Web Madenciliği (Web Mining)

Ebat: px
Şu sayfadan göstermeyi başlat:

Download "Web Madenciliği (Web Mining)"

Transkript

1 Web Madenciliği (Web Mining) Hazırlayan: M. Ali Akcayol Gazi Üniversitesi Bilgisayar Mühendisliği Bölümü Konular Denetimsiz Öğrenmenin Temelleri Kümeleme Uzaklık Fonksiyonları Öklid Uzaklığı Manhattan Uzaklığı Minkowski Uzaklığı K-means Algoritması Kümelerin Gösterimi Hiyerarşik Kümeleme Veri Standartlaştırma Kümeleme Değerlendirmesi 2 1

2 Denetimsiz Öğrenmenin Temelleri Denetimli öğrenme giriş verileri ile çıkış niteliği arasındaki ilişkiyi ortaya çıkartır. Elde edilen model ile yeni verilerle ileriye dönük tahmin yapılması amaçlanmaktadır. Denetimsiz öğrenmede eğitim sürecinde hedef nitelik bulunmamaktadır. Denetimsiz öğrenmede veriler arasında bazı yapısal ilişkilerin veya örüntülerin ortaya çıkartılması amaçlanmaktadır. 3 Konular Denetimsiz Öğrenmenin Temelleri Kümeleme Uzaklık Fonksiyonları Öklid Uzaklığı Manhattan Uzaklığı Minkowski Uzaklığı K-means Algoritması Kümelerin Gösterimi Hiyerarşik Kümeleme Veri Standartlaştırma Kümeleme Değerlendirmesi 4 2

3 Kümeleme Kümeleme (Clustering), veri içerisinde benzer grupların (küme) bulunmasını sağlayan teknikleri kullanır. Kümelemede veri içerisindeki benzer örneklerin yakınlıklarına göre kümeler oluşturulur. Birbirine belirlenmiş bir seviyeden daha uzak olanlar ayrı kümelere atanır. Kümeleme, denetimsiz öğrenme (unsupervised learning) olarak adlandırılır. Apriori algoritması ile yapılan birliktelik kural madenciliği unsupervised learning olarak nitelendirilir. 5 Kümeleme Aşağıdaki veri kümesinde uzaklıklara göre üç küme görülmektedir. Bu şekilde yapılan kümelemeye partitional clustering denilir. Farklı özellikler gözönüne alınırsa küme sayısı daha fazla veya daha az olabilir. Sağlık, psikoloji, tarım, sosyoloji, biyoloji, arkeoloji, pazarlama, sigortacılık, kütüphane gibi çok farklı alanlarda kullanılmaktadır. 6 3

4 Örnek Kümeleme Her gün haber ajansları tarafından Dünya genelinde çok sayıda haber metni oluşturulur. Bir Web sitesi ile bu haberlerin alınması ve ait oldukları konulara göre sınıflandırılması gereklidir. Bu kadar çok sayıdaki haber metninin manuel olarak sınıflandırılması mümkün değildir. Sınıflandırılmadan tüm kullanıcılara sunulması da kullanıcıların ilgili olduklarını seçmeleri zor olacağından uygun değildir. Dokümanların konulara göre hiyerarşik kümelenmesi için clustering algoritmaları kullanılabilir. Bu şekilde sınıflandırmaya hiyerarşik kümeleme denilmektedir. Kümeleme algoritmalarının temelinde uzaklık ölçümü yer alır. 7 Konular Denetimsiz Öğrenmenin Temelleri Kümeleme Uzaklık Fonksiyonları Öklid Uzaklığı Manhattan Uzaklığı Minkowski Uzaklığı K-means Algoritması Kümelerin Gösterimi Hiyerarşik Kümeleme Veri Standartlaştırma Kümeleme Değerlendirmesi 8 4

5 Uzaklık Fonksiyonları Kümeleme problemlerinde problemin yapısına ve niteliklerin değerleine bağlı olarak farklı uzaklık ölçümler kullanılabilir. Yaygın kullanılan uzaklık ölçümleri: Öklid uzaklığı Mahnattan uzaklığı Minkowski uzaklığı 9 Konular Denetimsiz Öğrenmenin Temelleri Kümeleme Uzaklık Fonksiyonları Öklid Uzaklığı Manhattan Uzaklığı Minkowski Uzaklığı K-means Algoritması Kümelerin Gösterimi Hiyerarşik Kümeleme Veri Standartlaştırma Kümeleme Değerlendirmesi 10 5

6 Öklid Uzaklığı Uygulamada en çok kullanılan uzaklık ölçüsü Öklid uzaklık bağıntısı adıyla bilinmektedir. Bu uzaklık, şekilde üzerinde görüldüğü gibi, iki boyutlu uzayda Pisagor teoreminin bir uygulamasıdır. A ve B noktaları arasındaki Öklid uzaklığı şu şekilde olacaktır: Bu bağıntı genelleştirilecek olursak, i ve j noktaları için şu şekilde bir bağıntıya ulaşılır: 11 Konular Denetimsiz Öğrenmenin Temelleri Kümeleme Uzaklık Fonksiyonları Öklid Uzaklığı Manhattan Uzaklığı Minkowski Uzaklığı K-means Algoritması Kümelerin Gösterimi Hiyerarşik Kümeleme Veri Standartlaştırma Kümeleme Değerlendirmesi 12 6

7 Manhattan Uzaklığı Manhattan uzaklık ölçütünde, gözlemler arasındaki mutlak uzaklıkların toplamı alınarak hesaplanır. Aşağıdaki şekilde ifade edilir: 13 Konular Denetimsiz Öğrenmenin Temelleri Kümeleme Uzaklık Fonksiyonları Öklid Uzaklığı Manhattan Uzaklığı Minkowski Uzaklığı K-means Algoritması Kümelerin Gösterimi Hiyerarşik Kümeleme Veri Standartlaştırma Kümeleme Değerlendirmesi 14 7

8 Minkowski Uzaklığı p sayıda değişken göz önüne alınarak gözlem değerleri arasındaki uzaklığın hesaplanması söz konusu ise Minkowski uzaklık bağıntısı kullanılabilir. Söz konusu uzaklık şu şekilde hesaplanır: Burada, m=2 için Öklid uzaklık bağıntısı ve m=1 için Manhattan uzaklık bağıntısı elde edilir. 15 Örnek Aşağıdaki tabloda 5 gözlem değeri için 3 niteliğin değerleri görülmektedir. Gözlem değerleri arasındaki hesaplanan uzaklıklar, farklı ölçüm yöntemlerinde farklı olmaktadır. 16 8

9 Örnek Öklid uzaklıkları Manhattan uzaklıkları Minkowski uzaklıkları 17 Konular Denetimsiz Öğrenmenin Temelleri Kümeleme Uzaklık Fonksiyonları Öklid Uzaklığı Manhattan Uzaklığı Minkowski Uzaklığı K-means Algoritması Kümelerin Gösterimi Hiyerarşik Kümeleme Veri Standartlaştırma Kümeleme Değerlendirmesi 18 9

10 K-means algoritması Kümeleme algoritmalarının kalitesinin ölçümü için iki kriter vardır: Inter-cluster uzaklık (maksimize edilir.) Inra-cluster uzaklık (minimize edilir.) Kümelerin arasında mesafe olabildiği kadar fazla olmalıdır. Kümelere ait elemanlar arasındaki uzaklık olabildiği kadar az olmalıdır. Uzaklık ölçüm yöntemi her problem için ayrı tanımlanabilir ve uygun olanın seçilmesi gereklidir. K-means algoritması partional clustering yapmaktadır. 19 K-means algoritması K-means algoritması başlangıçta k değeri kadar küme oluşturur. Her küme bir merkez noktasına (centroid) sahiptir. Kümeye ait elemanların tümü bu orta noktaya diğer kümelerin orta noktalarından daha yakındır. Algoritma ile başlangıçta rastgele k adet veri noktasını küme merkezleri olarak seçer. Her merkez noktaya yakın noktalar bu kümeye ait olarak alınırlar. Tüm kümelerin merkez noktaları tekrar hesaplanır. Yeni merkez noktalara göre yeniden küme elemanları belirlenir. Kümelerarası eleman değişimi olmayıncaya veya merkez noktalarda değişim olmayıncaaya kadar işlemler devam eder

11 K-means algoritması Veri kümesi D = {x 1, x 2,, x n } olsun. Her bir x noktası ise, x i = (x i1, x i2,, x ir ) şeklinde tanımlanan bir reel sayılar vektörüdür. X R r ve r nitelik sayısıdır. Algoritma kümelerdeki hataların karelerinin toplamını (sum of squared error) minimize etmeye çalışır. Burada, k küme sayısını, C j j.kümeyi, x C j kümesine ait nitelikler kümesini, m j j.kümenin orta noktasıdır. dist(x, m j ) kümenin orta noktasına x noktalarının uzaklığıdır. 21 K-means algoritması Kümelerin orta noktası ise aşağıdaki gibi hesaplanır. Burada, bir kümeye ait olan tüm x noktalarının nitelik değerlerinin ortalamaları hesaplanır. C j kümeye ait nokta sayısıdır. Kümeye ait noktaların merkez noktaya uzaklıkları ise aşağıdaki gibi hesaplanır. Burada, m j j. kümenin orta noktasıdır

