PARALEL VERİ MADENCİLİĞİ ALGORİTMALARI. BAŞARIM 09, Nisan 2009, ODTÜ, Ankara

Ebat: px
Şu sayfadan göstermeyi başlat:

Download "PARALEL VERİ MADENCİLİĞİ ALGORİTMALARI. BAŞARIM 09, 15-18 Nisan 2009, ODTÜ, Ankara"

Transkript

1 PARALEL VERİ MADENCİLİĞİ ALGORİTMALARI BAŞARIM 09, Nisan 2009, ODTÜ, Ankara

2 Veri Madenciliğine Genel Bir Bakış Veri Madenciliğinin Görevleri Sınıflama Seri Sınıflama Algoritmaları Paralel Sınıflama Algoritmaları Öbekleme Seri Öbekleme Algoritmaları Paralel Öbekleme Algoritmaları Birliktelik Seri Birliktelik Algoritmaları Paralel Birliktelik Algoritmaları FP-Growth Seri Yaklaşım Paralel Yaklaşım 1 Paralel Yaklaşım 2 TOBB ETÜ Öbeği Yapılanlar - Yapılacaklar

3 Büyük veri ambarlarından yararlı bilgi elde edilmesi süreci. Girdi Veri Veri Ön işleme Veri Madenciliği Özellik Seçimi Boyut İndirme Normalizasyon Veri Altkümeleme Veri Son işleme Filtreleme Örüntüleri Görselleştirme Örüntü yorumlama Veritabanlarında Bilgi Edinme Süreci Kaynak: Introduction To Data Mining, Tan, P., Steinbach, M., Kumar, V., Pearson, 2006 Bilgi

4 Veri madenciliği birçok disiplinin birleşmesinden oluşur. İstatistik Yapay Zeka, MakineÖğrenm e, Örüntü Tanıma Veri Madencili ği Veritabanı Teknolojisi, Paralel Hesaplama, Dağıtık Hesaplama

5 Sınıflama(Classification) Öbekleme(Clustering) Birliktelik(Association)

6 Çıktı Girdi Özellik Kümesi (x) Sınıflam a Modeli Sınıf Etiketi (y) Karar ağaçları(decisiontrees) Bayes ağları(bayesian Networks) Yapay sinir ağları(neural Networks) Doğrusal(Linear) Olgu Tabanlı(Instance Based)

7 Support Vector Machine, SVM ID3 ve C4.5 Bayes ağları kullanır K-nearest neighbour Yapay sinir ağları kullanır K2 ve Naive Bayes Karar ağaçları kullanır Back-propagation Doğrusal model kullanır Olgu tabanlı model kullanır Adaboost Bagging

8 SPRINT[Shafer., J.C., Agrawal, R., Mehta, M., 1996] Karar ağaçları tabanlı Çok sayıda işlemci paralel olarak bir karar ağacı üretir Paralel ve dağıtık boosting Etkin ve hızlı Seri yaklaşımdaki yineleme sayısı paralel yapılmaktadır

9 Öbek, benzer nesnelerin oluşturduğu bir gruptur. Öbekleme, verileri aynı öbek içindekiler benzer, ayrı öbektekiler farklı olacak şekilde gruplama sürecidir.

10 Bir Gazetedeki Makalelerin Değerlendirilmesi Makale Kelimeler 1 dolar:1, endüstri:4, ülke:2, borç:3, anlaşma:2, hükümet: 2 2 hasta:4, semptom:2, ilaç:3, sağlık:2, klinik:2, doktor:2 3 farmasötik:2, şirket:3, ilaç:2, aşı:1, grip:3 4 mekanizma:2, iş gücü:3, market:4, endüstri:2, iş:3, ülke:1 5 ölüm:2, kanser:4, ilaç:3, kamu:4, sağlık:3, müdür:2 6 iş:5, enflasyon:3, zam:2, işsizlik:2, market:3, ülke:2, index:3 7 yerel:3, tahmin:2, kar:1, market:2, satış:3, fiyat: 2 8 tıbbi:2, maliyet:3, kar:2, hasta:2, sağlık:3, bakım:1 Ekonomi Sağlık Hizmetleri Kaynak: Introduction To Data Mining, Tan, P., Steinbach, M., Kumar, V., Pearson, 2006

11 Kullanılan yaklaşımlar; Density-Based Gaussian Mixtures Subspace Kullanılan temel algoritmalar; K-means Agglomerative/divisive hierarchical SOM DBSCAN EM ile mixture modelleme CURE

12 Paralel k-means Verinin artan boyutu, kayıt sayısı ve öbek sayısına bağlı değişiklikler analiz edilir Paralel DBSCAN R* - Tree Ön işlemden geçirilen veri mesajlaşma yoluyla diğer istemcilere dağıtılır

13 Birliktelik algoritması, bir birliktelikte bir niteliğin aldığı değerler arasındaki bağımlılıkları, diğer niteliklere göre gruplama yapılmış verileri kullanarak bulur. Bulunan ilişkiler (örüntüler) sıklıkla birlikte geçen nitelik değerleri arasındaki ilişkiyi gösterir. Uygulama Alanları Pazarlama, Biyoenformatik, Tıbbi tanı, Ağ madenciliği, Bilimsel veri analizi.

14 Market Alışveriş Örneği İşlem Öğeler Numarası 1 Ekmek, Süt 2 Ekmek, Peynir, Gazete, Yumurta 3 Süt, Peynir, Gazete, Kola 4 Ekmek, Süt, Peynir, Gazete 5 Ekmek, Süt, Peynir, Kola {Peynir} {Gazete} Bu örneğe göre peynir ve gazete arasında güçlü bir ilişki vardır. Çünkü peynir alan birçok kişi gazete de almıştır.

15 AIS[Agrawal, R., Imielinski, T., Swami, A., 1993] Apriori[Agrawal, R., Srikant, R., 1994] AprioriTid AprioriHybrid DHP[Zaki, M.J., Ogihara, M., 1998] Partition[Chen, M.S., Han, J., Yu, P.S., 1996] FP-Growth[Han, J., Pei, J., Yin, Y., 2000]

16 Apriori Veri paralel yaklaşım Veri tüm istemcilere dağıtılır Herkes kendi yerel verisinde 1-öge kümesini ve destek değerlerini hesaplar Bunu diğerlerine gönderir Gönderilen 1-öge kümeleri birleştirilerek global 1-öge kümesi oluşturulur Sık olmayanlar elenir Süreç tüm öge kümeleri için tekrar eder Görev paralel yaklaşım FP-Growth

17 o o Sık örüntüleri bulmak için kullanılan bir veri madenciliği algoritmasıdır. Apriori benzeri algoritmalara göre daha verimli bir algoritmadır. Neden? Tüm veritabanı bir veri yapısı (FP-Tree) içine sıkıştırılmıştır. Tüm algoritma süresince veritabanı sadece iki kez taranır. FP-Growth algoritması iki adımda gerçekleşir: 1. FP-Tree veri yapısının oluşturulması. 2. Bu veri yapısı kullanılarak sık örüntülerin bulunması.

