T.C. MİLLÎ EĞİTİM BAKANLIĞI MEGEP (MESLEKÎ EĞİTİM VE ÖĞRETİM SİSTEMİNİN GÜÇLENDİRİLMESİ PROJESİ) ELEKTRİK ELEKTRONİK TEKNOLOJİSİ

Ebat: px
Şu sayfadan göstermeyi başlat:

Download "T.C. MİLLÎ EĞİTİM BAKANLIĞI MEGEP (MESLEKÎ EĞİTİM VE ÖĞRETİM SİSTEMİNİN GÜÇLENDİRİLMESİ PROJESİ) ELEKTRİK ELEKTRONİK TEKNOLOJİSİ"

Transkript

1 T.C. MİLLÎ EĞİTİM BAKANLIĞI MEGEP (MESLEKÎ EĞİTİM VE ÖĞRETİM SİSTEMİNİN GÜÇLENDİRİLMESİ PROJESİ) ELEKTRİK ELEKTRONİK TEKNOLOJİSİ SOĞUTMA SİSTEMİ ELAMANLARI VE SOĞUTUCULAR ANKARA 2007

2 Milli Eğitim Bakanlığı tarafından geliştirilen modüller; Talim ve Terbiye Kurulu Başkanlığının tarih ve 269 sayılı Kararı ile onaylanan, Mesleki ve Teknik Eğitim Okul ve Kurumlarında kademeli olarak yaygınlaştırılan 42 alan ve 192 dala ait çerçeve öğretim programlarında amaçlanan mesleki yeterlikleri kazandırmaya yönelik geliştirilmiş öğretim materyalleridir (Ders Notlarıdır). Modüller, bireylere mesleki yeterlik kazandırmak ve bireysel öğrenmeye rehberlik etmek amacıyla öğrenme materyali olarak hazırlanmış, denenmek ve geliştirilmek üzere Mesleki ve Teknik Eğitim Okul ve Kurumlarında uygulanmaya başlanmıştır. Modüller teknolojik gelişmelere paralel olarak, amaçlanan yeterliği kazandırmak koşulu ile eğitim öğretim sırasında geliştirilebilir ve yapılması önerilen değişiklikler Bakanlıkta ilgili birime bildirilir. Örgün ve yaygın eğitim kurumları, işletmeler ve kendi kendine mesleki yeterlik kazanmak isteyen bireyler modüllere internet üzerinden ulaşabilirler. Basılmış modüller, eğitim kurumlarında öğrencilere ücretsiz olarak dağıtılır.

3 İÇİNDEKİLER AÇIKLAMALAR...iii GİRİŞ...1 ÖĞRENME FAALİYETİ SOĞUTUCULAR TANIMI, YAPISI VE ÇALISMASI Soğutucunun Tanımı Soğutucunun Yapısı Soğutucunun Çalışması Isı Transferi Kondüksiyon (İletim) Konveksiyon (Taşıma) Radyasyon (Işınım) Gizli Isının Sihiri Isı Transfer Oranları Isı Sıcaklık Soğutma Soğutucu Akişkan Doyma Sıcaklığı Doyma Basıncı Yoğuşma Sıcaklığı Soğutmanın Termodinamik İncelenmesi ve Isı Transferi Yöntemleri Termodinamiğin Uygulama Alanları Termodinamiğin 1. Kanunu Termodinamiğin 2 Kanunu Soğutma Çevrimleri Gelişmiş Buhar Sıkıştırmalı Soğutma Sistemleri...15 UYGULAMA FAALİYETİ...18 ÖLÇME VE DEĞERLENDİRME...19 ÖĞRENME FAALİYETİ SOĞUTUCU ELEMANLARI...20 UYGULAMA FAALİYETİ...25 ÖLÇME VE DEĞERLENDİRME...26 ÖĞRENME FAALİYETİ SOĞUTMA SİSTEMİNİ OLUŞTURAN ELEMANLAR YAPISI VE GÖREVLERİ Ekovat (Kompresör, Sıkıştırıcı) Pozitif Sıkıştırmalı Kompresörler Santrifuj Kompresörler Kondenser (Yoğunlaştırıcı) Su Soğutmalı Kondenserler Hava Soğutmalı Kondenserler Evaporatif Kondenserler Drayer Kılcal Boru Kapiler Boru Kullanımının Avantajları Kapiler Boru Kullanımının Dezavantajları Kapiler Borunun Değiştirilmesi...40 i

4 Kılcal Boru Seçimi Evaportör Hava Soğutucu Evaporatörler Dönüş Borusu Soğutma Gazı (R134a) Soğutucu Akışkanlarda Aranılan Özellikler Soğutucu Akışkan Çeşitleri Yağlama Yağları Termostat Soğutmada Arıza Tespiti Evaporatördeki Hatalı Yük Kötü Yük Dağılımı Tıkalı Dağıtım veya Serpantin Devreleri Soğutucu Basınç Düşürme Cihazı Yanmış veya Yanlış Ayarlanmış Termostatik Genleşme Valfi Kılcal Borular Gereğinden Küçük Boyutlandırılmış Soğutucu Hataları Soğutucu Miktarının Belirlenmesi Sistemin Soğutucu İle Doldurulması Arızalı Fan Motoru veya Tahriği Soğutucu Kontrol Cihazının Sızdırması Düşük Ortam Sıcaklığı Gerekenden Küçük Boyutlandırılmış Ünite Titreşim Gürültü...74 ÖLÇME VE DEĞERLENDİRME...76 CEVAP ANAHTARLARI...78 KAYNAKLAR...79 ii

5 KOD ALAN DAL/MESLEK MODÜLÜN ADI MODÜLÜN TANIMI AÇIKLAMALAR AÇIKLAMALAR 522EE0113 Elektrik Elektronik Teknolojisi Elektrikli Ev Aletleri Soğutma Sistemi Elemanları ve Soğutucular Soğutma sistemi ve elemanlarıyla ilgili bilgi ve becerilerin kazandırıldığı öğrenme materyalidir. SÜRE 40/32 ÖN KOŞUL Soğutma sistemlerinde kullanılan elemanların YETERLİK yapısını, bu sistemlerin elektrik ve mekanik şemalarını öğrenmek. Genel Amaç Gerekli atelye ortamı ile soğutma sistemi donanımları sağlandığında her türlü soğutma sisteminin yapısını, soğutma sistemi elemanlarını ve soğutma sisteminin prensip şemasını tanıyarak güvenli, verimli, amaca ve tekniğine uygun bakım ve onarım yapabileceksiniz. Amaçlar 1. Soğutucu sistem elemanları ve soğutucuların, MODÜLÜN AMACI çeşitleri çalışma şekilleri kullanım amaçlarını, bakım onarım ve arızalarını giderme işlemleri ile ilgili yeterlikleri kazanabileceksiniz. 2. Soğutma sistemi elektrik ve soğutma sistemi şemalarını okuyabileceksiniz. 3. Uygun ortam sağlandığında soğutma sistemini oluşturan elemanları tanıyarak, bu parçaların yapısını, görevlerinin neler olduğunu öğrenebilecek ve bu konuda bakım ve onarım yapabileceksiniz. EĞİTİM ÖĞRETİM ORTAMLARI VE DONANIMLARI Atelye ortamı, Takımhane, takım çantası, el aletleri panosu, kontrol ve vida sıkma aletleri, ölçüm cihazları, anahtar takımları, lehimleme malzemeleri, diğer faydalı el ve güç araçları donanımları, soğutucu ve soğutma sistemi elemanları, soğutucu cihaz ile ilgili kataloglar, teknik veri kaynakları, İş güvenliği ile ilgili ekipmanlar. iii

6 ÖLÇME VE DEĞERLENDİRME Bir soğutma sistemi (arızalı veya sağlam) elemanını soğutucu üzerindeki kısımlarından söküp, daha sonra yine çalışma prensibine ve mekanik şemasına aykırı olmayacak şekilde monte edebilecektir Tamamlamış olduğu işlemlerin sonunda ilgili işleme ait oluşturulmuş test ve uygulama sınavlarını gerçekleştirecektir. iv

7 GİRİŞ GİRİŞ Sevgili Öğrenci, Bu modül sonunda edineceğiniz bilgi ve beceriler ile günümüzde artık olmazsa olmaz haline gelen soğutucuları daha iyi tanıyacak, bunların imalatında ve gelişiminde önemli roller alacaksınız. Bir maddenin veya ortamın sıcaklığını onu çevreleyen hacim sıcaklıgının altına indirmek ve orada muhafaza etmek üzere ısının alınması işlemine soğutma denir. En basit ve eski sogutma şekli, soğuk yörelerde tabiatın meydana getirdiği buzları muhafaza edip bunları sıcak veya ısısı alınmak istenen yerlere koyarak soğutma sağlanmasıdır. Kışın meydana gelen kar ve buz u muhafaza ederek sıcak mevsimlerde bunu soğutma maksatları için kullanma usulünün m.ö yıllarından uygulanmakta olduğu bilinmektedir. Bu uygulamanın bugün dahi yurdumuzun bazı yörelerinde geçerli bir soğutma şekli olduğu görülmektedir. Diğer yandan, eski mısırlılardan beri geceleri açık gökyüzünü görecek tarzda yerleştirilen seramik testilerde suyun soğutulabileceği bilinmektedir. Bu soğutma şekli, gökyüzünün gece karanlıktaki sıcaklığının mutlak sıfır (-273) derece seviyesinde olmasından ve ışıma (Radyasyon) yolu ile ısının gökyüzüne iletilmesinden yararlanılarak sağlanmaktadır. Uygulama alanında ilk defa 1860 yılında Dr. James Harrison (Avusturalya) üretim işlemi sırasında birayı soğutmak maksadıyla mekanik soğutmayı başarıyla kullan-mıştır. Sistemde soğutucu akışkan olarak Sülfirik Eter kullanılmıştır de Dr Alexander Kirk kömür ısısı ile çalışan ilk Absorpsiyonlu soğutma aygıtını gerçekleştirmiştir. Konutlarda kullanılmak maksadıyla soğutucu (Buzdolabı) yaptı. Otamatik olarak çalışan buzdolapları 1918 de Kelvinatör Company tarafından imal edilmeye başlandı ve ilk sene 67 dolap satıldı yılları arasında toplam 200 dolap yapılarak satıldı. Absorpsiyon prensibiyle çalışan otamatik bir buzdolabı da (Electrolux) 1927 yılında amerika da satışa çıktı. Soğutma nın tarifinden, bunun iki fiziksel değere, yani sıcaklık ve ısı değerlerine bağlı olduğu görülmektedir. Gerçekte bu iki değer birbirine yakinen bağlıdır. İzotermik ve Adyabatik işlemler ile kütle transferi dışında bu iki değer beraberce artıp azalırlar. 1

8 2

9 ÖĞRENME FAALİYETİ 1 AMAÇ ÖĞRENME FAALİYETİ 1 Soğutucu sistem elemanları ve soğutucuların, çeşitleri çalışma şekilleri kullanım amaçlarını, bakım onarım ve arızalarını giderme işlemleri ile ilgili yeterlikleri kazanabileceksiniz. ARAŞTIRMA Bu faaliyet öncesinde yapmanız gereken öncelikli araştırmalar şunlardır: İş güvenliği ile ilgili gerekli bilgileri edininiz. İnternet ortamından faydalanarak, soğutucunun tanımını öğreniniz. Bir beyaz eşya servisine gidip, soğutucu elemanlarını ve soğutucuları tanıyınız. Çalışmalarınızı, kullanacağınız bir ses ve görüntü kaydedicisiyle zenginleştirebilir, daha sonra elde edilen bu metaryelleri, atelyede bilgisayar ortamında sınıfla paylaşabilirsiniz. 1. SOĞUTUCULAR TANIMI, YAPISI VE ÇALISMASI 1.1. Soğutucunun Tanımı Bir maddenin veya ortamın sıcaklığını, onu çevreleyen hacim sıcaklığının altına indirilmesi ve orada muhafaza etmek üzere ısının alınması işlemine denir Soğutucunun Yapısı Soğutma sistemi; ekovat, kondanser, drayer, kılcal boru, evaparatör, dönüş borusu, soğutma gazı ve termostattan meydana gelmiştir. 3

10 1.3. Soğutucunun Çalışması Şekil 1.1: Soğutma çevrimi Öncelikle, soğuk gibi bir şey olmadığını biliyor muydunuz? Bir şeyi soğuk olarak tarif edebilirsiniz ve herkes ne demek istediğinizi anlar, ama aslında soğuk sadece ve sadece bir şeyden daha az ısı içeren başka bir şey anlamına gelir. Asıl olay daha az ve daha çok ısı miktarıdır. Soğutmanın tanımı ise ısının taşınması ve başka bir yere yerleştirilmesidir. Bir malzeme soğutulacaksa, aslında ondan ısı alınacaktır. Eğer ılık bir içeceğiniz varsa ve diyelim 25 C ise ama siz bu içeceği 4 C olarak içmeyi tercih ediyorsanız; onu bir süre bir buzdolabına koyarsınız, ısı ondan bir şekilde alınır ve siz daha az sıcak bir içecek sahibi olursunuz. (Ah pardon, yani daha soğuk bir içeceğiniz olur.) Ama bir de şu durumu düşünün; dolaba koyduğunuzda 4 C olan içecek çıkardığınızda 3 C olmuş. İkisi de soğuk ama biri diğerinden daha az ısı içeriyor. Yani soğuk maddeler bile ısı içerirler ve daha az ısı içerme durumuna geçebilirler. Bu durumun limiti o malzemeden tüm ısının alınmasıdır. Bu sınır mutlak sıfır noktasıdır ve teorik olarak 273 C ile tarif edilir. Bu sıcaklığa ancak laboratuar ortamında elektriksel süper iletkenler vasıtası ile çok yaklaşılmıştır Isı Transferi Isı transferi konusu bugün mühendisliğin tüm dallarında uygulama sahası bulmakta ve fakat denilebilir ki Makine Mühendisliğinde bu daha da geniş olmaktadır. Makine Mühendisliği, ısı transferi ilmini ısıtma, soğutma, klima, havalandırma konularında başka içten yanmalı motorlarda, buhar üretiminde, ısı değiştirgeçlerinin dizaynında ve Makine Mühendisliğinin daha pek çok dallarında geniş ölçüde kullanmaktadır. 4

