bitık MOBİL TİCARET UYGULAMASI ABDULLAH ÇİÇEKCİ

Ebat: px
Şu sayfadan göstermeyi başlat:

Download "bitık MOBİL TİCARET UYGULAMASI ABDULLAH ÇİÇEKCİ"

Transkript

1 bitık MOBİL TİCARET UYGULAMASI ABDULLAH ÇİÇEKCİ

2 İÇERİK Uygulama ve uygulamaya ilişkin temel kavramların tanıtımı Uygulamanın yapısı Ön yüz Veritabanı Web Servisler K-Means Algoritması ile kategori önerisi ve sonuçları J48 Algoritması ile kategori önerisi ve sonuçları Sonuç Uygulama Demosu

3 E-TİCARET VE MOBİL TİCARET Ticaretin elektronik ortamda yapılan versiyonu Mobil ticaret, e-ticaretin alt dalı Mobil cihazlar büyük bir hızla yayılmakta, mobil ticaretin ağırlığı artmakta Sürekli gelişen ilgi çekici bir alan

4 ÖNERİ SİSTEMLERİ Kullanıcıların ilgilenebilecekleri ürün veya her hangi bir nesneyi(film, müzik..) bulan ve öneren sistemlerdir. Genelde, çeşitli makina öğrenmesi algoritmaları kullanılır. amazon, ebay, gittigidiyor vs. Kullanıcı tabanlı, ürün tabanlı ve hibrit sistemler

5 bitık bitık ios tabanlı bir mobil ticaret uygulamasıdır. Kullanıcılara her gün, tek bir ürün önerisi yaparak, kolayca satın alma imkanı sunar. Kullanıcıların; yaş, cinsiyet, meslek, evlilik durumu ve yaşadığı şehir bilgilerini kullanarak, kullanıcılara 7 farklı kategoriden birini, kümeleme veya sınıflandırma algoritmalarını kullanarak kullanıcı tabanlı bir öneri sistemi ile önerir. Uygulama 3 ana başlık altında incelenecektir ; ön yüz, veri tabanı ve servisler.

6 1-ÖN YÜZ ios için Iphone 6 standartlarına göre hazırlanmıştır. Olabildiğince sade bir tasarım hazırlanmıştır.

7 1-ÖN YÜZ

8 1-ÖN YÜZ

9 2 - VERİTABANI customer, product, ordert en temel tablolar. product tablosundaki rating sütunu ürünlerin önceliğini belirlemek için kullanılmıştır. categoryrecom tablosu, öneri servislerinden gelen, kullanıcıya uygun kategorileri tutar. Bu kategorilerin kullanıcıya kaç kere gösterildiği count sütununda saklanır. productrecom tablosu kullanıcılara önerilen ürünleri tutar. Bu ürünlerin kullanıcıya kaç kere gösterildiği count sütununda saklanır.

10 3 - WEB SERVİSLER Uygulamadaki web servisler iki alt başlık altında incelenecektir : Veritabanı Servisleri Öneri Servisleri

11 3.A. VERİTABANI SERVİSLERİ Veritabanı işlemlerini düzenleyen servislerdir. Klasik CRUD işlemleri bu servisler aracılığıyla halledilir. Veritabanına erişim sadece bu servislerde mevcut. Category, Customer, Order, Payment ve Product tabloları için ayrı ayrı servisler mevcut.

12 3.B. ÖNERİ SERVİSLERİ 2 tane öneri sistemi mevcut; J48 algoritmasını kullanan ve K-Means Algoritmasını kullanan. Makina öğrenmesi algoritmaları(k-means ve J48) için WEKA kütüphanesi kullanılmıştır. HTTP routing için RestEasy kullanılmıştır. Öneri sistemi için veri kümesi yapay olarak oluşturulmuştur. 999 tane yapay veri kullanılmıştır.

13 VERİ KÜMESİ DAĞILIMI Kullanıcı yaş dağılımı Kullanıcı şehir dağılımı

14 VERİ KÜMESİ DAĞILIMI Kullanıcı cinsiyet dağılımı Kullanıcı evlilik durumu dağılımı Kullanıcı meslek dağılımı

15 K-MEANS ALGORİTMASI Denetimsiz(Unsupervised) kümeleme algoritmasıdır. Küme sayısı(k) belirlenir. Uygulamada küme sayısını belirlemek için baş parmak kuralı(rule of thumb) kullanılmıştır. Baş parmak yöntemi :

16 K-MEANS ALGORİTMASI İLE KATEGORİ ÖNERİSİ Yapay veri kümesi kullanılarak, kümeler oluşturulur. Öneri yapılacak kullanıcının profil bilgileri (yaş, cinsiyet, şehir, evlilik durumu ve meslek bilgisi) K-Means servisine gönderilir. Gelen bilgilerle bir Weka Instance objesi oluşturulur. Bu örnek, Weka nın SimpleKMeans sınıfının clusterinstance() metotu ile kümelenir. Örnek hangi kümeye girdiyse, kümenin merkezindeki örnek seçilir ve bu merkez örneğin beğenileri seçilir. JSON formatında 7 kategori için, true ve false değerine sahip olacak şekilde cevap oluşturulur.

17 K-MEANS SONUÇLARI Kümeleme algoritması, denetimsiz(unsupervised) olduğu için, başarısı küme sayısı(k) nın optimum değerinin bulunmasıyla ilişkilidir. k = 22, başparmak yöntemine göre optimum küme sayısıdır. k = 22 den sonra toplam karesel hatanın azalma hızı düşmektedir.

18 J48 ALGORİTMASI Denetimli(Supervised), sınıflandırma algoritmasıdır. Shannon entropisi kullanılarak ikili (binary) karar ağacı oluşturur. Shannon entropisi, hangi düğümün daha fazla bilgi taşıdığını hesaplamak için kullanılır.

19 J48 ALGORİTMASI İLE KATEGORİ ÖNERİSİ Uygulamada her kategori için, yapay olarak oluşturulan verilerle ayrı ayrı karar ağaçları oluşturulur. ( 7 farklı kategori için 7 farklı karar ağacı) Eğer karar ağaçları daha önce oluşturulduysa, model dosyaları açılır. Öneri yapılacak kullanıcının profil bilgileri (yaş, cinsiyet, şehir, evlilik durumu ve meslek bilgisi) J48 servisine gönderilir. Gelen bilgilerle bir Weka Instance objesi oluşturulur. Bu örnek, her kategorinin ağacında işleme sokulur. Örnek, her kategori için true ve false yaprağından birine ulaşır. JSON formatında 7 kategori için, true ve false değerine sahip olacak şekilde cevap oluşturulur.

20 J48 SONUÇLARI Çapraz değerlendirme(cross Validation) metotu kullanılmıştır.

21 SONUÇ ios tabanlı bir mobil ticaret uygulaması hazırlanmıştır. Çok platformlu olması için web servisler hazırlanmıştır. WEKA Makine öğrenmesi kütüphanesi kullanılarak öneri sistemi hazırlanmıştır. Makul sonuçlar elde edilmiştir.