18 Hareket No Alınan Ögeler Sıralı Sık Ögeler 100 a, b, c, d, e c, e, a, b 200 b, c, e, f c, e, b 300 a, e e, a 400 b, c, e c, e, b 500 a, c, d c, a Örnek Veritabanı Öge Destek Değeri a 3 b 3 c 4 d 2 e 4 f 1 Minimum Destek Değeri:3

19 Başlık Tablosu öge c e a b root düğüm başı e:1 c:4 e:3 a:1 a:1 b:2 b:1 a:1

20 Başlık Tablosu öge root düğüm başı c:3 c e e:3 Başlık Tablosu öge c root düğüm başı c:3 b için oluşturulan şartlı sık örüntü ağaçları

21 Düğüm1 Har. No Sıralı Sık Öğeler Düğüm2 100 f, c, a, m, p Har Sıralı Sık. No Öğeler 200 f, c, a, b, m 300 f, b Har Sıralı Sık. No Öğeler 100 f, c, a, m, p 400 c, b, p 400 c, b, p 200 f, c, a, b, m 500 f, c, a, m, p 500 f, c, a, m, p 300 f, b Kaynak: Pramudiono, I., Kitsuregawa, M., 2003

22 Tüm veritabanı tek bir işlemci tarafından okunur FP-Tree oluşturulur Oluşturulan ağaç diğer işlemcilere gönderilir Her işlemci aldığı seriyi deserialize ederek ağacı kendi tarafında oluşturur Algoritma özyineli olarak kendini çağırır Bu kısım boş olan bir işlemciye görev olarak verilir

23 Düğüm 0 FPGrowth düğüm0 Boş düğüm iste düğüm1 düğüm1 düğüm2 Görev gönder Düğüm 1 ist e üm ğ ü şd o B m2 ü ğ dü FPGrowth Görev gönder Düğüm 2 FPGrowth

24 Donanım 9 adet Sun Fire X2200 M2 Server AMD Opteron 1800Mhz X64 İşlemci 2GB DDRR2 667Mhz Bellek Çift girişli Gigabit Ethernet Yazılım Solaris 10 x86 işletim sistemi Sun HPC ClusterTools 7 (Open MPI) Sun Studio 12 (C, C++, Fortran derleyicileri ve grafiksel geliştirme ortamı) Sun N1 Grid Engine 6.1

25 Seri FP-Growth algoritmasının C dilinde gerçekleştirimi Paralel FP-Growth gerçekleştirimi. Adımlar: 1. FP-Tree nin dizi şeklinde diğer işlemcilere gönderimi(serialize) 2. Gönderilen dizinin alınan tarafta tekrar ağaca dönüştürülmesi(deserialize) 3. Algoritmanın özyineli olarak kendini çağırdığı durumlarda bunun boş olan işlemciler tarafından paralel olarak gerçekleştirimi(görev paralel yaklaşım, iş havuzu) Algoritmanın büyük veri tabanlarında testi Seri Fp-Growth ve gerçekleştirilen diğer paralel Fp-Growth yaklaşımıyla karşılaştırılması

26 Katılımınız için teşekkürler

inde Sepet Analizi Uygulamaları Market Basket Analysis for Data Mining

inde Sepet Analizi Uygulamaları Market Basket Analysis for Data Mining Veri Madenciliğ inde Sepet Analizi Uygulamaları Market Basket Analysis for Data Mining Mehmet Aydın Ula ş, Ethem Alpaydın (Boğaziçi Üniversitesi Bilgisayar Mühendisliği) Nasuhi Sönmez, Ataman Kalkan (GİMA

Detaylı

Birliktelik Kuralları Analizi. Yard. Doç. Dr. Derya BİRANT Prof. Dr. Alp KUT

Birliktelik Kuralları Analizi. Yard. Doç. Dr. Derya BİRANT Prof. Dr. Alp KUT İş Zekası Çözümleri için i Çok Boyutlu Birliktelik Kuralları Analizi Yard. Doç. Dr. Derya BİRANT Prof. Dr. Alp KUT İçerik 1 Veri Madenciliği 2 Birliktelik Kuralları Analizi 3 Uygulama 4 Algoritma 5 Sonuçlar

Detaylı

APRIORI ALGORİTMASI İLE ÖĞRENCİ BAŞARISI ANALİZİ

APRIORI ALGORİTMASI İLE ÖĞRENCİ BAŞARISI ANALİZİ APRIORI ALGORİTMASI İLE ÖĞRENCİ BAŞARISI ANALİZİ Murat KARABATAK 1, Melih Cevdet İNCE 2 1 Fırat Üniversitesi Teknik Eğitim Fakültesi Elektronik Bilgisayar Eğitimi Bölümü 2 Fırat Üniversitesi Mühendislik

Detaylı

VERİ MADENCİLİĞİ (Birliktelik Kuralları) Yrd.Doç.Dr. Kadriye ERGÜN

VERİ MADENCİLİĞİ (Birliktelik Kuralları) Yrd.Doç.Dr. Kadriye ERGÜN VERİ MADENCİLİĞİ (Birliktelik Kuralları) Yrd.Doç.Dr. Kadriye ERGÜN kergun@balikesir.edu.tr İçerik Birliktelik Kurallarının Tanımı Destek ve Güven Ölçütleri Apriori Algoritması Birliktelik Kuralları (Association

Detaylı

Konular. VERİ MADENCİLİĞİ Giriş. Problem Tanımı. Veri Madenciliği: Tarihçe. Veri Madenciliği Nedir? Bilgi Keşfi

Konular. VERİ MADENCİLİĞİ Giriş. Problem Tanımı. Veri Madenciliği: Tarihçe. Veri Madenciliği Nedir? Bilgi Keşfi VERİ MADENCİLİĞİ Giriş Yrd. Doç. Dr. Şule Gündüz Öğüdücü 1 2 Problem Tanımı Veri Madenciliği: Tarihçe teknolojinin gelişimiyle bilgisayar ortamında ve veritabanlarında tutulan veri miktarının da artması

Detaylı

VERİ MADENCİLİĞİNE BAKIŞ

VERİ MADENCİLİĞİNE BAKIŞ VERİ MADENCİLİĞİNE BAKIŞ İçerik Veri Madenciliği Neden Veri Madenciliği? Veri ve Veri Madenciliğinin Önemi Günümüzde Kullanılan Veri Madenciliğinin Çeşitli İsimleri Veri Madenciliği Nedir? Neden Veri Madenciliği?

Detaylı

İlişkilendirme kurallarının kullanım alanları

İlişkilendirme kurallarının kullanım alanları Bölüm 4. Birliktelik Kuralları http://ceng.gazi.edu.tr/~ozdemir İlişkilendirme/Birliktelik Kuralları - Association Rules Birliktelik kuralları olarak da bilinir İlişkilendirme kuralı madenciliği Veri kümesi

Detaylı

VERİ MADENCİLİĞİ (Sınıflandırma Yöntemleri) Yrd.Doç.Dr. Kadriye ERGÜN kergun@balikesir.edu.tr

VERİ MADENCİLİĞİ (Sınıflandırma Yöntemleri) Yrd.Doç.Dr. Kadriye ERGÜN kergun@balikesir.edu.tr VERİ MADENCİLİĞİ (Sınıflandırma Yöntemleri) Yrd.Doç.Dr. Kadriye ERGÜN kergun@balikesir.edu.tr Genel İçerik Veri Madenciliğine Giriş Veri Madenciliğinin Adımları Veri Madenciliği Yöntemleri Sınıflandırma

Detaylı

Yrd. Doç. Dr. Semra Erpolat

Yrd. Doç. Dr. Semra Erpolat Anadolu Üniversitesi Sosyal Bilimler Dergisi Anadolu University Journal of Social Sciences Otomobil Yetkili Servislerinde Birliktelik Kurallarının Belirlenmesinde Apriori ve FP-Growth Algoritmalarının

Detaylı

İş Analitiği'ne Netezza ile Yüksek Performans Katın

İş Analitiği'ne Netezza ile Yüksek Performans Katın İş Analitiği'ne Netezza ile Yüksek Performans Katın Umut ŞATIR İleri Analitik Çözüm Mimarı 2012 IBM Corporation Netezza and IBM Business Analytics Baştan sona bir İş Analitiği çözümü Performans Kolaylık

Detaylı

VERİ MADENCİLİĞİ. İlişkilendirme Kuralları Bulma. İlişkilendirme Kuralları. Yaygın Öğeler. İlişkilendirme Kuralları Madenciliği

VERİ MADENCİLİĞİ. İlişkilendirme Kuralları Bulma. İlişkilendirme Kuralları. Yaygın Öğeler. İlişkilendirme Kuralları Madenciliği İlişkilendirme Kuralları Madenciliği VERİ MADENCİLİĞİ İlişkilendirme Kuralları Yrd. Doç. Dr. Şule Gündüz Öğüdücü İlişkilendirme kuralı madenciliği Veri kümesi içindeki yaygın örüntülerin, nesneleri oluşturan

Detaylı

PAPATYA YAYINCILIK EĞİTİM Bilgisayar Sis. San. ve Tic. A.Ş. Veri Madenciliği Yöntemleri Dr. Yalçın ÖZKAN -II-

PAPATYA YAYINCILIK EĞİTİM Bilgisayar Sis. San. ve Tic. A.Ş. Veri Madenciliği Yöntemleri Dr. Yalçın ÖZKAN -II- Dr. Yalçın ÖZKAN Dr. Yalçın ÖZKAN PAPATYA YAYINCILIK EĞİTİM Bilgisayar Sis. San. ve Tic. A.Ş. Ankara Caddesi, Prof. Fahreddin Kerim Gökay Vakfı İşhanı Girişi, No: 11/3, Cağaloğlu (Fatih)/İstanbul Tel

Detaylı

Dağıtık Sistemler CS5001

Dağıtık Sistemler CS5001 Dağıtık Sistemler CS5001 Th. Letschert Çeviri: Turgay Akbaş TH Mittelhessen Gießen University of Applied Sciences Biçimsel model nedir Biçimsel model matematiksel olarak tanımlanmış olan bir modeldir.