11 Isı transferi teorisi geniş ölçüde ileri fizik ve ileri matematik uygulamaları ile irdelenebilmekte, çoğu problemlere ancak basitleştirmek suretiyle ve bazı kabuller yapmak suretiyle matematiksel bir çözüm getirebilmektedir. Soğutma işleminin gerçekleştirilebilmesinde soğutma sisteminin bir çok yerinde ısı alış-verişi olayı meydana gelir ve soğutma sahasında ısı transferi başlı başına en geniş yeri tutmaktadır. Soğuk odaların ısı tecritinden evaporatör ve kondenser dizaynına, soğuk odada muhafaza edilen çeşitli tür maddelerden kompresör gövdesindeki ısı akımlarına kadar soğutma sisteminin hemen her elemanında ısı transferi olayı meydana gelmektedir. Önce, soğutulan ortamın kendisi ısı transferi olayına maruz kalır ki, bunun nedeni, soğutulan ortamın normal olarak civar hacimlerden soğutulan ortama doğru bir akış meydana getirmesidir. Soğutulan hacme giren ısı, soğuk odanın kendi içinde bulunan veya meydana gelen ısı ile (soğutulan mal, aydınlatma, motor, insanlar, v.s) ve kapı açılmalarında meydana gelen dış hava sirkülasyonunun ısısıyla birleşir ve çoğalır. Evaporatör/soğutucu tarafından alınıp soğutucu akışkan/refrijeran maddeye geçirilen ve Soğutma Yükü diye adlandırılan ve toplam ısı, Buhar sıkıştırma çevriminde kompresör tarafından sıkıştırma işlemiyle kondensere sevk edilir. Kondenser, evaporatörden alınan ısı ile kompresörün sıkıştırma işlemi sırasında harcanan enerjinin ısıl karşılığı toplamını soğutma çevriminden uzaklaştırır. Görüldüğü gibi, ısı transferi sistemin bir çok elemanında defalarca meydana gelmektedir, ayrıca soğutucu akışkanın sistemin değişik yerlerinde sıvı ve gaz halde oluşu ve konum değişikliğine uğraması sırasında Kütle Transferi olayı ile de karşılaşılır. Maddeler nasıl daha soğuk olur? Isı transferi olayı 3 değişik şekilde olmaktadır ve bunlar; Kondüksüyon (İletim) Konveksiyon (Taşıma) Radyasyon (Işıma), diye adlandırılmaktadır Şekil 1.2: Soğutma yöntemleri Yukarıdaki son iki yol kapsamlı olarak soğutma ekipmanlarının tasarımlarında kullanılır. Eğer iki maddeyi birbirlerine değecek şekilde bırakırsanız ve biri sıcak diğeri soğuksa, ısı sıcak maddeden soğuk maddeye doğru akar. Buna kondüksiyon denir. Bu eğimli bir yüzeyde aşağı doğru yuvarlanmaya çalışan top örneğinde olduğu gibi yerçekimi kuvvetine benzer, kolay anlaşılabilecek bir durumdur. Eğer bir tabak yemeğe hava üflerseniz bir şekilde soğur. Yemekteki ısının bir bölümü hava molekülleri vasıtası ile taşınır. Buna konveksiyon denir. Eğer bir şenlik ateşindeki parlayan bir kor parçasını tekme ile uzaklaştırırsanız kor parçasının yavaş yavaş ışığını kaybettiğini be söndüğünü gözlemlersiniz. Aslında kor parçası radyasyon vasıtası ile ısısını yayar veya diğer bir deyişle 5

12 kaybeder. Radyasyon ile ısı yayma için maddenin parlaması gerekmez, her şey çevresi ile dengeye gelebilmek için bu metotların kombinasyonlarını kullanır. Görülebileceği üzere, bir maddeyi soğutmak yerine bu maddeyi kendinden daha soğuk bir malzeme ile başbaşa bırakmak ve gerisini doğadan beklemek yeterli olacaktır. Soğutma sisteminin asıl mekanik özelliklerine oldukça yaklaşmamıza rağmen öncelikle açıklanması gereken bazı özellikler daha var. Şimdi onları görelim. Maddenin Halleri Maddenin herkesin bildiği üzer 3 hali vardır; katı, sıvı ve gaz. Burada bizim için önemli nokta bir maddeyi katı halden sıvıya ve sonra gaz fazına geçirmek için o maddeye ısı vermek gerekliliğidir. Aynı mantıkla, maddeyi gaz fazından sıvıya ve sonra katı faza getirmek için de o maddeden ısı alınması gerekir. Isı enerji türüdür ve ısının transferi de gene Termodinamiğin 1. Ve 2. Kanunları altında meydana gelmektedir. Her üç ısı transferinde de bir sıcaklık farkı gelmekte, ısı yüksek sıcaklık tarafından alçak sıcaklık tarafına doğru akmakta ve bir kaynağı terk eden ısı miktarı onu alan elemanların ısı artışına eşdeğer olmaktadır Kondüksiyon (İletim) Isı iletimi bir ortam içerisinde bulunan bölgeler arasında veya doğrudan doğruya fiziki temas durumunda bulunan farklı ortamlar arasında, atom ve moleküllerin fark edilebilir bir yer değiştirmesi olmaksızın bunların doğrudan teması sonucu meydana gelen ısı geçişi işlemidir. Termodinamiğin II. Kanununa göre ısı yüksek sıcaklıkta bulunan bir bölgeden düşük sıcaklıktaki bir bölgeye akar. Kinetik teoriye göre bir maddenin sıcaklığı, bu maddeyi meydana getiren moleküllerin veya atomların ortalama kinetik enerji ile orantılıdır. Kinetik enerjinin fazla olması iç enerjinin fazla olması demektir. Kinetik enerjinin fazla olması demektir. Kinetik enerjinin fazla olması, iç enerjinin fazla olması demektir. Bir bölgede moleküllerin ortalama kinetik enerjisi, sıcaklık farkından dolayı bitişik bölgedeki moleküllerin ortalama kinetik enerjilerden fazla ise, enerjileri fazla olan moleküller bu enerjiyi komşu olan moleküllere iletirler. Isının çeşitli malzemeler üzerinden iletilme oranı Malzeme kalınlığı Kesit alanı Malzemenin iki tarafındaki sıcaklık farkı Malzeme ısı iletkenliği Isı akışının süresi gibi faktörlere bağlıdır. Yüksek ısı iletkenliğine sahip metaller, bizzat soğutma sisteminin kendisi içinde kullanılır. Çünkü hızlı bir ısı transferinin hem evaporatör hem de kondenserde meydana gelmesi istenir. Evaporatörün içinde ürün veya hava, boruların içindeki soğutucudan daha yüksek sıcaklıktadır ve düşük sıcaklığa doğru bir ısı transferi olur. Oysa kondanserde, soğutucu buhar kondenserin geçer ve etrafında dolaşan soğutma ortamından daha yüksek sıcaklıkta yine burada da, düşük sıcaklığa doğru bir ısı transferi olmaktadır. Bu ısı transferi yöntemleri iletimdir. 6

13 Konveksiyon (Taşıma) Konveksiyon, akışkan hareketi ile enerji taşınımı işlemidir. Ortam bir sıvı veya gaz ise, akışkan haraketi ile ısı enerjisi bir bölgeden diğer bir bölgeye sıcaklık farkından dolayı transfer edilecektir. Isı transferinin en önemli konusu konveksiyondur. Isı değiştiricilerinde akışkanlar, katı cisimler (yüzeyler) ile birbirinden ayrılmış olduklarından, konveksiyon, bir yüzey ile akışkan arasındaki enerji taşımında en önemli ısı transferi mekanizmasıdır. Soğutucunun içindeki hava konveksiyon akımının sonucuna ait başlıca örnektir. Buzdolabının soğutma serpantini ile, temastaki hava soğur ve bu yüzden de yoğunluğu artarak, buzdolabının dibine inmeye başlar. Bu şekilde, yiyeceklerden ve odanın ısısını çekmiş olan buzdolabının duvarlarından ısı çeker. Hava ısıyı soğuduktan sonra genleşir, yoğunluğu azalmaya başlar ve ısının çekildiği soğutma serpantinine ulaşana dek yükselir. Konveksiyon çevrimi, hava ile serpantin arasında sıcaklık farkı olduğu sürece devam eder. Piyasa tipi ünitelerde, dolabın içine plakalar yerleştirilebilir. Bunun amacı konveksiyon akımlarının, serpantinin etrafında arzu edilen hava akış şekillerini almaya yönlendirilmesidir Radyasyon (Işınım) Bir cismi meydana getiren elemanter taneciklerin ısıl hareketi, elektromagnetik ışıma şeklindeki enerji neşretmelerine sebep olur. Sıcaklığın artması, taneciklerin hareketini ve dolayısıyla ışıma şiddetini arttırır. Radyant ısı, koyu renkli veya donuk cisimler veya maddeler tarafından kolayca soğurulur. Oysa açık renkli yüzeyler veya malzemeler, ışık ışınlarını olduğu gibi, radyant ısı dalgalarını da yansıtırlar. Bundan dolayıdır ki ısı dalgalarını da yansıtırlar. Bundan dolayıdır ki buzdolabının açık renkte imal edilir. Cisimlerin bazıları bu yapılan ışıma enerjisini soğurur, bazıları yansıtır, bazıları da içlerinden daha serbestçe geçmelerine müsaade ederler. Yalnız mükemmel bir boşluktan serbestçe geçerler. Yapılan bu enerji dalgaları soğurgan başka bir ortama tesadüf ettiklerinde enerjilerini bu ortama transfer ederek bu ortamın ısıl hareketini arttırırlar. Böylece ısı enerjisi, neşredilen sitemden, ışımayı doğuran sisteme transfer edilmiş olur. Sistemlerden birinin sıcaklığı azalırken diğerinin sıcaklığı artar. Bütün cisimler sürekli olarak ısıl ışıma neşreder Gizli Isının Sihiri Isı miktarının ölçümünün yapılabilmesi için bir yol bulunması gerekliliği çok önceleri bulunmuştu. Daha az ısı ya da daha çok ısı ya da külliyetli miktarda ısı deyimlerinden daha kesin değerlere istenmişti. Bu başarmak için oldukça kolay bir görevdi. 1 LB (0,454kg) suyu aldılar ve bu suyu 1 F (0,556 C) ısıttılar. Bu işlemi yapmak için gerekli ısı miktarına da 1 BTU (British Thermal Unit) dediler. Soğutma endüstrisi o günden bu güne boyu açıklamayı kullanmaktadır. Örneğin 6000 BTU lık bir klima alabilirsiniz. Bu birim saatte 7

14 6000 BTU ısının yer değiştirmesini sağlayabilen bir ürünü açıklar BTU luk bir diğer ürün aynı zamanda 1 Ton olarak da adlandırılır. 1 Ton da BTU vardır. 1 LB suyun ısısını 40 F dan 41 F a artırmak için 1 BTU gerekir. Yine 1 LB suyun ısısını 177 F dan 178 F a artırmak için de 1 BTU gerekir. Ancak 1 LB suyun ısısını 212 F dan 213 F a artırmak için 1 BTU kullanmayı denerseniz bunda başarısız olduğunuzu görürsünüz. Su 212 F da kaynar ve daha fazla ısı almaktansa gaz fazına geçer. Maddenin kaynama noktasında çok çok önemli bir olay olur. Küçük bir deney yapar ve 1 LB suya her defasında 1 BTU ısı eklerseniz, su sıcaklığının yine her defasında 1 derece arttığını görürsünüz. Bu 212 dereceye varıncaya dek sürer. Sonra bir şeyler değişir. BTU ları eklemeye devam edersiniz ancak su hiçbir zaman daha sıcak olmaz. Su gaz fazına geçer ve 1 LB su buharlaşma için 970 BTU alır. Buna buharlaşmanın Gizli Isısı denir ve 1 LB su için 970 BTU dur. Ee daha ne, soğutma efektinin nasıl çalıştığını ne zaman söyleyeceksiniz diyebilirsiniz. Orada durun. Daha prosesi anlayabilmeniz için gerekenin ¾ ünü öğrendiniz. Bu suyun oda sıcaklığında kaynamasını engelleyen şey nedir diye sorsam ne dersiniz? Eğer yeteri kadar sıcak değil derseniz, üzgünüm ama yanlış. Suyun kaynamasını engelleyen tek şey suyun yüzeyine baskı yapan hava moleküllerinin basıncıdır. Suyu 212 dereceye kadar ısıtır ve ısı vermeye devam ederseniz, yaptığınız hava basıncını yenmek ve sıvı halinden kaçmasına izin vermek için su moleküllerine yeterli enerjiyi vermekten başka bir şey değildir. Eğer suyu hava basıncı olmayan uzaya çıkarırsanız direk olarak buhar olur. Eğer aynı suyu daha az hava basıncı olan Everest tepesine çıkarırsanız, orada yaptığınız deneyde kaynama için daha az ısıya ihtiyaç olduğunu görürsünüz. (212 F dan daha az ısıda kaynayacaktır.) Yani, su normal atmosfer basıncında 212 derecede kaynar. Basıncı azaltınca kaynama noktasını da azaltırsınız. Denemek için laboratuar ortamında suyu koyduğunuz kapalı kabın içindeki basıncı bir pompa ile emerseniz, oda sıcaklığında buharlaşmanın başlayacağını görürsünüz. Yüzeyindeki hava basıncını yenmek ve gaz fazına geçiş için sıvılara ısı vermek gereklidir. Sıvının üzerindeki basınç azaltılırsa buharlaşmanın da daha kolay olacağını öğrendik. Şimdi aynı olaya farklı bir açıdan bakalım. Aynı mantıkla, buharlaşan sıvının ortamdan ısı emdiğini söyleyebiliriz. Güneşe konulan karpuzun soğuması aynı prensiple oluşur. Böylece, sudan daha düşük bir kaynama noktasında buharlaşan bir akışkan bulmak mekanik soğutmanın gelişmesinde aranan ilk adımı oluşturur. Kimya mühendisleri bu işte kullanılmak üzere aranan doğru kimyasalları bulmak için yıllarca çalıştılar. Çok düşük kaynama noktasındaki hidroflorakarbon soğutucu akışkan ailesini geliştirdiler. Bu kimyasallar normal atmosfer basıncında 0 F ın altında kaynamaktadır. Mekanik Soğutma Sistemi nde dört ana bileşen vardır: 8

15 Şekil 1.3: Mekanik soğutma sistemi Kompresör; piston ve benzeri metotlarla soğutucu gazı sıkıştıran ve kondansere gönderen buhar sıkıştırma pompasıdır. Kondanser, sıkıştırılmış sıcak gazdan aldığı ısıyı dışarı veren ve bu yol ile sıvı hale yoğuşmasına sebep olan ısı eşanjörüdür. Sıvı haldeki soğutucu akışkan daha sonra sınırlayıcı bölüme gelir. Bu aygıt, akışkanın küçük bir delikten geçmesini sağlayarak akışı sınırlar ve basınç düşümüne sebep olur. Bir akışkanın basıncı düştüğünde ne olur? Eğer kaynama noktası düşer ve buharlaşması daha kolay olur diyorsanız, doğrusunuz. Ve akışkan buharlaştığında ne olur? Çevresinden ısı aldığı konusunda mutabık değil miydik? İşte bu ciddi bir durumdur ve şimdi soğutmanın nasıl olduğunu öğrendiniz. Bu olayın yani buharlaşmanın olduğu yerin adı da evaporatördür. Buradaki akışkan döngünün tamamlanabilmesi için tekrar kompresöre gider. Soğutucu akışkan ısıyı emmek ve başka bir yere transfer etmek üzere tekrar tekrar kullanılır. Soğutmanın tarifini anımsadınız mı? (Isının taşınması ve başka yere yerleştirilmesi) Isı Transfer Oranları Soğutma çevriminde optimize edilmek istenen bir nokta da ısı transfer oranıdır. Soğutma sistemlerinde çok iyi ısı iletkenliğine sahip olan bakır ve alüminyum gibi materyaller kullanılır. Diğer bir deyişle ısı bu malzemeler içinden kolayca akar. Isı transfer yüzeyini artırmak ısı transferini artırmak için başka bir yoldur. Küçük motorlardaki pistonların etrafında soğutma kanatçıklarına dikkat ettiniz mi? Bu ısı transfer yüzeyini artırarak ısı transfer oranını artırmaya bir örnektir. Sıcak motor, istenmeyen sıcaklığı geçen hava işe temas halindeki kanatçıklar vasıtası işe çok kolayca atabilir. Hava soğutmalı kondanserler ve evaporatörler gibi soğutma sistemi ısı transfer elemanları çoğunlukla bakır boru ve alüminyum kanatçıklar işe yapılır. Daha sonra fanlar yardımı işe havanın kanatçıkların içinden daha fazla miktarda geçmesi sağlanır Isı İki sistem arasında (veya sistem ile çevresi arasında) sıcaklık farkından dolayı gerçekleşen enerji geçişi diye tanımlanmıştır. Başka bir anlatımla, enerji sadece sıcaklık farkından dolayı gerçekleşmişse ısı diye tanımlanır. Bu tanımdan açıkça görüldüğü gibi, aynı sistem arasında ısı geçişi olmaz. 9

