ğ ğ ğ ğ ğ ğ Ö ğ ğ ğ ğ ğ ğ ğ ğ ğ ğ ğ ğ ğ ğ Ö ğ ğ ğ ğ ğ ğ ğ ğ ğ ğ ğ ğ ğ ğ ğ ğ ğ İ ğ ğ ğ ğ Ö Ö Ç ğ ğ ğ ğ ğ Ü ğ İ ğ ğ Ç İ ğ ğ Ç ğ ğ ğ ğ ğ ğ ğ ğ ğ ğ ğ ğ ğ Ş ğ ğ ğ Ü ğ ğ ğ ğ Ö ğ ğ Ö ğ ğ ğ

Detaylı

Ü Ü Ğ Ş Ş Ş Ş Ş Ü Ğ ç Ş Ğ Ü Ü Ğ Ü Ş Ö ç ç Ğ Ğ Ü Ş Ü Ş Ş ç ç Ç Ü Ş Ç Ç Ü Ş Ş Ü Ü Ü Ü Ü Ü ç Ç ç ç ç ç ç ç ç ç ç ç ç ç Ç ç ç ç ç ç Ş Ğ Ç ç ç ç ç ç ç ç ç ç ç ç ç ç ç ç ç ç Ş ç ç ç Ç ç ç ç ç ç ç Ç ç Ç ç ç ç

Detaylı

Ş İ İ ç İ İ İ İ ç Ş ü ü ü ü ç ü üç ü ü ü ç ü ü Ü İ Ğ Ş üç ü İ ü ü ü ç ü ç Ç ç İ ü üç ü Ç üç ü ç ç Ç ü Ç ç üç ü ç Ç ç ç ç ç Ğ Ğ ç İ ü ü ç ç ç ü ü ü Ü ç ç ü ç ç ü ü ü Ö ü ü ü ü Ü ü ü ç ü ç ç ü ü ü ü ç ü

Detaylı

İ Ğ Ş İ» Ğ Ğ ö Ğ ö ö Ç ö Ç İ Ş ö ö ö ö ö ö ö ö ö ö ö Ç ö ö ö ö ö ö İ İ ö ö ö Ü ö ö ö ö ö ö ö Ş ö ö İ ö ö İ ö ö İ İ ö ö ö ö ö ö ö ö ö ö ö ö ö ö ö ö ö ö Ç İ İ ö İ İ İ İ Ö İ Ç ö ö Ö Ç ö ö ö ö ö ö ö ö ö ö

Detaylı

Ğ Ğ Ü Ü Ö Ü Ö Ö Ö Ü Ö Ü Ü Ü Ü Ü İ İ Ü Ü Ö Ö Ü Ö Ü Ö Ü Ö İ Ü Ö Ö Ö Ö Ö Ö Ö Ö Ö Ö Ü Ö İ Ö Ü Ö İ Ö İ İ İ İ İ İ İ İ İ İ Ö Ö Ö Ö Ö Ö Ö İ Ü İ Ü İ İ İ İ İ İ İ Ö İ Ü İ İ İ Ö İ Ö Ö İ İ Ö Ö İ İ İ İ İ İ İ İ İ İ Ö

Detaylı

Ğ ü ü ç ş ş ğ ğ ğ ğ Ö ü ğ ş ğ ü ş Ç ş ş Ç ş ü ü ü ğ ç ç ş ü ş ş Ç ş ü ü ü ü ğ ş ş ü ü ş ş ş ü ü ğ ü üğü ş ç ü ü Ç ç ğ ü ü üğü ğ ü ç ş ş ş ş ğ ç ü ü ü ş ş ş Ç ş Ç ğ Ç ğ Ç Ç ü ş ş ü Öğ ü ş ş ğ ç Ç Ç ş Ç