Detaylı

VERİ MADENCİLİĞİ MODELLERİ VE UYGULAMA ALANLARI

VERİ MADENCİLİĞİ MODELLERİ VE UYGULAMA ALANLARI VERİ MADENCİLİĞİ MODELLERİ VE UYGULAMA ALANLARI *Öğr. Gör. Serhat ÖZEKES Abstract: The major reason that data mining became one of the hottest current technologies of the information age is the wide availability

Detaylı

Akdeniz Üniversitesi Mühendislik Fakültesi Bilgisayar Mühendisliği Bölüm Tanıtımı

Akdeniz Üniversitesi Mühendislik Fakültesi Bilgisayar Mühendisliği Bölüm Tanıtımı Akdeniz Üniversitesi Mühendislik Fakültesi Bilgisayar Mühendisliği Bölüm Tanıtımı cse@akdeniz.edu.tr Antalya, 2015 2 Özet Akdeniz Üniversitesi tanıtım filmi Neden Bilgisayar Mühendisliği Bilgisayar Mühendisi

Detaylı

Veri Ambarları ve Veri Madenciliği (ISE 350) Ders Detayları

Veri Ambarları ve Veri Madenciliği (ISE 350) Ders Detayları Veri Ambarları ve Veri Madenciliği (ISE 350) Ders Detayları Ders Adı Ders Kodu Dönemi Ders Uygulama Saati Saati Laboratuar Saati Kredi AKTS Veri Ambarları ve Veri Madenciliği ISE 350 Bahar 3 0 0 3 6 Ön

Detaylı

Küme Bilgisayarlar. Enabling Grids for E-sciencE. Onur Temizsoylu. Grid ve Küme Bilgisayarlarda Uygulama Geliştirme Eğitimi ODTÜ, Ankara

Küme Bilgisayarlar. Enabling Grids for E-sciencE. Onur Temizsoylu. Grid ve Küme Bilgisayarlarda Uygulama Geliştirme Eğitimi ODTÜ, Ankara Küme Bilgisayarlar Onur Temizsoylu ODTÜ, Ankara www.eu-egee.org EGEE and glite are registered trademarks İçerik Neden hesaplamada kümeleme? Kümeleme nedir? Yüksek kullanılabilirlik kümeleri Yük dengeleme

Detaylı

1 Temel Kavramlar. Veritabanı 1

1 Temel Kavramlar. Veritabanı 1 1 Temel Kavramlar Veritabanı 1 Veri Saklama Gerekliliği Bilgisayarların ilk bulunduğu yıllardan itibaren veri saklama tüm kurum ve kuruluşlarda kullanılmaktadır. Veri saklamada kullanılan yöntemler; Geleneksel

Detaylı

Algoritma Geliştirme ve Veri Yapıları 2 Veri Modelleri. Mustafa Kemal Üniversitesi

Algoritma Geliştirme ve Veri Yapıları 2 Veri Modelleri. Mustafa Kemal Üniversitesi Algoritma Geliştirme ve Veri Yapıları 2 Veri Modelleri Veri modelleri, veriler arasında ilişkisel ve sırasal düzeni gösteren kavramsal tanımlardır. Her program en azından bir veri modeline dayanır. Uygun

Detaylı

VERİ MADENCİLİĞİ. Karar Ağacı Algoritmaları: SPRINT algoritması Öğr.Gör.İnan ÜNAL

VERİ MADENCİLİĞİ. Karar Ağacı Algoritmaları: SPRINT algoritması Öğr.Gör.İnan ÜNAL VERİ MADENCİLİĞİ Karar Ağacı Algoritmaları: SPRINT algoritması Öğr.Gör.İnan ÜNAL SPRINT Algoritması ID3,CART, ve C4.5 gibi algoritmalar önce derinlik ilkesine göre çalışırlar ve en iyi dallara ayırma kriterine

Detaylı

Web Madenciliği (Web Mining)

Web Madenciliği (Web Mining) Web Madenciliği (Web Mining) Hazırlayan: M. Ali Akcayol Gazi Üniversitesi Bilgisayar Mühendisliği Bölümü Konular Denetimsiz Öğrenmenin Temelleri Kümeleme Uzaklık Fonksiyonları Öklid Uzaklığı Manhattan

Detaylı

BÜYÜK ÖLÇEKLİ VERİ TABANLARINDA BİLGİ KEŞFİ

BÜYÜK ÖLÇEKLİ VERİ TABANLARINDA BİLGİ KEŞFİ BÜYÜK ÖLÇEKLİ VERİ TABANLARINDA BİLGİ KEŞFİ Şühedanur KAVURKACI 1, Zeynep GÜRKAŞ AYDIN 2, Rüya ŞAMLI 3 1,2,3 İstanbul Üniversitesi Bilgisayar Mühendisliği Bölümü 1 sskavurkaci@gmail.com, 2 zeynepg@istanbul.edu.tr,

Detaylı

Veritabanı Tasarımı ve Yönetimi. Uzm. Murat YAZICI

Veritabanı Tasarımı ve Yönetimi. Uzm. Murat YAZICI Veritabanı Tasarımı ve Yönetimi Uzm. Murat YAZICI Veritabanı Tasarımı - Projenin tasarım aşamasında veritabanı tasarımı çok iyi yapılmalıdır. Daha sonra yapılacak değişiklikler sorunlar çıkartabilir veya

Detaylı

İş Zekası Çözümleri için Çok Boyutlu Birliktelik Kuralları Analizi

İş Zekası Çözümleri için Çok Boyutlu Birliktelik Kuralları Analizi İş Zekası Çözümleri için Çok Boyutlu Birliktelik Kuralları Analizi Derya Birant 1, Alp Kut 1, Medi Ventura 2, Hakan Altınok 2, Benal Altınok 2, Elvan Altınok 2, Murat Ihlamur 2 1 Dokuz Eylül Üniversitesi,

Detaylı

4.46. VERĠDEN BĠLGĠYE ULAġMADA VERĠ MADENCĠLĠĞĠNĠN ÖNEMĠ

4.46. VERĠDEN BĠLGĠYE ULAġMADA VERĠ MADENCĠLĠĞĠNĠN ÖNEMĠ 4.46. VERĠDEN BĠLGĠYE ULAġMADA VERĠ MADENCĠLĠĞĠNĠN ÖNEMĠ 1 Ömer Osman DURSUN 2 Asaf VAROL 3 Esra MUTLUAY 1,2,3 Fırat Üniversitesi Teknik Eğitim Fakültesi, Elektronik-Bilgisayar Eğitimi Bölümü, Elazığ 1

Detaylı

Apriori Algoritması ile Teknik Seçmeli Ders Seçim Analizi

Apriori Algoritması ile Teknik Seçmeli Ders Seçim Analizi Apriori Algoritması ile Teknik Seçmeli Ders Seçim Analizi Emre Güngör 1,2, Nesibe Yalçın 1,2, Nilüfer Yurtay 3 1 Bilecik Şeyh Edebali Üniversitesi, Bilgisayar Mühendisliği Bölümü, 11210, Merkez, Bilecik

Detaylı

BİLGİSAYAR MÜHENDİSLİĞİ DOKTORA DERS PROGRAMI (Lisanstan gelenler için)