16 Hissedilebilen veya ölçülebilen ısıya duyulur ısı denir. Bir hal değişimi sırasında çoğu maddenin, sıcaklığında bir artış olmadan katıdan sıvıya dönüşeceği bir erime noktası olacaktır. Bu noktada, eğer madde sıvı haldeyse, kendisinden ısı alınır, madde de sıcaklığı değişmeden katılaşır. Bu işlemlerden her birinde olaya katılan ve sıcaklıkta değişiklik oluşturmayan ısı, ergime gizli ısısı olarak bilinir Sıcaklık İki cisim temas halinde bulundukları zaman birinden diğerine ısı enerjisi aktarılıyorsa, birinci cismin sıcaklığı, ikinciden daha yüksektir denir. Sıcaklığı duyumuzla da anlayabiliriz, vücut sıcaklığı 36,5 C olduğuna göre, cisimleri ellediğimiz zaman, elimizden sıcak veya soğuk olduğunu anlarız. Termodinamikte mutlak sıcaklıklar kullanılır, santigrat sisteminde 273,16 C Fahrenheit sisteminde ise 459,6 F kullanılır. Kelvin derecesi = TK = t C Rankin derecesi = TK = t F Soğutma Soğutma bir sıvının halini değiştirerek ısının bir yerden başka bir yere iletilmesidir. Sıcaklık farkı olduğu sürece ısı pek çok değişik şekilde iletilebilir. Dolayısıyla istenen sonuçlara bağlı olarak soğuk sıvı, ısıyı sıcak nesneden çekebilir (soğurabilir) veya sıcak sıvı nesnelere ısı verebilir. Fakat bir hal değişimi olmaksızın elde edilen sonuçlar bir soğutma sistemi veya soğutma etkisi sebebiyle değildir. İstenilen sonucu elde etmek için iş enerjisinin soğutma sistemi şeklinde düzenlenmiş mekanik elemanlar kullanılmasına mekanik soğutma denir. Soğumalı Soğutma; bir yerden bir yere iletimi için gerekli koşulları oluşturmak üzere ısı enerjisinin kullanılmasıdır. Isı enerjisi, iş enerjisine çevrilerek istenen sonuçlar, mekanik soğutma sistemindeki aynı prensiple elde edilir Soğutucu Akişkan Isıyı, buharlaşmayla ya da sıvı halden buhar hale kaynayarak soğuran ve sıvı halden buhar hale yoğuşarak geri bırakan kimyasal bileşimlerdir. Pek çok değişik soğutucu akışkan kullanılmaktadır ve belli bir tanesinin seçimi de, hangi koşullar altında çalışacağına bağlıdır Doyma Sıcaklığı Verilen bir basınçta saf maddenin kaynamaya başladığı sıcaklık (T doyma ) olarak bilinir. 10

17 1.11. Doyma Basıncı Verilen bir sıcaklıkta, saf maddenin kaynamaya başladığı basınç (P doyma ) olarak tanımlanır. 100 C de suyun doyma basıncıda 101,325 kpa olur. [4] Yoğuşma Sıcaklığı Buhar halindeki bir sıvının buhar olarak kalabilmesi için duyulur sıcaklığın yoğuşma sıcaklığından yüksek olması gerekir. Eğer buhardan, duyulur sıcaklığın yoğuşma sıcaklığının altına düşmeye başlayacağı noktaya kadar ısı enerjisi çekilirse, buhar sıvılaşır ve yoğuşur. Sıvılar için kaynama noktası ile yoğuşma sıcaklığı aynıdır. Basıncı düşürmek, kaynama noktasını veya yoğuşma sıcaklığını arttırır Soğutmanın Termodinamik İncelenmesi ve Isı Transferi Yöntemleri Termodinamiğin Uygulama Alanları Tüm mühendislik uygulamaları madde ile enerji arasında bir etkileşim içerir, dolayısıyla termodinamiği ilgilendirmeyen bir çalışma alanı düşünmek zordur. Termodinamiğin uygulama alanlarını yaşamımızın içindedir. Termodinamiğin bazı uygulama alanları insan vücudu, iklimlendirme sistemleri, uçaklar, otomobil motorları, termik veya nükleer güç santrallerin tasarımında ve soğutma sistemlerinde kullanılır Termodinamiğin 1. Kanunu Termodinamiğin birinci kanuna göre, enerji, ne yoktan var edilebilir, ne de vardan yok edilebilir, ne de vardan yok edilebilir, yalnızca şekil değiştirilebilir. Enerjinin kendisi, iş yapabilme kabiliyeti olarak tanımlanır ve ısı enerjisinin bir şeklidir. Aynı zamanda enerjinin son şeklidir, çünkü tüm enerji şekilleri eninde sonunda ısıya dönüşür. Başka çok bilinen enerji şekilleri de vardır; mekanik, elektrik, kimyasal. Bunlardan bir şekilden diğerine kolaylıkla dönüştürülebilir Termodinamiğin 2 Kanunu Termodinamiğin ikinci kanununa göre, ısı enerjisini iletmek için, bir sıcaklık farkı oluşturmalı ve korunmalıdır. Isı enerjisi, yoğunluk ölçeğinde yukarıdan aşağı doğru iletilir. Yüksek sıcaklıklı bir maddeden çıkan ısı, düşük sıcaklıklı bir maddeye doğru hareket eder. Bu işlem sıcaklık farkı var olduğu sürece devam eder. Çoğunlukla, sıcaklık farkı ne kadar düşük olursa, ısı transfer oranı da o kadar düşük olur. 11

18 Soğutma Çevrimleri Ters Carnot Çevrimi Carnot çevrimi, verilen bir sıcaklık aralığında en yüksek ısıl verime sahip çevrimdir. Tersinir bir çevrim olduğu için, Carnot çevrimini oluşturan hal değişimleri ters yönde de gerçekleşebilir. Hal değişimlerinin ters yönde gerçekleşmesi, ısı ve iş etkileşimlerinin yönlerinin değişmesi anlamına gelir. Sonuç, ters Carnot çevrimi adı verilen çevrimdir. Ters Carnot çevrimine göre çalışan bir soğutma makinesi veya ısı pompası, Carnot soğutma makinesi veya Carnot ısı pompası diye adlandırılır. Bir soğutucu akışkanın doyma bölgesi içinde gerçekleşen ters carnot çevrimini ele alalım. Hal değişimi sırasında, soğutucu akışkana, T L sıcaklığındaki soğuk ortamdan, sabit sıcaklıkta Q L miktarında ısı geçişi olur. Akışkan daha sonra izantropik bir hal değişimiyle 3 haline sıkıştırılır ve hal değişimi sonucunda sıcaklığı T H olur. 3 4 hal değişimi sırasında, soğutucu akışkandan T H sıcaklığındaki ortama, sabit sıcaklıkta ısı geçişi olur ve daha sonra akışkan 1 halin e izantropik olarak genişleyerek çevrimi tamamlar. 4 1 hal değişimi sonunda akışkanın sıcaklığı TL olur. 3 4 hal değişimi sırasında soğutucu akışkan, yoğuşturucuda doymuş buhardan doymuş sıvıya dönüşür. Ters Carnot çevrimi, belirli sıcaklıklardaki iki ısıl enerji deposu arasında çalışan en etkin soğutma çevrimidir fakat aşağıda belirtilen nedenlerle Carnot çevriminin uygulamaya aktarılması olanaksızdır. Isı geçişinin olduğu iki izotermal hal değişimi uygulamada gerçekleşebilir, çünkü doyma bölgesinde basıncın sabit kalması, sıcaklığında doyma sıcaklığında sabit kalmasını sağlar. Bu bakımdan 2 3 ve 4 1 hal değişimlerinin uygulamada gerçekleştirilmesi zordur. Çünkü 2 3 hal değişimi bir sıvı buhar karışımının sıkıştırılmasını, başka bir değişle iki fazlı akışkanla çalışan kompresörü gerektirir. 4 1 hal değişimi ise sıvı oranı yüksek bir karışımın genişlemesidir. Bu sorunların, Carnot çevrimini doyma bölgesinin dışında gerçekleştirerek çözülebileceği düşünülebilir, fakat bu kez ısı geçişi işlemlerinde sabit sıcaklık koşulunun yerine getirilmesi zorluk çıkaracaktır. Bu nedenlerle ters Carnot çevriminin uygulamada gerçekleşemeyeceği ve soğutma çevrimleri için ideal bir model oluşturamayacağı sonucuna varılır İdeal Buhar Sıkıştırmalı Soğutma Çevrimi Kısılma işlemi, sıvıyı bir kısılma vanasından veya kılcal borulardan geçirerek yapılabilir. Bu şekilde elde edilen çevrim, ideal buhar sıkıştırmalı soğutma çevrimi diye bilinir. Bu çevrimin genel çizimi ve T-S diyagramı aşağıdaki şekilde verilmiştir (Şekil ) Buhar sıkıştırmalı çevrim soğutma makinelerinde, iklimlendirme ve ısı pompalarında en çok kullanılan çevrimdir. Bu çevrimi oluşturan hal değişimleri şöyledir. 12

19 1-2 Kompresörde izantropik sıkıştırma 2-3 Yoğuşturucuda çevreye sabit basınçta ısı geçişi 3-4 Kısılma (genişleme ve basıncın düşmesi) 4-1 Buharlaştırıcıda akışkana sabit basınçta ısı geçişi İdeal buhar sıkıştırmalı soğutma çevriminde, soğutucu akışkan kompresöre 1 halinde doymuş buhar olarak girer ve izantropik olarak yoğuşturucu basıncına sıkıştırılır. Sıkıştırma işlemi sırasında, soğutucu akışkanın sıcaklığı çevre ortam sıcaklığının üzerine çıkar. Soğutucu akışkan daha sonra 2 halinde kızgın buhar olarak yoğuşturucuya girer ve yoğuşturucudan 3 halinde doymuş sıvı olarak ayrılır. Yoğuşma sırasında akışkandan çevreye ısı geçişi olur. Soğutucu akışkanın sıcaklığı 3 halinde de çevre sıcaklığının üzerindedir. Doymuş sıvı halindeki akışkan daha sonra bir genleşme vanası veya kılcal borulardan geçirilerek buharlaştırıcı basıncına kısılır. Bu hal değişimi sırasında soğutucu akışkanın sıcaklığı, soğutulan ortamın sıcaklığının altına düşer. Soğutucu akışkan buharlaştırıcıya 4 halinde kuruluk derecesi düşük bir doymuş sıvı buhar karışımı olarak girer ve soğutulan ortamdan ısı alarak tümüyle buharlaşır. Soğutucu akışkan buharlaştırıcıdan doymuş buhar halinde çıkar ve kompresöre girerek çevrim tamamlanır Gerçek Buhar Sıkıştırmalı Soğutma Çevrimi Gerçek buhar sıkıştırmalı soğutma çevrimi, ideal çevrimden birkaç bakımdan farklıdır. Bu farklılık daha çok, gerçek çevrimi oluşturan elemanlardaki tersinmezliklerden kaynaklanır. Tersinmezliğin iki ana kaynağı, basıncın düşmesine neden olan akış sürtünmesi ve çevreyle olan ısı alışverişidir. Gerçek buhar sıkıştırmalı çevrimin T-S diyagramı aşağıda gösterilmiştir. İdeal çevrimde buharlaştırıcıdan çıkan soğutucu akışkan kompresöre doymuş buhar olarak girer. Bu koşul uygulamada gerçekleştirilemez, çünkü soğutucu akışkanın halini hassas bir biçimde kontrol etmek olanaksızdır. Bunun yerine sistem, soğutucu akışkanın kompresör girişinde biraz kızgın buhar olmasını sağlayacak şekilde tasarlanır. Burada amaç, akışkanın kompresör girişinde biraz kızgın buhar olmasını sağlayacak şekilde tasarlanır. Burada amaç, akışkanın kompresör girişinde tümüyle buhar olmasını güvenceye almaktır. Ayrıca, buharlaştırıcıyla kompresör arasındaki bağlantı genellikle uzundur, böylece akış sürtünmesinin yol açtığı basınç düşmesi ve çevreden soğutucu akışkana olan ısı geçişi önem kazanabilir. Yukarıda sıralanan etkilerin toplam sonucu, soğutucu akışkanın özgül hacminin ve buna bağlı olarak kompresör işinin artmasıdır, çünkü sürekli akış işi, özgül hacimle doğru orantılıdır. İdeal çevrimde sıkıştırma işlemi içten tersinir ve adyabatiktir, başka bir deyişle izantropiktir. Gerçek sıkıştırma işleminde ise entropiyi etkileyen akış sürtünmesi ve geçişi vardır. Sürtünme entropiyi arttırır, ısı geçişi ise hangi yöne olduğuna bağlı olarak entropiyi arttırır veya azaltır. Bu iki etkiye bağlı olarak, soğutucu akışkanın entropisi sıkıştırma işlemi sırasında artabilir (1 2 hal değişimi) veya azabilir (1 2 hal değişimi). Sıkıştırmanın izantropik olmaktansa, 1 2 hal değişimine göre olması tercih edilir, çünkü kompresör işi bu 13