Detaylı

Ğ Ğ Ö İ İĞİ» Çö İ İ İĞİ Ç İ İĞİ Ü İ İĞİ İ İ ö ö ö Ğ İ ç Ö Ö ö ö ö ç ç ö Ö ö ö ö ö ö Ö ç ç ç ç ç Ğ ç Ğ İ Çö öğ ö İ İ İ ç ö ö ç Ğ İ ö ö İ İĞİ İ İĞİ Ğ Ç Ğ ö ö ö Ğ ç Ö Ö ö ç ö Ö ö ö ç ö ö ö ç Ö ç ç ç ç ç Ğ

Detaylı

Ğ Ğ ö Ş Ş Ğ Ş Ş Ü Ş Ğ Ğ Ğ ö ö Ğ Ş Ş Ğ Ğ ö Ğ ö ö ö ö ö ö ö ö Ü Ş Ö Ö Ö Ş Ş Ç Ü ö Ü Ü Ğ ö «ö ö ö Ğ Ş ö ö ö ö ö ö ö ö ö ö ö Ş ö ö ö ö ö ö ö ö ö ö ö ö ö ö ö Ö ö ö Ö Ö ö ö ö ö ö ö ö ö ö ö Ö Ö ö ö Ç Ö ö Ü ö

Detaylı

Ü Ğ Ğ Ş Ö Ü Ü Ğ Ğ ü ü ü ü ü Ö Ü ü ü ü Ş ü ü Ş Ş ü ü ü ü üü ü Ş ü ü ü ü ü ü ü Ç ü ü ü ü ü ü ü üü ü ü ü üü ü ü ü ü ü ü ü ü Ş ü ü Ö ü ü ü ü ü ü ü ü Ç Ş Ç üü Ş ü ü ü ü üü ü ü ü ü ü ü ü ü ü ü Ş ü ü ü Ü ü ü

Detaylı

PLAJLARDA ÇEVRE BİLİNÇLENDİRME PROJESİ. (19-22 Ağustos 2013 Akyaka)

PLAJLARDA ÇEVRE BİLİNÇLENDİRME PROJESİ. (19-22 Ağustos 2013 Akyaka) PLAJLARDA ÇEVRE BİLİNÇLENDİRME PROJESİ (19-22 Ağustos 213 Akyk) Pljlr Çevre Bilinçlenirme Projesi 19-22 Ağustos trihleri rsın TÜRÇEV Muğl Şuesi ve Akyk Beleiyesi iş irliği ile gerçekleştirili. Proje TÜRÇEV

Detaylı

Kesir Örnek Çözüm. 1. Yandaki şekilde bir TEST - 1. 1. Taralı alanı gösteren. bütün 8 eş parçaya bölünmüş ve bu parçalardan 3 tanesi

Kesir Örnek Çözüm. 1. Yandaki şekilde bir TEST - 1. 1. Taralı alanı gösteren. bütün 8 eş parçaya bölünmüş ve bu parçalardan 3 tanesi Kesir.. Trlı lnı gösteren kesri bulunuz. kesrini ile genişlettiğimizde elde edilecek kesri bulunuz.. Yndki şekilde bir bütün 8 eş prçy bölünmüş ve bu prçlrdn tnesi trnmıştır. Trlı lnı gösteren kesir syısı

Detaylı

KARŞI AKIŞLI SU SOĞUTMA KULESİ BOYUTLANIDIRILMASI

KARŞI AKIŞLI SU SOĞUTMA KULESİ BOYUTLANIDIRILMASI KARŞI AKIŞI SU SOĞUTMA KUESİ BOYUTANIDIRIMASI Yrd. Doç. Dr. M. Turh Çob Ege Üiversitesi, Mühedislik Fkultesi Mkie Mühedisliği Bölümü turh.cob@ege.edu.tr Özet Bu yzımızd ters kışlı soğutm kulelerii boyut

Detaylı

Ö rendiklerimizi Nerelerde Kullanabiliriz? Alan tahmin etmede kullanabiliriz.