BİLGİSAYAR MÜHENDİSLİĞİ DOKTORA DERS PROGRAMI (Lisanstan gelenler için) BİLGİSAYAR MÜHENDİSLİĞİ DOKTORA DERS PROGRAMI (Lisanstan gelenler için) HAZIRLIK PROGRAMI COME 27 İleri Nesneye Yönelik Programlama 5 COME 21 Veri Yapıları ve Algoritmalar COME 22 COME 1 COME 1 COME 411

Detaylı

İNFOSET İNFOSET Ses Kayıt Sistemi v2.0. Sistem Kataloğu

İNFOSET İNFOSET Ses Kayıt Sistemi v2.0. Sistem Kataloğu İNFOSET İNFOSET Ses Kayıt Sistemi v2.0 Sistem Kataloğu İ N F O S E T S E S K A Y I T S İ S T E M İ V 2. 0 Sistem Kataloğu İnfoset Yazılım Marmara Cad.Yüksel Sok. 6/7 Pendik-İstanbul Telefon 216 379 81

Detaylı

Eğiticili (supervised) öğrenme: Sınıflandırma (classification) Sınıf sayısı ve bir grup örneğin hangi sınıfa ait olduğu bilinir

Eğiticili (supervised) öğrenme: Sınıflandırma (classification) Sınıf sayısı ve bir grup örneğin hangi sınıfa ait olduğu bilinir Eğiticili (supervised) öğrenme: Sınıflandırma (classification) Sınıf sayısı ve bir grup örneğin hangi sınıfa ait olduğu bilinir Eğiticisiz (unsupervised) öğrenme: Kümeleme (clustering) Hangi nesnenin hangi

Detaylı

Kolektif Öğrenme Metotları

Kolektif Öğrenme Metotları Kolektif Öğrenme Metotları Kolektif öğrenme algoritmalarına genel bakış 1-Bagging 2-Ardışık Topluluklarla Öğrenme (Boosting) 3-Rastsal Altuzaylar 4-Rastsal Ormanlar 5-Aşırı Rastsal Ormanlar 6-Rotasyon

Detaylı

BİLGİSAYAR VE ENFORMASYON BİLİMLERİ YÜKSEK LİSANS DERS PROGRAMI (Tezli Program)

BİLGİSAYAR VE ENFORMASYON BİLİMLERİ YÜKSEK LİSANS DERS PROGRAMI (Tezli Program) BİLGİSAYAR VE ENFORMASYON BİLİMLERİ YÜKSEK LİSANS DERS PROGRAMI (Tezli Program) HAZIRLIK PROGRAMI COME 27 İleri Nesneye Yönelik Programlama 2+2 3 5 COME 218 Veri Yapıları ve Algoritmalar 2+2 3 6 COME 226

Detaylı

Web Madenciliği (Web Mining)

Web Madenciliği (Web Mining) Web Madenciliği (Web Mining) Hazırlayan: M. Ali Akcayol Gazi Üniversitesi Bilgisayar Mühendisliği Bölümü Konular Denetimli Öğrenmenin Temelleri Karar Ağaçları Entropi ID3 Algoritması C4.5 Algoritması Twoing

Detaylı

bilişim ltd İş Zekâsı Sistemi

bilişim ltd İş Zekâsı Sistemi BI İş Zekâsı Sistemi Bilişim Ltd. 1985 te kurulan Bilişim Ltd, Türkiye nin üstün başarıyla sonuçlanmış önemli projelerine imza atan öncü bir yazılımevi ve danışmanlık kurumu dur. Önemli kuruluşların bilgi

Detaylı

1. Hafta MS SQL Server 2008 Kurulum ve Tanıtımı BPR255 Veritabanı. Bu Derste Öğrenecekleriniz: Kurulum:

1. Hafta MS SQL Server 2008 Kurulum ve Tanıtımı BPR255 Veritabanı. Bu Derste Öğrenecekleriniz: Kurulum: Bu Derste Öğrenecekleriniz: 1- MS SQL Server 2008 Kurulumu ve Tanıtımı 2- Komut Kullanarak Veritabanı Oluşturma ve Silme 3- SQL Yazım Kuralları Kurulum: Sistem gereksinimleri: Desteklenen işletim sistemleri:

Detaylı

DERS TANITIM BİLGİLERİ. Dersin Adı Kodu Yarıyıl Teori (saat/hafta) Laboratuar (saat/hafta) Uygulama (saat/hafta) AKTS. Yerel Kredi

DERS TANITIM BİLGİLERİ. Dersin Adı Kodu Yarıyıl Teori (saat/hafta) Laboratuar (saat/hafta) Uygulama (saat/hafta) AKTS. Yerel Kredi DERS TANITIM BİLGİLERİ Dersin Adı Kodu Yarıyıl Teori (saat/hafta) Uygulama (saat/hafta) Laboratuar (saat/hafta) Yerel Kredi AKTS Temel Bilgi ve İletişim BEB650 Güz / 0 2 0 1 2 Teknolojileri Kullanımı Bahar

Detaylı

Açık Kaynak Kodlu Veri Madenciliği Yazılımlarının Karşılaştırılması

Açık Kaynak Kodlu Veri Madenciliği Yazılımlarının Karşılaştırılması Akademik Bilişim 14 - XVI. Akademik Bilişim Konferansı Bildirileri Açık Kaynak Kodlu Veri Madenciliği Yazılımlarının Karşılaştırılması Mümine Kaya 1, Selma Ayşe Özel 2 1 Adana Bilim ve Teknoloji Üniversitesi,

Detaylı

Bilgisayar Mühendisliğine Giriş. Yrd.Doç.Dr.Hacer KARACAN

Bilgisayar Mühendisliğine Giriş. Yrd.Doç.Dr.Hacer KARACAN Bilgisayar Mühendisliğine Giriş Yrd.Doç.Dr.Hacer KARACAN İçerik Dosya Organizasyonu (File Organization) Veritabanı Sistemleri (Database Systems) BM307 Dosya Organizasyonu (File Organization) İçerik Dosya

Detaylı

KAHKAHA TANIMA İÇİN RASSAL ORMANLAR

KAHKAHA TANIMA İÇİN RASSAL ORMANLAR KAHKAHA TANIMA İÇİN RASSAL ORMANLAR Heysem Kaya, A. Mehdi Erçetin, A. Ali Salah, S. Fikret Gürgen Bilgisayar Mühendisliği Bölümü Boğaziçi Üniversitesi / Istanbul Akademik Bilişim'14, Mersin, 05.02.2014

Detaylı

BİRLİKTELİK KURALI YÖNTEMİ İÇİN BİR VERİ MADENCİLİĞİ YAZILIMI TASARIMI VE UYGULAMASI

BİRLİKTELİK KURALI YÖNTEMİ İÇİN BİR VERİ MADENCİLİĞİ YAZILIMI TASARIMI VE UYGULAMASI İstanbul Ticaret Üniversitesi Fen Bilimleri Dergisi Yıl: 6 Sayı:12 Güz 2007/2 s. 21-37 BİRLİKTELİK KURALI YÖNTEMİ İÇİN BİR VERİ MADENCİLİĞİ YAZILIMI TASARIMI VE UYGULAMASI Feridun Cemal ÖZÇAKIR, A. Yılmaz

Detaylı

Üniversite Öğrencilerinin Đnterneti Eğitimsel Amaçlar Đçin Kullanmalarını

Üniversite Öğrencilerinin Đnterneti Eğitimsel Amaçlar Đçin Kullanmalarını Üniversite Öğrencilerinin Đnterneti Eğitimsel Amaçlar Đçin Kullanmalarını Etkileyen Faktörlerin Veri Madenciliği Yöntemleriyle Tespiti Ahmet Selman BOZKIR 1, Bilge GÖK 2 ve Ebru SEZER 3 1 Hacettepe Üniversitesi

Detaylı

Sigortacılık Sektöründe Müşteri İlişkileri Yönetimi İçin Birliktelik Kuralı Kullanılması

Sigortacılık Sektöründe Müşteri İlişkileri Yönetimi İçin Birliktelik Kuralı Kullanılması DOI: 10.7240/mufbed.56489 Sigortacılık Sektöründe Müşteri İlişkileri Yönetimi İçin Birliktelik Kuralı Kullanılması Buket DOĞAN 1, Bahar Erol 2, Ali Buldu 3 1,3 Marmara Üniversitesi, Teknoloji Fakültesi,