20 durumda daha az olacaktır. Bu bakımdan soğutucu akışkanın sıkıştırma işlemi sırasında soğutulması, ekonomik ve uygulanabilir olduğu sürece yararlıdır. İdeal çevrimde, soğutucu akışkanın yoğuşturucudan çıkış hali, kompresör basıncında doymuş sıvıdır. Gerçek çevrimde ise kompresör çıkışıyla kısılma vanası girişi arasında bir basınç düşmesi vardır. Akışkanın kısılma vanasına girmeden önce tümüyle sıvı halde olması istenir. Doymuş sıvı halini uygulamada tam bir hassaslıkla gerçekleştirmek zor olduğundan,, yoğuşturucudan çıkış hali genellikle sıkıştırılmış sıvı bölgesindedir. Soğutucu akışkan doyma sıcaklığından daha düşük bir sıcaklığa soğutulur, başka bir deyişle aşırı soğutulur. Bunun başka bir sakıncası yoktur, çünkü bu durumda soğutucu akışkan buharlaştırıcıya daha düşük bir entalpide girer ve buna bağlı olarak ortamdan daha çok ısı çekebilir. Kısılma vanasıyla buharlaştırıcı birbirine çok yakındır, bu nedenle aradaki basınç düşmesi küçüktür Gaz Akışkanlı Soğutma Çevrimleri Bu bölümün başında, güç çevrimlerini karşılaştırmak için bir standart oluşturan Carnot çevrimiyle soğutma çevrimleri için aynı işlevi gören ters Carnot çevriminin aynı hal değişimlerinden oluştuğu, fakat bu hal değişimlerinin ters yönde gerçekleştiği belirtilmişti. Buradan yola çıkarak, daha önceki bölümlerde incelenen güç çevrimlerinin, ters yönde gerçekleştirilerek, soğutma çevrimi olabilecekleri düşünülebilir. Gerçekten de, buhar sıkıştırmalı soğutma çevrimi, ters yönde çalışan bir Rankine çevriminin benzeridir. Bir başka örnek, Stirling soğutma makinelerinin dayandığı ters Stirling çevrimidir. Bu bölümde gaz akışkanlı soğutma çevrimi diye bilinen ters Brayton çevrimi incelenecektir. Çevre sıcaklığı T 0 olup, soğutulan ortam T L sıcaklığındadır. Gaz 1 2 hal değişimi sırasında sıkıştırılır. Kompresörden çıktığında (2 hali), basıncı ve sıcaklığı yüksek olan gaz, daha sonra sabit basınçta çevreye ısı vererek T 0 sıcaklığına soğur. Bu işlemi, türbinde genişleme izler ve genişleme sonunda gazın sıcaklığı T 4 e düşer. (Bu soğutma etkisi. türbin yerine bir kısılma vanası kullanarak gerçekleştirilebilir mi?) Son olarak gaz, soğutulan ortamdan ısı çekerek T 1 sıcaklığına yükselir. Yukarıda belirtilen hal değişimlerinin tümü içten tersinirdir, bu nedenle çevrim ideal gaz akışkanlığı soğutma çevrimi diye bilinir. Gerçek gaz akışkanlı soğutma çevrimlerinde, sıkıştırma ve genişleme izantropik değildir, ayrıca sonlu büyüklükte bir ısı değiştiricisi için, T 3 sıcaklığı, T 0 sıcaklığından daha yüksek olur. T-s diyagramında 4 1 eğrisi altında kalan alan, soğutulan ortamdan çekilen ısıyı göstermektedir hallerinin çevrelediği alan ise çevrime giren net işi simgeler. Bu alanların birbirine oranı, çevrimin etkinlik katsayısıdır ve aşağıdaki gibi ifade edilir. Gaz akışkanlı soğutma çevrimi, ters Carnot çevriminden farklıdır, çünkü ısı geçişinin olduğu hal değişimleri sabit sıcaklıkta değildir. Hatta gaz sıcaklığı ısı geçişi sırasında önemli ölçüde değişir. Bunun bir sonucu olarak, gaz akışkanlı soğutma çevriminin etkinlik katsayısı, gerek buhar sıkıştırmalı soğutma çevriminden, gerekse ters Carnot çevriminden daha düşüktür. Ters Carnot çevrimi daha az net iş gerektiren (1A3B1 alanı), daha çok soğutma yapmaktadır. 14

21 Gaz akışkanlı soğutma çevrimlerinin etkinlik katsayıları düşüktür, fakat bu çevrimlerin iki önemli özelliği vardır. İlk olarak, bu çevrime göre çalışan makineler daha basit ve hafif elemanlar gerektirirler, bu bakımdan uçaklarda soğutma için elverişlidirler Gelişmiş Buhar Sıkıştırmalı Soğutma Sistemleri Basit buhar sıkıştırmalı soğutma sistemleri, ucuz ve güvenli olmalarının yanı sıra hemen hemen hiç bakım gerektirmez. Fakat endüstri uygulamalarında basitlikten çok etkinlik önem kazanır. Bazı uygulamalar için basit buhar sıkıştırmalı soğutma çevrimi yetersizdir ve iyileştirilmesi gerekir. Aşağıda, etkinliği artırmak için yapılan düzenlemelerden birkaçı incelenecektir İkili Soğutma Sistemleri Bazı endüstri uygulamalarında düşük sıcaklıklarda soğutma gerekir ve uygulamanın sıcaklık aralığı, basit buhar sıkıştırmalı soğutma çevriminin etkin çalışabilmesi için çok büyük olabilir. Büyük bir sıcaklık aralığı aynı zamanda daha çok basınç kayıplarına yol açacak ve pistonlu kompresörün daha düşük bir verimle çalışmasına neden olacaktır. Bu gibi durumlarda başvurulan yöntemlerden biri soğutmayı iki kademede gerçekleştirmektedir. Başka bir değişle, birbiriyle bağlantılı çalışan iki soğutma çevrimi kullanılmaktadır. Bu çevrimlere ikili soğutma çevrimleri adı verilir. İkili soğutma çevrimi şekilde gösterilmiştir. İki çevrimin bağlantısı, üst çevrimin (çevrim A) buharlaştırıcısı, alt çevrimde (çevrim B) yoğuşturucusu işlevini gören, bir ısı değiştiricisi aracılığıyla olmaktadır. Şekilde gösterilen iki çevrimde, çevrimlerdeki soğutucu akışkanların aynı olduğu kabul edilmiştir. Bunun böyle olması zorunlu değildir, çünkü akışkanlar ısı değiştiricisinde karışmamaktadır Çok Kademeli Sıkıştırma Yapılan Soğutma Sistemleri İkili soğutma sisteminde, çevrimlerde aynı akışkan dolaşıyorsa, çevirmeleri birbirine bağlayan ısı değiştiricisi yerine ısı alışverişinin daha iyi sağlandığı bir karışma odası veya buharlaşma odası kullanılabilir. Bu tür sistemler çok kademeli sıkıştırma yapılan soğutma sistemleri diye adlandırılır. Bu sistemde sıvı soğutucu akışkan, birinci kısılma vanasında buharlaşma odası basıncına genişler. Bu basınç iki sıkıştırma kademesi arasındaki basınca eşittir. Ani genişlemeden dolayı, sıvının bir bölümü buharlaşır. Buharlaştırma odasından alınan doymuş buhar (3 hali) alçak basınç kompresöründen çıkan aynı basınçtaki kızgın buharla (2 hali) karıştırılarak, 9 halinde yüksek basınç kompresörüne girer. Buharlaşma odasının altında biriken doymuş sıvı (7 hali), ikinci kısılma vanasından geçerek buharlaştırıcıya girer ve burada soğutulan ortamdan ısı çeker. 15

22 Tek Kompresörlü, Çok Amaçlı Soğutma Sistemleri Bir soğutucu-dondurucu birimi (buzdolabı) ele alınsın. Soğutucu bölümünde soğutulan ürünlerin çoğunun içerdikleri su miktarı fazladır ve ortamın donma sıcaklığının üzerinde, yaklaşık 5 C sıcaklıkta tutulması gerekir. Dondurucu bölmesinde ise sıcaklık yaklaşık 15 C dir. İyi bir ısı geçişinin olması için soğutucu akışkanın dondurucuya yaklaşık 25 C sıcaklıkta girmesi gerekir. Eğer bir kısılma vanası ve bir buharlaştırıcı kullanırsa, soğutucu akışkan soğutucu akışkan bölümünde de 25 C sıcaklıkta dolaşarak, akışkanın geçtiği boruların çevresinde buz oluşarak gıda maddelerinin su yitirmesine yol açacaktır. İstenmeyen bu durum, soğutucu akışkanı iki aşamalı bir kısılma işleminden geçirerek önlenebilir. Soğutucu akışkan önce soğutucu bölme içindeki sıcaklığa karşı gelen daha yüksek bir basınca, daha sonra da dondurucu basıncına (buna bağlı olarak sıcaklığına) kısılabilir. Dondurucu bölümden çıkan soğutucu akışkan daha sonra tek bir kompresör tarafından yoğuşturucu basıncına sıkıştırılır Gazların Sıvılaştırılması Gazların sıvılaştırılması, soğutma uygulamalarının her zaman önemli bir bölümünü oluşturmuştur, çünkü bilimsel araştırma ve mühendislikle ilgili bir çok işlem (proses), kriyojenik sıcaklıklarda (-100 C nin altında) gerçekleşir ve sıvılaştırılmış gazların kullanılmasına dayanır. Örnek olarak, oksijen ve azotun havadan ayrılması, roketler için sıvı yakıtların hazırlanması, çok düşük sıcaklıklarda malzemelerin özelliklerinin araştırılması, süper iletkenlikle ilgili araştırmalar gösterilebilir. Kritik sıcaklığın üzerindeki sıcaklıklarda, bir madde sadece gaz fazında bulunabilir. Sıvılaştırılarak kullanılan üç önemli gaz, helyum, hidrojen ve azotun kritik sıcaklıkları sırasıyla, -268 C, -240 C, -147 C dir. Bu nedenle bu maddelerden hiçbiri çevre koşullarında sıvı değildir. Daha da önemlisi, yukarıda belirtilen çok düşük sıcaklıkların yaygın olarak kullandığımız soğutma yöntemleriyle elde edilmesi olanaksızdır. Bu durumda gazların sıvılaştırılmasıyla ilgili olarak yanıtlanması gereken soru şudur: Bir gazı kritik sıcaklığının altındaki bir sıcaklığa nasıl soğutabiliriz? Gazların sıvılaştırılması için başarıyla kullanılan bazıları basit, diğerleri daha karmaşık birkaç çevrim vardır. Çevrimde dolaşan gaz (9 hali) ile çevrimden çekilen sıvılaştırılmış gazın yerine çevrime eklenen tamamlama gazı (1 hali) karıştırılarak, 2 halinde çok kademeli kompresöre gönderilir ve 3 haline sıkıştırılır. Ara-soğutma nedeniyle sıkıştırma yaklaşık olarak sabit sıcaklıkta gerçekleşir. Yüksek basınçlı gaz bir ısı değiştiricisi veya ayrı bir soğutma sisteminde 4 haline soğutulur ve ters akışlı bir ısı değiştiricisinde (rejeneratörde), çevrimde dolaşan soğuk gaza ısı vererek 5 haline gelir. Son olarak gaz, doymuş sıvı-buhar karışımı olan 6 haline kısılır. 7 halindeki sıvı kullanım için ayrılır, 8 halindeki buhar ise yeniden çevrime döner ve jeneratörden geçerek 9 haline gelir. Çevrim sürekli akışlı bir sistemde tekrarlanır. 16

23 Gazların sıvılaştırılması için kullanılan bu çevrim ve diğerleri gazların dondurulması veya katılaştırılması için kullanılır. Şekil 1.4: Buzdolabının çalışma prensibi 17

24 UYGULAMA UYGULAMA FAALİYETİ FAALİYETİ İşlem Basamakları Başka bir kaynaktan soğutucunun tanımını öğreniniz. Soğutucunun yapısı ve çalışması ile ilgili olarak, bir beyaz eşya servisine giderek izlenimlerde bulununuz. Öneriler İnternetten araştırabilirsiniz. Çalışmaları engellemeden, iş güvenliğini ön planda tutarak gözlemlemelisiniz. 18

25 ÖLÇME ÖLÇME VE VE DEĞERLENDİRME DEĞERLENDİRME A- ÖLÇME SORULARI Aşağıdaki soruları cevaplayınız. 1. Soğutucunun tanımını yapınız. 2. Soğutucunun yapısında bulunan elemanlardan 3 tanesini yazınız. 3. Kondüksiyonun tanımını yapınız. 4. Soğutma sisteminin çalışma prensibini anlatınız. B- OBJEKTİF TESTLER Aşağıdaki sorulara doğru veya yanlış diye cevaplayınız. 1. Soğutma; Bir maddenin veya ortamın sıcaklığını, onu çevreleyen hacim sıcaklığının altına indirilmesi ve orada muhafaza etmek üzere ısının alınması işlemine denir. 2. Konveksiyon, akışkan hareketi ile enerji taşınımı işlemidir. 3. Kondüksiyon elemanlar;isıyı, buharlaşmayla ya da sıvı halden buhar hale kaynayarak soğuran ve sıvı halden buhar hale yoğuşarak geri bırakan kimyasal bileşimlerdir. 4. Konveksiyon, akışkan hareketi ile enerji taşınımı işlemidir. 5. Doyma sıcaklığı; verilen bir basınçta saf maddenin kaynamaya başladığı sıcaklık olarak bilinir. 6. Kırılma basıncı; verilen bir sıcaklıkta, saf maddenin kaynamaya başladığı basınç olarak tanımlanır. 7. İdeal buhar sıkıştırmalı soğutma çevrimi; kısılma işlemi, sıvıyı bir kısılma vanasından veya kılcal borulardan geçirerek yapılabilir. DEĞERLENDİRME Yanlış cevap verdiğiniz ya da cevap verirken tereddüt yaşadığınız sorularla ilgili konuları faaliyete geri dönerek tekrar inceleyiniz Tüm sorulara doğru cevap verdiyseniz diğer faaliyete geçiniz. 19

26 ÖĞRENME FAALİYETİ 2 ÖĞRENME FAALİYETİ 2 AMAÇ Soğutma sistemi elektrik ve soğutma sistemi şemalarını okuyabileceksiniz. ARAŞTIRMA Bu faaliyet öncesinde yapmanız gereken öncelikli araştırmalar şunlar olmalıdır: İş güvenliği ile ilgili gerekli bilgileri edininiz. İnternet ortamından faydalanarak, soğutuculara ait elektrik sistemleri ve soğutma elemanlarının mekanik şemalarını temin ediniz. Bir beyaz eşya servisine gidip, soğutucu elemanlarını ve soğutucuları tanıyınız. Elinizde bulunan elektrik ve soğutma ile ilgili şemaları, bir kaç kere kendiniz çiziniz. Çizmiş olduğunuz şemaların üstünde bulunan elemanların hemen yanlarına kendi tanımlarını ve bir kaç özelliğini yazınız. Çalışmalarınızı, kullanacağınız bir ses ve görüntü kaydedicisiyle zenginleştirebilir, daha sonra elde edilen bu metaryelleri, atelyede bilgisayar ortamında sınıfla paylaşabilirsiniz. 2. SOĞUTUCU ELEMANLARI Şekil 2.1: Soğutucuların genel elektrik şeması 20

27 Şekildeki elemanlar sırasıyla şunlardır; 1.Kompresör 2.fan 3.termostat 4.kondanser fanı 5.İç aydınlatma balastı 6.İç aydınlatma starteri 7.iç aydınlatma floresan lambası 8.Kanopi floresan lambası 9.Kanopi starteri 10.Kanopi balastı Şekil 2.2: Tek kapılı soğutucunun yapısı Şekil 2.3: İki kapılı soğutucuların yapısı 21

28 Şekil 2.4: Nofrost soğutucuların yapısı Şekil 2.5: Tek kapılı soğutucuların elektrik şeması 22

29 Şekil 2.6: İki kapılı soğutucuların elektrik şeması Şekil 2.7: Nofrost soğutucunun elektrik şeması 23

30 Şekil 2.8: Bir fazlı asenkron motora yol verme şeması Şekil 2.9: Yol verme rölesi 24

31 UYGULAMA FAALİYETİ UYGULAMA FAALİYETİ İşlem Basamakları Çizim için gerekli olan teknik resim gereçlerini hazırlayınız. Çizimini yapacağın soğutma elemanının elektrik ve soğutma şemasını hazırlayınız. Elinizde bulunan A4 kağıdına, ölçeklendirerek çiziminizi gerçekleştiriniz. Soğutma elemanının katolog bilgilerine bakarak yapmış olduğunuz çizimdeki kısımlar ile ilgili kısa notlar alınız. Öneriler Çizimi yaparken gerekli teknik resim çizim kurallarını göz önünde bulundurunuz. 25

32 ÖLÇME VE DEĞERLENDİRME ÖLÇME VE DEĞERLENDİRME ÖLÇME SORULARI Aşağıdaki soruları cevaplayınız. 1. Tek kapılı soğutucunun elektrik şemasını çiziniz. 2. İki kapılı soğutucunun yapısını gösteren şekli çiziniz. 3. Soğutucu genel elektrik devre şemasını çiziniz. DEĞERLENDİRME Çizimlerininzi tamamladıktan sonra kitapta bulunan çizimlerle karşılaştırınız. 26