Ö rendiklerimizi Nerelerde Kullanabiliriz? Alan tahmin etmede kullanabiliriz. 4.1 Aln Neler Ö renece iz? Geometrik flekillerin lnlr n hesplyc z. Ö rendiklerimizi Nerelerde Kullnbiliriz? Aln thmin etmede kullnbiliriz. Söz Vrl Prlelkenrsl bölge Bir y içinde yklfl k lt metre krelik

Detaylı

Sistem Dinamiği ve Modellemesi. Doğrusal Sistemlerin Sınıflandırılması Doğrusal Sistemlerin Zaman Davranışı

Sistem Dinamiği ve Modellemesi. Doğrusal Sistemlerin Sınıflandırılması Doğrusal Sistemlerin Zaman Davranışı Sim Dinmiği v Modllmi Doğrul Simlrin Sınıflndırılmı Doğrul Simlrin Zmn Dvrnışı Giriş: Sim dinmiği çözümlmind, frklı fizikl özlliklr şıyn doğrul imlrin krkriiklrini blirlyn ml bğınılr rınd bnzrlik noloji

Detaylı

İÇİNDEKİLER ORAN VE ORANTI... 267-278... 01-06 KESİR PROBLEMLERİ... 279-288... 01-05 HAVUZ VE İŞ PROBLEMLERİ... 289-298... 01-06

İÇİNDEKİLER ORAN VE ORANTI... 267-278... 01-06 KESİR PROBLEMLERİ... 279-288... 01-05 HAVUZ VE İŞ PROBLEMLERİ... 289-298... 01-06 PROBLEMLER İÇİNDEKİLER Syf No Test No ORAN VE ORANTI... 267-278... 01-06 KESİR PROBLEMLERİ... 279-288... 01-05 HAVUZ VE İŞ PROBLEMLERİ... 289-298... 01-06 SAYI PROBLEMLERİ... 299-314... 01-08 YAŞ PROBLEMLERİ...

Detaylı

Üç Şiir. Yaşamaya Dair, Ceviz Ağacı, Masalların Masalı

Üç Şiir. Yaşamaya Dair, Ceviz Ağacı, Masalların Masalı Üç Şiir Yaşamaya Dair, Ceviz Ağacı, Masalların Masalı N â z ı m H i k m e t (Se la nik, 14 Ocak 1902 Mos ko va, 3 Ha zi ran 1963) Bah ri ye M e kt eb i n i b it i rd i (1919 ), H am id iy e K r uvaz ör

Detaylı

ÖZEL EGE LİSESİ OKULLAR ARASI 18. MATEMATİK YARIŞMASI 8. SINIF TEST SORULARI

ÖZEL EGE LİSESİ OKULLAR ARASI 18. MATEMATİK YARIŞMASI 8. SINIF TEST SORULARI ., ÖZEL EGE LİSESİ OKULLR RSI 8. MTEMTİK YRIŞMSI 8. SINI TEST SORULRI 5. 0,0008.0 b 0,0000.0 ise; b.0 kç bsmklı bir sıdır? olduğun göre, ifdesinin değeri şğıdkilerden hngisine eşittir? ) 80 ) 8 ) 8 ) 8

Detaylı

Taşkın, Çetin, Abdullayeva

Taşkın, Çetin, Abdullayeva 1 BÖLÜM 1 KÜMELER VE SAYILAR 1.1 KÜMELER 1.1.1. TEMEL TANIMLAR Kesi ir tımı ypılmmkl erer,sezgisel olrk,kümeye iyi tımlmış iri iride frklı eseler topluluğudur diyeiliriz. Kümeyi meyd getire eselere kümei

Detaylı

Ü Ğ Ğ ŞŞ ş Ğ ö Ğ ç ö ö ş ş ş ö ö ç ö ş Ç Ğ Ğ ç ş Ğ ş ç ö ş ç ş ş ö ö ş ö ş Ü ş ş ş ç ç Ü ş ş ö ş ş ö ş ş ş ö ç ş ö ş ş ö ş ş ç Ş ş ö ş ş ö ö Ç ç Ş ş ç ş ş ş ç ş ş ç ş ş ş ş ö ş ö ö ş ş ş ş ç ş ş ş ş ç