Detaylı

2 İlişkisel Veritabanı Tasarımı. Veritabanı 1

2 İlişkisel Veritabanı Tasarımı. Veritabanı 1 2 İlişkisel Veritabanı Tasarımı Veritabanı 1 Veritabanı Tasarımı Tasarım yapılırken izlenecek adımlar; Oluşturulacak sistemin nelerden oluşması gerektiği ve hangi işlemlerin hangi aşamalarda yapıldığı

Detaylı

Bölüm 1. Giriş. Öğretim üyesi: Doç. Dr. Suat Özdemir E-posta: suatozdemir@gazi.edu.tr. Websayfası: http://ceng.gazi.edu.tr/~ozdemir/teaching/dm

Bölüm 1. Giriş. Öğretim üyesi: Doç. Dr. Suat Özdemir E-posta: suatozdemir@gazi.edu.tr. Websayfası: http://ceng.gazi.edu.tr/~ozdemir/teaching/dm Bölüm 1. Giriş http://ceng.gazi.edu.tr/~ozdemir Ders bilgileri Öğretim üyesi: E-posta: suatozdemir@gazi.edu.tr Websayfası: http://ceng.gazi.edu.tr/~ozdemir/teaching/dm Bütün duyuru, ödev, vb. için ders

Detaylı

Dağıtık Ortak Hafızalı Çoklu Mikroişlemcilere Sahip Optik Tabanlı Mimari Üzerinde Dizin Protokollerinin Başarım Çözümlemesi

Dağıtık Ortak Hafızalı Çoklu Mikroişlemcilere Sahip Optik Tabanlı Mimari Üzerinde Dizin Protokollerinin Başarım Çözümlemesi Dağıtık Ortak Hafızalı Çoklu Mikroişlemcilere Sahip Optik Tabanlı Mimari Üzerinde Dizin Protokollerinin Başarım Çözümlemesi İpek ABASIKELEŞ, M.Fatih AKAY Bilgisayar Mühendisliği Bölümü Çukurova Üniversitesi

Detaylı

Cluster i Linux'ta Kümeleme Özgür Yazılım ve Açık Kaynak G 2006 Ali Erdinç Köroğlu

Cluster i Linux'ta Kümeleme Özgür Yazılım ve Açık Kaynak G 2006 Ali Erdinç Köroğlu Cluster i Linux'ta Kümeleme Özgür Yazılım ve Açık Kaynak G 2006 Ali Erdinç Köroğlu Kümelere giriş giriş :) :) Kümeleme nedir? Kümeleme çeşitleri ve ve amaçları RedHat Cluster'a giriş giriş RedHat Cluster

Detaylı

2 İlişkisel Veritabanı Tasarımı ve Normalizasyon. Veritabanı 1

2 İlişkisel Veritabanı Tasarımı ve Normalizasyon. Veritabanı 1 2 İlişkisel Veritabanı Tasarımı ve Normalizasyon Veritabanı 1 Veritabanı Tasarımı Tasarım yapılırken izlenecek adımlar; Oluşturulacak sistemin nelerden oluşması gerektiği ve hangi işlemlerin hangi aşamalarda

Detaylı

BIP116-H14-1 BTP104-H014-1

BIP116-H14-1 BTP104-H014-1 VERİ YAPILARI VE PROGRAMLAMA (BIP116) Yazar: Doç.Dr.İ.Hakkı.Cedimoğlu SAKARYA ÜNİVERSİTESİ Adapazarı Meslek Yüksekokulu Bu ders içeriğinin basım, yayım ve satış hakları Sakarya Üniversitesi ne aittir.

Detaylı

Veri madenciliği sınıflandırma ve kümeleme teknikleri yardımıyla Wisconsin veriseti üzerinde Göğüs Kanseri Teşhisi. Hazırlayan: Nury Amanmadov

Veri madenciliği sınıflandırma ve kümeleme teknikleri yardımıyla Wisconsin veriseti üzerinde Göğüs Kanseri Teşhisi. Hazırlayan: Nury Amanmadov Veri madenciliği sınıflandırma ve kümeleme teknikleri yardımıyla Wisconsin veriseti üzerinde Göğüs Kanseri Teşhisi Hazırlayan: Nury Amanmadov Göğüs Kanseri Nedir? Gögüs Kanseri göğüs hücrelerinde başlayan

Detaylı

KABA KÜME TEORİSİ (Rough Set Theory) Dr. Sedat TELÇEKEN

KABA KÜME TEORİSİ (Rough Set Theory) Dr. Sedat TELÇEKEN KABA KÜME TEORİSİ (Rough Set Theory) Dr. Sedat TELÇEKEN Giriş Bilgi teknolojisindeki gelişmeler ve verilerin dijital ortamda saklanmaya başlanması ile yeryüzündeki bilgi miktarı her 20 ayda iki katına

Detaylı

Bilgi Servisleri (IS)

Bilgi Servisleri (IS) Bilgi Servisleri (IS) GRID Kullanıcı Eğitimi Boğaziçi Üniversitesi 2007, İstanbul Emrah AKKOYUN Konu Başlığı Neden ihtiyaç duyulur? Kullanıcılar kimlerdir? Bilgi Servisi türleri MDS ve BDII LDAP Bilgi

Detaylı

Karaciğerde Oluşan Hastalıkların Tespitinde Makine Öğrenmesi Yöntemlerinin Kullanılması

Karaciğerde Oluşan Hastalıkların Tespitinde Makine Öğrenmesi Yöntemlerinin Kullanılması Karaciğerde Oluşan Hastalıkların Tespitinde Makine Öğrenmesi Yöntemlerinin Kullanılması 1 Emre DANDIL Bilecik Ş. Edebali Üniversitesi emre.dandil@bilecik.edu.tr +90228 214 1613 Sunum İçeriği Özet Giriş

Detaylı

BİLGİSAYAR MÜHENDİSLİĞİ BÖLÜMÜ

BİLGİSAYAR MÜHENDİSLİĞİ BÖLÜMÜ YILDIZ TEKNİK ÜNİVERSİTESİ BİLGİSAYAR MÜHENDİSLİĞİ BÖLÜMÜ 1982 yılında kurulan bölümümüz 1986 yılında ilk mezunlarını vermiştir 1300 1300 Lisans, 190 25 190 Yüksek Lisans, 25 Doktora 93 Bölüm kontenjanımız

Detaylı

Çalışma Grupları Eğitimleri. TÜBİTAK ULAKBİM / ANKARA 5-9 Nisan 2010

Çalışma Grupları Eğitimleri. TÜBİTAK ULAKBİM / ANKARA 5-9 Nisan 2010 ULAKBİM - TR-Grid TR-Grid Çalışma Grupları Eğitimleri TÜBİTAK ULAKBİM / ANKARA 5-9 Nisan 2010 İçerik TR-Grid altyapısı Kullanıcı başvuruları, üyelik ve sertifikalar Hesap kümelerine erişim Kullanıcı kaynakları

Detaylı

SOME-Bus Mimarisi Üzerinde Mesaj Geçişi Protokolünün Başarımını Artırmaya Yönelik Bir Algoritma

SOME-Bus Mimarisi Üzerinde Mesaj Geçişi Protokolünün Başarımını Artırmaya Yönelik Bir Algoritma SOME-Bus Mimarisi Üzerinde Mesaj Geçişi Protokolünün Başarımını Artırmaya Yönelik Bir Algoritma Çiğdem İNAN, M. Fatih AKAY Çukurova Üniversitesi Bilgisayar Mühendisliği Bölümü Balcalı-ADANA İçerik Çalışmanın

Detaylı

VERİ KAYNAKLARI. Bilgi sisteminin öğelerinden biride veri

VERİ KAYNAKLARI. Bilgi sisteminin öğelerinden biride veri VERİ KAYNAKLARI YÖNETİMİ İ İ 5. ÜNİTE GİRİŞ Bilgi sisteminin öğelerinden biride veri yönetimidir. Geleneksel yada çağdaş, birinci yada ikinci elden derlenen veriler amaca uygun veri formlarında tutulur.