22 SON Beni dinlediğiniz için teşekkür ederim.

AKILLI TATIL PLANLAMA SISTEMI

AKILLI TATIL PLANLAMA SISTEMI AKILLI TATIL PLANLAMA SISTEMI Istanbul Teknik Üniversitesi Bilgisayar ve Bilişim Fakültesi Bitirme Ödevi Ali Mert Taşkın taskinal@itu.edu.tr Doç. Dr. Feza Buzluca buzluca@itu.edu.tr Ocak 2017 İçerik Giriş

Detaylı

Web Madenciliği (Web Mining)

Web Madenciliği (Web Mining) Web Madenciliği (Web Mining) Hazırlayan: M. Ali Akcayol Gazi Üniversitesi Bilgisayar Mühendisliği Bölümü Konular Denetimli Öğrenmenin Temelleri Karar Ağaçları Entropi ID3 Algoritması C4.5 Algoritması Twoing

Detaylı

VERİ MADENCİLİĞİ (Karar Ağaçları ile Sınıflandırma) Yrd.Doç.Dr. Kadriye ERGÜN

VERİ MADENCİLİĞİ (Karar Ağaçları ile Sınıflandırma) Yrd.Doç.Dr. Kadriye ERGÜN VERİ MADENCİLİĞİ (Karar Ağaçları ile Sınıflandırma) Yrd.Doç.Dr. Kadriye ERGÜN kergun@balikesir.edu.tr İçerik Sınıflandırma yöntemleri Karar ağaçları ile sınıflandırma Entropi Kavramı ID3 Algoritması C4.5

Detaylı

VERİ MADENCİLİĞİ (Karar Ağaçları ile Sınıflandırma) Yrd.Doç.Dr. Kadriye ERGÜN

VERİ MADENCİLİĞİ (Karar Ağaçları ile Sınıflandırma) Yrd.Doç.Dr. Kadriye ERGÜN VERİ MADENCİLİĞİ (Karar Ağaçları ile Sınıflandırma) Yrd.Doç.Dr. Kadriye ERGÜN kergun@balikesir.edu.tr Genel İçerik Veri Madenciliğine Giriş Veri Madenciliğinin Adımları Veri Madenciliği Yöntemleri Sınıflandırma

Detaylı

Web Madenciliği (Web Mining)

Web Madenciliği (Web Mining) Web Madenciliği (Web Mining) Hazırlayan: M. Ali Akcayol Gazi Üniversitesi Bilgisayar Mühendisliği Bölümü Konular Denetimsiz Öğrenmenin Temelleri Kümeleme Uzaklık Fonksiyonları Öklid Uzaklığı Manhattan

Detaylı

Veri Tabanı, Veri Ambarı, Veri Madenciliği. Veri Madenciliği Uygulama Alanları

Veri Tabanı, Veri Ambarı, Veri Madenciliği. Veri Madenciliği Uygulama Alanları 1 Veri Tabanı, Veri Ambarı, Veri Madenciliği Bilgi Keşfi Aşamaları Apriori Algoritması Veri Madenciliği Yöntemleri Problemler Veri Madenciliği Uygulama Alanları 2 Bir bilgisayarda sistematik şekilde saklanmış,

Detaylı

127 - Twoing Algoritması ile Sınıflandırma Kalp Hastalığı Uygulaması MEHMET AKİF ERSOY ÜNİVERSİTESİ İLHAN UYSAL MEHMET BİLEN SAMİ ULUKUŞ

127 - Twoing Algoritması ile Sınıflandırma Kalp Hastalığı Uygulaması MEHMET AKİF ERSOY ÜNİVERSİTESİ İLHAN UYSAL MEHMET BİLEN SAMİ ULUKUŞ 127 - Twoing Algoritması ile Sınıflandırma Kalp Hastalığı Uygulaması MEHMET AKİF ERSOY ÜNİVERSİTESİ İLHAN UYSAL MEHMET BİLEN SAMİ ULUKUŞ Veri Madenciliği : Bir sistemin veri madenciliği sistemi olabilmesi

Detaylı

Veri Madenciliği Yaklaşımı ile Mesleki Yönlendirme Sistemi

Veri Madenciliği Yaklaşımı ile Mesleki Yönlendirme Sistemi Veri Madenciliği Yaklaşımı ile Mesleki Yönlendirme Sistemi YRD. DOÇ. DR. HÜSEYİN GÜRÜLER MUĞLA SITKI KOÇMAN ÜNİVERSİTESİ, TEKNOLOJİ FAKÜLTESİ, BİLİŞİM SİSTEMLERİ MÜHENDİSLİĞİ Meslek Seçimi Meslek Seçimi

Detaylı

Veri Madenciliği Karar Ağacı Oluşturma

Veri Madenciliği Karar Ağacı Oluşturma C4.5 Algoritması Veri Madenciliği Karar Ağacı Oluşturma Murat TEZGİDER 1 C4.5 Algoritması ID3 algoritmasını geliştiren Quinlan ın geliştirdiği C4.5 karar ağacı oluşturma algoritmasıdır. ID3 algoritmasında

Detaylı

YAPAY BAĞIŞIKLIK SİSTEMİ. Arş. Gör. Burcu ÇARKLI YAVUZ

YAPAY BAĞIŞIKLIK SİSTEMİ. Arş. Gör. Burcu ÇARKLI YAVUZ YAPAY BAĞIŞIKLIK SİSTEMİ Arş. Gör. Burcu ÇARKLI YAVUZ İnsanoğlu doğadaki müthiş uyumu yıllar önce keşfetmiş ve doğal sistemlerin işleyişini günümüz karmaşık problemlerinin çözümünde uygulayarak, karmaşık

Detaylı

Veritabanı. SQL (Structured Query Language)

Veritabanı. SQL (Structured Query Language) Veritabanı SQL (Structured Query Language) SQL (Structured Query Language) SQL, ilişkisel veritabanlarındaki bilgileri sorgulamak için kullanılan dildir. SQL, bütün kullanıcıların ve uygulamaların veritabanına

Detaylı

Web adresi : http://www.gislab.co MEKANSAL VERİLER İLE ÜRETİLECEK TÜM ÇÖZÜMLER İÇİN... BİLİŞİM TEKNOLOJİLERİ LTD. ŞTİ.

Web adresi : http://www.gislab.co MEKANSAL VERİLER İLE ÜRETİLECEK TÜM ÇÖZÜMLER İÇİN... BİLİŞİM TEKNOLOJİLERİ LTD. ŞTİ. MEKANSAL VERİLER İLE ÜRETİLECEK TÜM ÇÖZÜMLER İÇİN... BİLİŞİM TEKNOLOJİLERİ LTD. ŞTİ. Misyonumuz coğrafi bilgilerin elde edilmesinden yönetimine kadar olan tüm süreçlerde son teknolojiyi kullanarak geliştirme

Detaylı

Proje Adı : MATLAB Real-Time Windows Target toolbox kullanımı ve ilişkili bir uygulama geliştirilmesi

Proje Adı : MATLAB Real-Time Windows Target toolbox kullanımı ve ilişkili bir uygulama geliştirilmesi Proje Yöneticisi: Doç.Dr. Cihan KARAKUZU Proje Adı : MATLAB Real-Time Windows Target toolbox kullanımı ve ilişkili bir uygulama geliştirilmesi MATLAB Real-Time Windows Target toolbox kullanımının basit

Detaylı

TODAİE edevlet MERKEZİ UYGULAMALI E-İMZA SEMİNERİ 16-17 KASIM 2011. E-imza Teknolojisi. TODAİE Sunumu

TODAİE edevlet MERKEZİ UYGULAMALI E-İMZA SEMİNERİ 16-17 KASIM 2011. E-imza Teknolojisi. TODAİE Sunumu TODAİE edevlet MERKEZİ UYGULAMALI E-İMZA SEMİNERİ 16-17 KASIM 2011 E-imza Teknolojisi TODAİE Sunumu Ferda Topcan Başuzman Araştırmacı ferdat@uekae.tubitak.gov.tr (312) 4688486-19 İçerik Açık Anahtarlı

Detaylı

Web Uygulama Güvenliği Kontrol Listesi 2010

Web Uygulama Güvenliği Kontrol Listesi 2010 Web Uygulama Güvenliği Kontrol Listesi 2010 1 www.webguvenligi.org Web uygulama güvenliği kontrol listesi 2010, OWASP-Türkiye ve Web Güvenliği Topluluğu tarafından güvenli web uygulamalarında aktif olması