12 K-means algoritması Algoritma 23 Örnek K-means algoritması Başlangıç merkez noktaları Yeni merkez noktaları 24 12

13 Örnek K-means algoritması Yeni merkez noktaları Yeni merkez noktaları Yeni merkez noktaları 25 K-means algoritması K-means algoritmasının zayıf yönleri K-means algoritması başlangıç merkez noktalarına bağlı kümeler oluşturur. Başlangıç merkez noktaları Kötü kümeleme 26 13

14 K-means algoritması K-means algoritmasının zayıf yönleri K-means algoritması başlangıç merkez noktalarına bağlı kümeler oluşturur. Başlangıç merkez noktaları İyi kümeleme 27 K-means algoritması K-means algoritmasının zayıf yönleri Outlier dataya karşı hassastır

15 K-means algoritması K-means algoritmasının zayıf yönleri Bazı durumlarda doğal olarak kümeler oluşmuş durumdadır. Uzaklığa dayalı kümeleme doğal yapıya uygun olmayabilir. Bu durumlarda komşulukları gözönüne alan algoritmalar kullanılır. 29 Konular Denetimsiz Öğrenmenin Temelleri Kümeleme Uzaklık Fonksiyonları Öklid Uzaklığı Manhattan Uzaklığı Minkowski Uzaklığı K-means Algoritması Kümelerin Gösterimi Hiyerarşik Kümeleme Veri Standartlaştırma Kümeleme Değerlendirmesi 30 15

16 Kümelerin Gösterimi Bazen kümelerin farklı şekillerde gösterimi gerekebilir. Bazı uygulamalarda sadece kümelerin merkez noktalarının ve yarıçaplarının gösterimi yeterlidir. Dairesel küme yapısına sahip durumlarda faydalıdır ve kümenin yarıçapı kapsadığı alanı gösterir. Dairesel olmayan kümeler için uygun gösterime sahip değildir. 31 Kümelerin Gösterimi Bazı uygulamalarda sınıflandırma modelleri ile kümeler gösterilebilir. Kümelerin gösterimi karar ağaçları ile yapılabilir

17 Konular Denetimsiz Öğrenmenin Temelleri Kümeleme Uzaklık Fonksiyonları Öklid Uzaklığı Manhattan Uzaklığı Minkowski Uzaklığı K-means Algoritması Kümelerin Gösterimi Hiyerarşik Kümeleme Veri Standartlaştırma Kümeleme Değerlendirmesi 33 Hiyerarşik Kümeleme Hiyerarşik kümeleme diğer bir kümeleme yaklaşımıdır ve ağaç şeklinde gösterilir (dendrogram). Elemanlar birbirine benzerlik durumuna göre hiyerarşik kümelenir. En alt seviyede tek elemanlar bulunur

18 Hiyerarşik Kümeleme Hiyerarşik kümeleme için 2 farklı yöntem kullanılmaktadır. Agglomerative (bottom up) clustering Öncelikle en yakın ikili elemanlar ile kümeler oluşturulur. Daha sonra yakın olan kümeler birleştirilerek yeni kümeler oluşturulur. Divisive (top down) clustering Öncelikle tüm elemanlar tek küme alınır. Küme iki parçaya ayrılarak iki küme elde edilir. Elde edilen kümelerde recursive olarak tek elemanalra ulaşıncaya kadar parçalanır. k-means algoritması veya diğer algormalar kullanılabilir. 35 Örnek Hiyerarşik Kümeleme 36 18

19 Konular Denetimsiz Öğrenmenin Temelleri Kümeleme Uzaklık Fonksiyonları Öklid Uzaklığı Manhattan Uzaklığı Minkowski Uzaklığı K-means Algoritması Kümelerin Gösterimi Hiyerarşik Kümeleme Veri Standartlaştırma Kümeleme Değerlendirmesi 37 Verilerin standartlaştırılması bazı uygulamalarda gereklidir. Öklid uzaklığına dayalı bir kümelemde veri standartlaştırma zorunludur. Örnek Veri Standartlaştırma İki nitelik değerinden birisinin aralığı 0-1, diğerinin ise arasında olsun. x i = (0.9, 720) ve x j = (0.1, 20) ise aralarındaki uzaklık, olur. İki nitelik değerleri de 0-1 aralığında ölçeklenirse, 20 -> 0,02 ve 720 -> 0,72 olur. Uzaklık değeri ise 1,063 olur

20 Veri Standartlaştırma Interval-scaled attributes Aralıklı ölçeklendirme yönteminde en yaygın olarak aşağıdaki yöntemler kullanılır: range (min-max) z-score 39 Veri Standartlaştırma range (min-max) Her nitelik için değerler minimum ve maksimum değerleri arasındaki değere göre 0-1 arasında değer alır. Burada, min(f) f niteliğinin minimum değerini, max(f) f niteliğinin maksimum değerini ve x if ise i. gözlemin f. nitelik değerini ifade eder

21 z-score Veri Standartlaştırma Her nitelik için ortalamadan uzaklığına ve nitelik değerlerindeki standart sapmaya göre yeni değeri hesaplanır. Burada, f f niteliğinin standart sapması, µ f f niteliğinin ortalama değeri ve z(x if ) ise i. gözlemin f. nitelik değerinin yeni değerini ifade eder. 41 Veri Standartlaştırma Ratio-scaled attributes Bazı uygulamalarda nitelik değeri üssel değişebilir. Burada, A ve B katsayılar ve t nitelik değeridir. Bu tür durumlarda logaritmik değer ile standartlaştırma gereklidir

22 Konular Denetimsiz Öğrenmenin Temelleri Kümeleme Uzaklık Fonksiyonları Öklid Uzaklığı Manhattan Uzaklığı Minkowski Uzaklığı K-means Algoritması Kümelerin Gösterimi Hiyerarşik Kümeleme Veri Standartlaştırma Kümeleme Değerlendirmesi 43 Kümeleme Değerlendirmesi Kümeleme sonuçlarının değerlendirilmesi için uygulama alanına göre farklı yöntemler kullanılmaktadır. Bunlardan yaygın kullanılanlar; User inspection Ground truth Entropy Purity Indirect evaluation 44 22

23 Kümeleme Değerlendirmesi User inspection Bir grup uzman tarafından yapılan skorlama ile değerlendirme yapılır. Değerlendirme kişisel olduğundan tüm skorların ortalaması alınır. Değerlendirme süreci uzun süre alabilir. Metin sınıflandırma gibi uygulamalarda faydalı olabilir. Ancak milyonlarca veriye sahip bir VTYS üzerinde kümeleme işleminin değerlendirilmesi oldukça uzun zaman alır ve doğru değerlendirme yapılamayabilir. 45 Kümeleme Değerlendirmesi Ground truth Verilerin küme sayısı belirli ise elde edilen sonuç ona göre değerlendirilir. Her küme içerisinde doğru atanmış elemanlara göre de değerlendirme yapılabilir

24 Entropy Kümeleme Değerlendirmesi Her küme için entropi hesaplanır. Burada, D i i. küme, Pr i (c j ) j. küme etiketinin olasılığıdır. Tüm kümeler için entropi hesaplanır. D i i. Kümedeki eleman sayısıdır. D toplam eleman sayısıdır. 47 Purity Kümeleme Değerlendirmesi Her küme için purity hesaplanır. Burada, D i i. küme, Pr i (c j ) j. küme etiketinin olasılığıdır. Tüm kümeler için purity hesaplanır. D i i. Kümedeki eleman sayısıdır. D toplam eleman sayısıdır

25 Örnek Kümeleme Değerlendirmesi D kümesi 900 dokümana sahiptir. Tüm dokümanlar Science, Sports ve Politics olarak 3 konuya ayrılmaktadır. Her sınıf toplam 300 dokümana sahiptir. False Pozitif False Negatif True Pozitif Presicion, recall ve f-skor değerleri de hesaplanabilir. 49 Kümeleme Değerlendirmesi Indirect evaluation Bazı uygulamalarda oluşuturlan kümeler yerine başka parametreler kullanılarak değerlendirme yapılabilir. Bir kitap tavsiye sisteminde müşteriler profil bilgilerine ve geçmişte ilgilendikleri ürünlere göre kümelenebilir. Ancak, değerlendirme tavsiye edilen kitapların seçilme oranına göre yapılır

Web Madenciliği (Web Mining)

Web Madenciliği (Web Mining) Web Madenciliği (Web Mining) Hazırlayan: M. Ali Akcayol Gazi Üniversitesi Bilgisayar Mühendisliği Bölümü Konular Denetimli Öğrenmenin Temelleri Karar Ağaçları Entropi ID3 Algoritması C4.5 Algoritması Twoing