Detaylı

TOBB EKONOMİ VE TEKNOLOJİ ÜNİVERSİTESİ MÜHENDİSLİK FAKÜLTESİ BİLGİSAYAR MÜHENDİSLİĞİ BÖLÜMÜ I. SINIF EĞİTİM - ÖĞRETİM PROGRAMI

TOBB EKONOMİ VE TEKNOLOJİ ÜNİVERSİTESİ MÜHENDİSLİK FAKÜLTESİ BİLGİSAYAR MÜHENDİSLİĞİ BÖLÜMÜ I. SINIF EĞİTİM - ÖĞRETİM PROGRAMI TOBB EKONOMİ VE TEKNOLOJİ ÜNİVERSİTESİ MÜHENDİSLİK FAKÜLTESİ BİLGİSAYAR MÜHENDİSLİĞİ BÖLÜMÜ I. SINIF EĞİTİM - ÖĞRETİM PROGRAMI 1. YIL 1. DÖNEM BİL 103 Bilgisayar Bilimlerine Giriş 2 0 2 3 Z BİL 113 Bilgisayar

Detaylı

ODTÜ Kampüs Izgara Hesaplama Uygulaması

ODTÜ Kampüs Izgara Hesaplama Uygulaması ODTÜ Kampüs Izgara Hesaplama Uygulaması Mete Özay, Tuğba Taşkaya Temizel Enformatik Enstitüsü ODTÜ Taslak Kampüs Izgara Hesaplama Mevcut Uygulamalar ODTÜ Kampüs Izgara Hesaplama Sistem Testleri ODTÜ Kampüs

Detaylı

WEB SAYFALARINA İLİŞKİN YAPAY SİNİR AĞLARI İLE SINIFLANDIRMA YÖNTEMİ

WEB SAYFALARINA İLİŞKİN YAPAY SİNİR AĞLARI İLE SINIFLANDIRMA YÖNTEMİ WEB SAYFALARINA İLİŞKİN YAPAY SİNİR AĞLARI İLE SINIFLANDIRMA YÖNTEMİ Doç.Dr Erhan Akyazı Marmara Üniversitesi Bilişim Bölümü eakyazi@marmara.edu.tr Şafak Kayıkçı Marmara Üniversitesi Bilişim Bölümü safak@safakkayikci.com

Detaylı

Veri Madenciliği Süreci

Veri Madenciliği Süreci Veri Madenciliği Eda Coşlu Mehmet Akif Ersoy Üniversitesi, Yönetim Bilişim Sistemleri Bölümü, BURDUR edacoslu@hotmail.com Büyük miktardaki veriler içerisinden önemli olanlarını bulup çıkarmaya Veri Madenciliği

Detaylı

Bütünleşik Örnek Olay Çalışması: Bandon Grup Şirketi. Bölüm 1 Kurumsal Kaynak Planlaması Sistemlerine Giriş 1

Bütünleşik Örnek Olay Çalışması: Bandon Grup Şirketi. Bölüm 1 Kurumsal Kaynak Planlaması Sistemlerine Giriş 1 iv Bütünleşik Örnek Olay Çalışması: Bandon Grup Şirketi K onular Bölüm 1 Kurumsal Kaynak Planlaması Sistemlerine Giriş 1 Bölüm 2 Yeniden Yapılanma ve KKP Sistemleri 17 Bölüm 3 KKP Sistemlerinde Planlama,

Detaylı

Kullanıcılar için EGEE ve TR-Grid araçları

Kullanıcılar için EGEE ve TR-Grid araçları Kullanıcılar için EGEE ve TR-Grid araçları ULAKBIM Kullanıcı Eğitimi 2007, Ankara Emrah AKKOYUN Konu Başlığı Denetim ve Yönetim araçları GOCDB SAM GStat RTM TR-Grid PAKITI TR-Grid Ganglia TR-Grid MRTG

Detaylı

BİLGİ TEKNOLOJİLERİ VE UYGULAMALARI

BİLGİ TEKNOLOJİLERİ VE UYGULAMALARI İÇERİK 2 BİLGİ TEKNOLOJİLERİ VE UYGULAMALARI ÖĞR. GÖR. HASAN ALİ AKYÜREK Ders izlencesi Bilgisayara giriş Bilgisayar nedir? Bilgisayarın tarihçesi Bilgisayarların sınıflandırılması Bilgisayar nasıl çalışır?

Detaylı

Web Madenciliği (Web Mining)

Web Madenciliği (Web Mining) Web Madenciliği (Web Mining) Hazırlayan: M. Ali Akcayol Gazi Üniversitesi Bilgisayar Mühendisliği Bölümü Konular Sıralı Örüntülerin Temelleri GSP Tabanlı Sıralı Örüntü Madenciliği Algoritma Sıralı Örüntülerden

Detaylı

İş Zekası Çözümleri için Çok Boyutlu Birliktelik Kuralları Analizi

İş Zekası Çözümleri için Çok Boyutlu Birliktelik Kuralları Analizi Akademik Bilişim 10 - XII. Akademik Bilişim Konferansı Bildirileri 10-12 Şubat 2010 Muğla Üniversitesi İş Zekası Çözümleri için Çok Boyutlu Birliktelik Kuralları Analizi Derya Birant 1, Alp Kut 1, Medi

Detaylı

Akdeniz Üniversitesi

Akdeniz Üniversitesi F. Ders Tanıtım Formu Dersin Adı Öğretim Dili Akdeniz Üniversitesi Bilgisayar I Türkçe Dersin Verildiği Düzey Ön Lisans ( ) Lisans (x) Yüksek Lisans( ) Doktora( ) Eğitim Öğretim Sistemi Örgün Öğretim (x)

Detaylı

Bilkent Üniversitesi Bilgisayar Mühendisliği Bölümü. Bilgisayar Mühendisliği

Bilkent Üniversitesi Bilgisayar Mühendisliği Bölümü. Bilgisayar Mühendisliği Bilkent Üniversitesi Bilgisayar Mühendisliği Bölümü Bilgisayar Mühendisliği Bilgisayar Mühendisliği Günümüzde, finans, tıp, sanat, güvenlik, enerji gibi bir çok sektör, bilgisayar mühendisliğindeki gelişimlerden

Detaylı

Bilimsel Görselleştirme. Tahir Emre KALAYCI. Bilgisayar Grafikleri

Bilimsel Görselleştirme. Tahir Emre KALAYCI. Bilgisayar Grafikleri Tahir Emre KALAYCI Bilgisayar Grafikleri Gündem 1 Görselleştirme Yararlandığı alanlar Uygulama alanları Örnek Uygulamalar nin Amacı? Görselleştirme adımları Görselleştirme Görselleştirme Görselleştirme

Detaylı

Tekir (Ön Muhasebe Yazılımı)

Tekir (Ön Muhasebe Yazılımı) Tekir (Ön Muhasebe Yazılımı) Tekir Nedir? Kullanılan Teknolojiler Nelerdir? Sistem Gereksinimleri Nelerdir? Merve Yalçın Ahmet Deniz Korkmaz Tekir nedir? Tekir, açık kaynak kodlu özgür bir muhasebe yazılımıdır.