33 ÖĞRENME FAALİYETİ 3 ÖĞRENME FAALİYETİ 3 AMAÇ Uygun ortam sağlandığında soğutma sistemini oluşturan elemanları tanıyarak, bu parçaların yapısını, görevlerinin neler olduğunu öğrenebilecek ve bu konuda bakım ve onarım yapabileceksiniz. ARAŞTIRMA Bu faaliyet öncesinde yapmanız gereken öncelikli araştırmalar şunlar olmalıdır; İnternet ortamında soğutma sisteminin elemanları hakkında ister görsel ister teorik olsun bilgi araştırması yapabilirsin. Bunun yanında beyaz eşya mağazalarına gidip katalog ve broşür temin edebilirsin. Beyaz eşyaların tamirini bakımını ve onarımını gerçekleştiren yetkili servislerle irtibata geçip, soğutma elemanının tamir öncesi sökülmesini, ardından parçalarının genel yapısını ve bunun yanı sıra elemanlarının monte edilmesini inceleyebilir bu konularda gerekli notlar alabilirsin. 3. SOĞUTMA SİSTEMİNİ OLUŞTURAN ELEMANLAR YAPISI VE GÖREVLERİ 1.Sıcaklık Kontrol 2.Dondurucu Silindiri 3.Selenoid Valf 4.Kondenser 5.Su Ayar Vanası 6.Nem Alıcı Filtre 7.Kompresör 8.İç Ortam Sıcaklık Kontrol 9.Termostat 10.Akışkan İçin Selenoid (Manyetik) Valf 11.Otomatik Genleşme Valfi 12.Akışkan Besleme Kontrol Valfi 13.Isı Değiştirici Akümilatörü 14.Akışkan Besleme Kontrol Valfi 15.Soğutma Boru Demeti Şekil 3: Soğutma elemanları 27

34 3.1. Ekovat (Kompresör, Sıkıştırıcı) Kompresörünün sistemdeki görevi, buharlaştırıcı-soğutucu ısı ile yüklü soğutucu akışkanı buradan uzaklaştırmak ve böylece arkadan gelen ısı yüklenmemiş akışkana yer temin ederek akışın sürekliliğini sağlamaktır. Bunun yanısıra buhar haldeki soğutucu akışkanın basıncını kondenserdeki yoğuşma sıcaklığının karşıtı olan seviyeye çıkarmaktır. Kompresörün iki görevi vardır. Gazı sıkıştırır (yumurtaların ısısını üzerinde taşıyan gazı) ve soğutucu akışkanı döngü içinde hareketlendirir. Böylece proses istenildiği sürece tekrarlanır. Gazı sıkıştırmamızın sebebi tekrar sıvı fazına geçişi sağlayabilmektir. Bu sıkıştırma gaza biraz daha fazla ısı yükler. Şekilde görevini yapan bir kompresör görülmektedir. Yukarı ve aşağı hareketli pistonu ya da pistonları vardır. Pistonun aşağı yönlü hareketinde akışkan buharı (gazı) silindir içine alınır. Yukarı yönlü harekette bu gaz sıkıştırılır. Bu arada çekvalf gibi çalışan çok ince valfler vardır ki bunlar gazın sıkıştırılması esnasında geldiği yere dönmesini engeller. Bu pistonlar açılıp kapanarak akışkan basıncını istenen düzeye getirirler. Sıkıştırılmış sıcak gaz tahmin edebileceğiniz gibi boşaltma kanalına gelir. Akışkan son temel komponente doğru yolculuğuna devam eder. Şekil 3.1: Kompresör 28

35 Şekil 3.2: Rotary komp. Şekil 3.3: Hermetik genel komp. Şekil 3.4: Vidalı yarı hermetik Şekil 3.5: Vidalı komp. Şekil 3.6: Ticari komp. Şekil 3.7: Schrool komp. İdeal bir kompresörde şu genel ve kontrol karakteristikleri aranır. Sürekli bir kapasite kontrolü ve geniş bir yük değişimi-çalışma rejimine uyabilme İlk kalkışta dönme momentinin mümkün oldugunca az olması Verimlerin kısmi yüklerde de düşmemesi Değişik çalışma şartlarında emniyet ve güvenilirliği muhafaza etmesi Titreşim ve gürültü seviyelerinin kısmi ve tam yüklerde ve değişik şartlarda belirli sevyenin üstüne çıkmaması Ömrünün uzun olması ve arızasız çalışması Daha az bir güç harcayarak birim soğutma değerini sağlayabilmesi Maliyetinin mümkün olduğu kadar düşük olması 29

Bölüm 3 SAF MADDENİN ÖZELLİKLERİ

Bölüm 3 SAF MADDENİN ÖZELLİKLERİ Bölüm 3 SAF MADDENİN ÖZELLİKLERİ 1 Amaçlar Amaçlar Saf madde kavramının tanıtılması Faz değişimi işleminin fizik ilkelerinin incelenmesi Saf maddenin P-v-T yüzeylerinin ve P-v, T-v ve P-T özelik diyagramlarının

Detaylı

T. C. GÜMÜŞHANE ÜNİVERSİTESİ MÜHENDİSLİK VE DOĞA BİLİMLERİ FAKÜLTESİ MAKİNE MÜHENDİSLİĞİ BÖLÜMÜ MAKİNE MÜHENDİSLİĞİ DENEYLER 2 SOĞUTMA DENEYİ

T. C. GÜMÜŞHANE ÜNİVERSİTESİ MÜHENDİSLİK VE DOĞA BİLİMLERİ FAKÜLTESİ MAKİNE MÜHENDİSLİĞİ BÖLÜMÜ MAKİNE MÜHENDİSLİĞİ DENEYLER 2 SOĞUTMA DENEYİ T. C. GÜMÜŞHANE ÜNİVERSİTESİ MÜHENDİSLİK VE DOĞA BİLİMLERİ FAKÜLTESİ MAKİNE MÜHENDİSLİĞİ BÖLÜMÜ MAKİNE MÜHENDİSLİĞİ DENEYLER 2 SOĞUTMA DENEYİ ÖĞRENCİ NO: ADI SOYADI: DENEY SORUMLUSU: YRD. DOÇ. DR. BİROL

Detaylı

ISI POMPASI DENEY FÖYÜ

ISI POMPASI DENEY FÖYÜ T.C BURSA TEKNİK ÜNİVERSİTESİ DOĞA BİLİMLERİ, MİMARLIK ve MÜHENDİSLİK FAKÜLTESİ MAKİNE MÜHENDİSLİĞİ BÖLÜMÜ ISI POMPASI DENEY FÖYÜ 2015-2016 Güz Yarıyılı Prof.Dr. Yusuf Ali KARA Arş.Gör.Semih AKIN Makine

Detaylı

T.C. MİLLÎ EĞİTİM BAKANLIĞI MEGEP (MESLEKİ EĞİTİM VE ÖĞRETİM SİSTEMİNİN GÜÇLENDİRİLMESİ PROJESİ) TESİSAT TEKNOLOJİSİ VE İKLİMLENDİRME

T.C. MİLLÎ EĞİTİM BAKANLIĞI MEGEP (MESLEKİ EĞİTİM VE ÖĞRETİM SİSTEMİNİN GÜÇLENDİRİLMESİ PROJESİ) TESİSAT TEKNOLOJİSİ VE İKLİMLENDİRME T.C. MİLLÎ EĞİTİM BAKANLIĞI MEGEP (MESLEKİ EĞİTİM VE ÖĞRETİM SİSTEMİNİN GÜÇLENDİRİLMESİ PROJESİ) TESİSAT TEKNOLOJİSİ VE İKLİMLENDİRME SOĞUK SU HAZIRLAMA (CHİLLER) GRUBU MONTAJI ANKARA 2008 Milli Eğitim

Detaylı

OTOMOTİV TEKNOLOJİLERİ

OTOMOTİV TEKNOLOJİLERİ OTOMOTİV TEKNOLOJİLERİ Prof. Dr. Atatürk Üniversitesi, Mühendislik Fakültesi, Makina Mühendisliği Bölümü, Erzurum Otomotivde Isıtma, Havalandırma ve Amaç; - Tüm yolcular için gerekli konforun sağlanması,

Detaylı

2. Teori Hesaplamalarla ilgili prensipler ve kanunlar Isı Transfer ve Termodinamik derslerinde verilmiştir. İlgili konular gözden geçirilmelidir.

2. Teori Hesaplamalarla ilgili prensipler ve kanunlar Isı Transfer ve Termodinamik derslerinde verilmiştir. İlgili konular gözden geçirilmelidir. PANEL RADYATÖR DENEYİ 1. Deneyin Amacı Binalarda ısıtma amaçlı kullanılan bir panel radyatörün ısıtma gücünü oda sıcaklığından başlayıp kararlı rejime ulaşana kadar zamana bağlı olarak incelemektir. 2.

Detaylı

Otto ve Dizel Çevrimlerinin Termodinamik Analizi. Bölüm 9: Gaz Akışkanlı Güç Çevrimleri

Otto ve Dizel Çevrimlerinin Termodinamik Analizi. Bölüm 9: Gaz Akışkanlı Güç Çevrimleri Otto ve Dizel Çevrimlerinin Termodinamik Analizi 1 GÜÇ ÇEVRİMLERİNİN ÇÖZÜMLEMESİNE İLİŞKİN TEMEL KAVRAMLAR Güç üreten makinelerin büyük çoğunluğu bir termodinamik çevrime göre çalışır. Ideal Çevrim: Gerçek

Detaylı

T.C. MİLLÎ EĞİTİM BAKANLIĞI MEGEP (MESLEKÎ EĞİTİM VE ÖĞRETİM SİSTEMİNİNGÜÇLENDİRİLMESİ PROJESİ) TESİSAT TEKNOLOJİSİ VE İKLİMLENDİRME

T.C. MİLLÎ EĞİTİM BAKANLIĞI MEGEP (MESLEKÎ EĞİTİM VE ÖĞRETİM SİSTEMİNİNGÜÇLENDİRİLMESİ PROJESİ) TESİSAT TEKNOLOJİSİ VE İKLİMLENDİRME T.C. MİLLÎ EĞİTİM BAKANLIĞI MEGEP (MESLEKÎ EĞİTİM VE ÖĞRETİM SİSTEMİNİNGÜÇLENDİRİLMESİ PROJESİ) TESİSAT TEKNOLOJİSİ VE İKLİMLENDİRME EV TİPİ SOĞUTUCULARIN DEVRE BAĞLANTI ŞEMALARI ANKARA 2008 Milli Eğitim

Detaylı

Bölüm 6 TERMODİNAMİĞİN İKİNCİ YASASI. Bölüm 6: Termodinamiğin İkinci Yasası

Bölüm 6 TERMODİNAMİĞİN İKİNCİ YASASI. Bölüm 6: Termodinamiğin İkinci Yasası Bölüm 6 TERMODİNAMİĞİN İKİNCİ YASASI 1 Amaçlar Termodinamiğin ikinci yasasına giriş yapmak.. Termodinamiğin birinci ve ikinci yasalarını birlikte sağlayan geçerli hal değişimlerini belirlemek. Isıl enerji

Detaylı

EN PLUS MAĞAZALARI SATIŞ DESTEK EĞİTİMİ ( KLİMA )

EN PLUS MAĞAZALARI SATIŞ DESTEK EĞİTİMİ ( KLİMA ) EN PLUS MAĞAZALARI SATIŞ DESTEK EĞİTİMİ ( KLİMA ) SOĞUTMA TEKNİĞİ İKLİMLENDİRME Kapalı bir ortamdaki havanın, belirli sınırlar içerisinde, istenilen şartlarda tutulması işlemine iklimlendirme (klima) denir.

Detaylı

BAŞKENT ÜNİVERSİTESİ MAKİNE MÜHENDİSLİĞİ BÖLÜMÜ MAK 402 MAKİNE MÜHENDİSLİĞİ LABORATUVARI DENEY - 5 PSİKROMETRİK İŞLEMLERDE ENERJİ VE KÜTLE DENGESİ

BAŞKENT ÜNİVERSİTESİ MAKİNE MÜHENDİSLİĞİ BÖLÜMÜ MAK 402 MAKİNE MÜHENDİSLİĞİ LABORATUVARI DENEY - 5 PSİKROMETRİK İŞLEMLERDE ENERJİ VE KÜTLE DENGESİ BAŞKENT ÜNİVERSİTESİ MAKİNE MÜHENDİSLİĞİ BÖLÜMÜ MAK 402 MAKİNE MÜHENDİSLİĞİ LABORATUVARI DENEY - 5 PSİKROMETRİK İŞLEMLERDE ENERJİ VE KÜTLE DENGESİ BAŞKENT ÜNİVERSİTESİ MAKİNA MÜHENDİSLİĞİ BÖLÜMÜ MAK 402

Detaylı

SOĞUTUCULAR VE KLİMALAR

SOĞUTUCULAR VE KLİMALAR Dersin Modülleri Soğutma Sistemi Elemanları ve Soğutucular Soğutucularda Ekovat Bakım Onarımı Soğutma Bölümlerinin Bakım Onarımı Klima Çeşitleri ve Seçimi SOĞUTUCULAR VE KLİMALAR Kazandırılan Yeterlikler

Detaylı

YILDIZ TEKNİK ÜNİVERSİTESİ

YILDIZ TEKNİK ÜNİVERSİTESİ Rev: 17.09.2014 YILDIZ TEKNİK ÜNİVERSİTESİ Makine Fakültesi Makine Mühendisliği Bölümü Termodinamik ve Isı Tekniği Anabilim Dalı Termodinamik Genel Laboratuvar Föyü Güz Dönemi Öğrencinin Adı Soyadı : No

Detaylı

ERCİYES ÜNİVERSİTESİ MÜHENDİSLİK FAKÜLTESİ ENERJİ SİSTEMLERİ MÜHENDİSLİĞİ BÖLÜMÜ ENERJİ LABORATUARI

ERCİYES ÜNİVERSİTESİ MÜHENDİSLİK FAKÜLTESİ ENERJİ SİSTEMLERİ MÜHENDİSLİĞİ BÖLÜMÜ ENERJİ LABORATUARI ERCİYES ÜNİVERSİTESİ MÜHENDİSLİK FAKÜLTESİ ENERJİ SİSTEMLERİ MÜHENDİSLİĞİ BÖLÜMÜ ENERJİ LABORATUARI DENEY FÖYÜ DENEY ADI SOĞUTMA DENEY FÖYÜ DERSİN ÖĞRETİM ELEMANI DENEYİ YAPTIRAN ÖĞRETİM ELEMANI DENEY

Detaylı

Bölüm 5 KONTROL HACİMLERİ İÇİN KÜTLE VE ENERJİ ÇÖZÜMLEMESİ. Bölüm 5: Kontrol Hacimleri için Kütle ve Enerji Çözümlemesi

Bölüm 5 KONTROL HACİMLERİ İÇİN KÜTLE VE ENERJİ ÇÖZÜMLEMESİ. Bölüm 5: Kontrol Hacimleri için Kütle ve Enerji Çözümlemesi Bölüm 5 KONTROL HACİMLERİ İÇİN KÜTLE VE ENERJİ ÇÖZÜMLEMESİ 1 Amaçlar Kütlenin korunumu ilkesi geliştirilecektir. Kütlenin korunumu ilkesi sürekli ve sürekli olmayan akış sistemlerini içeren çeşitli sistemlere

Detaylı

AĞRI İBRAHİM ÇEÇEN ÜNİVERSİTESİ MESLEK YÜKSEK OKULU..PROGRAMI.. DERSİ DÖNEM ÖDEVİ. Buz Pateni Projesi. Ad Soyad

AĞRI İBRAHİM ÇEÇEN ÜNİVERSİTESİ MESLEK YÜKSEK OKULU..PROGRAMI.. DERSİ DÖNEM ÖDEVİ. Buz Pateni Projesi. Ad Soyad AĞRI İBRAHİM ÇEÇEN ÜNİVERSİTESİ MESLEK YÜKSEK OKULU..PROGRAMI.. DERSİ DÖNEM ÖDEVİ Buz Pateni Projesi Ad Soyad AĞRI-2014 ÖZET Dönem Ödevi Buz Pateni Projesi Ad Soyad Ağrı İbrahim Çeçen Üniversitesi Meslek

Detaylı

SOĞUTMA SİSTEMLERİ VE ÇALIŞMA İLKELERİ (Devamı)

SOĞUTMA SİSTEMLERİ VE ÇALIŞMA İLKELERİ (Devamı) SOĞUTMA SİSTEMLERİ VE ÇALIŞMA İLKELERİ (Devamı) Soğutma devresine ilişkin bazı parametrelerin hesaplanması "Doymuş sıvı - doymuş buhar" aralığında çalışma Basınç-entalpi grafiğinde genel bir soğutma devresi

Detaylı

Şekil 2.1 İki kademeli soğutma sistemine ait şematik diyagram

Şekil 2.1 İki kademeli soğutma sistemine ait şematik diyagram 2. ÇOK BASINÇLI SİSTEMLER 2.1 İKİ KADEMELİ SOĞUTMA SİSTEMLERİ: Basit buhar sıkıştırmalı soğutma çevrimi -30 ye kadar verimli olmaktadır. -40 C ile -100 C arasındaki sıcaklıklar için kademeli soğutma sistemleri

Detaylı

Isı ve sıcaklık arasındaki fark : Isı ve sıcaklık birbiriyle bağlantılı fakat aynı olmayan iki kavramdır.