Detaylı

Web Madenciliği (Web Mining)

Web Madenciliği (Web Mining) Web Madenciliği (Web Mining) Hazırlayan: M. Ali Akcayol Gazi Üniversitesi Bilgisayar Mühendisliği Bölümü Konular Sınıflandırıcıların Değerlendirilmesi Skorlar Karışıklık matrisi Accuracy Precision Recall

Detaylı

VERİ MADENCİLİĞİ (Karar Ağaçları ile Sınıflandırma) Yrd.Doç.Dr. Kadriye ERGÜN

VERİ MADENCİLİĞİ (Karar Ağaçları ile Sınıflandırma) Yrd.Doç.Dr. Kadriye ERGÜN VERİ MADENCİLİĞİ (Karar Ağaçları ile Sınıflandırma) Yrd.Doç.Dr. Kadriye ERGÜN kergun@balikesir.edu.tr İçerik Sınıflandırma yöntemleri Karar ağaçları ile sınıflandırma Entropi Kavramı ID3 Algoritması C4.5

Detaylı

Uzaktan Algılama Teknolojileri

Uzaktan Algılama Teknolojileri Uzaktan Algılama Teknolojileri Ders 11 Hiperspektral Görüntülerde Kümeleme ve Sınıflandırma Alp Ertürk alp.erturk@kocaeli.edu.tr Sınıflandırma Sınıflandırma işleminin amacı, her piksel vektörüne bir ve

Detaylı

VERİ MADENCİLİĞİ (Birliktelik Kuralları) Yrd.Doç.Dr. Kadriye ERGÜN

VERİ MADENCİLİĞİ (Birliktelik Kuralları) Yrd.Doç.Dr. Kadriye ERGÜN VERİ MADENCİLİĞİ (Birliktelik Kuralları) Yrd.Doç.Dr. Kadriye ERGÜN kergun@balikesir.edu.tr İçerik Birliktelik Kurallarının Tanımı Destek ve Güven Ölçütleri Apriori Algoritması Birliktelik Kuralları (Association

Detaylı

Zeki Optimizasyon Teknikleri

Zeki Optimizasyon Teknikleri Zeki Optimizasyon Teknikleri Ara sınav - 25% Ödev (Haftalık) - 10% Ödev Sunumu (Haftalık) - 5% Final (Proje Sunumu) - 60% - Dönem sonuna kadar bir optimizasyon tekniğiyle uygulama geliştirilecek (Örn:

Detaylı

7. BÖLÜM İÇ ÇARPIM UZAYLARI İÇ ÇARPIM UZAYLARI İÇ ÇARPIM UZAYLARI İÇ ÇARPIM UZAYLARI .= 1 1 + + Genel: Vektörler bölümünde vektörel iç çarpım;

7. BÖLÜM İÇ ÇARPIM UZAYLARI İÇ ÇARPIM UZAYLARI İÇ ÇARPIM UZAYLARI İÇ ÇARPIM UZAYLARI .= 1 1 + + Genel: Vektörler bölümünde vektörel iç çarpım; İÇ ÇARPIM UZAYLARI 7. BÖLÜM İÇ ÇARPIM UZAYLARI Genel: Vektörler bölümünde vektörel iç çarpım;.= 1 1 + + Açıklanmış ve bu konu uzunluk ve uzaklık kavramlarını açıklamak için kullanılmıştır. Bu bölümde öklit

Detaylı

bitık MOBİL TİCARET UYGULAMASI ABDULLAH ÇİÇEKCİ

bitık MOBİL TİCARET UYGULAMASI ABDULLAH ÇİÇEKCİ bitık MOBİL TİCARET UYGULAMASI ABDULLAH ÇİÇEKCİ - 150110046 İÇERİK Uygulama ve uygulamaya ilişkin temel kavramların tanıtımı Uygulamanın yapısı Ön yüz Veritabanı Web Servisler K-Means Algoritması ile kategori

Detaylı

VERİ MADENCİLİĞİ (Karar Ağaçları ile Sınıflandırma) Yrd.Doç.Dr. Kadriye ERGÜN

VERİ MADENCİLİĞİ (Karar Ağaçları ile Sınıflandırma) Yrd.Doç.Dr. Kadriye ERGÜN VERİ MADENCİLİĞİ (Karar Ağaçları ile Sınıflandırma) Yrd.Doç.Dr. Kadriye ERGÜN kergun@balikesir.edu.tr Genel İçerik Veri Madenciliğine Giriş Veri Madenciliğinin Adımları Veri Madenciliği Yöntemleri Sınıflandırma

Detaylı

VERİ MADENCİLİĞİ (Sınıflandırma Yöntemleri) Yrd.Doç.Dr. Kadriye ERGÜN kergun@balikesir.edu.tr

VERİ MADENCİLİĞİ (Sınıflandırma Yöntemleri) Yrd.Doç.Dr. Kadriye ERGÜN kergun@balikesir.edu.tr VERİ MADENCİLİĞİ (Sınıflandırma Yöntemleri) Yrd.Doç.Dr. Kadriye ERGÜN kergun@balikesir.edu.tr Genel İçerik Veri Madenciliğine Giriş Veri Madenciliğinin Adımları Veri Madenciliği Yöntemleri Sınıflandırma

Detaylı

PAPATYA YAYINCILIK EĞİTİM Bilgisayar Sis. San. ve Tic. A.Ş. Veri Madenciliği Yöntemleri Dr. Yalçın ÖZKAN -II-

PAPATYA YAYINCILIK EĞİTİM Bilgisayar Sis. San. ve Tic. A.Ş. Veri Madenciliği Yöntemleri Dr. Yalçın ÖZKAN -II- Dr. Yalçın ÖZKAN Dr. Yalçın ÖZKAN PAPATYA YAYINCILIK EĞİTİM Bilgisayar Sis. San. ve Tic. A.Ş. Ankara Caddesi, Prof. Fahreddin Kerim Gökay Vakfı İşhanı Girişi, No: 11/3, Cağaloğlu (Fatih)/İstanbul Tel

Detaylı

Büyük Veri Analitiği (Big Data Analytics)

Büyük Veri Analitiği (Big Data Analytics) Büyük Veri Analitiği (Big Data Analytics) M. Ali Akcayol Gazi Üniversitesi Bilgisayar Mühendisliği Bölümü Bu dersin sunumları, Mining of Massive Datasets, Jure Leskovec, Anand Rajaraman, Jeffrey David

Detaylı

127 - Twoing Algoritması ile Sınıflandırma Kalp Hastalığı Uygulaması MEHMET AKİF ERSOY ÜNİVERSİTESİ İLHAN UYSAL MEHMET BİLEN SAMİ ULUKUŞ

127 - Twoing Algoritması ile Sınıflandırma Kalp Hastalığı Uygulaması MEHMET AKİF ERSOY ÜNİVERSİTESİ İLHAN UYSAL MEHMET BİLEN SAMİ ULUKUŞ 127 - Twoing Algoritması ile Sınıflandırma Kalp Hastalığı Uygulaması MEHMET AKİF ERSOY ÜNİVERSİTESİ İLHAN UYSAL MEHMET BİLEN SAMİ ULUKUŞ Veri Madenciliği : Bir sistemin veri madenciliği sistemi olabilmesi

Detaylı

Veri Tabanı, Veri Ambarı, Veri Madenciliği. Veri Madenciliği Uygulama Alanları

Veri Tabanı, Veri Ambarı, Veri Madenciliği. Veri Madenciliği Uygulama Alanları 1 Veri Tabanı, Veri Ambarı, Veri Madenciliği Bilgi Keşfi Aşamaları Apriori Algoritması Veri Madenciliği Yöntemleri Problemler Veri Madenciliği Uygulama Alanları 2 Bir bilgisayarda sistematik şekilde saklanmış,

Detaylı

Görüntü Segmentasyonu (Bölütleme)

Görüntü Segmentasyonu (Bölütleme) Görüntü Segmentasyonu (Bölütleme) Segmentasyon, görüntüyü aynı cinsten obje ve bölgelere ayırmaktır. 20 Aralık 2014 Cumartesi 1 Görüntü Segmentasyonu 20 Aralık 2014 Cumartesi 2 Gestalt kanunları Görüntü

Detaylı

Şimdi de [ ] vektörünün ile gösterilen boyu veya büyüklüğü Pisagor. teoreminini iki kere kullanarak

Şimdi de [ ] vektörünün ile gösterilen boyu veya büyüklüğü Pisagor. teoreminini iki kere kullanarak 10.Konu İç çarpım uzayları ve özellikleri 10.1. ve üzerinde uzunluk de [ ] vektörünün ile gösterilen boyu veya büyüklüğü Pisagor teoreminden dir. 1.Ö.: [ ] ise ( ) ( ) ve ( ) noktaları gözönüne alalım.