Detaylı

UZAKTAN EĞİTİM MERKEZİ

UZAKTAN EĞİTİM MERKEZİ ÜNİTE 2 VERİ TABANI İÇİNDEKİLER Veri Tabanı Veri Tabanı İle İlgili Temel Kavramlar Tablo Alan Sorgu Veri Tabanı Yapısı BAYBURT ÜNİVERSİTESİ UZAKTAN EĞİTİM MERKEZİ BİLGİSAYAR II HEDEFLER Veri tabanı kavramını

Detaylı

Veri Tabanı Tasarım ve Yönetimi

Veri Tabanı Tasarım ve Yönetimi SAKARYA ÜNİVERSİTESİ Veri Tabanı Tasarım ve Yönetimi Hafta 5 Prof. Dr. Ümit KOCABIÇAK Bu ders içeriğinin basım, yayım ve satış hakları Sakarya Üniversitesi ne aittir. "Uzaktan Öğretim" tekniğine uygun

Detaylı

Toprak Veri Tabanı ve ÇEMobil-BGS nin Tanıtılması. Ahmet KÜÇÜKDÖNGÜL Mühendis (Orman Mühendisi)

Toprak Veri Tabanı ve ÇEMobil-BGS nin Tanıtılması. Ahmet KÜÇÜKDÖNGÜL Mühendis (Orman Mühendisi) Toprak Veri Tabanı ve ÇEMobil-BGS nin Tanıtılması Ahmet KÜÇÜKDÖNGÜL Mühendis (Orman Mühendisi) SUNUM PLANI Toprak Toprak Veritabanı Ulusal Toprak Veritabanı Çalışmaları:ÇEM-Toprak Veritabanı ÇEMobil :

Detaylı

PARALEL VERİ MADENCİLİĞİ ALGORİTMALARI. BAŞARIM 09, 15-18 Nisan 2009, ODTÜ, Ankara

PARALEL VERİ MADENCİLİĞİ ALGORİTMALARI. BAŞARIM 09, 15-18 Nisan 2009, ODTÜ, Ankara PARALEL VERİ MADENCİLİĞİ ALGORİTMALARI BAŞARIM 09, 15-18 Nisan 2009, ODTÜ, Ankara Veri Madenciliğine Genel Bir Bakış Veri Madenciliğinin Görevleri Sınıflama Seri Sınıflama Algoritmaları Paralel Sınıflama

Detaylı

Veri Yapıları. Öğr.Gör.Günay TEMÜR Düzce Üniversitesi Teknolojis Fakültesi

Veri Yapıları. Öğr.Gör.Günay TEMÜR Düzce Üniversitesi Teknolojis Fakültesi Veri Yapıları Öğr.Gör.Günay TEMÜR Düzce Üniversitesi Teknolojis Fakültesi Hash Tabloları ve Fonksiyonları Giriş Hash Tabloları Hash Fonksiyonu Çakışma (Collision) Ayrık Zincirleme Çözümü Linear Probing

Detaylı

Makine Öğrenmesi 3. hafta

Makine Öğrenmesi 3. hafta Makine Öğrenmesi 3. hafta Entropi Karar Ağaçları (Desicion Trees) ID3 C4.5 Sınıflandırma ve Regresyon Ağaçları (CART) Karar Ağacı Nedir? Temel fikir, giriş verisinin bir kümeleme algoritması yardımıyla

Detaylı

Veri ve Metin Madenciliği

Veri ve Metin Madenciliği Veri ve Metin Madenciliği Zehra Taşkın Veri Madenciliği Bir kutu toplu iğne İçine 3 boncuk düşürdünüz Nasıl alacağız? Fikirler? Veri Madenciliği Data Information Knowledge Veri madenciliği; Büyük yoğunluklu

Detaylı

Web Server Sunucu Loglarının K-Komşu Algoritması ile İ ncelenmesi

Web Server Sunucu Loglarının K-Komşu Algoritması ile İ ncelenmesi Web Server Sunucu Loglarının K-Komşu Algoritması ile İ ncelenmesi İçindekiler 1 Özet... 2 2 Giriş... 3 3 Uygulama... 4 4 Sonuçlar... 6 1 1 Özet Web sunucu logları üzerinde veri madenciliği yapmanın temel

Detaylı

Microsoft SQL Server 2008 Oracle Mysql (Ücretsiz) (Uygulamalarımızda bunu kullanacağız) Access

Microsoft SQL Server 2008 Oracle Mysql (Ücretsiz) (Uygulamalarımızda bunu kullanacağız) Access Programlamaya Giriş VERİ TABANI UYGULAMASI ÖN BİLGİ Veritabanları, verilere sistematik bir şekilde erişilebilmesine, depolanmasına ve güncellenmesine izin veren, yüksek boyutlu veriler için çeşitli optimizasyon

Detaylı

Büyük Veri de Türkiye den Uygulama Örnekleri Dr. Güven Fidan

Büyük Veri de Türkiye den Uygulama Örnekleri Dr. Güven Fidan Büyük Veri de Türkiye den Uygulama Örnekleri Dr. Güven Fidan ARGEDOR Bilişim Teknolojileri ARGEDOR ARGEDOR, şirketlere ve son kullanıcılara yenilikçi bilgiyi işleme çözümleriyle dünya çapında mevcut olan

Detaylı

Semantik Ağ ve Üst Veri Sistemleri İçin Yeni Nesil Veri Tabanı Yönetim Modeli: NoSQL. R. Orçun Madran Atılım Üniversitesi. www.madran.

Semantik Ağ ve Üst Veri Sistemleri İçin Yeni Nesil Veri Tabanı Yönetim Modeli: NoSQL. R. Orçun Madran Atılım Üniversitesi. www.madran. Semantik Ağ ve Üst Veri Sistemleri İçin Yeni Nesil Veri Tabanı Yönetim Modeli: NoSQL R. Orçun Madran Atılım Üniversitesi www.madran.net İçerik NoSQL Ne Değildir? Neden NoSQL? Ne Zaman NoSQL? NoSQL'in Tarihçesi.

Detaylı

VERİ MADENCİLİĞİ VE SOSYAL AĞ ANALİZİ ARAŞTIRMA LABORATUVARI

VERİ MADENCİLİĞİ VE SOSYAL AĞ ANALİZİ ARAŞTIRMA LABORATUVARI BİLGİSAYAR MÜHENDİSLİĞİ BÖLÜMÜ VERİ MADENCİLİĞİ VE SOSYAL AĞ ANALİZİ ARAŞTIRMA LABORATUVARI 10 Aralık 2011, Cumartesi Fen ve Mühendislik Alanlarındaki Çeşitli Araştırma Projelerinden Örneklemeler İçerik

Detaylı

Uzaktan Algılama Teknolojileri

Uzaktan Algılama Teknolojileri Uzaktan Algılama Teknolojileri Ders 11 Hiperspektral Görüntülerde Kümeleme ve Sınıflandırma Alp Ertürk alp.erturk@kocaeli.edu.tr Sınıflandırma Sınıflandırma işleminin amacı, her piksel vektörüne bir ve

Detaylı

Tekrar. Veritabanı 2

Tekrar. Veritabanı 2 Tekrar Veritabanı 2 Veritabanı Nedir? Veritabanı ortaya çıkış hikayesi Saklanan ve işlenen veri miktarındaki artış Veri tabanı olmayan sistemin verilerinin kalıcı olmaması. Veritabanı; tanım olarak herhangi