Isı ve sıcaklık arasındaki fark : Isı ve sıcaklık birbiriyle bağlantılı fakat aynı olmayan iki kavramdır. MADDE VE ISI Madde : Belli bir kütlesi, hacmi ve tanecikli yapısı olan her şeye madde denir. Maddeler ısıtıldıkları zaman tanecikleri arasındaki mesafe, hacmi ve hareket enerjisi artar, soğutulduklarında

Detaylı

4. TERMODİNAMİĞİN İKİNCİ YASASI

4. TERMODİNAMİĞİN İKİNCİ YASASI 4. TERMODİNAMİĞİN İKİNCİ YASASI Bir odanın elektrik direncinden geçen akımla ısıtılması gözönüne alınsın. Birinci yasaya göre direnç tellerine sağlanan elektrik enerjisi, odaya ısı olarak geçen elektrik

Detaylı

Bölüm 5 KONTROL HACİMLERİ İÇİN KÜTLE VE ENERJİ ÇÖZÜMLEMESİ. Bölüm 5: Kontrol Hacimleri için Kütle ve Enerji Çözümlemesi

Bölüm 5 KONTROL HACİMLERİ İÇİN KÜTLE VE ENERJİ ÇÖZÜMLEMESİ. Bölüm 5: Kontrol Hacimleri için Kütle ve Enerji Çözümlemesi Bölüm 5 KONTROL HACİMLERİ İÇİN KÜTLE VE ENERJİ ÇÖZÜMLEMESİ 1 Amaçlar Kütlenin korunumu ilkesi geliştirilecektir. Kütlenin korunumu ilkesi sürekli ve sürekli olmayan akış sistemlerini içeren çeşitli sistemlere

Detaylı

SOĞUTMA EĞİTİM SETİ ŞEMASI

SOĞUTMA EĞİTİM SETİ ŞEMASI SOĞUTMA Soğutma, ısının düşük sıcaklıktaki bir kaynaktan yüksek sıcaklıktaki bir kaynağa transfer edilmesidir. Isının bu şekildeki transferi kendiliğinden olmadığı için soğutma yapan cihazların enerji

Detaylı

ISI POMPASI DENEY FÖYÜ

ISI POMPASI DENEY FÖYÜ ONDOKUZ MAYIS ÜNĐVERSĐTESĐ MÜHENDĐSLĐK FAKÜLTESĐ MAKĐNA MÜHENDĐSLĐĞĐ BÖLÜMÜ ISI POMPASI DENEY FÖYÜ Hazırlayan: YRD. DOÇ. DR HAKAN ÖZCAN ŞUBAT 2011 DENEY NO: 2 DENEY ADI: ISI POMPASI DENEYĐ AMAÇ: Isı pompası

Detaylı

12.04.2010. Aşağıdaki tipleri vardır: 1- Kondenser Tipine Göre: - Hava Soğutmalı Tip -Su Soğutmalı Tip - Kondensersiz Tip (Remote Condenser Chiller)

12.04.2010. Aşağıdaki tipleri vardır: 1- Kondenser Tipine Göre: - Hava Soğutmalı Tip -Su Soğutmalı Tip - Kondensersiz Tip (Remote Condenser Chiller) SOĞUTMA GRUPLARI Binalarda kullanılacak soğutma suyunu hazırlayıp kullanıcılarına (klima, FCU, vs.) gönderen sistemlere soğutma sistemleri denilmektedir. Soğutma sistemleri en genel anlamda mahaldeki ısınan

Detaylı

Bölüm 9 GAZ AKIŞKANLI GÜÇ ÇEVRİMLERİ. Bölüm 9: Gaz Akışkanlı Güç Çevrimleri

Bölüm 9 GAZ AKIŞKANLI GÜÇ ÇEVRİMLERİ. Bölüm 9: Gaz Akışkanlı Güç Çevrimleri Bölüm 9 GAZ AKIŞKANLI GÜÇ ÇEVRİMLERİ 1 Amaçlar Tüm çevrim boyunca iş akışkanının gaz fazında kaldığı gaz akışkanlı güç çevrimlerinin performanslarını değerlendirmek. Gaz akışkanlı güç çevrimlerine uygulanabilir

Detaylı

BÖLÜM-3 SOĞUTMA SİSTEM UYGULAMALARI

BÖLÜM-3 SOĞUTMA SİSTEM UYGULAMALARI BÖLÜM-3 SOĞUTMA SİSTEM UYGULAMALARI 3.1 ALÇAK TARAFTAN ŞAMANDIRALI SİSTEMLER Alçak taraftan şamandıralı soğutucu akışkan kontrol sistemleri eski soğutma tesislerinde oldukça yaygındı. Bu sistemlere Sıvı

Detaylı

R-712 SOĞUTMA LABORATUAR ÜNİTESİ DENEY FÖYLERİ

R-712 SOĞUTMA LABORATUAR ÜNİTESİ DENEY FÖYLERİ DENEYSAN EĞİTİM CİHAZLARI SAN. VE TİC. Yeni sanayi sitesi 36.Sok. No:22 BALIKESİR Telefaks:0266 2461075 http://www.deneysan.com R-712 SOĞUTMA LABORATUAR ÜNİTESİ DENEY FÖYLERİ HAZIRLAYAN Yrd.Doç.Dr. Hüseyin

Detaylı

BUHAR SIKIŞTIRMALI SOĞUTMA ÇEVRİMLERİ. HAZIRLAYAN Doç. Dr. Hüseyin BULGURCU 7 Kasım 2015

BUHAR SIKIŞTIRMALI SOĞUTMA ÇEVRİMLERİ. HAZIRLAYAN Doç. Dr. Hüseyin BULGURCU 7 Kasım 2015 BUHAR SIKIŞTIRMALI SOĞUTMA ÇEVRİMLERİ HAZIRLAYAN Doç. Dr. Hüseyin BULGURCU 7 Kasım 2015 1 2.1 GİRİŞ Bir sıvı; donma noktasıyla kritik sıcaklık sınırları içinde, üzerindeki basınç ve sıcaklığa bağlı olarak

Detaylı

Enervis H o ş g e l d i n i z Ocak 2015

Enervis H o ş g e l d i n i z Ocak 2015 Enervis H o ş g e l d i n i z Ocak 2015 Enervis Sanayide Enerji Verimliliği Hizmetleri Soğutmanın Temelleri Doğalgazlı Soğutma Otomotiv Fabrikası İçin Örnek Çalışma Örnek Çalışma Sonuçları Enervis Sanayide

Detaylı

TAM KLİMA TESİSATI DENEY FÖYÜ

TAM KLİMA TESİSATI DENEY FÖYÜ T.C BURSA TEKNİK ÜNİVERSİTESİ DOĞA BİLİMLERİ, MİMARLIK ve MÜHENDİSLİK FAKÜLTESİ MAKİNE MÜHENDİSLİĞİ BÖLÜMÜ TAM KLİMA TESİSATI DENEY FÖYÜ 2015-2016 Bahar Yarıyılı Prof.Dr. Yusuf Ali KARA Arş.Gör.Semih AKIN

Detaylı

DERS TANIMLAMA FORMU

DERS TANIMLAMA FORMU Dersin Kodu ve Adı : KMU 02 Termodinamik 2 DERS TANIMLAMA FORMU Programın Adı: Kimya Mühendisliği Yarıyıl Eğitim ve Öğretim Yöntemleri (ECTS) Teori Uyg. Lab. Proje/Alan Çalışması Krediler Diğer Toplam

Detaylı

HAVA SOĞUTMALI BİR SOĞUTMA GURUBUNDA SOĞUTMA KAPASİTESİ VE ETKİNLİĞİNİN DIŞ SICAKLIKLARLA DEĞİŞİMİ

HAVA SOĞUTMALI BİR SOĞUTMA GURUBUNDA SOĞUTMA KAPASİTESİ VE ETKİNLİĞİNİN DIŞ SICAKLIKLARLA DEĞİŞİMİ HAVA SOĞUTMALI BİR SOĞUTMA GURUBUNDA SOĞUTMA KAPASİTESİ VE ETKİNLİĞİNİN DIŞ SICAKLIKLARLA DEĞİŞİMİ Serhan Küçüka*, Serkan Sunu, Anıl Akarsu, Emirhan Bayır Dokuz Eylül Üniversitesi Makina Mühendisliği Bölümü

Detaylı

İÇİNDEKİLER ÖNSÖZ Bölüm 1 DAİRESEL HAREKET Bölüm 2 İŞ, GÜÇ, ENERJİ ve MOMENTUM

İÇİNDEKİLER ÖNSÖZ Bölüm 1 DAİRESEL HAREKET Bölüm 2 İŞ, GÜÇ, ENERJİ ve MOMENTUM ÖNSÖZ İÇİNDEKİLER III Bölüm 1 DAİRESEL HAREKET 11 1.1. Dairesel Hareket 12 1.2. Açısal Yol 12 1.3. Açısal Hız 14 1.4. Açısal Hız ile Çizgisel Hız Arasındaki Bağıntı 15 1.5. Açısal İvme 16 1.6. Düzgün Dairesel

Detaylı

Termal Genleşme İdeal Gazlar Isı Termodinamiğin 1. Yasası Entropi ve Termodinamiğin 2. Yasası

Termal Genleşme İdeal Gazlar Isı Termodinamiğin 1. Yasası Entropi ve Termodinamiğin 2. Yasası Termal Genleşme İdeal Gazlar Isı Termodinamiğin 1. Yasası Entropi ve Termodinamiğin 2. Yasası Sıcaklık, bir gaz molekülünün kütle merkezi hareketinin ortalama kinetic enerjisinin bir ölçüsüdür. Sıcaklık,

Detaylı

İçten yanmalı motorlarda temel kavramlarının açıklanması Benzinli ve dizel motorların çalışma prensiplerinin anlatılması

İçten yanmalı motorlarda temel kavramlarının açıklanması Benzinli ve dizel motorların çalışma prensiplerinin anlatılması Sakarya 2010 İçten yanmalı motorlarda temel kavramlarının açıklanması Benzinli ve dizel motorların çalışma prensiplerinin anlatılması Temel Kavramlar Basınç; Birim yüzeye etki eden kuvvettir. Birimi :bar,atm,kg/cm2

Detaylı

Buji ile ateşlemeli motorlar için teorik çevrimin (Hava Standart OTTO çevrimi) Sıkıştırma ile ateşlemeli motorlar için teorik çevrimin (Dizel Teorik

Buji ile ateşlemeli motorlar için teorik çevrimin (Hava Standart OTTO çevrimi) Sıkıştırma ile ateşlemeli motorlar için teorik çevrimin (Dizel Teorik SAKARYA 2010 Buji ile ateşlemeli motorlar için teorik çevrimin (Hava Standart OTTO çevrimi) Sıkıştırma ile ateşlemeli motorlar için teorik çevrimin (Dizel Teorik çevrimi) açıklanması Çevrim Prosesin başladığı

Detaylı

Hidroliğin Tanımı. Hidrolik, akışkanlar aracılığıyla kuvvet ve hareketlerin iletimi ve kumandası anlamında kullanılmaktadır.

Hidroliğin Tanımı. Hidrolik, akışkanlar aracılığıyla kuvvet ve hareketlerin iletimi ve kumandası anlamında kullanılmaktadır. HİDROLİK SİSTEMLER Hidroliğin Tanımı Hidrolik, akışkanlar aracılığıyla kuvvet ve hareketlerin iletimi ve kumandası anlamında kullanılmaktadır. Enerji Türleri ve Karşılaştırılmaları Temel Fizik Kanunları

Detaylı

DENEY FÖYÜ DENEY ADI ĐKLĐMLENDĐRME TEKNĐĞĐ DERSĐN ÖĞRETĐM ÜYESĐ DOÇ. DR. ALĐ BOLATTÜRK

DENEY FÖYÜ DENEY ADI ĐKLĐMLENDĐRME TEKNĐĞĐ DERSĐN ÖĞRETĐM ÜYESĐ DOÇ. DR. ALĐ BOLATTÜRK SÜLEYMAN DEMĐREL ÜNĐVERSĐTESĐ MÜHENDĐSLĐK-MĐMARLIK FAKÜLTESĐ MAKĐNA MÜHENDĐSLĐĞĐ BÖLÜMÜ TERMODĐNAMĐK LABORATUARI DENEY FÖYÜ DENEY ADI ĐKLĐMLENDĐRME TEKNĐĞĐ DERSĐN ÖĞRETĐM ÜYESĐ DOÇ. DR. ALĐ BOLATTÜRK DENEY

Detaylı

BAŞKENT ÜNİVERSİTESİ MAKİNE MÜHENDİSLİĞİ BÖLÜMÜ MAK - 402 MAKİNE MÜHENDİSLİĞİ LABORATUVARI DENEY 4

BAŞKENT ÜNİVERSİTESİ MAKİNE MÜHENDİSLİĞİ BÖLÜMÜ MAK - 402 MAKİNE MÜHENDİSLİĞİ LABORATUVARI DENEY 4 BAŞKENT ÜNİVERSİTESİ MAKİNE MÜHENDİSLİĞİ BÖLÜMÜ MAK - 0 MAKİNE MÜHENDİSLİĞİ LABORATUVARI DENEY İÇİNDE SABİT SICAKLIKTA SİLİNDİRİK ISITICI BULUNAN DİKDÖRTGEN PRİZMATİK SAC KUTU YÜZEYLERİNDEN ZORLANMIŞ TAŞINIM

Detaylı

KMPT-Montaj-Bakım Kılavuzu

KMPT-Montaj-Bakım Kılavuzu KMPT-Montaj-Bakım Kılavuzu İÇİNDEKİLER 1. Genel Bilgi 2. Çalışma Prensibi 3. Sistem Bileşenleri 4. Montaj 5. Resimlerle Kolektör Montajı 6. Teknik Detaylar 7. Teknik Bilgi 8. Bakım 9. Tesisat Şeması Genel

Detaylı

Bölüm 10 BUHARLI VE BİRLEŞİK GÜÇ ÇEVRİMLERİ. Bölüm 10: Buharlı ve Birleşik Güç Çevrimleri

Bölüm 10 BUHARLI VE BİRLEŞİK GÜÇ ÇEVRİMLERİ. Bölüm 10: Buharlı ve Birleşik Güç Çevrimleri Bölüm 10 BUHARLI VE BİRLEŞİK GÜÇ ÇEVRİMLERİ 1 Bölüm 10: Buharlı ve Birleşik Güç Çevrimleri Amaçlar İş akışkanının çevrimde dönüşümlü olarak buharlaştırıldığı ve yoğuşturulduğu buharlı güç çevrimlerini

Detaylı

Enerjinin varlığını cisimler üzerine olan etkileri ile algılayabiliriz. Isınan suyun sıcaklığının artması, Gerilen bir yayın şekil değiştirmesi gibi,

Enerjinin varlığını cisimler üzerine olan etkileri ile algılayabiliriz. Isınan suyun sıcaklığının artması, Gerilen bir yayın şekil değiştirmesi gibi, ENERJİ SANTRALLERİ Enerji Enerji soyut bir kavramdır. Doğrudan ölçülemeyen bir değer olup fiziksel bir sistemin durumunu değiştirmek için yapılması gereken iş yoluyla bulunabilir. Enerjinin varlığını cisimler

Detaylı

DENEYSAN EĞİTİM CİHAZLARI SANAYİ VE TİCARET LTD. ŞTİ.