Detaylı

YAPAY BAĞIŞIKLIK SİSTEMİ. Arş. Gör. Burcu ÇARKLI YAVUZ

YAPAY BAĞIŞIKLIK SİSTEMİ. Arş. Gör. Burcu ÇARKLI YAVUZ YAPAY BAĞIŞIKLIK SİSTEMİ Arş. Gör. Burcu ÇARKLI YAVUZ İnsanoğlu doğadaki müthiş uyumu yıllar önce keşfetmiş ve doğal sistemlerin işleyişini günümüz karmaşık problemlerinin çözümünde uygulayarak, karmaşık

Detaylı

Görüntü Sınıflandırma

Görüntü Sınıflandırma Görüntü Sınıflandırma Chapter 12 https://www.google.com.tr/url?sa=t&rct=j&q=&esrc=s&source=web&cd=1&cad=rja&uact=8&ved=0 CBwQFjAA&url=http%3A%2F%2Ffaculty.une.edu%2Fcas%2Fszeeman%2Frs%2Flect%2FCh%2 52012%2520Image%2520Classification.ppt&ei=0IA7Vd36GYX4Uu2UhNgP&usg=AFQjCNE2wG

Detaylı

Web Madenciliği (Web Mining)

Web Madenciliği (Web Mining) Web Madenciliği (Web Mining) Hazırlayan: M. Ali Akcayol Gazi Üniversitesi Bilgisayar Mühendisliği Bölümü Konular Giriş Bilgi Erişiminde Temel Yaklaşımlar Bilgi Erişim Modelleri Boolean model Vector space

Detaylı

Tanımlayıcı İstatistikler. Yrd. Doç. Dr. Emre ATILGAN

Tanımlayıcı İstatistikler. Yrd. Doç. Dr. Emre ATILGAN Tanımlayıcı İstatistikler Yrd. Doç. Dr. Emre ATILGAN 1 Tanımlayıcı İstatistikler Yer Gösteren Ölçüler Yaygınlık Ölçüleri Merkezi Eğilim Ölçüleri Konum Ölçüleri 2 3 Aritmetik Ortalama Aritmetik ortalama,

Detaylı

ISSN: El-Cezerî Fen ve Mühendislik Dergisi Cilt: 3, No: 2, 2016 ( )

ISSN: El-Cezerî Fen ve Mühendislik Dergisi Cilt: 3, No: 2, 2016 ( ) www.tubiad.org ISSN:2148-3736 El-Cezerî Fen ve Mühendislik Dergisi Cilt: 3, No: 2, 2016 (315-323) El-Cezerî Journal of Science and Engineering Vol: 3, No: 2, 2016 (315-323) ECJSE Makale / Research Paper

Detaylı

VERİ MADENCİLİĞİ Metin Madenciliği

VERİ MADENCİLİĞİ Metin Madenciliği VERİ MADENCİLİĞİ Metin Madenciliği Yrd. Doç. Dr. Şule Gündüz Öğüdücü 1 2 Metin için Veri Madenciliği Metin Madenciliğinde Sorunlar Metin madenciliği: Veri madenciliği teknikleri ile yazılı belgeler arasındaki

Detaylı

Bir değişkenin bir sabite mümkün olduğu kadar çok yaklaşması durumu ancak onun limitiyle ifade edilebilir.

Bir değişkenin bir sabite mümkün olduğu kadar çok yaklaşması durumu ancak onun limitiyle ifade edilebilir. LİMİT VE SÜREKLİLİK A- LİMİTLER Bir top 10 metre yükseklikten bırakılmaktadır. Top yere vurduktan sonra ilk yüksekliğin 2/5 i kadar sıçramakta ve bunu her yükseliş için devam ettirmektedir. Topun sıçrayacağı

Detaylı

1.4. KISMİ SIRALAMA VE DENKLİK BAĞINTILARI

1.4. KISMİ SIRALAMA VE DENKLİK BAĞINTILARI Reel sayılar kümesinin "küçük ya da eşit", bağıntısı ile sıralanmış olduğunu biliyoruz. Bu bağıntı herhangi bir X kümesine aşağıdaki şekilde genelleştirilebilir. Bir X kümesi üzerinde aşağıdaki yansıma,

Detaylı

Hatalar Bilgisi ve İstatistik Ders Kodu: Kredi: 3 / ECTS: 5

Hatalar Bilgisi ve İstatistik Ders Kodu: Kredi: 3 / ECTS: 5 Ders Kodu: 0010070021 Kredi: 3 / ECTS: 5 Yrd. Doç. Dr. Serkan DOĞANALP Necmettin Erbakan Üniversitesi Harita Mühendisliği Bölümü Konya 07.01.2015 1 Giriş 2 Giriş Matematiksel istatistiğin konusu yığın

Detaylı

K-En Yakın Komşu Algoritması Parametrelerinin Sınıflandırma Performansı Üzerine Etkisinin İncelenmesi

K-En Yakın Komşu Algoritması Parametrelerinin Sınıflandırma Performansı Üzerine Etkisinin İncelenmesi K-En Yakın Komşu Algoritması Parametrelerinin Sınıflandırma Performansı Üzerine Etkisinin İncelenmesi Erdal TAŞCI* Aytuğ ONAN** *Ege Üniversitesi Bilgisayar Mühendisliği Bölümü **Celal Bayar Üniversitesi

Detaylı

İSTATİSTİKSEL TAHMİNLEME. Örneklem istatistiklerinden hareketle ana kütle parametreleri hakkında genelleme yapmaya istatistiksel tahminleme denir.

İSTATİSTİKSEL TAHMİNLEME. Örneklem istatistiklerinden hareketle ana kütle parametreleri hakkında genelleme yapmaya istatistiksel tahminleme denir. İSTATİSTİKSEL TAHMİNLEME Örneklem istatistiklerinden hareketle ana kütle parametreleri hakkında genelleme yapmaya istatistiksel tahminleme denir. 1 ŞEKİL: Evren uzay-örneklem uzay İstatistiksel tahmin

Detaylı

Görüntü Segmentasyonu (Bölütleme) Dijital Görüntü İşleme Fevzi Karslı, KTÜ Segmentasyon, görüntüyü aynı cinsten obje ve bölgelere ayırmaktır.

Görüntü Segmentasyonu (Bölütleme) Dijital Görüntü İşleme Fevzi Karslı, KTÜ Segmentasyon, görüntüyü aynı cinsten obje ve bölgelere ayırmaktır. Görüntü Segmentasyonu (Bölütleme) Segmentasyon, görüntüyü aynı cinsten obje ve bölgelere ayırmaktır. 16 Ocak 2014 Perşembe 1 Görüntü Segmentasyonu 16 Ocak 2014 Perşembe 2 Görüntüden Objelere Bir objeyi

Detaylı

TANIMLAYICI İSTATİSTİKLER

TANIMLAYICI İSTATİSTİKLER TANIMLAYICI İSTATİSTİKLER Tanımlayıcı İstatistikler ve Grafikle Gösterim Grafik ve bir ölçüde tablolar değişkenlerin görsel bir özetini verirler. İdeal olarak burada değişkenlerin merkezi (ortalama) değerlerinin

Detaylı

BÖLÜM 6 MERKEZDEN DAĞILMA ÖLÇÜLERİ

BÖLÜM 6 MERKEZDEN DAĞILMA ÖLÇÜLERİ 1 BÖLÜM 6 MERKEZDEN DAĞILMA ÖLÇÜLERİ Gözlenen belli bir özelliği, bu özelliğe ilişkin ölçme sonuçlarını yani verileri kullanarak betimleme, istatistiksel işlemlerin bir boyutunu oluşturmaktadır. Temel

Detaylı

RASSAL DEĞİŞKENLER VE OLASILIK DAĞILIMLARI. Yrd. Doç. Dr. Emre ATILGAN

RASSAL DEĞİŞKENLER VE OLASILIK DAĞILIMLARI. Yrd. Doç. Dr. Emre ATILGAN RASSAL DEĞİŞKENLER VE OLASILIK DAĞILIMLARI Yrd. Doç. Dr. Emre ATILGAN 1 RASSAL DEĞİŞKENLER VE OLASILIK DAĞILIMLARI Olasılığa ilişkin olayların çoğunluğunda, deneme sonuçlarının bir veya birkaç yönden incelenmesi

Detaylı

Temel İstatistik. Y.Doç.Dr. İbrahim Turan Mart Tanımlayıcı İstatistik. Dağılımları Tanımlayıcı Ölçüler Dağılış Ölçüleri

Temel İstatistik. Y.Doç.Dr. İbrahim Turan Mart Tanımlayıcı İstatistik. Dağılımları Tanımlayıcı Ölçüler Dağılış Ölçüleri Temel İstatistik Tanımlayıcı İstatistik Dağılımları Tanımlayıcı Ölçüler Dağılış Ölçüleri Y.Doç.Dr. İbrahim Turan Mart 2011 DAĞILIM / YAYGINLIK ÖLÇÜLERİ Verilerin değişkenlik durumu ve dağılışın şeklini

Detaylı

Web Madenciliği (Web Mining)

Web Madenciliği (Web Mining) Web Madenciliği (Web Mining) Hazırlayan: M. Ali Akcayol Gazi Üniversitesi Bilgisayar Mühendisliği Bölümü Konular Birliktelik Kuralları Birliktelik Kurallarının Temelleri Support ve Confidence Apriori Algoritması

Detaylı

Gerçek uygulamalarda, standart normal olmayan sürekli bir rassal. değişken, sıfırdan farklı bir ortalama ve birden farklı standart sapma

Gerçek uygulamalarda, standart normal olmayan sürekli bir rassal. değişken, sıfırdan farklı bir ortalama ve birden farklı standart sapma 2 13.1 Normal Dağılımın Standartlaştırılması Gerçek uygulamalarda, standart normal olmayan sürekli bir rassal değişken, sıfırdan farklı bir ortalama ve birden farklı standart sapma değerleriyle normal

Detaylı

Zaman Serileri-1. If you have to forecast, forecast often. EDGAR R. FIEDLER, American economist. IENG 481 Tahmin Yöntemleri Dr.