Detaylı

VERİ TABANI YÖNETİM SİSTEMLERİ Melih BÖLÜKBAŞI

VERİ TABANI YÖNETİM SİSTEMLERİ Melih BÖLÜKBAŞI VERİ TABANI YÖNETİM SİSTEMLERİ Melih BÖLÜKBAŞI Dersin Hedefleri Veri Tabanı Kullanıcıları Veri Modelleri Veri Tabanı Tasarımı İlişkisel VT Kavramsal Tasarımı (Entity- Relationship, ER) Modeli VT KULLANICILARI

Detaylı

Woom Woom dünyasına hoşgeldiniz. www.woom.web.tr

Woom Woom dünyasına hoşgeldiniz. www.woom.web.tr Woom Woom dünyasına hoşgeldiniz. www.woom.web.tr Woom Woom nedir? Wide Object Oriented Manager Woom, belirlenmiş çalışma alanlarında, bilgisayar işlemleri yapan bir yazılım platformudur. Woom Woom çalışma

Detaylı

Algoritma Geliştirme ve Veri Yapıları 2 Veri Modelleri. Mustafa Kemal Üniversitesi

Algoritma Geliştirme ve Veri Yapıları 2 Veri Modelleri. Mustafa Kemal Üniversitesi Algoritma Geliştirme ve Veri Yapıları 2 Veri Modelleri Veri modelleri, veriler arasında ilişkisel ve sırasal düzeni gösteren kavramsal tanımlardır. Her program en azından bir veri modeline dayanır. Uygun

Detaylı

Q-Biz İş Zekası Versiyon Yenilikleri Ekim 2014

Q-Biz İş Zekası Versiyon Yenilikleri Ekim 2014 Q-Biz İş Zekası Versiyon Yenilikleri Ekim 2014 İçindekiler Q-Biz İş Zekası Versiyon Yenilikleri... 1 1. Q-Biz - Çoklu Şirket-Dönem Seçimi... 3 2. Q-Biz Viewer Arşivle Butonu... 4 3. Q-Biz Rapor Yetkileri...

Detaylı

BÜYÜK VERI UYGULAMALARı DERS 7. Doç. Dr. Yuriy Mishchenko

BÜYÜK VERI UYGULAMALARı DERS 7. Doç. Dr. Yuriy Mishchenko 1 BÜYÜK VERI UYGULAMALARı DERS 7 Doç. Dr. Yuriy Mishchenko PLAN Azure ML hizmeti kullanılmasına bir pratik giriş 2 3 MS AZURE ML 4 MS AZURE ML Azure Microsoft tarafından sağlanan bulut hesaplama hizmetleri

Detaylı

BİDB Enformatik Servisleri. Nisan 2005

BİDB Enformatik Servisleri. Nisan 2005 BİDB Enformatik Servisleri Nisan 2005 İçerik Enformatik servisleri Elektronik listeler Duyuru sistemi Forum servisi Web kullanıcıları servisi Elektronik duyuru yöntemleri İş olanakları sistemi 2/14 Enformatik

Detaylı

Çekişme Temelli Ortam Erişimi Algoritmaları Dilim Atama İhtimalleri Karşılaştırması

Çekişme Temelli Ortam Erişimi Algoritmaları Dilim Atama İhtimalleri Karşılaştırması Çekişme Temelli Ortam Erişimi Algoritmaları Dilim Atama İhtimalleri Karşılaştırması Hasan Ferit Enişer İlker Demirkol Boğaziçi Üniversitesi / Türkiye Univ. Politecnica de Catalunya / İspanya 1. MOTİVASYON

Detaylı

EBE-368 Veri Tabanı Yönetim Sistemleri Veri Tabanı Tasarımı

EBE-368 Veri Tabanı Yönetim Sistemleri Veri Tabanı Tasarımı EBE-368 Veri Tabanı Yönetim Sistemleri Veri Tabanı Tasarımı Dr. Dilek Küçük Veri Tabanı Tasarımı Kavramsal Veritabanı Tasarımı Gereksinim analizi adımında edinilen bilgilerle, verinin kısıtlamalarıyla

Detaylı

VERİ TABANI YÖNETİM SİSTEMLERİ

VERİ TABANI YÖNETİM SİSTEMLERİ VERİ TABANI YÖNETİM SİSTEMLERİ Veri Tabanı Nedir? Sistematik erişim imkânı olan, yönetilebilir, güncellenebilir, taşınabilir, birbirleri arasında tanımlı ilişkiler bulunabilen bilgiler kümesidir. Bir kuruluşa

Detaylı

Widows un çalışmasında birinci sırada önem taşıyan dosyalardan biriside Registry olarak bilinen kayıt veri tabanıdır.

Widows un çalışmasında birinci sırada önem taşıyan dosyalardan biriside Registry olarak bilinen kayıt veri tabanıdır. Registry: Windows un bütün ayarlarının tutulduğu bir veri tabanıdır. Widows un çalışmasında birinci sırada önem taşıyan dosyalardan biriside Registry olarak bilinen kayıt veri tabanıdır. Win.3x sistemlerinde

Detaylı

Üst Düzey Programlama

Üst Düzey Programlama Üst Düzey Programlama Servlet 1 Çerez (Cookie) Cookie'ler servletlerden kullanıcının bilgisayarında istekte bulunduğu web tarayıcısına ( anahtar=kelime ) şeklinde bilgi göndermemiz için kullanılan yapılardır.

Detaylı

1 Temel Kavramlar. Veritabanı 1

1 Temel Kavramlar. Veritabanı 1 1 Temel Kavramlar Veritabanı 1 Veri Saklama Gerekliliği Bilgisayarların ilk bulunduğu yıllardan itibaren veri saklama tüm kurum ve kuruluşlarda kullanılmaktadır. Veri saklamada kullanılan yöntemler; Geleneksel

Detaylı

BİLGİSAYAR MÜHENDİSLİĞİ DOKTORA DERS PROGRAMI (Lisanstan gelenler için)

BİLGİSAYAR MÜHENDİSLİĞİ DOKTORA DERS PROGRAMI (Lisanstan gelenler için) BİLGİSAYAR MÜHENDİSLİĞİ DOKTORA DERS PROGRAMI (Lisanstan gelenler için) HAZIRLIK PROGRAMI COME 27 İleri Nesneye Yönelik Programlama 5 COME 21 Veri Yapıları ve Algoritmalar COME 22 COME 1 COME 1 COME 411

Detaylı

Online Protokol Üretim Projesi

Online Protokol Üretim Projesi Online Protokol Üretim Projesi Yazılım Geliştirici Kılavuzu Sürüm 1.5 Kasım 2012 Proje Pilot Başlangıç Zamanı 19.11.2012 Pilot Proje Uygulama Yeri Ankara İli Sağlık Hizmet Sağlayıcıları Proje Yöneticisi

Detaylı

Giriş... 2 EBA Ders EBA İçerik...18 EBA Yardım EBA Dosya EBA Uygulamalar EBA Paylaşım EBA E-Kurs...