DENEYSAN EĞİTİM CİHAZLARI SANAYİ VE TİCARET LTD. ŞTİ. DENEY FÖYLERİ DENEYSAN EĞİTİM CİHAZLARI SANAYİ VE TİCARET LTD. ŞTİ. Küçük Sanayi sitesi 12 Ekim Cad. 36.Sok. No:6A-B BALIKESİR Tel:0266 2461075 Faks:0266 2460948 http://www.deneysan.com mail: deneysan@deneysan.com

Detaylı

İKLİMLENDİRME NEDİR?

İKLİMLENDİRME NEDİR? İKLİMLENDİRME NEDİR? İnsan, hayvan ve bitkilerin konforu veya endüstriyel bir ürünün üretilmesi için gerekli olan iklim şartlarının (sıcaklık, nem, hava hızı, taze hava miktarı vb) otomatik olarak sağlanması

Detaylı

KLİMA NEDİR? NASIL ÇALIŞIR? NE YAPAR?

KLİMA NEDİR? NASIL ÇALIŞIR? NE YAPAR? KLİMA NEDİR? NASIL ÇALIŞIR? NE YAPAR? İhtiyaca ve amaca göre bulunduğu ortamı konfor şartlarına getiren veya konfor şartlarında tutan cihazlara klima denir. Klima cihazları genel olarak, her hangi bir

Detaylı

8.333 İstatistiksel Mekanik I: Parçacıkların İstatistiksel Mekaniği

8.333 İstatistiksel Mekanik I: Parçacıkların İstatistiksel Mekaniği MIT Açık Ders Malzemeleri http://ocw.mit.edu 8.333 İstatistiksel Mekanik I: Parçacıkların İstatistiksel Mekaniği 2007 Güz Bu materyallerden alıntı yapmak veya Kullanım Şartları hakkında bilgi almak için

Detaylı

T.C. ONDOKUZ MAYIS ÜNĠVERSĠTESĠ MÜHENDĠSLĠK FAKÜLTESĠ MAKĠNA MÜHENDĠSLĠĞĠ BÖLÜMÜ SANTRĠFÜJ POMPA DENEY FÖYÜ HAZIRLAYANLAR. Prof. Dr.

T.C. ONDOKUZ MAYIS ÜNĠVERSĠTESĠ MÜHENDĠSLĠK FAKÜLTESĠ MAKĠNA MÜHENDĠSLĠĞĠ BÖLÜMÜ SANTRĠFÜJ POMPA DENEY FÖYÜ HAZIRLAYANLAR. Prof. Dr. T.C. ONDOKUZ MAYIS ÜNĠVERSĠTESĠ MÜHENDĠSLĠK FAKÜLTESĠ MAKĠNA MÜHENDĠSLĠĞĠ BÖLÜMÜ SANTRĠFÜJ POMPA DENEY FÖYÜ HAZIRLAYANLAR Prof. Dr. Aydın DURMUŞ EYLÜL 2011 SAMSUN SANTRĠFÜJ POMPA DENEYĠ 1. GĠRĠġ Pompa,

Detaylı

ERCİYES ÜNİVERSİTESİ MÜHENDİSLİK FAKÜLTESİ ENERJİ SİSTEMLERİ MÜHENDİSLİĞİ BÖLÜMÜ MOTORLAR LABORATUARI

ERCİYES ÜNİVERSİTESİ MÜHENDİSLİK FAKÜLTESİ ENERJİ SİSTEMLERİ MÜHENDİSLİĞİ BÖLÜMÜ MOTORLAR LABORATUARI ERCİYES ÜNİVERSİTESİ MÜHENDİSLİK FAKÜLTESİ ENERJİ SİSTEMLERİ MÜHENDİSLİĞİ BÖLÜMÜ MOTORLAR LABORATUARI DENEY FÖYÜ DENEY ADI LAMİNER VİSKOZ AKIM ISI DEĞİŞTİRİCİSİ DERSİN ÖĞRETİM ÜYESİ YRD. DOÇ. DR. GÜLŞAH

Detaylı

4. TERMODİNAMİĞİN İKİNCİ YASASI

4. TERMODİNAMİĞİN İKİNCİ YASASI 4. TERMODİNAMİĞİN İKİNCİ YASASI Bir odanın elektrik direncinden geçen akımla ısıtılması gözönüne alınsın. Birinci yasaya göre direnç tellerine sağlanan elektrik enerjisi, odaya ısı olarak geçen elektrik

Detaylı

ISI TRANSFER MEKANİZMALARI

ISI TRANSFER MEKANİZMALARI ISI TRANSFER MEKANİZMALARI ISI; sıcaklık farkından dolayı sistemden diğerine transfer olan bir enerji türüdür. Termodinamik bir sistemin hal değiştirirken geçen ısı transfer miktarıyla ilgilenir. Isı transferi

Detaylı

Anlatım-sunum-laboratuar

Anlatım-sunum-laboratuar MM 401 MAKİNE MÜH.DENEYLER - I 1+2/2 -laboratuar 14 hafta-haftada 1 saat teorik 2 saat laboratuar Ders süresince yapılacak laboratuarlar: akışkan borusu ve lüleden akış, paralel akışlı ısı eşanjörü, hidrolik

Detaylı

ERCİYES ÜNİVERSİTESİ MÜHENDİSLİK FAKÜLTESİ ENERJİ SİSTEMLERİ MÜHENDİSLİĞİ BÖLÜMÜ

ERCİYES ÜNİVERSİTESİ MÜHENDİSLİK FAKÜLTESİ ENERJİ SİSTEMLERİ MÜHENDİSLİĞİ BÖLÜMÜ ERCİYES ÜNİVERSİTESİ MÜHENDİSLİK FAKÜLTESİ ENERJİ SİSTEMLERİ MÜHENDİSLİĞİ BÖLÜMÜ DENEY FÖYÜ DENEY ADI AKIŞKAN YATAKLI ISI TRANSFER DENEYİ DERSİN ÖĞRETİM ÜYESİ DENEY SORUMLUSU DENEY GRUBU: DENEY TARİHİ

Detaylı

MAK-LAB017 HİDROLİK SERVO MEKANİZMALAR DENEYİ 1. DENEYİN AMACI 2. HİDROLİK SİSTEMLERDE KULLANILAN ENERJİ TÜRÜ

MAK-LAB017 HİDROLİK SERVO MEKANİZMALAR DENEYİ 1. DENEYİN AMACI 2. HİDROLİK SİSTEMLERDE KULLANILAN ENERJİ TÜRÜ MAK-LAB017 HİDROLİK SERVO MEKANİZMALAR DENEYİ 1. DENEYİN AMACI Bu deneyin amacı temel ilkelerden hareket ederek, hidrolik sistemlerde kullanılan elemanların çalışma ilkeleri ve hidrolik devre kavramlarının

Detaylı

BÖLÜM 1: TEMEL KAVRAMLAR

BÖLÜM 1: TEMEL KAVRAMLAR Sistem ve Hal Değişkenleri Üzerinde araştırma yapmak üzere sınırladığımız bir evren parçasına sistem, bu sistemi çevreleyen yere is ortam adı verilir. İzole sistem; Madde ve her türden enerji akışına karşı

Detaylı

4. ÇEVRİMLER (Ref. e_makaleleri)

4. ÇEVRİMLER (Ref. e_makaleleri) 4. ÇEVRİMLER (Ref. e_makaleleri) Rankine Çevrimi Basit güç ünitelerinin ideal veya teorik çevrimi, Şekil-1 de görülen Rankine çevrimi ile tanımlanır. Çevrim, uygun bir şekilde bağlantılanmış dört cihazdan

Detaylı

İKLİMLENDİRME DENEYİ FÖYÜ

İKLİMLENDİRME DENEYİ FÖYÜ İKLİMLENDİRME DENEYİ FÖYÜ Deneyin Amacı İklimlendirme tesisatının çalıştınlması ve çeşitli kısımlarının görevlerinin öğrenilmesi, Deney sırasında ölçülen büyüklükler yardımıyla Psikrometrik Diyagramı kullanarak,

Detaylı

Vakum Teknolojisi * Prof. Dr. Ergun GÜLTEKİN. İstanbul Üniversitesi Fen Fakültesi

Vakum Teknolojisi * Prof. Dr. Ergun GÜLTEKİN. İstanbul Üniversitesi Fen Fakültesi Vakum Teknolojisi * Prof. Dr. Ergun GÜLTEKİN İstanbul Üniversitesi Fen Fakültesi Giriş Bilimsel amaçla veya teknolojide gerekli alanlarda kullanılmak üzere, kapalı bir hacim içindeki gaz moleküllerinin

Detaylı

T.C. BALIKESİR ÜNİVERSİTESİ MÜHENDİSLİK MİMARLIK FAKÜLTESİ MAKİNE MÜHENDİSLİĞİ BÖLÜMÜ K-215 HAVA-SU KAYNAKLI ISI POMPASI EĞİTİM SETİ

T.C. BALIKESİR ÜNİVERSİTESİ MÜHENDİSLİK MİMARLIK FAKÜLTESİ MAKİNE MÜHENDİSLİĞİ BÖLÜMÜ K-215 HAVA-SU KAYNAKLI ISI POMPASI EĞİTİM SETİ T.C. BALIKESİR ÜNİVERSİTESİ MÜHENDİSLİK MİMARLIK FAKÜLTESİ MAKİNE MÜHENDİSLİĞİ BÖLÜMÜ K-215 HAVA-SU KAYNAKLI ISI POMPASI EĞİTİM SETİ HAZIRLAYAN:EFKAN ERDOĞAN KONTROL EDEN: DOÇ. DR. HÜSEYİN BULGURCU BALIKESİR-2014

Detaylı

KONDENSER ÜNİTESİ KATALOĞU

KONDENSER ÜNİTESİ KATALOĞU En Direk Soğutma!! İklimlendirme ve soğutma alanında hızla gelişen teknoloji bu alanda arge faaliyetleri yapılmasının önünü açmıştır. Kondanser ve evaparatör sistemlerinin daha efektif hale gelmesi ve

Detaylı

ONDOKUZ MAYIS ÜNĠVERSĠTESĠ MÜHENDĠSLĠK FAKÜLTESĠ KĠMYA MÜHENDĠSLĠĞĠ BÖLÜMÜ KMB 405 KĠMYA MÜHENDĠSLĠĞĠ LABORATUVARI - 3

ONDOKUZ MAYIS ÜNĠVERSĠTESĠ MÜHENDĠSLĠK FAKÜLTESĠ KĠMYA MÜHENDĠSLĠĞĠ BÖLÜMÜ KMB 405 KĠMYA MÜHENDĠSLĠĞĠ LABORATUVARI - 3 ONDOKZ MAYIS ÜNĠVERSĠTESĠ MÜHENDĠSLĠK FAKÜLTESĠ KĠMYA MÜHENDĠSLĠĞĠ BÖLÜMÜ KMB 405 KĠMYA MÜHENDĠSLĠĞĠ LABORATVARI - 3 DENEY 6: GÖVDE BORL ISI DEĞĠġTĠRĠCĠ (SHELL AND TBE HEAT EXCHANGER) Akışkan ya da katı

Detaylı

SAKARYA ÜNİVERSİTESİ MÜHENDİSLİK FAKÜLTESİ MAKİNA MÜHENDİSLİĞİ BÖLÜMÜ

SAKARYA ÜNİVERSİTESİ MÜHENDİSLİK FAKÜLTESİ MAKİNA MÜHENDİSLİĞİ BÖLÜMÜ 5. Soğutma Şekline Göre Hava soğutmalı motortar: Bu motorlarda, silindir yüzeylerindeki ince metal kanatçıklar vasıtasıyla ısı transferi yüzey alanı artırılır. Motor krank milinden hareket alan bir fan

Detaylı

Dr. Fatih AY. Tel: 0 388 225 22 55 ayfatih@nigde.edu.tr

Dr. Fatih AY. Tel: 0 388 225 22 55 ayfatih@nigde.edu.tr Dr. Fatih AY Tel: 0 388 225 22 55 ayfatih@nigde.edu.tr Düzlemsel Güneş Toplayıcıları Vakumlu Güneş Toplayıcıları Yoğunlaştırıcı Sistemler Düz Toplayıcının Isıl Analizi 2 Yapı olarak havası boşaltılmış

Detaylı

TERMODİNAMİĞİN ÜÇÜNCÜ YASASI

TERMODİNAMİĞİN ÜÇÜNCÜ YASASI Termodinamiğin Üçüncü Yasası: Mutlak Entropi Yalnızca entropi değişiminin hesaplanmasında kullanılan termodinamiğin ikinci yasasının ds = q tr /T şeklindeki matematiksel tanımından entropinin mutlak değerine

Detaylı

JEOTERMAL ELEKTRİK SANTRALLERİ İÇİN TÜRKİYE DE EKİPMAN ÜRETİM İMKANLARI VE BUHAR JET EJEKTÖRLERİ ÜRETİMİ

JEOTERMAL ELEKTRİK SANTRALLERİ İÇİN TÜRKİYE DE EKİPMAN ÜRETİM İMKANLARI VE BUHAR JET EJEKTÖRLERİ ÜRETİMİ JEOTERMAL ELEKTRİK SANTRALLERİ İÇİN TÜRKİYE DE EKİPMAN ÜRETİM İMKANLARI VE BUHAR JET EJEKTÖRLERİ ÜRETİMİ Karbonsan ın fabrikası, Orhangazi Bursa da bulunmaktadır. Karbonsan ın ürün çeşitlerini genel çerçevesiyle

Detaylı

Kalorifer Tesisatı Proje Hazırlama Esasları. Niğde Üniversitesi Makine Mühendisliği Bölümü