Zaman Serileri-1. If you have to forecast, forecast often. EDGAR R. FIEDLER, American economist. IENG 481 Tahmin Yöntemleri Dr. Zaman Serileri-1 If you have to forecast, forecast often. EDGAR R. FIEDLER, American economist IENG 481 Tahmin Yöntemleri Dr. Hacer Güner Gören Zaman Serisi nedir? Kronolojik sırayla elde edilen verilere

Detaylı

Mühendislik Mekaniği Statik. Yrd.Doç.Dr. Akın Ataş

Mühendislik Mekaniği Statik. Yrd.Doç.Dr. Akın Ataş Mühendislik Mekaniği Statik Yrd.Doç.Dr. Akın Ataş Bölüm 10 Eylemsizlik Momentleri Kaynak: Mühendislik Mekaniği: Statik, R. C.Hibbeler, S. C. Fan, Çevirenler: A. Soyuçok, Ö. Soyuçok. 10. Eylemsizlik Momentleri

Detaylı

MATEMATİK MÜHENDİSLİĞİ PROGRAMI

MATEMATİK MÜHENDİSLİĞİ PROGRAMI İSTANBUL TEKNİK ÜNİVERSİTESİ FEN EDEBİYAT FAKÜLTESİ MATEMATİK MÜHENDİSLİĞİ PROGRAMI ÖĞRENCİ HARF NOTLARININ K-MEANS KÜMELEME ALGORİTMASI İLE BELİRLENMESİ BİTİRME ÖDEVİ Ece FIRAT 090070026 Tez Danışmanı:

Detaylı

Web Server Sunucu Loglarının K-Komşu Algoritması ile İ ncelenmesi

Web Server Sunucu Loglarının K-Komşu Algoritması ile İ ncelenmesi Web Server Sunucu Loglarının K-Komşu Algoritması ile İ ncelenmesi İçindekiler 1 Özet... 2 2 Giriş... 3 3 Uygulama... 4 4 Sonuçlar... 6 1 1 Özet Web sunucu logları üzerinde veri madenciliği yapmanın temel

Detaylı

MAK 210 SAYISAL ANALİZ

MAK 210 SAYISAL ANALİZ MAK 210 SAYISAL ANALİZ BÖLÜM 5- SONLU FARKLAR VE İNTERPOLASYON TEKNİKLERİ Doç. Dr. Ali Rıza YILDIZ MAK 210 - Sayısal Analiz 1 İNTERPOLASYON Tablo halinde verilen hassas sayısal değerler veya ayrık noktalardan

Detaylı

Makine Öğrenmesi 3. hafta

Makine Öğrenmesi 3. hafta Makine Öğrenmesi 3. hafta Entropi Karar Ağaçları (Desicion Trees) ID3 C4.5 Sınıflandırma ve Regresyon Ağaçları (CART) Karar Ağacı Nedir? Temel fikir, giriş verisinin bir kümeleme algoritması yardımıyla

Detaylı

0.04.03 Standart Hata İstatistikte hesaplanan her istatistik değerin mutlaka hatası da hesaplanmalıdır. Çünkü hesaplanan istatistikler, tahmini bir değer olduğu için mutlaka hataları da vardır. Standart

Detaylı

Mühendislikte İstatistik Yöntemler

Mühendislikte İstatistik Yöntemler .0.0 Mühendislikte İstatistik Yöntemler İstatistik Parametreler Tarih Qma.3.98 4..98 0.3.983 45 7..984 37.3.985 48 0.4.986 67.4.987 5 0.3.988 45.5.989 34.3.990 59.4.99 3 4 34 5 37 6 45 7 45 8 48 9 5 0

Detaylı

10.Konu Tam sayıların inşası

10.Konu Tam sayıların inşası 10.Konu Tam sayıların inşası 1. Tam sayılar kümesi 2. Tam sayılar kümesinde toplama ve çarpma 3. Pozitif ve negatif tam sayılar 4. Tam sayılar kümesinde çıkarma 5. Tam sayılar kümesinde sıralama 6. Bir

Detaylı

(a,b) şeklindeki ifadelere sıralı ikili denir. Burada a'ya 1. bileşen b'ye 2. bileşen denir.

(a,b) şeklindeki ifadelere sıralı ikili denir. Burada a'ya 1. bileşen b'ye 2. bileşen denir. BĞANTI - FONKSİYON 1. Sıralı İkili : (a,b) şeklindeki ifadelere sıralı ikili denir. Burada a'ya 1. bileşen b'ye 2. bileşen denir.! (x 1,x 2, x 3,x 4,...x n ) : sıralı n li denir. Örnek, (a,b,c) : sıralı

Detaylı

JEODEZİK AĞLARIN OPTİMİZASYONU

JEODEZİK AĞLARIN OPTİMİZASYONU JEODEZİK AĞLARIN OPTİMİZASYONU Jeodezik Ağların Tasarımı 10.HAFTA Dr.Emine Tanır Kayıkçı,2017 OPTİMİZASYON Herhangi bir yatırımın gerçekleştirilmesi sırasında elde bulunan, araç, hammadde, para, işgücü

Detaylı

DENEY 0. Bölüm 1 - Ölçme ve Hata Hesabı

DENEY 0. Bölüm 1 - Ölçme ve Hata Hesabı DENEY 0 Bölüm 1 - Ölçme ve Hata Hesabı Amaç: Ölçüm metodu ve cihazına bağlı hata ve belirsizlikleri anlamak, fiziksel bir niceliği ölçüp hata ve belirsizlikleri tespit etmek, nedenlerini açıklamak. Genel

Detaylı

Algoritmalar. Çizge Algoritmaları. Bahar 2017 Doç. Dr. Suat Özdemir 1

Algoritmalar. Çizge Algoritmaları. Bahar 2017 Doç. Dr. Suat Özdemir 1 Algoritmalar Çizge Algoritmaları Bahar 201 Doç. Dr. Suat Özdemir 1 En Kısa Yol Problemi Çizgelerdeki bir diğer önemli problem de bir düğümden diğer bir düğüme olan en kısa yolun bulunmasıdır. Bu problem

Detaylı

EŞİTLİK KISITLI TÜREVLİ YÖNTEMLER

EŞİTLİK KISITLI TÜREVLİ YÖNTEMLER EŞİTLİK KISITLI TÜREVLİ YÖNTEMLER LAGRANGE YÖNTEMİ Bu metodu incelemek için Amaç fonksiyonu Min.z= f(x) Kısıtı g(x)=0 olan problemde değişkenler ve kısıtlar genel olarak şeklinde gösterilir. fonksiyonlarının

Detaylı

Verilerin Özetlenmesinde Kullanılan Sayısal Yöntemler

Verilerin Özetlenmesinde Kullanılan Sayısal Yöntemler Verilerin Özetlenmesinde Kullanılan Sayısal Yöntemler Merkezi Eğilim Ölçüleri Merkezi eğilim ölçüsü, bir veri setindeki merkezi, yada tipik, tek bir değeri ifade eder. Nicel veriler için, reel sayı çizgisindeki

Detaylı

9. SINIF Geometri TEMEL GEOMETRİK KAVRAMLAR

9. SINIF Geometri TEMEL GEOMETRİK KAVRAMLAR TEMEL GEOMETRİK KAVRAMLAR 9. SINIF Geometri Amaç-1: Nokta, Doğru, Düzlem, Işın ve Uzayı Kavrayabilme. 1. Nokta, doğru, düzlem ve uzay kavramlarım açıklama. 2. Farklı iki noktadan geçen doğru sayışım söyleme

Detaylı

Zaman Serileri. IENG 481 Tahmin Yöntemleri Dr. Hacer Güner Gören

Zaman Serileri. IENG 481 Tahmin Yöntemleri Dr. Hacer Güner Gören Zaman Serileri IENG 481 Tahmin Yöntemleri Dr. Hacer Güner Gören Zaman Serisi nedir? Kronolojik sırayla elde edilen verilere sahip değișkenlere zaman serisi adı verilmektedir. Genel olarak zaman serisi,

Detaylı

YTÜ İktisat Bölümü EKONOMETRİ I Ders Notları

YTÜ İktisat Bölümü EKONOMETRİ I Ders Notları Yıldız Teknik Üniversitesi İktisat Bölümü Ekonometri I Ders Kitabı: J.M. Wooldridge, Introductory Econometrics A Modern Approach, 2nd. edition, Thomson Learning Appendix C: İstatistiksel Çıkarsama Doç.