Giriş... 2 EBA Ders EBA İçerik...18 EBA Yardım EBA Dosya EBA Uygulamalar EBA Paylaşım EBA E-Kurs... Giriş....... 2 EBA Ders... 4 EBA İçerik...18 EBA Yardım... 18 EBA Dosya... 19 EBA Uygulamalar... 20 EBA Paylaşım... 20 EBA E-Kurs... 21 EBA (Eğitim Bilişim Ağı) günden güne büyümekte olan bir portal olup;

Detaylı

İş Zekası için Dört-Katmanlı Veri Modellemesi Gerçekleştirimi. Harun Gökçe EG Yazılım, TOBB ETÜ

İş Zekası için Dört-Katmanlı Veri Modellemesi Gerçekleştirimi. Harun Gökçe EG Yazılım, TOBB ETÜ İş Zekası için Dört-Katmanlı Veri Modellemesi Gerçekleştirimi Harun Gökçe EG Yazılım, TOBB ETÜ İçerik İş Zekası Kavramı Tarihçesi İş Zekası Tanım, Kavramlar ve Gereklilik Dört-Katmanlı Veri Modellemesi

Detaylı

Bilgisayar Mühendisliği Yüksek Lisans Programı

Bilgisayar Mühendisliği Yüksek Lisans Programı Bilgisayar Mühendisliği Yüksek Lisans Programı Yeni Lisansüstü Eğitim Öğretim Yönetmeliğine Uygun Olarak Düzenlenen ve 2016-2017 Güz Döneminde Öğretime Başlayan Öğrencilerimiz İçin Uygulanacak Olan Bilgisayar

Detaylı

DOSYA ORGANİZASYONU. Çarpışma çözümleme yöntemleri ÖZLEM AYDIN TRAKYA ÜNİVERSİTESİ BİLGİSAYAR MÜHENDİSLİĞİ BÖLÜMÜ

DOSYA ORGANİZASYONU. Çarpışma çözümleme yöntemleri ÖZLEM AYDIN TRAKYA ÜNİVERSİTESİ BİLGİSAYAR MÜHENDİSLİĞİ BÖLÜMÜ DOSYA ORGANİZASYONU ÖZLEM AYDIN TRAKYA ÜNİVERSİTESİ BİLGİSAYAR MÜHENDİSLİĞİ BÖLÜMÜ Çarpışma çözümleme yöntemleri Sunum planı Bağlantıları kullanarak çarpışmaların çözümlenmesi. Coalesced Hashing (Birleştirilmiş

Detaylı

Veritabanı. Ders 2 VERİTABANI

Veritabanı. Ders 2 VERİTABANI Veritabanı Veritabanı Nedir? Birbiri ile ilişkili verilerin bir arada uzun süreli bulundurulmasıdır. Veritabanı bazen Veritabanı Yönetim sistemi veya Veritabanı Sistemi yerine de kullanılır. Gerçek dünyanın

Detaylı

VERİ YAPILARI VE PROGRAMLAMA

VERİ YAPILARI VE PROGRAMLAMA VERİ YAPILARI VE PROGRAMLAMA (BIP116) Yazar: Doç.Dr.İ.Hakkı.Cedimoğlu SAKARYA ÜNİVERSİTESİ Adapazarı Meslek Yüksekokulu Bu ders içeriğinin basım, yayım ve satış hakları Sakarya Üniversitesi ne aittir.

Detaylı

Internet Ö D Ü L L E R E R İ Ş İ M L E R A R A Ş T I R M A L A R

Internet Ö D Ü L L E R E R İ Ş İ M L E R A R A Ş T I R M A L A R Internet Ö D Ü L L E R E R İ Ş İ M L E R A R A Ş T I R M A L A R Bir Türk radyosunun dünya çapında başarısı Number1 Facebook da Dünya 10.su Number1 FM 438.687 kişi Number1 TV 276.425 kişi Number1 Medya

Detaylı

BIP116-H14-1 BTP104-H014-1

BIP116-H14-1 BTP104-H014-1 VERİ YAPILARI VE PROGRAMLAMA (BIP116) Yazar: Doç.Dr.İ.Hakkı.Cedimoğlu SAKARYA ÜNİVERSİTESİ Adapazarı Meslek Yüksekokulu Bu ders içeriğinin basım, yayım ve satış hakları Sakarya Üniversitesi ne aittir.

Detaylı

Sözlük Kullanarak Türkçe için Kavram Madenciliği Metotları Geliştirme

Sözlük Kullanarak Türkçe için Kavram Madenciliği Metotları Geliştirme 1 Cem Rıfkı Aydın, 1 Ali Erkan, 1 Tunga Güngör, 2 Hidayet Takçı 1 Boğaziçi Üniversitesi, 2 Cumhuriyet Üniversitesi Sözlük Kullanarak Türkçe için Kavram Madenciliği Metotları Geliştirme AB 14 7 Şubat 2014

Detaylı

Veritabanı Yönetim Sistemleri (Veritabanı Kavramı) Veritabanı Sistemleri

Veritabanı Yönetim Sistemleri (Veritabanı Kavramı) Veritabanı Sistemleri Veritabanı Yönetim Sistemleri (Veritabanı Kavramı) Veritabanı Sistemleri Konular Büyük Resim Ders Tanıtımı Niçin Veritabanı? Veri ve Bilgi Kavramları Klasik Dosya Yapıları Klasik Dosya Sistemlerinin Zayıflıkarı

Detaylı

DSİ kapsamında oluşturulan dağınık durumdaki verilerinin düzenlenmesi, yeniden tasarlanarak tek bir coğrafi veri tabanı ortamında toplanması,

DSİ kapsamında oluşturulan dağınık durumdaki verilerinin düzenlenmesi, yeniden tasarlanarak tek bir coğrafi veri tabanı ortamında toplanması, Projenin Amacı DSİ Genel Müdürlüğünde, Bölge Vaziyet Planı çalışmaları kapsamında üretilen ve mevcut DSİ faaliyetlerini içeren CBS veri setleri ile CBS Veritabanının incelenerek yine mevcut CBS donanım,

Detaylı

Örnek Excel Formatını Nereden Bulabilirim?

Örnek Excel Formatını Nereden Bulabilirim? Excel ile Ürün Aktarımı Ürünlerinizi, Ticimax sistemine uygun hazırlamış olduğunuz excel dosyanız ile sisteme kolayca yükleyebilir, mevcut ürünleriniz için ise toplu güncellemeler yapabilirsiniz. Örnek

Detaylı

KURUMSAL BİLGİ TEKNOLOJİLERİNDE PROFESYONEL ÇÖZÜMLER. i-gate E-DEFTER UYGULAMASI Bilgi Teknolojileri

KURUMSAL BİLGİ TEKNOLOJİLERİNDE PROFESYONEL ÇÖZÜMLER. i-gate E-DEFTER UYGULAMASI Bilgi Teknolojileri KURUMSAL BİLGİ TEKNOLOJİLERİNDE PROFESYONEL ÇÖZÜMLER i-gate E-DEFTER UYGULAMASI Hakkımızda Operasyonel Faydaları i-gate E-Defter Uygulaması 20 Yıllık Başarılı Geçmiş 80 Çalışan İstanbul, İzmit, Ankara,

Detaylı

Veritabanı Yönetim Sistemleri

Veritabanı Yönetim Sistemleri Veritabanı Yönetim Sistemleri (Veritabanı Tasarımı) İlişkisel Cebir Konular Biçimsel Sorgulama Dilleri İlişkisel Cebir İlişkisel Cebir İşlemleri Seçme (select) işlemi Projeksiyon (project) işlemi Birleşim

Detaylı

[E-Katalog Tanıtım Sayfası] Ayser Bilgisayar. Cumhuriyet Meydanı No:41 Kat:2 0286 217 60 34

[E-Katalog Tanıtım Sayfası] Ayser Bilgisayar. Cumhuriyet Meydanı No:41 Kat:2 0286 217 60 34 [E-Katalog Tanıtım Sayfası] Ayser Bilgisayar Cumhuriyet Meydanı No:41 Kat:2 0286 217 60 34 Neden Ayser Bilgisayar? Bundan 10 yıl önce insanlar bir ürün almak için mağaza mağaza dolaşırlar ve farklı fiyatları

Detaylı

VERİ TABANI SİSTEMLERİ

VERİ TABANI SİSTEMLERİ VERİ TABANI SİSTEMLERİ 1- Günümüzde bilgi sistemleri Teknoloji ve bilgi. 2- Bilgi sistemlerinin Geliştirilmesi İşlevsel Gereksinimleri 1.AŞAMA Gereksinim Belirleme ve Analiz Veri Gereksinimleri Gereksinimler