Detaylı

2013-2014 EĞİTİM ÖĞRETİM MÜNEVVER ÖZTÜRK ORTAOKULU II. DÖNEM BİLİŞİM TEKNOLOJİLERİ VE YAZILIM DERSİ DERS NOTLARI

2013-2014 EĞİTİM ÖĞRETİM MÜNEVVER ÖZTÜRK ORTAOKULU II. DÖNEM BİLİŞİM TEKNOLOJİLERİ VE YAZILIM DERSİ DERS NOTLARI 2013-2014 EĞİTİM ÖĞRETİM MÜNEVVER ÖZTÜRK ORTAOKULU II. DÖNEM BİLİŞİM TEKNOLOJİLERİ VE YAZILIM DERSİ DERS NOTLARI Bilgi BİLİŞİM TEKNOLOJİLERİ VE YAZILIM DERSİ (BTY) Türkiye de orta eğitimde bilgisayar eğitimi,

Detaylı

1. Oracle Data Miner 11g Release 2 Kurulumu Aşamaları

1. Oracle Data Miner 11g Release 2 Kurulumu Aşamaları 1. Oracle Data Miner 11g Release 2 Kurulumu Aşamaları Uyarı 1: Kuruluma başlamadan önce Oracle 11g Release 2 veritabanı kurulumunu eksiksiz bir şekilde gerçekleştirmiş olmanız beklenmektedir. İlgili kurulum

Detaylı

Gözetimli & Gözetimsiz Öğrenme

Gözetimli & Gözetimsiz Öğrenme Bölüm 5. Sınıflandırma 1 http://ceng.gazi.edu.tr/~ozdemir Gözetimli & Gözetimsiz Öğrenme Predictive Data Mining vs. Descriptive Data Mining Gözetimli (Supervised) öğrenme= sınıflandırma (clasification)

Detaylı

MİGROS TÜRK A.Ş.DE BİRLİKTELİK KURALLARININ YERLEŞİM DÜZENİ PLANLAMADA KULLANILMASI

MİGROS TÜRK A.Ş.DE BİRLİKTELİK KURALLARININ YERLEŞİM DÜZENİ PLANLAMADA KULLANILMASI Endüstri Mühendisliði Dergisi Cilt: 21 Sayý: 2 Sayfa: (14-29) YA/EM 2008 Özel Sayısı MİGROS TÜRK A.Ş.DE BİRLİKTELİK KURALLARININ YERLEŞİM DÜZENİ PLANLAMADA KULLANILMASI Derya AY*, İbrahim ÇİL Sakarya Üniversitesi,

Detaylı

Tedarik Zinciri Yönetiminde Yapay Zeka Teknikler

Tedarik Zinciri Yönetiminde Yapay Zeka Teknikler Tedarik Zinciri Yönetiminde Yapay Zeka Teknikler Doç.Dr.Mehmet Hakan Satman mhsatman@istanbul.edu.tr İstanbul Üniversitesi 2014.10.22 Doç.Dr.Mehmet Hakan Satmanmhsatman@istanbul.edu.tr Tedarik Zinciri

Detaylı

Week 9: Trees 1. TREE KAVRAMI 3. İKİLİ AĞAÇ DİZİLİMİ 4. İKİLİ ARAMA AĞACI 2. İKİLİ AĞAÇ VE SUNUMU > =

Week 9: Trees 1. TREE KAVRAMI 3. İKİLİ AĞAÇ DİZİLİMİ 4. İKİLİ ARAMA AĞACI 2. İKİLİ AĞAÇ VE SUNUMU > = Week 9: Trees 1. TREE KAVRAMI 2. İKİLİ AĞAÇ VE SUNUMU 3. İKİLİ AĞAÇ DİZİLİMİ 4. İKİLİ ARAMA AĞACI < 6 2 > = 1 4 8 9 1. TREES KAVRAMI Bir ağaç bir veya daha fazla düğümün (T) bir kümesidir : Spesifik olarak

Detaylı

Hesaplamalı Akışkanlar Dinamiği ile Üç-Boyutlu Karmaşık Akış Problemlerinin Yüksek Başarımlı Hesaplamaları. Nilay Sezer-Uzol

Hesaplamalı Akışkanlar Dinamiği ile Üç-Boyutlu Karmaşık Akış Problemlerinin Yüksek Başarımlı Hesaplamaları. Nilay Sezer-Uzol Hesaplamalı Akışkanlar Dinamiği ile Üç-Boyutlu Karmaşık Akış Problemlerinin Yüksek Başarımlı Hesaplamaları Nilay Sezer-Uzol Makine Mühendisliği Bölümü TOBB Ekonomi ve Teknoloji Üniversitesi Ankara, Türkiye

Detaylı

Öğrencilerin Staj Verileri Üzerine Uygulanan Apriori Algoritması ile Birliktelik Kurallarının Çıkarılması ve Staj Eğiliminin Belirlenmesi

Öğrencilerin Staj Verileri Üzerine Uygulanan Apriori Algoritması ile Birliktelik Kurallarının Çıkarılması ve Staj Eğiliminin Belirlenmesi 1086 Öğrencilerin Staj Verileri Üzerine Uygulanan Apriori Algoritması ile Birliktelik Kurallarının Çıkarılması ve Staj Eğiliminin Belirlenmesi *1 Mehmet Taş, 2 M. Fatih Adak, 2 Nilüfer Yurtay *1 Endüstri

Detaylı

Bölüm 1: Veritabanı Yönetim Sistemlerine Giriş

Bölüm 1: Veritabanı Yönetim Sistemlerine Giriş Bölüm 1: Veritabanı Yönetim Sistemlerine Giriş -1- Dr. Serkan DİŞLİTAŞ 1.1. Veri ve Bilgi (Data & Information) Hesaplama, saklama gibi çeşitli işlemler amacıyla bilgisayara verilen sayı, yazı, resim, ses,

Detaylı

Kablosuz Algılayıcı Ağları ile Yangın Tespit Sistemi

Kablosuz Algılayıcı Ağları ile Yangın Tespit Sistemi Kablosuz Algılayıcı Ağları ile Yangın Tespit Sistemi Çağdaş Döner Gömülü Sistemler ve Uygulamaları Sempozyumu Kasım,4-5,2010 İTÜ, İstanbul Ege Üniversitesi Bilgisayar Mühendisliği Bölümü İzmir, Türkiye

Detaylı

Veri Tabanı Yönetim Sistemleri Bölüm - 3

Veri Tabanı Yönetim Sistemleri Bölüm - 3 Veri Tabanı Yönetim Sistemleri Bölüm - 3 İçerik Web Tabanlı Veri Tabanı Sistemleri.! MySQL.! PhpMyAdmin.! Web tabanlı bir veritabanı tasarımı. R. Orçun Madran!2 Web Tabanlı Veritabanı Yönetim Sistemleri

Detaylı

Görsel Programlama DERS 12. Görsel Programlama - Ders12/

Görsel Programlama DERS 12. Görsel Programlama - Ders12/ Görsel Programlama DERS 12 1 Java Ağ İşlemleri (Java Networking) Birbirleri ile ağ araçları ve kabloları ile bağlantılı bilgisayarlar bir ağ sistemi oluştururlar. İnternet, şirketlerin yerel bilgisayar

Detaylı

Veri Madenciliği Projelerinin Yaşam Döngüsü - 1

Veri Madenciliği Projelerinin Yaşam Döngüsü - 1 Veri Madenciliği Projelerinin Yaşam Döngüsü - 1 Özet : Bu makalemizde Veri Madenciliği projelerinin yaşam döngüsünü inceleyeceğiz.veri Madenciliği projelerinde takip edilmesi gereken başlıca adımları ve

Detaylı

Yapay Sinir Ağları ile Web İçeriklerini Sınıflandırma. Yazarlar: Esra Nergis Güven, Hakan Onur ve Şeref Sağıroğlu. Sunan : Esra Nergis Güven

Yapay Sinir Ağları ile Web İçeriklerini Sınıflandırma. Yazarlar: Esra Nergis Güven, Hakan Onur ve Şeref Sağıroğlu. Sunan : Esra Nergis Güven Yapay Sinir Ağları ile Web İçeriklerini Sınıflandırma Yazarlar: Esra Nergis Güven, Hakan Onur ve Şeref Sağıroğlu Sunan : Esra Nergis Güven İçerik Giriş Amaç ve Kapsam Sınıflandırma Geliştirilen Sistem

Detaylı

2.1 Bir Sınıfı Örneklerinden Öğrenme... 15 2.2 Vapnik-Chervonenkis (VC) Boyutu... 20 2.3 Olası Yaklaşık Doğru Öğrenme... 21

2.1 Bir Sınıfı Örneklerinden Öğrenme... 15 2.2 Vapnik-Chervonenkis (VC) Boyutu... 20 2.3 Olası Yaklaşık Doğru Öğrenme... 21 İçindekiler Önsöz İkinci Basım için Önsöz Türkçe Çeviri için Önsöz Gösterim xiii xv xvii xix 1 Giriş 1 1.1 Yapay Öğrenme Nedir?......................... 1 1.2 Yapay Öğrenme Uygulamalarına Örnekler...............