Detaylı

Akış YILDIZ TEKNİK ÜNİVERSİTESİ BİLGİSAYAR MÜHENDİSLİĞİ BÖLÜMÜ

Akış YILDIZ TEKNİK ÜNİVERSİTESİ BİLGİSAYAR MÜHENDİSLİĞİ BÖLÜMÜ Akış Makine Öğrenmesi nedir? Günlük Hayatımızdaki Uygulamaları Verilerin Sayısallaştırılması Özellik Belirleme Özellik Seçim Metotları Bilgi Kazancı (Informaiton Gain-IG) Sinyalin Gürültüye Oranı: (S2N

Detaylı

rasgele değişkeninin olasılık yoğunluk fonksiyonu,

rasgele değişkeninin olasılık yoğunluk fonksiyonu, 3.6. Bazı Sürekli Dağılımlar 3.6.1 Normal Dağılım Normal dağılım hem uygulamalı hem de teorik istatistikte kullanılan oldukça önemli bir dağılımdır. Normal dağılımın istatistikte önemli bir yerinin olmasının

Detaylı

Örnek...3 : Aşağıdaki ifadelerden hangileri bir dizinin genel terim i olabilir? Örnek...4 : Genel terimi w n. Örnek...1 : Örnek...5 : Genel terimi r n

Örnek...3 : Aşağıdaki ifadelerden hangileri bir dizinin genel terim i olabilir? Örnek...4 : Genel terimi w n. Örnek...1 : Örnek...5 : Genel terimi r n DİZİLER Tanım kümesi pozitif tam sayılar kümesi olan her fonksiyona dizi denir. Örneğin f : Z + R, f (n )=n 2 ifadesi bir dizi belirtir. Diziler değer kümelerine göre adlandırılırlar. Dizinin değer kümesi

Detaylı

4. HAFTA BLM323 SAYISAL ANALİZ. Okt. Yasin ORTAKCI.

4. HAFTA BLM323 SAYISAL ANALİZ. Okt. Yasin ORTAKCI. 4. HAFTA BLM33 SAYISAL ANALİZ Okt. Yasin ORTAKCI yasinortakci@karabuk.edu.tr Karabük Üniversitesi Uzaktan Eğitim Uygulama ve Araştırma Merkezi BLM33 DOĞRUSAL OLMAYAN (NONLINEAR) DENKLEM SİSTEMLERİ Mühendisliğin

Detaylı

Tedarik Zinciri Yönetiminde Yapay Zeka Teknikler

Tedarik Zinciri Yönetiminde Yapay Zeka Teknikler Tedarik Zinciri Yönetiminde Yapay Zeka Teknikler Doç.Dr.Mehmet Hakan Satman mhsatman@istanbul.edu.tr İstanbul Üniversitesi 2014.10.22 Doç.Dr.Mehmet Hakan Satmanmhsatman@istanbul.edu.tr Tedarik Zinciri

Detaylı

BÜYÜK VERI UYGULAMALARı DERS 3. Doç. Dr. Yuriy Mishchenko

BÜYÜK VERI UYGULAMALARı DERS 3. Doç. Dr. Yuriy Mishchenko 1 BÜYÜK VERI UYGULAMALARı DERS 3 Doç. Dr. Yuriy Mishchenko BÜYÜK VERI ÇERÇEVESI Mevcut, genel biçim ve çeşitli veriler Bir genel veri modelleme yaklaşımı SAKLI İLİŞKİLER İş kararları MAKİNE ÖĞRENME 2 BÜYÜK

Detaylı

Veriye Dayalı Karar Verme (Bölüm 2) Can Akkan

Veriye Dayalı Karar Verme (Bölüm 2) Can Akkan Veriye Dayalı Karar Verme (Bölüm 2) Can Akkan 1 Ders Planı 1. Karar Problemleri i. Karar problemlerinin bileşenleri ii. Değerler, amaçlar, bağlam iii. Etki diagramları 2. Model Girdilerinde Belirsizlik

Detaylı

Fonksiyon Optimizasyonunda Genetik Algoritmalar

Fonksiyon Optimizasyonunda Genetik Algoritmalar 01-12-06 Ümit Akıncı Fonksiyon Optimizasyonunda Genetik Algoritmalar 1 Fonksiyon Optimizasyonu Fonksiyon optimizasyonu fizikte karşımıza sık çıkan bir problemdir. Örneğin incelenen sistemin kararlı durumu

Detaylı

Büyük Veri Analitiği (Big Data Analytics)

Büyük Veri Analitiği (Big Data Analytics) Büyük Veri Analitiği (Big Data Analytics) M. Ali Akcayol Gazi Üniversitesi Bilgisayar Mühendisliği Bölümü Bu dersin sunumları, Mining of Massive Datasets, Jure Leskovec, Anand Rajaraman, Jeffrey David

Detaylı

Bölüm 3. Tanımlayıcı İstatistikler

Bölüm 3. Tanımlayıcı İstatistikler Bölüm 3 Tanımlayıcı İstatistikler 1 Tanımlayıcı İstatistikler Bir veri setini tanımak veya birden fazla veri setini karşılaştırmak için kullanılan ve ayrıca örnek verilerinden hareket ile frekans dağılışlarını

Detaylı

Bu tanım aralığı pozitif tam sayılar olan f(n) fonksiyonunun değişim aralığı n= 1, 2, 3,, n,

Bu tanım aralığı pozitif tam sayılar olan f(n) fonksiyonunun değişim aralığı n= 1, 2, 3,, n, DİZİLER Tamamen belirli bir kurala göre sıralanmış sayılar topluluğuna veya kümeye Dizi denir. Belirli bir kurala göre birbiri ardınca gelen bu sayıların her birine dizinin terimi ve hepsine birden dizinin

Detaylı

BÖLÜM 5 MERKEZİ EĞİLİM ÖLÇÜLERİ

BÖLÜM 5 MERKEZİ EĞİLİM ÖLÇÜLERİ 1 BÖLÜM 5 MERKEZİ EĞİLİM ÖLÇÜLERİ Gözlenen belli bir özelliği, bu özelliğe ilişkin ölçme sonuçlarını yani verileri kullanarak betimleme, istatistiksel işlemlerin bir boyutunu oluşturmaktadır. Temel sayma

Detaylı

Zeki Optimizasyon Teknikleri

Zeki Optimizasyon Teknikleri Zeki Optimizasyon Teknikleri Tabu Arama (Tabu Search) Doç.Dr. M. Ali Akcayol Tabu Arama 1986 yılında Glover tarafından geliştirilmiştir. Lokal minimum u elimine edebilir ve global minimum u bulur. Değerlendirme

Detaylı

MAK 210 SAYISAL ANALİZ

MAK 210 SAYISAL ANALİZ MAK 210 SAYISAL ANALİZ BÖLÜM 6- İSTATİSTİK VE REGRESYON ANALİZİ Doç. Dr. Ali Rıza YILDIZ 1 İSTATİSTİK VE REGRESYON ANALİZİ Bütün noktalardan geçen bir denklem bulmak yerine noktaları temsil eden, yani

Detaylı

Üç Boyutlu Serpilme (Saçılım) Grafikleri

Üç Boyutlu Serpilme (Saçılım) Grafikleri Üç Boyutlu Serpilme (Saçılım) Grafikleri 3D Scatterplot of boy vs kol vs bacak 90 boy 0 70 0 90 70 00 0 bacak 0 0 90 kol 3D Scatterplot of kol vs omuz vs kalca 90 kol 0 70 00 kalca 0 0 0 0 00 omuz Merkez

Detaylı

VERİ KÜMELERİNİ BETİMLEME

VERİ KÜMELERİNİ BETİMLEME BETİMLEYİCİ İSTATİSTİK VERİ KÜMELERİNİ BETİMLEME Bir amaç için derlenen verilerin tamamının olduğu, veri kümesindeki birimlerin sayısal değerlerinden faydalanarak açık ve net bir şekilde ilgilenilen özellik

Detaylı

Konular. VERİ MADENCİLİĞİ Veri Önişleme. Değer Kümeleri. Veri Nedir? Nitelik Türleri. Konular. Veri Veri Önişleme Benzerlik ve farklılık

Konular. VERİ MADENCİLİĞİ Veri Önişleme. Değer Kümeleri. Veri Nedir? Nitelik Türleri. Konular. Veri Veri Önişleme Benzerlik ve farklılık 0 VERİ MADENCİLİĞİ Veri Önişleme Yrd. Doç. Dr. Şule Gündüz Öğüdücü Veri Nedir? nesneler ve nesnelerin niteliklerinden oluşan küme kayıt (record), varlık (entity), örnek (sample, instance) nesne için kullanılabilir.