Detaylı

Aktarımı Çalıştırmak/Geri Almak 146 Alan Seçenekleri 148 Veri Tabanı Şeması 150 Veri Tabanı ile İlgili Bazı Rake Görevleri 162 Modeller 164

Aktarımı Çalıştırmak/Geri Almak 146 Alan Seçenekleri 148 Veri Tabanı Şeması 150 Veri Tabanı ile İlgili Bazı Rake Görevleri 162 Modeller 164 xi Ruby on Rails Nedir? 2 Rails Neden Farklıdır? 2 Başlamadan Önce Bilinmesi Gerekenler 4 İnternet Nasıl Çalışır? 4 İstemci-Web Sunucu İlişkisi 5 HTTP Protokolü 6 URL-Kaynak Konumlandırma Adresleri 7 HTTP

Detaylı

Tedarik Zinciri Yönetiminde Yapay Zeka Teknikler

Tedarik Zinciri Yönetiminde Yapay Zeka Teknikler Tedarik Zinciri Yönetiminde Yapay Zeka Teknikler Doç.Dr.Mehmet Hakan Satman mhsatman@istanbul.edu.tr İstanbul Üniversitesi 2014.10.22 Doç.Dr.Mehmet Hakan Satmanmhsatman@istanbul.edu.tr Tedarik Zinciri

Detaylı

Karaciğerde Oluşan Hastalıkların Tespitinde Makine Öğrenmesi Yöntemlerinin Kullanılması

Karaciğerde Oluşan Hastalıkların Tespitinde Makine Öğrenmesi Yöntemlerinin Kullanılması Karaciğerde Oluşan Hastalıkların Tespitinde Makine Öğrenmesi Yöntemlerinin Kullanılması 1 Emre DANDIL Bilecik Ş. Edebali Üniversitesi emre.dandil@bilecik.edu.tr +90228 214 1613 Sunum İçeriği Özet Giriş

Detaylı

MOBİL İMZA KULLANIM AMAÇLI NİTELİKLİ ELEKTRONİK SERTİFİKA BAŞVURU TALİMATI

MOBİL İMZA KULLANIM AMAÇLI NİTELİKLİ ELEKTRONİK SERTİFİKA BAŞVURU TALİMATI Doküman Kodu Yayın Numarası Yayın Tarihi TALM-001-002 06 25.02.2015 TALM-001-002 25.02.2015 1/25 DEĞİŞİKLİK KAYITLARI Yayın No Yayın Nedeni Yayın Tarihi 00 İlk Çıkış 27.12.2011 01 Doküman Yeniden Düzenlendi

Detaylı

GAZİOSMANPAŞA ÜNİVERSİTESİ MÜHENDİSLİK VE DOĞA BİLİMLERİ FAKÜLTESİ WEB TEMELLİ ÖĞRENME VE İÇERİK YÖNETİM SİSTEMİ

GAZİOSMANPAŞA ÜNİVERSİTESİ MÜHENDİSLİK VE DOĞA BİLİMLERİ FAKÜLTESİ WEB TEMELLİ ÖĞRENME VE İÇERİK YÖNETİM SİSTEMİ GAZİOSMANPAŞA ÜNİVERSİTESİ MÜHENDİSLİK VE DOĞA BİLİMLERİ FAKÜLTESİ WEB TEMELLİ ÖĞRENME VE İÇERİK YÖNETİM SİSTEMİ GAZİOSMANPAŞA ÜNİVERSİTESİ MÜHENDİSLİK VE DOĞA BİLİMLERİ FAKÜLTESİ BİLGİSAYAR MÜHENDİSLİĞİ

Detaylı

VERİ TABANI UYGULAMALARI

VERİ TABANI UYGULAMALARI VERİ TABANI UYGULAMALARI VERİ TABANI NEDİR? Bir konuyla ilgili çok sayıda verinin tutulmasına, depolanmasına ve belli bir mantık içerisinde gruplara ayrılmasına veri tabanı denir. Veri tabanı programları;

Detaylı

T.C. BAŞBAKANLIK ATATÜRK KÜLTÜR, DİL VE TARİH YÜKSEK KURUMU PROJE TAKİP VE YÖNETİM SİSTEMİ KULLANICI KILAVUZU

T.C. BAŞBAKANLIK ATATÜRK KÜLTÜR, DİL VE TARİH YÜKSEK KURUMU PROJE TAKİP VE YÖNETİM SİSTEMİ KULLANICI KILAVUZU T.C. BAŞBAKANLIK ATATÜRK KÜLTÜR, DİL VE TARİH YÜKSEK KURUMU PROJE TAKİP VE YÖNETİM SİSTEMİ KULLANICI KILAVUZU I. İçindekiler 1. PROJE SİSTEMİ WEB ADRESİ... 2 2. GİRİŞ EKRANI... 2 3. KAYIT VE SİSTEME GİRİŞ...

Detaylı

VERİ MADENCİLİĞİ (Sınıflandırma Yöntemleri) Yrd.Doç.Dr. Kadriye ERGÜN kergun@balikesir.edu.tr

VERİ MADENCİLİĞİ (Sınıflandırma Yöntemleri) Yrd.Doç.Dr. Kadriye ERGÜN kergun@balikesir.edu.tr VERİ MADENCİLİĞİ (Sınıflandırma Yöntemleri) Yrd.Doç.Dr. Kadriye ERGÜN kergun@balikesir.edu.tr Genel İçerik Veri Madenciliğine Giriş Veri Madenciliğinin Adımları Veri Madenciliği Yöntemleri Sınıflandırma

Detaylı

İÇERİK PROGRAMLAMAYA GİRİŞ ALGORİTMA AKIŞ DİYAGRAMLARI PROGRAMLAMA DİLLERİ JAVA DİLİNİN YAPISI JAVA DA KULLANILAN VERİ TİPLERİ JAVA DA PROGRAM YAZMA

İÇERİK PROGRAMLAMAYA GİRİŞ ALGORİTMA AKIŞ DİYAGRAMLARI PROGRAMLAMA DİLLERİ JAVA DİLİNİN YAPISI JAVA DA KULLANILAN VERİ TİPLERİ JAVA DA PROGRAM YAZMA İÇERİK PROGRAMLAMAYA GİRİŞ ALGORİTMA AKIŞ DİYAGRAMLARI PROGRAMLAMA DİLLERİ JAVA DİLİNİN YAPISI JAVA DA KULLANILAN VERİ TİPLERİ JAVA DA PROGRAM YAZMA UYGULAMA Örnek: Yandaki algoritmada; klavyeden 3 sayı

Detaylı

Veri Tabanı Yönetim Sistemleri Bölüm - 7

Veri Tabanı Yönetim Sistemleri Bölüm - 7 Veri Tabanı Yönetim Sistemleri Bölüm - 7 İçerik Alt Sorgular Çoklu Tablolar (Tabloların Birleştirilmesi) Görünümler R. Orçun Madran 2 Alt Sorgular Uygulamada, bir sorgudan elde edilen sonuç, bir diğer

Detaylı

Demetleme Yönteminin Y 3-Katmanlı Mimari Yapı ile Gerçeklenmesi. eklenmesi. KalacakYer.com

Demetleme Yönteminin Y 3-Katmanlı Mimari Yapı ile Gerçeklenmesi. eklenmesi. KalacakYer.com Demetleme Yönteminin Y 3-Katmanlı Mimari Yapı ile Gerçeklenmesi eklenmesi KalacakYer.com BİTİRME ÖDEVİ Grup Elemanları: Demet NAR 040000660 Neşe e ALYÜZ 040000662 Danış ışman: Yrd. Doç Dr. Feza BUZLUCA