Detaylı

SÜRE BİLİŞİM TEKNOLOJİLERİ ÜNİTE 1-2: BİLGİSAYAR SİSTEMİ DERS SAATİ: 5. [!]: 1.2. İşletim sistemindeki dizin yapısı vurgulanır.

SÜRE BİLİŞİM TEKNOLOJİLERİ ÜNİTE 1-2: BİLGİSAYAR SİSTEMİ DERS SAATİ: 5. [!]: 1.2. İşletim sistemindeki dizin yapısı vurgulanır. EKİM 5. 2-25 Ekim 203 EKİM 4. 7- Ekim 203 EKİM 3. 30 Eylül -4 Ekim 203 EYLÜL 2. 23-27 Eylül 203 EYLÜL. 6-20 Eylül 203 203 204 ÖĞRETİM YILI BİLİŞİM TEKNOLOJİLERİ ÜNİTE -2: BİLGİSAR SİSTEMİ DERS SAATİ: 5

Detaylı

NoSql ve MongoDB. Saygın Topatan

NoSql ve MongoDB. Saygın Topatan NoSql ve MongoDB Saygın Topatan NoSql ve MongoDB NoSql nedir Neden ihtiyaç duyuldu Tipleri MongoDb Kavramlar Sharding Şema Tasarımı NoSql in geleceği NoSql Nedir? Nedir 2009 başlarında ortaya çıkmış bir

Detaylı

Küme Bilgisayarlarda PBS Kuyruk Sistemi

Küme Bilgisayarlarda PBS Kuyruk Sistemi Küme Bilgisayarlarda PBS Kuyruk Sistemi Aslı Zengin asli@ulakbim.gov.tr Ankara, Ekim 2007 www.grid.org.tr İÇERİK Küme Bilgisayar Bileşenleri Küme Bilgisayar Kuyruk Sistemi PBS Kuyruk Sistemi Özellikleri

Detaylı

İleri Örüntü Tanıma Teknikleri Ve Uygulamaları İçerik

İleri Örüntü Tanıma Teknikleri Ve Uygulamaları İçerik Tekrar Konular İleri Örüntü Tanıma Teknikleri Ve Uygulamaları İçerik 1. Uygulamalar ve tanımlamalar 2. Örüntü tanıma sistemleri ve bir örnek 3. Bayes karar teorisi 4. En yakın komşu sınıflandırıcıları

Detaylı

2-Veritabanı Yönetim Sistemleri/ Temel Kavramlar

2-Veritabanı Yönetim Sistemleri/ Temel Kavramlar 2-Veritabanı Yönetim Sistemleri/ Temel Kavramlar Öğr. Gör. Saliha Kevser KAVUNCU Veritabanı neden kullanılır? Veritabanının amacı; insanların ve organizasyonların birşeyleri takip edebilmesine yardımcı

Detaylı

Ahmet Demirhan. 07 Haziran 2012 - İstanbul

Ahmet Demirhan. 07 Haziran 2012 - İstanbul Ahmet Demirhan 07 Haziran 2012 - İstanbul Halkbank 800 Yurtiçi Şube 5 Yurtdışı Şube 1 Yurtdışı Temsilcilik 2200 ATM 13.700 Personel Halkbank Tam 6 Banka Töbank Sümerbank Etibank Emlak Bankası ve Pamukbank

Detaylı

VERİ MADENCİLİĞİ VE SOSYAL AĞ ANALİZİ ARAŞTIRMA LABORATUVARI

VERİ MADENCİLİĞİ VE SOSYAL AĞ ANALİZİ ARAŞTIRMA LABORATUVARI BİLGİSAYAR MÜHENDİSLİĞİ BÖLÜMÜ VERİ MADENCİLİĞİ VE SOSYAL AĞ ANALİZİ ARAŞTIRMA LABORATUVARI 10 Aralık 2011, Cumartesi Fen ve Mühendislik Alanlarındaki Çeşitli Araştırma Projelerinden Örneklemeler İçerik

Detaylı

Fonksiyonel(İşlevsel) Bağımlılık

Fonksiyonel(İşlevsel) Bağımlılık Fonksiyonel(İşlevsel) Bağımlılık R nin ilişkiyi(relation) ; A ve B nin bir attribute yada attribute setini temsil ettiğini düşünelim. Eğer R ilişkisinde her bir A değeri, tam olarak bir B değerine işaret

Detaylı

Bilgisayar İşletim Sistemleri BLG 312

Bilgisayar İşletim Sistemleri BLG 312 Prosesler Bilgisayar İşletim Sistemleri BLG 312 Prosesler ve Proses Yönetimi bilgisayar sisteminde birden fazla iş aynı anda etkin olabilir kullanıcı programı diskten okuma işlemi yazıcıdan çıkış alma

Detaylı

Uygulamaların Grid e Aktarılması

Uygulamaların Grid e Aktarılması Uygulamaların Grid e Aktarılması www.grid.org.tr Bu sunum, Peter Kacsuk ve Gergely Sipos Introduction to Grids and Grid applications ve C. Loomis Characteristic of Grid Applications sunumlarından alıntılar

Detaylı

Deneme. Doç.Dr. Güner Gürsoy BİLGİSAYAR PROGRAMCILIĞI (YGS-1)

Deneme. Doç.Dr. Güner Gürsoy BİLGİSAYAR PROGRAMCILIĞI (YGS-1) Deneme Doç.Dr. Güner Gürsoy BİLGİSAYAR PROGRAMCILIĞI (YGS-1) Bilgisayar Programcılığı Bilgisayar Programcılığı bölümü, bilgisayar sistemlerinin yapısı, geliştirilmesi ve bu sistemlerin etkin kullanım yöntemleri

Detaylı

VERİ TABANI SİSTEMLERİ

VERİ TABANI SİSTEMLERİ VERİ TABANI SİSTEMLERİ 1- Günümüzde bilgi sistemleri Teknoloji ve bilgi. 2- Bilgi sistemlerinin Geliştirilmesi İşlevsel Gereksinimleri 1.AŞAMA Gereksinim Belirleme ve Analiz Veri Gereksinimleri Gereksinimler

Detaylı

Adnan Menderes Üniversitesi FAKÜLTESİ SÖKE İŞLETME. BÖLÜMLER ULUSLARARASI TİCARET ve İŞLETMECİLİK YÖNETİM BİLİŞİM SİSTEMLERİ

Adnan Menderes Üniversitesi FAKÜLTESİ SÖKE İŞLETME. BÖLÜMLER ULUSLARARASI TİCARET ve İŞLETMECİLİK YÖNETİM BİLİŞİM SİSTEMLERİ Adnan Menderes Üniversitesi SÖKE İŞLETME FAKÜLTESİ BÖLÜMLER ULUSLARARASI TİCARET ve İŞLETMECİLİK YÖNETİM BİLİŞİM SİSTEMLERİ SÖKE İŞLETME FAKÜLTESİ ULUSLARARASI TİCARET VE İŞLETMECİLİK BÖLÜMÜ DERS PROGRAMI

Detaylı

PAZARLAMA STRATEJİLERİNİN OLUŞTURULMASINDA BİR KARAR DESTEK ARACI: BİRLİKTELİK KURALI MADENCİLİĞİ

PAZARLAMA STRATEJİLERİNİN OLUŞTURULMASINDA BİR KARAR DESTEK ARACI: BİRLİKTELİK KURALI MADENCİLİĞİ Dokuz Eylül Üniversitesi Sosyal Bilimler Enstitüsü Dergisi Cilt 7, Sayı:3, 2005 PAZARLAMA STRATEJİLERİNİN OLUŞTURULMASINDA BİR KARAR DESTEK ARACI: BİRLİKTELİK KURALI MADENCİLİĞİ Yrd. Doç. Dr. Gül Gökay

Detaylı

Mobil Pazarlama İzinli Veritabanı ve Hedefli Lokasyon Genel Teklifi

Mobil Pazarlama İzinli Veritabanı ve Hedefli Lokasyon Genel Teklifi Mobil Pazarlama İzinli Veritabanı ve Hedefli Genel Teklifi 26 Ocak 2015 Mobil Pazarlama Mobil cihaz aracılığı ile herhangi bir ağ üzerinden karşılıklı olarak kullanıcılarla iletişime geçildiği uygulamaların

Detaylı