Detaylı

İNŞAAT MÜHENDİSLİĞİ BÖLÜMÜ ÖĞRENCİLERİNİN BAŞARI NOTLARININ DEĞERLENDİRİLMESİ. Tamer Yılmaz, Barış Yılmaz, Halim Sezici 1 ÖZET

İNŞAAT MÜHENDİSLİĞİ BÖLÜMÜ ÖĞRENCİLERİNİN BAŞARI NOTLARININ DEĞERLENDİRİLMESİ. Tamer Yılmaz, Barış Yılmaz, Halim Sezici 1 ÖZET İNŞAAT MÜHENDİSLİĞİ BÖLÜMÜ ÖĞRENCİLERİNİN BAŞARI NOTLARININ DEĞERLENDİRİLMESİ Tamer Yılmaz, Barış Yılmaz, Halim Sezici 1 ÖZET Bu çalışmada, Celal Bayar Üniversitesi İnşaat Mühendisliği Bölümü öğrencilerinin

Detaylı

Veri Madenciliği Yaklaşımı ile Mesleki Yönlendirme Sistemi

Veri Madenciliği Yaklaşımı ile Mesleki Yönlendirme Sistemi Veri Madenciliği Yaklaşımı ile Mesleki Yönlendirme Sistemi YRD. DOÇ. DR. HÜSEYİN GÜRÜLER MUĞLA SITKI KOÇMAN ÜNİVERSİTESİ, TEKNOLOJİ FAKÜLTESİ, BİLİŞİM SİSTEMLERİ MÜHENDİSLİĞİ Meslek Seçimi Meslek Seçimi

Detaylı

Kümeleme Tekniklerinin Temel Bilimlerde Kullanımı

Kümeleme Tekniklerinin Temel Bilimlerde Kullanımı Akademik Bilişim 2013 Akdeniz Üniversitesi, Antalya, 23-25 Ocak 2013 Kümeleme Tekniklerinin Temel Bilimlerde Kullanımı Oğuz Akpolat 1 *, Sinem Çağlar Odabaş 2, Gülçin Özevci 3, Nezahat İpteş 4 1 Muğla

Detaylı

BİL-142 Bilgisayar Programlama II

BİL-142 Bilgisayar Programlama II BİL-142 Bilgisayar Programlama II (C/C++) Hazırlayan: M.Ali Akcayol Gazi Üniversitesi Bilgisayar Mühendisliği Bölümü Konular Giriş math Kütüphane Fonksiyonları Çok Parametreyle Fonksiyon Tanımı Fonksiyon

Detaylı

7.2 Fonksiyon ve Fonksiyon Tanımları (I) Fonksiyon ve Fonksiyon Tanımları (II)

7.2 Fonksiyon ve Fonksiyon Tanımları (I) Fonksiyon ve Fonksiyon Tanımları (II) 7.2 Fonksiyon ve Fonksiyon Tanımları (I) Tanım kümesindeki her elemanın değer kümesinde bir ve yalnız bir görüntüsü varsa, tanım kümesinden değer kümesine olan bağıntıya fonksiyon denir. Fonksiyonu f ile

Detaylı

SÜREKLİ OLASILIK DAĞILIŞLARI

SÜREKLİ OLASILIK DAĞILIŞLARI SÜREKLİ OLASILIK DAĞILIŞLARI Sürekli verilerin göstermiş olduğu dağılışa sürekli olasılık dağılışı denir. Sürekli olasılık dağılışlarının fonksiyonlarına yoğunluk fonksiyonu denilmekte ve bu dağılışlarla

Detaylı

Kaynak: A. İŞLİER, TESİS PLANLAMASI, 1997

Kaynak: A. İŞLİER, TESİS PLANLAMASI, 1997 Mühendislik Fakültesi Endüstri Mühendisliği Bölümü Doç. Dr. Nil ARAS ENM411 Tesis Planlaması 2016-2017 Güz Dönemi Kaynak: A. İŞLİER, TESİS PLANLAMASI, 1997 2 Tesis Yer Seçimi Problemi (TYSP) TEK AMAÇLI

Detaylı

ALGORİTMA ANALİZİ. Cumhuriyet Üniversitesi Bilgisayar Mühendisliği Bölümü

ALGORİTMA ANALİZİ. Cumhuriyet Üniversitesi Bilgisayar Mühendisliği Bölümü ALGORİTMA ANALİZİ Cumhuriyet Üniversitesi Bilgisayar Mühendisliği Bölümü 2 Temel Kavramlar Algoritma: Bir problemin çözümünü belirli bir zamanda çözmek için sonlu sayıdaki adım-adım birbirini takip eden

Detaylı

İstatistik ve Olasılığa Giriş. İstatistik ve Olasılığa Giriş. Ders 3 Verileri Sayısal Ölçütlerle İfade Etme. Verileri Sayısal Ölçütlerle İfade Etme

İstatistik ve Olasılığa Giriş. İstatistik ve Olasılığa Giriş. Ders 3 Verileri Sayısal Ölçütlerle İfade Etme. Verileri Sayısal Ölçütlerle İfade Etme İstatistik ve Olasılığa Giriş Robert J. Beaver Barbara M. Beaver William Mendenhall Presentation designed and written by: Barbara M. Beaver İstatistik ve Olasılığa Giriş Ders 3 Verileri Sayısal Ölçütlerle

Detaylı

MÜHENDİSLİK ÖLÇMELERİ UYGULAMASI (HRT4362) 8. Yarıyıl

MÜHENDİSLİK ÖLÇMELERİ UYGULAMASI (HRT4362) 8. Yarıyıl İnşaat Fakültesi Harita Mühendisliği Bölümü Ölçme Tekniği Anabilim Dalı MÜHENDİSLİK ÖLÇMELERİ UYGULAMASI (HRT4362) 8. Yarıyıl D U L K Kredi 2 0 2 3 ECTS 2 0 2 3 UYGULAMA-1 ELEKTRONİK ALETLERİN KALİBRASYONU

Detaylı

Büyük Veri Analitiği (Big Data Analytics)

Büyük Veri Analitiği (Big Data Analytics) Büyük Veri Analitiği (Big Data Analytics) M. Ali Akcayol Gazi Üniversitesi Bilgisayar Mühendisliği Bölümü Bu dersin sunumları, Mining of Massive Datasets, Jure Leskovec, Anand Rajaraman, Jeffrey David

Detaylı

KABA KÜME TEORİSİ (Rough Set Theory) Dr. Sedat TELÇEKEN

KABA KÜME TEORİSİ (Rough Set Theory) Dr. Sedat TELÇEKEN KABA KÜME TEORİSİ (Rough Set Theory) Dr. Sedat TELÇEKEN Giriş Bilgi teknolojisindeki gelişmeler ve verilerin dijital ortamda saklanmaya başlanması ile yeryüzündeki bilgi miktarı her 20 ayda iki katına

Detaylı

Özyineleme (Recursion)

Özyineleme (Recursion) Özyineleme tanımlamaları Özyineleme çağırma Tail özyineleme Nontail özyineleme Dolaylı (Indirect) özyineleme İçiçe (Nested) özyineleme Yrd.Doç.Dr. M. Ali Akcayol Kendi kendisini doğrudan veya dolaylı olarak

Detaylı

VERİ MADENCİLİĞİ. Karar Ağacı Algoritmaları: SPRINT algoritması Öğr.Gör.İnan ÜNAL

VERİ MADENCİLİĞİ. Karar Ağacı Algoritmaları: SPRINT algoritması Öğr.Gör.İnan ÜNAL VERİ MADENCİLİĞİ Karar Ağacı Algoritmaları: SPRINT algoritması Öğr.Gör.İnan ÜNAL SPRINT Algoritması ID3,CART, ve C4.5 gibi algoritmalar önce derinlik ilkesine göre çalışırlar ve en iyi dallara ayırma kriterine

Detaylı

İKİNCİ DERECEDEN BİR BİLİNMEYENLİ DENKLEMLER,, olmak üzere 2. ÜNİTE. İKİNCİ DERECEDEN DENKLEMLER, EŞİTSİZLİKLER ve FONKSİYONLAR

İKİNCİ DERECEDEN BİR BİLİNMEYENLİ DENKLEMLER,, olmak üzere 2. ÜNİTE. İKİNCİ DERECEDEN DENKLEMLER, EŞİTSİZLİKLER ve FONKSİYONLAR - 1-2 ÜNİTE İKİNCİ DERECEDEN DENKLEMLER, EŞİTSİZLİKLER ve FONKSİYONLAR ÖĞRENME ALANI CEBİR İKİNCİ DERECEDEN BİR BİLİNMEYENLİ DENKLEMLER,, olmak üzere Şeklindeki açık önermelere, ikinci dereceden bir bilinmeyenli