Detaylı

TBİL UYGULAMA I DERSİ. Mobil Barkotlu Depo Programı Projesi PROJESİ TASARIM RAPORU

TBİL UYGULAMA I DERSİ. Mobil Barkotlu Depo Programı Projesi PROJESİ TASARIM RAPORU TBİL 503-18 UYGULAMA I DERSİ Mobil Barkotlu Depo Programı Projesi PROJESİ TASARIM RAPORU KASIM 2015 TEKİRDAĞ Sayfa 1 / 10 Belgenin Adı Hazırlayanlar Mobil Barkotlu Depo Programı Projesi Tasarım Raporu

Detaylı

2. hafta Bulut Bilişime Giriş

2. hafta Bulut Bilişime Giriş 1 2. hafta Bulut Bilişime Giriş 3. Bulut Bilişime Duyulan İhtiyaç Son yıllarda veri kullanımında görülen artışlar sayesinde verinin elde edilmesi ve üzerinde analizler yapılarak genel değerlendirmelerde

Detaylı

Kültür Varlıklarının Web Otomasyonu

Kültür Varlıklarının Web Otomasyonu Kültür Varlıklarının Web Otomasyonu SUNUM İÇERİĞİ PROJE GEREKLİLİĞİ PROJE İHTİYAÇLARI SİSTEM TASARIMINA GÖRE TEKNOLOJİK ALT YAPI DÜZENLENEN SİSTEMİN GETİRDİĞİ AVANTAJLAR PROJE GEREKLİLİĞİ Taşınmaz kültür

Detaylı

3. sınıf. Bilgisayarla kataloglamanın doğuşu gelişimi ve bugünkü durum ele alınmaktadır. Bu derste

3. sınıf. Bilgisayarla kataloglamanın doğuşu gelişimi ve bugünkü durum ele alınmaktadır. Bu derste 3. sınıf 5. Yarıyıl (Güz Dönemi) Bilgi Kaynaklarının Tanımlanması ve Erişimi I (AKTS 5) 3 saat Bilgisayarla kataloglamanın doğuşu gelişimi ve bugünkü durum ele alınmaktadır. Bu derste Kütüphane Otomasyon

Detaylı

Makine Öğrenmesi İle Duygu Analizinde Veri Seti Performansı

Makine Öğrenmesi İle Duygu Analizinde Veri Seti Performansı Makine Öğrenmesi İle Duygu Analizinde Veri Seti Performansı Hatice NİZAM İstanbul Üniversitesi Bilgisayar Mühendisliği Bölümü haticenizam@outlook.com Saliha Sıla AKIN ERS Turizm Yazılım Şirketi, Bilgisayar

Detaylı

zevklerinizi öğrenir ve sizi seveceğiniz yerlere yönlendirir

zevklerinizi öğrenir ve sizi seveceğiniz yerlere yönlendirir Deniz Kahraman zevklerinizi öğrenir ve sizi seveceğiniz yerlere yönlendirir yakınınızdaki kişilerle iletişime geçip buluşabileceğiniz en kolay yol Kişiselleştirilmiş Yerel Arama İletişim & Etkinlikler

Detaylı

VERI TABANLARıNDA BILGI KEŞFI

VERI TABANLARıNDA BILGI KEŞFI 1 VERİ MADENCİLİĞİ VERI TABANLARıNDA BILGI KEŞFI Veri Tabanlarında Bilgi Keşfi, veriden faydalı bilginin keşfedilmesi sürecinin tamamına atıfta bulunmakta ve veri madenciliği bu sürecin bir adımına karşılık

Detaylı

İÇİNDEKİLER. ERA Danışmanlık. Ataşehir Soyak Yolu Şehit Burak Kurtuluş Cad. Uğurlu Sok No 140/5 Ümraniye İSTANBUL TÜRKİYE

İÇİNDEKİLER. ERA Danışmanlık. Ataşehir Soyak Yolu Şehit Burak Kurtuluş Cad. Uğurlu Sok No 140/5 Ümraniye İSTANBUL TÜRKİYE ERA e-defter KULLANIM KILAVUZU ERA Danışmanlık Ataşehir Soyak Yolu Şehit Burak Kurtuluş Cad. Uğurlu Sok No 140/5 Ümraniye İSTANBUL TÜRKİYE www.eracs-tr.com İÇİNDEKİLER MİKRONOM MASTER BİLGİSAYAR İncilipınar

Detaylı

Veritabanı Yönetim Sistemleri, 2. basım Zehra ALAKOÇ BURMA, 2009, Seçkin Yayıncılık

Veritabanı Yönetim Sistemleri, 2. basım Zehra ALAKOÇ BURMA, 2009, Seçkin Yayıncılık Veri Kaynaklar Veri Tabanı Sistemleri, 2. basım Prof. Dr. Ünal YARIMAĞAN, 2010, Akademi Yayınevi Veritabanı Yönetim Sistemleri, 2. basım Zehra ALAKOÇ BURMA, 2009, Seçkin Yayıncılık Veritabanı ve Uygulamaları

Detaylı

Veri Tabanı Yönetim Sistemleri Bölüm - 3

Veri Tabanı Yönetim Sistemleri Bölüm - 3 Veri Tabanı Yönetim Sistemleri Bölüm - 3 İçerik Web Tabanlı Veri Tabanı Sistemleri.! MySQL.! PhpMyAdmin.! Web tabanlı bir veritabanı tasarımı. R. Orçun Madran!2 Web Tabanlı Veritabanı Yönetim Sistemleri

Detaylı

Yapay Sinir Ağları ile Web İçeriklerini Sınıflandırma. Yazarlar: Esra Nergis Güven, Hakan Onur ve Şeref Sağıroğlu. Sunan : Esra Nergis Güven

Yapay Sinir Ağları ile Web İçeriklerini Sınıflandırma. Yazarlar: Esra Nergis Güven, Hakan Onur ve Şeref Sağıroğlu. Sunan : Esra Nergis Güven Yapay Sinir Ağları ile Web İçeriklerini Sınıflandırma Yazarlar: Esra Nergis Güven, Hakan Onur ve Şeref Sağıroğlu Sunan : Esra Nergis Güven İçerik Giriş Amaç ve Kapsam Sınıflandırma Geliştirilen Sistem

Detaylı

SIKÇA SORULAN SORULAR

SIKÇA SORULAN SORULAR SIKÇA SORULAN SORULAR 1.) Uygulamaya nasıl bağlanabilirim? Uygulamaya, http: //ebys.tse.org.tr adresinden bağlanmanız gerekmektedir. 2.)"Yanlış kullanıcı adı veya şifre" uyarısı ile karşılaşıyorum. Klavyede

Detaylı

Veri Toplama Sistemini

Veri Toplama Sistemini 1 Problem ADEK süreçlerinde farklı birimlerden farklı dönemlerde çeşitli işlemler için veri toplayabilme veriyi saklayabilme ve veriye gerektiği zamanda ulaşabilmenin zorluğu 2 Çalışmanın Amacı Kalite

Detaylı

Responsive Tasarım Önerileri!

Responsive Tasarım Önerileri! Responsive Tasarım Önerileri! !Mobil kullanıcı, masaüstü kullanıcısından farklı olarak hedef odaklı hareket eder. Gezinti ve keşif deneyimini geliştirmek için gereksiz objeleri ve hataları minimalize etmelisiniz.!