Detaylı

Ü Ü İ İ İ Ğİ Ü Ö İ İ Ğ Ğ İ ç İ Ğ ç ç ç İ ç ç İ İ ç ç ç İ ç ç İ ç ç ç Ü Ü İ ç ç ç ç ç ç ç ç ç ç ç ç ç ç ç ç ç ç İ ç ç ç ç ç ç ç Ü İ ç ç İ Ö ç Ü ç ç ç ç ç ç ç ç Ü ç Ü Ü ç İ ç ç İ ç ç ç ç ç ç ç ç ç ç ç ç

Detaylı

ğ Ç ö ğ ğ ğ ğ ğ ö ğ Ş ğ ğ Ş Ş Ş ö ö ö ğ Ş ö ğ ğ ö ğ ö ğ ğ ğ Ş ö ö ğ ö ğ ğ Ç ğ ö ğ ğ ö ö ğ ğ ö Ö Ç ö Ç ö Ç ö Ç ö ğ ö ö ğ ğ ö ğ ö ğ ğ ğ ğ Ö Ü ğ Ç Ç Ç ğ ö ğ ğ ğ ö ö Ş Ç ğ Ö Ş ğ ö Ç Ş ğ Ç Ş Ç Ş ö ö ö ö Ç ğ

Detaylı

Ğ İĞİ Ü ğ ğ ğ Ş ğ ö ğ ğ ğ ğ ö Ç Ç Ç Ğ Ç ÜÜ Ğ Ş Ğ Ç Ğ Ç Ğ Ğ İ Ş İ İ ğ ğ ğ İ İ İ İ Ü İ ğ ğ ğ ÖÇ ğ ö ğ ö ö ğ ö ö ğ Ç ğ ö ö ğ ö ö ö ö ğ ğ ö ğ ğ ö ö Ç Ü İ Ş İ İ ğ Ş İ İ İ İ Ş ö Ç ö ö ğ ğ ö ö ğ ö Ç Ç İ İŞ İ

Detaylı

Yükseköğretime Geçiş Sınavı (Ygs) / 24 Mart 2013. Matematik Sorularının Çözümleri

Yükseköğretime Geçiş Sınavı (Ygs) / 24 Mart 2013. Matematik Sorularının Çözümleri Yükseköğretime Geçiş Sıvı (Ygs) / 4 Mrt 0 Mtemtik Sorulrıı Çözümleri. 4 m? m ( ) 4 m m 4 4 4m 4 4. 4 4m 4m 4. m m elde edilir. ..(0,) (0,4)? 4. 0 0 0 4 0. 4 4 0 0 4 4 0 6 64 000 80 000 8 00 0,08 . 5? 5

Detaylı

«Ğ ğ İ ğ Ü Ü İ İ ğ ğ Ü Ü İ İ Ğ ğ ğ İ İ Ü Ü İ İ Ü İ Ğ Ü Ü ÜĞÜ Ğ İİ İ Ü ğ İ İ İ İİ İ İ Ç İ İ İ ö ö ö ğ İ İ Ö İ ö ğ Ö ğ ö ö ğ ö İ ğ ğ ğ ğ Ü Ü İ İ İ Ğ ğ ğ Ç ö ğ ğ ğ ğ ğ ğ ğ ğ ğ ö ö ğ ğ ö ğ İ ğ İ ö ğ ğ ğ ğ

Detaylı

1.BÖLÜM SORU. (x+3) (4x 2 13) = 3(x+3) denklemini sa layan x de- erlerinin çarp m kaçt r? x+3 kümesi afla dakilerden hangisidir?