Detaylı

Büyük Veri ve Endüstri Mühendisliği

Büyük Veri ve Endüstri Mühendisliği Büyük Veri ve Endüstri Mühendisliği Mustafa Gökçe Baydoğan Endüstri Mühendisliği Bölümü Boğaziçi Üniversitesi İstanbul Yöneylem Araştırması/Endüstri Mühendisliği Doktora Öğrencileri Kolokyumu 21-22 Nisan

Detaylı

HSancak Nesne Tabanlı Programlama I Ders Notları

HSancak Nesne Tabanlı Programlama I Ders Notları DİZİLER Bellekte ard arda yer alan aynı türden nesneler kümesine dizi (array) denilir. Bir dizi içerisindeki bütün elemanlara aynı isimle ulaşılır. Yani dizideki bütün elemanların isimleri ortaktır. Elemanlar

Detaylı

Yapay Sinir Ağları ile Web İçeriklerini Sınıflandırma. Yazarlar: Esra Nergis Güven, Hakan Onur ve Şeref Sağıroğlu. Sunan : Esra Nergis Güven

Yapay Sinir Ağları ile Web İçeriklerini Sınıflandırma. Yazarlar: Esra Nergis Güven, Hakan Onur ve Şeref Sağıroğlu. Sunan : Esra Nergis Güven Yapay Sinir Ağları ile Web İçeriklerini Sınıflandırma Yazarlar: Esra Nergis Güven, Hakan Onur ve Şeref Sağıroğlu Sunan : Esra Nergis Güven İçerik Giriş Amaç ve Kapsam Sınıflandırma Geliştirilen Sistem

Detaylı

Veri Yapıları. Öğr.Gör.Günay TEMÜR Düzce Üniversitesi Teknolojis Fakültesi

Veri Yapıları. Öğr.Gör.Günay TEMÜR Düzce Üniversitesi Teknolojis Fakültesi Veri Yapıları Öğr.Gör.Günay TEMÜR Düzce Üniversitesi Teknolojis Fakültesi Hash Tabloları ve Fonksiyonları Giriş Hash Tabloları Hash Fonksiyonu Çakışma (Collision) Ayrık Zincirleme Çözümü Linear Probing

Detaylı

VERİ MADENCİLİĞİ VE SOSYAL AĞ ANALİZİ ARAŞTIRMA LABORATUVARI

VERİ MADENCİLİĞİ VE SOSYAL AĞ ANALİZİ ARAŞTIRMA LABORATUVARI BİLGİSAYAR MÜHENDİSLİĞİ BÖLÜMÜ VERİ MADENCİLİĞİ VE SOSYAL AĞ ANALİZİ ARAŞTIRMA LABORATUVARI 10 Aralık 2011, Cumartesi Fen ve Mühendislik Alanlarındaki Çeşitli Araştırma Projelerinden Örneklemeler İçerik

Detaylı

Cebir Notları. Gökhan DEMĐR, ÖRNEK : A ve A x A nın bir alt kümesinden A ya her fonksiyona

Cebir Notları. Gökhan DEMĐR, ÖRNEK : A ve A x A nın bir alt kümesinden A ya her fonksiyona , 2006 MC Cebir Notları Gökhan DEMĐR, gdemir23@yahoo.com.tr Đşlem ĐŞLEM A ve A x A nın bir alt kümesinden A ya her fonksiyona ikili işlem denir. Örneğin toplama, çıkarma, çarpma birer işlemdir. Đşlemler

Detaylı

İş Analitiği'ne Netezza ile Yüksek Performans Katın

İş Analitiği'ne Netezza ile Yüksek Performans Katın İş Analitiği'ne Netezza ile Yüksek Performans Katın Umut ŞATIR İleri Analitik Çözüm Mimarı 2012 IBM Corporation Netezza and IBM Business Analytics Baştan sona bir İş Analitiği çözümü Performans Kolaylık

Detaylı

VERİ MADENCİLİĞİ (Veri Önişleme-1) Yrd.Doç.Dr. Kadriye ERGÜN

VERİ MADENCİLİĞİ (Veri Önişleme-1) Yrd.Doç.Dr. Kadriye ERGÜN VERİ MADENCİLİĞİ (Veri Önişleme-1) Yrd.Doç.Dr. Kadriye ERGÜN kergun@balikesir.edu.tr Genel İçerik Veri Madenciliğine Giriş Veri Madenciliğinin Adımları Veri Madenciliği Yöntemleri Sınıflandırma Kümeleme

Detaylı

VERİ MADENCİLİĞİNDE NESNE YÖNELİMLİ BİRLEŞTİRİCİ HİYERARŞİK KÜMELEME MODELİ

VERİ MADENCİLİĞİNDE NESNE YÖNELİMLİ BİRLEŞTİRİCİ HİYERARŞİK KÜMELEME MODELİ Gazi Üniv. Müh. Mim. Fak. Der. J. Fac. Eng. Arch. Gazi Univ. Cilt 26, No 1, 27-39, 2011 Vol 26, No 1, 27-39, 2011 VERİ MADENCİLİĞİNDE NESNE YÖNELİMLİ BİRLEŞTİRİCİ HİYERARŞİK KÜMELEME MODELİ Mehmet YEŞİLBUDAK*,

Detaylı

VEKTÖR UZAYLARI 1.GİRİŞ

VEKTÖR UZAYLARI 1.GİRİŞ 1.GİRİŞ Bu bölüm lineer cebirin temelindeki cebirsel yapıya, sonlu boyutlu vektör uzayına giriş yapmaktadır. Bir vektör uzayının tanımı, elemanları skalar olarak adlandırılan herhangi bir cisim içerir.

Detaylı

Zeki Optimizasyon Teknikleri

Zeki Optimizasyon Teknikleri Zeki Optimizasyon Teknikleri Yapay Sinir Ağları (Artificial Neural Network) Doç.Dr. M. Ali Akcayol Yapay Sinir Ağları Biyolojik sinir sisteminden esinlenerek ortaya çıkmıştır. İnsan beyninin öğrenme, eski

Detaylı

ORTALAMA ÖLÇÜLERİ. Ünite 6. Öğr. Gör. Ali Onur CERRAH

ORTALAMA ÖLÇÜLERİ. Ünite 6. Öğr. Gör. Ali Onur CERRAH ORTALAMA ÖLÇÜLERİ Ünite 6 Öğr. Gör. Ali Onur CERRAH Araştırma sonucunda elde edilen nitelik değişkenler hakkında tablo ve grafikle bilgi sahibi olunurken, sayısal değişkenler hakkında bilgi sahibi olmanın

Detaylı

Kural Motoru. www.paperwork.com.tr

Kural Motoru. www.paperwork.com.tr Kural Motoru www.paperwork.com.tr İş Kuralı Örnekleri Aşağıda iş kurallarına çeşitli örnekler verilmiştir; : İş Kuralı Nedir? T üm işletmeler kural merkezli çalışırlar. Kurallar hangi fırsatların takip

Detaylı

Genetik Algoritmalar. Bölüm 1. Optimizasyon. Yrd. Doç. Dr. Adem Tuncer E-posta:

Genetik Algoritmalar. Bölüm 1. Optimizasyon. Yrd. Doç. Dr. Adem Tuncer E-posta: Genetik Algoritmalar Bölüm 1 Optimizasyon Yrd. Doç. Dr. Adem Tuncer E-posta: adem.tuncer@yalova.edu.tr Optimizasyon? Optimizasyon Nedir? Eldeki kısıtlı kaynakları en iyi biçimde kullanmak olarak tanımlanabilir.

Detaylı

BİYOİSTATİSTİK Merkezi Eğilim ve Değişim Ölçüleri Yrd. Doç. Dr. Aslı SUNER KARAKÜLAH

BİYOİSTATİSTİK Merkezi Eğilim ve Değişim Ölçüleri Yrd. Doç. Dr. Aslı SUNER KARAKÜLAH BİYOİSTATİSTİK Merkezi Eğilim ve Değişim Ölçüleri Yrd. Doç. Dr. Aslı SUNER KARAKÜLAH Ege Üniversitesi, Tıp Fakültesi, Biyoistatistik ve Tıbbi Bilişim AD. Web: www.biyoistatistik.med.ege.edu.tr 1 İstatistik

Detaylı

Matris Cebiriyle Çoklu Regresyon Modeli

Matris Cebiriyle Çoklu Regresyon Modeli Matris Cebiriyle Çoklu Regresyon Modeli Hüseyin Taştan Mart 00 Klasik Regresyon Modeli k açıklayıcı değişkenden oluşan regresyon modelini her gözlem i için aşağıdaki gibi yazabiliriz: y i β + β x i + β

Detaylı