Detaylı

ALTIN ORAN ARAMA (GOLDEN SECTION SEARCH) METODU

ALTIN ORAN ARAMA (GOLDEN SECTION SEARCH) METODU ALTIN ORAN ARAMA (GOLDEN SECTION SEARCH) METODU Tek değişkenli bir f(x) fonksiyonunu ele alalım. [Bazı x ler için f (x) bulunamayabilir.] Aşağıdaki DOP modelini çözmek istediğimizi var sayalım. Max f(x)

Detaylı

VERİ MADENCİLİĞİ. Karar Ağacı Algoritmaları: SPRINT algoritması Öğr.Gör.İnan ÜNAL

VERİ MADENCİLİĞİ. Karar Ağacı Algoritmaları: SPRINT algoritması Öğr.Gör.İnan ÜNAL VERİ MADENCİLİĞİ Karar Ağacı Algoritmaları: SPRINT algoritması Öğr.Gör.İnan ÜNAL SPRINT Algoritması ID3,CART, ve C4.5 gibi algoritmalar önce derinlik ilkesine göre çalışırlar ve en iyi dallara ayırma kriterine

Detaylı

Görüntü Segmentasyonu (Bölütleme)

Görüntü Segmentasyonu (Bölütleme) Görüntü Segmentasyonu (Bölütleme) Segmentasyon, görüntüyü aynı cinsten obje ve bölgelere ayırmaktır. 20 Aralık 2014 Cumartesi 1 Görüntü Segmentasyonu 20 Aralık 2014 Cumartesi 2 Gestalt kanunları Görüntü

Detaylı

İLİŞKİSEL VERİ MODELİ

İLİŞKİSEL VERİ MODELİ İLİŞKİSEL VERİ MODELİ Tablolar ile Gösterim Her İlişki iki boyutlu bir tablo olarak gösterilir. Tablonun her sütununa bir nitelik atanır. Tablonun her satırı ise bir kaydı gösterir. Bilimsel kesimde daha

Detaylı

GĐRĐŞ. 1 Nisan 2009 tarihinde BDP programının yeni bir sürümü yayınlanmış ve bu sürümde yapılan değişikliklere

GĐRĐŞ. 1 Nisan 2009 tarihinde BDP programının yeni bir sürümü yayınlanmış ve bu sürümde yapılan değişikliklere e-bildirge Versiyon : Yakamoz 3.6.7.7 ve Genel Muhasebe 3.6.7.8 İlgili Programlar : Yakamoz ve üstü ticari paketler & Genel Muhasebe Tarih : 02.04.2009 Doküman Seviyesi (1 5) : 3 (Tecrübeli Kullanıcı)

Detaylı

Logo da Buluta Online Veri Yedekleme

Logo da Buluta Online Veri Yedekleme Logo da Buluta Online Veri Yedekleme 2014 İçindekiler Logo da Buluta Online Veri Yedekleme... 3 Web Portali Kullanım Kılavuzu... 4 Kullanıcı Oluşturma ve Kullanıcı Girişi... 4 Ana Sayfa... 7 Raporlar...

Detaylı

optimisation of data/digital for communication and commerce

optimisation of data/digital for communication and commerce optimisation of data/digital for communication and commerce Biz Kimiz? Gerçek zamanlı hedefleme ve satın alma teknolojileriyle doğru yerde doğru zamanda doğru kullanıcıya ulaşmanızı sağlıyoruz Teknoloji

Detaylı

Eğiticili (supervised) öğrenme: Sınıflandırma (classification) Sınıf sayısı ve bir grup örneğin hangi sınıfa ait olduğu bilinir

Eğiticili (supervised) öğrenme: Sınıflandırma (classification) Sınıf sayısı ve bir grup örneğin hangi sınıfa ait olduğu bilinir Eğiticili (supervised) öğrenme: Sınıflandırma (classification) Sınıf sayısı ve bir grup örneğin hangi sınıfa ait olduğu bilinir Eğiticisiz (unsupervised) öğrenme: Kümeleme (clustering) Hangi nesnenin hangi

Detaylı

Veri Tabanı-I 1.Hafta

Veri Tabanı-I 1.Hafta Veri Tabanı-I 1.Hafta 2010-2011 Bahar Dönemi Mehmet Akif Ersoy Üniversitesi Meslek Yüksekokulu Burdur 2011 Muhammer İLKUÇAR 1 Veri ve Veri Tabanı Nedir? Veri Bir anlamı olan ve kaydedilebilen

Detaylı

DOSYA ORGANİZASYONU. Sıralı erişimli dosya organizasyonu yöntemleri ÖZLEM AYDIN TRAKYA ÜNİVERSİTESİ BİLGİSAYAR MÜHENDİSLİĞİ BÖLÜMÜ

DOSYA ORGANİZASYONU. Sıralı erişimli dosya organizasyonu yöntemleri ÖZLEM AYDIN TRAKYA ÜNİVERSİTESİ BİLGİSAYAR MÜHENDİSLİĞİ BÖLÜMÜ DOSYA ORGANİZASYONU ÖZLEM AYDIN TRAKYA ÜNİVERSİTESİ BİLGİSAYAR MÜHENDİSLİĞİ BÖLÜMÜ Sıralı erişimli dosya organizasyonu yöntemleri Sunum planı Sıralı erişimli dosya organizasyonu yöntemleri Basit sıralı

Detaylı

Yıldız Teknik Üniversitesi Fen Bilimleri Enstitüsü Bilgisayar Mühendisliği Bölümü. Şekil Tanıma Final Projesi. Selçuk BAŞAK 08501008

Yıldız Teknik Üniversitesi Fen Bilimleri Enstitüsü Bilgisayar Mühendisliği Bölümü. Şekil Tanıma Final Projesi. Selçuk BAŞAK 08501008 Yıldız Teknik Üniversitesi Fen Bilimleri Enstitüsü Bilgisayar Mühendisliği Bölümü Şekil Tanıma Final Projesi Selçuk BAŞAK 08501008 Not: Ödevi hazırlamak için geliştirdiğim uygulama ve kaynak kodları ektedir.

Detaylı

dmags Türkiye nin En Büyük Dijital Dergi Mağazası

dmags Türkiye nin En Büyük Dijital Dergi Mağazası dmags Türkiye nin En Büyük Dijital Dergi Mağazası dmags hakkında.. dmags, Türkiye de ilk mobil dergi, çizgi roman ve kitap uygulamalarını yayınlayan dmags Dijital Yayıncılık ve İnt. Hiz. Ltd. Şti. nin

Detaylı

Mühendislikte Veri Tabanları Dersi Uygulamaları (MS-Access)

Mühendislikte Veri Tabanları Dersi Uygulamaları (MS-Access) Mühendislikte Veri Tabanları Dersi Uygulamaları (MS-Access) İstanbul Teknik Üniversitesi, İnşaat Fakültesi, Geomatik Mühendisliği Bölümü Prof. Dr. Nebiye MUSAOĞLU Doç. Dr. Elif SERTEL Y. Doç. Dr. Şinasi

Detaylı

Sıralı Erişimli Dosyalar. Kütük Organizasyonu 1

Sıralı Erişimli Dosyalar. Kütük Organizasyonu 1 Sıralı Erişimli Dosyalar Kütük Organizasyonu 1 Dosya Fiziksel depolama ortamlarında verilerin saklandığı mantıksal yapılara dosya denir. Dosyalar iki şekilde görülebilir. Byte dizisi şeklinde veya Alanlar

Detaylı

Veritabanı Tasarımı. NOT NULL ve UNIQUE Kısıtlamaları Tanımlama

Veritabanı Tasarımı. NOT NULL ve UNIQUE Kısıtlamaları Tanımlama Veritabanı Tasarımı NOT NULL ve UNIQUE Kısıtlamaları Tanımlama NOT NULL ve UNIQUE Kısıtlamaları Tanımlama Konular Kısıtlama terimini veri bütünlüğü ile ilişkilendirerek tanımlama Sütun seviyesinde ve tablo

Detaylı