1.BÖLÜM SORU. (x+3) (4x 2 13) = 3(x+3) denklemini sa layan x de- erlerinin çarp m kaçt r? x+3 kümesi afla dakilerden hangisidir? 1.BÖLÜM MATEMAT K Derginin u s s nd kinci Dereceden Denklemler, Eflitsizlikler ve Prol konusund çözümlü sorulr er lmktd r. Bu konud, ÖSS de ç kn sorulr n çözümü için gerekli temel ilgileri ve prtik ollr,

Detaylı

Veri, Sayma ve Olasılık. Test / 30. soru 1. soru 5. soru 2. soru 6. soru 3. soru 7. soru 8. soru 4

Veri, Sayma ve Olasılık. Test / 30. soru 1. soru 5. soru 2. soru 6. soru 3. soru 7. soru 8. soru 4 Test / 0 soru soru Bir zr t ld nd üste gelen sy n n tek oldu u ilindi ine göre, sy n n sl sy olm Bir çift zr t ld nd üste gelen sy lr n toplm n n 0 oldu u ilindi ine göre, zrlrdn irinin olm soru soru Bir

Detaylı

ü Ş ç Ş üç ü ö ü ö ö ü ö ç ü Ö ö ü ü ö ö üç ü ö ç ç ç ç ç Ö ü üç ü ö ç Ç ö ç ç ç Ş ö ç ö ü ö ç ç Ç Ç ç ç ç üç ü ö Ç ç ü ö ü ç ü ö ü ö ü ç ü ç Ğ Ğ ö ü ç ü ö Ş ç ö ü ü ü ü üö ü ü ü ö ö ü ü ç ö ö ö ç ç ü

Detaylı

ç Ğ İ Ğ İ ç ç İ ö ç ö ç ç ç ç ö ö İ İ ç ç ö ç Ü Ü İ İİĞ İÜ Ş ç Ç Ş ç ç ç ç ö ç ç İ «ç İİ İ İ İ Ş ç İ Ş ö Ş Ç Ç ö ç ç ç Ğ ö Ş ö Ş Ğ ç ç Ğ ç Ç ç ç ç ö ç ç ç İ Ş Ğ ö Ğ ç ç ç ö İ ç Ç İ Ş Ğ İ ç İ İİ ç ç Ğ İ

Detaylı

İ Ç Ü ş İ İ ö üğü ş ş ö üğü ü ü İ öğ ü Ç İ Ö Ü ü ğ ç ö ü ü ü ç ç ş ş ğ ç ç İ Ç Ü ş ö üğü İ İ İ İ İ İ ö ü ç Ü ç ş ö üğü ö ü ü İ Ç Ü ş ö üğü ç ç ş ş ğ ü ş ğ ş ç ş ğ ş ü ü ü Ç ü ş ü ğ Ç ğ ü ü ü ü ü Ç ş ş

Detaylı

Ü ü «öü ü ö ü ö ü ü Ü ü ö ü ü Ü ü ö ü ü ü ü Ü ü ö ü ü Ü ü ü üü ö ü ü ü ö ö ö Ş ö ö Ş ö ö Ş Ş ü Ç Ç ö ö ü ü ö Ş ü ö Ç ü ü ö ü ü ü ü Ç ö ö ü ü ö ü ö Ş ö ü üü Ü ü ö ü ü Ö Ö Ü ü ü ü ü ö ü Ç ü ö ü ü ü Ü ü ö

Detaylı

1.BÖLÜM SORU SORU. Reel say larda her a ve b için a 2 b 2 = (a+b) 2 2ab biçiminde bir ifllemi tan mlan yor.

1.BÖLÜM SORU SORU. Reel say larda her a ve b için a 2 b 2 = (a+b) 2 2ab biçiminde bir ifllemi tan mlan yor. .BÖLÜM MATEMAT K Derginin u sy s n fllem ve Moüler Aritmetik konusun çözümlü sorulr yer lmkt r. Bu konu, ÖSS e ç kn sorulr n çözümü için gerekli temel ilgileri ve prtik yollr, sorulr m z n çözümü içine

Detaylı