Kalorifer Tesisatı Proje Hazırlama Esasları. Niğde Üniversitesi Makine Mühendisliği Bölümü Kalorifer Tesisatı Proje Hazırlama Esasları Niğde Üniversitesi Makine Mühendisliği Bölümü ISITMA TEKNİĞİ 1.Tarihsel gelişim 2.Günümüz ısıtma teknikleri Bir ısıtma tesisatının uygun olabilmesi için gerekli

Detaylı

AYTEK SOĞUTMA SİSTEMLERİ HAVA SOĞUTMALI SU SOĞUTMA ÜNİTELERİ. www.ayteksogutma.com. www.itechchillers.com

AYTEK SOĞUTMA SİSTEMLERİ HAVA SOĞUTMALI SU SOĞUTMA ÜNİTELERİ. www.ayteksogutma.com. www.itechchillers.com AYTEK SOĞUTMA SİSTEMLERİ HAVA SOĞUTMALI SU SOĞUTMA ÜNİTELERİ www.ayteksogutma.com www.itechchillers.com MASTER SERİSİ Master serisi merkezi soğutma üniteleri; tüm gaz hattı, hidrolik hattı ve elektrik

Detaylı

EVHRAC 3 YIL. Avantajları. Fonksiyonu. Modeller

EVHRAC 3 YIL. Avantajları. Fonksiyonu. Modeller EVHRAC Fonksiyonu Bilindiği gibi binalarda hava kalitesinin arttırılması için iç ortam havasının egzost edilmesi ve yerine taze hava verilmesi kaçınılmaz hale gelmiştir. Her ne kadar ısı geri kazanım cihazları

Detaylı

TESİSAT TEKNOLOJİSİ VE İKLİMLENDİRME

TESİSAT TEKNOLOJİSİ VE İKLİMLENDİRME T.C. MİLLÎ EĞİTİM BAKANLIĞI TESİSAT TEKNOLOJİSİ VE İKLİMLENDİRME EV TİPİ SOĞUTUCULARIN DEVRE BAĞLANTI ŞEMALARI ANKARA 2014 Bu modül, mesleki ve teknik eğitim okul / kurumlarında uygulanan Çerçeve Öğretim

Detaylı

J.1.SPLİT KLİMANIN ANA PARÇALARI VE GÖREVLERİ

J.1.SPLİT KLİMANIN ANA PARÇALARI VE GÖREVLERİ J.KLİMALAR Günümüzde pek çok insanın yaşamının önemli bir bölümü kapalı mekanlarda geçmektedir. Bu mekanlar gerek hacim, gerekse barındırdıkları insan sayısı olarak büyük boyutlara ulaşmışlardır. Fuar,

Detaylı

DENEY 3. MADDENİN ÜÇ HALİ: NİTEL VE NİCEL GÖZLEMLER Sıcaklık ilişkileri

DENEY 3. MADDENİN ÜÇ HALİ: NİTEL VE NİCEL GÖZLEMLER Sıcaklık ilişkileri DENEY 3 MADDENİN ÜÇ HALİ: NİTEL VE NİCEL GÖZLEMLER Sıcaklık ilişkileri AMAÇ: Maddelerin üç halinin nitel ve nicel gözlemlerle incelenerek maddenin sıcaklık ile davranımını incelemek. TEORİ Hal değişimi,

Detaylı

TEOG Hazırlık Föyü Isı ve Sıcaklık

TEOG Hazırlık Föyü Isı ve Sıcaklık Isı * Bir enerji türüdür. * Kalorimetre kabı ile ölçülür. * Birimi kalori (cal) veya Joule (J) dür. * Bir maddeyi oluşturan taneciklerin toplam hareket enerjisidir. Sıcaklık * Enerji değildir. Hissedilen

Detaylı

DİZEL MOTOR YAKIT SİSTEMLERİ

DİZEL MOTOR YAKIT SİSTEMLERİ DİZEL MOTOR YAKIT SİSTEMLERİ Dersin Modülleri Dizel Motorları Yakıt Sistemleri 1 Dizel Motorları Yakıt Sistemleri 2 Kazandırılan Yeterlikler Dizel motorları yakıt sistemlerinin bakım ve onarımını Dizel

Detaylı

ÖĞRENME ALANI: Kuvvet ve Hareket 2.ÜNİTE: Kaldırma Kuvveti ve Basınç. Kaldırma Kuvveti

ÖĞRENME ALANI: Kuvvet ve Hareket 2.ÜNİTE: Kaldırma Kuvveti ve Basınç. Kaldırma Kuvveti ÖĞRENME ALANI: Kuvvet ve Hareket 2.ÜNİTE: Kaldırma Kuvveti ve Basınç Kaldırma Kuvveti - Dünya, üzerinde bulunan bütün cisimlere kendi merkezine doğru çekim kuvveti uygular. Bu kuvvete yer çekimi kuvveti

Detaylı

Buna göre bir işlemde transfer edilen q ısısı, sistemde A dan B ye giderken yapılan adyabatik iş ile nonadyabatik bir iş arasındaki farka eşittir.

Buna göre bir işlemde transfer edilen q ısısı, sistemde A dan B ye giderken yapılan adyabatik iş ile nonadyabatik bir iş arasındaki farka eşittir. 1 1. TANIMLAR (Ref. e_makaleleri) Enerji, Isı, İş: Enerji: Enerji, iş yapabilme kapasitesidir; çeşitli şekillerde bulunabilir ve bir tipten diğer bir şekle dönüşebilir. Örneğin, yakıt kimyasal enerjiye

Detaylı

2- Bileşim 3- Güneş İç Yapısı a) Çekirdek

2- Bileşim 3- Güneş İç Yapısı a) Çekirdek GÜNEŞ 1- Büyüklük Güneş, güneş sisteminin en uzak ve en büyük yıldızıdır. Dünya ya uzaklığı yaklaşık 150 milyon kilometre, çapı ise 1.392.000 kilometredir. Bu çap, Yeryüzünün 109 katı, Jüpiter in de 10

Detaylı

SU, HALDEN HALE GİRER

SU, HALDEN HALE GİRER Atmosferde yükselen buhar soğuk hava tabakasıyla karşılaştığında yoğuşur. Gaz halindeki bir madde dışarıya ısı verdiğinde sıvı hale geçiriyorsa bu olaya yoğuşma denir. Sıcak Hava Yükselir ve Soğuyup Yağış

Detaylı

5. ENTROPİ Enerji geçişi, ısı İçten tersinirlik: S Süretim ( 0) Süretim

5. ENTROPİ Enerji geçişi, ısı İçten tersinirlik: S Süretim ( 0) Süretim 5. ENTROPİ Entropi, moleküler düzensizlik olarak görülebilir. Entropi terimi genellikle hem toplam entropi hemde özgül entropi şeklinde tanımlanabilir. Bir sistem daha düzensiz bir hal aldıkça, moleküllerin

Detaylı

Doğal tazeliğinde ürünler, doğal serinliğinde mekanlar... hassas kontrollü klima cihazları

Doğal tazeliğinde ürünler, doğal serinliğinde mekanlar... hassas kontrollü klima cihazları Doğal tazeliğinde ürünler, doğal serinliğinde mekanlar... hassas kontrollü klima cihazları bizim öykümüz çevreye duyduğumuz sorumluluk öyküsü Her geçen gün enerji verimliliğinin öneminin arttığı çağımızda,

Detaylı

SOĞUTMA YÖNTEMLERİ. Doç. Dr. Abdurrahman ASAN

SOĞUTMA YÖNTEMLERİ. Doç. Dr. Abdurrahman ASAN SOĞUTMA YÖNTEMLERİ Doç. Dr. Abdurrahman ASAN Soğutma Yöntemleri a) Eriyik teşkiliyle soğutma b ) Gazların genişlemesi ile soğutma c)termoelektrik soğutma d) Vortex tüpüyle soğutma e)manyetik soğutma g)nemlendirmeli

Detaylı

DERS BİLGİ FORMU Klimalar ve Soğutucular Elektrik Elektronik Teknolojisi Elektrikli Ev Aletleri Teknik Servisçiliği

DERS BİLGİ FORMU Klimalar ve Soğutucular Elektrik Elektronik Teknolojisi Elektrikli Ev Aletleri Teknik Servisçiliği Dersin Adı Alan Meslek / Dal Dersin Okutulacağı Sınıf / Dönem Süre Dersin Amacı Dersin Tanımı Dersin Ön Koşulları Ders İle Kazandırılacak Yeterlikler Dersin İçeriği Yöntem ve Teknikler Eğitim Öğretim Ortamı

Detaylı

ERCİYES ÜNİVERSİTESİ MÜHENDİSLİK FAKÜLTESİ ENERJİ SİSTEMLERİ MÜHENDİSLİĞİ BÖLÜMÜ AKIŞKANLAR MEKANİĞİ LABORATUARI

ERCİYES ÜNİVERSİTESİ MÜHENDİSLİK FAKÜLTESİ ENERJİ SİSTEMLERİ MÜHENDİSLİĞİ BÖLÜMÜ AKIŞKANLAR MEKANİĞİ LABORATUARI ERCİYES ÜNİVERSİTESİ MÜHENDİSLİK FAKÜLTESİ ENERJİ SİSTEMLERİ MÜHENDİSLİĞİ BÖLÜMÜ AKIŞKANLAR MEKANİĞİ LABORATUARI DENEY FÖYÜ DENEY ADI SERİ-PARALEL BAĞLI POMPA DENEYİ DERSİN ÖĞRETİM ÜYESİ DENEYİ YAPTIRAN

Detaylı

Faz Dönüşümleri ve Faz (Denge) Diyagramları

Faz Dönüşümleri ve Faz (Denge) Diyagramları Faz Dönüşümleri ve Faz (Denge) Diyagramları 1. Giriş Bir cisim bağ kuvvetleri etkisi altında en düşük enerjili denge konumunda bulunan atomlar grubundan oluşur. Koşullar değişirse enerji içeriği değişir,

Detaylı

TOPRAK KAYNAKLI ISI POMPALARI. Prof. Dr. İlhami Horuz Gazi Üniversitesi TEMİZ ENERJİ ARAŞTIRMA VE UYGULAMA MERKEZİ (TEMENAR)

TOPRAK KAYNAKLI ISI POMPALARI. Prof. Dr. İlhami Horuz Gazi Üniversitesi TEMİZ ENERJİ ARAŞTIRMA VE UYGULAMA MERKEZİ (TEMENAR) TOPRAK KAYNAKLI ISI POMPALARI Prof. Dr. İlhami Horuz Gazi Üniversitesi TEMİZ ENERJİ ARAŞTIRMA VE UYGULAMA MERKEZİ (TEMENAR) 1. Hava 2. Su (deniz, göl, nehir, dere, yeraltı suyu-jeotermal enerji) 3. Toprak

Detaylı

PLAKALI ISI EŞANJÖRÜ SEÇĐMĐ: [1)YÜZME HAVUZLARININ ISITILMASINDA ÇAĞDAŞ ÇÖZÜM. Semih Ferit Emekli

PLAKALI ISI EŞANJÖRÜ SEÇĐMĐ: [1)YÜZME HAVUZLARININ ISITILMASINDA ÇAĞDAŞ ÇÖZÜM. Semih Ferit Emekli [1)YÜZME HAVUZLARININ ISITILMASINDA ÇAĞDAŞ ÇÖZÜM Semih Ferit Emekli 1960 Đstanbul'da doğdu. Pertevniyal Lisesi'nden sonra ĐDMMA Yıldız Üniversitesi Makine Mühendisliği Bölümü'nden 1980 81 döneminde mezun

Detaylı

5 kilolitre=..lt. 100 desilitre=.dekalitre. 150 gram=..dag. 1. 250 g= mg. 0,2 ton =..gram. 20 dam =.m. 2 km =.cm. 3,5 h = dakika. 20 m 3 =.

5 kilolitre=..lt. 100 desilitre=.dekalitre. 150 gram=..dag. 1. 250 g= mg. 0,2 ton =..gram. 20 dam =.m. 2 km =.cm. 3,5 h = dakika. 20 m 3 =. 2014 2015 Ödevin Veriliş Tarihi: 12.06.2015 Ödevin Teslim Tarihi: 21.09.2015 MEV KOLEJİ ÖZEL ANKARA OKULLARI 1. Aşağıda verilen boşluklarara ifadeler doğru ise (D), yanlış ise (Y) yazınız. A. Fiziğin ışıkla

Detaylı

GİRİŞ TURBO MAKİNALARIN TANIMI SINIFLANDIRMASI KULLANIM YERLERİ

GİRİŞ TURBO MAKİNALARIN TANIMI SINIFLANDIRMASI KULLANIM YERLERİ GİRİŞ TURBO MAKİNALARIN TANIMI SINIFLANDIRMASI KULLANIM YERLERİ Turbo kelimesinin kelime anlamı Turbo yada türbin kelimesi latince kökenli olup anlamı bir eksen etrafında dönen parçadır. 1 TANIM Turbo

Detaylı

İmal Usulleri. Fatih ALİBEYOĞLU -8-

İmal Usulleri. Fatih ALİBEYOĞLU -8- Fatih ALİBEYOĞLU -8- Giriş Dövme, darbe veya basınç altında kontrollü bir plastik deformasyon sağlanarak, metale istenen şekli verme, tane boyutunu küçültme ve mekanik özelliklerini iyileştirme amacıyla

Detaylı

Doğal tazeliğinde ürünler, doğal serinliğinde mekanlar...

Doğal tazeliğinde ürünler, doğal serinliğinde mekanlar... Doğal tazeliğinde ürünler, doğal serinliğinde mekanlar... s u s o ğ u t m a g r u p l a r ı bizim öykümüz çevreye duyduğumuz sorumluluk öyküsü Geleceğimizi korumak, çocuklarımıza karşı sorumluluğumuzdur.

Detaylı

İÇTEN YANMALI MOTORLAR 2. BÖLÜM EK DERS NOTLARI

İÇTEN YANMALI MOTORLAR 2. BÖLÜM EK DERS NOTLARI İÇTEN YANMALI MOTORLAR 2. BÖLÜM EK DERS NOTLARI 1.Kısmi Gaz Konumunda Çalışan Benzin (OTTO) Motoru Şekil 1. Kısmi gaz konumunda çalışan bir benzin motorunun ideal Otto çevrimi (6-6a-1-2-3-4-5-6) Dört zamanlı

Detaylı

1.0. OTOMATİK KONTROL VANALARI UYGULAMALARI

1.0. OTOMATİK KONTROL VANALARI UYGULAMALARI 1.0. OTOMATİK KONTROL VANALARI UYGULAMALARI Otomatik kontrol sistemlerinin en önemli elemanları olan motorlu vanaların kendilerinden beklenen görevi tam olarak yerine getirebilmeleri için, hidronik devre

Detaylı

!" #$%&'! ( ')! *+*,(* *' *, -*.*. /0 1, -*.*

! #$%&'! ( ')! *+*,(* *' *, -*.*. /0 1, -*.* 2. BÖLÜM SAF MADDELERİN ERMODİNAMİK ÖZELLİKLERİ Saf madde Saf madde, her noktasında aynı e değişmeyen bir kimyasal bileşime sahip olan maddeye denir. Saf maddenin sadece bir tek kimyasal element eya bileşimden

Detaylı

OSG 305 ÇOKLU EVAPORATÖRLÜ ISI POMPASI EĞİTİM SETİ

OSG 305 ÇOKLU EVAPORATÖRLÜ ISI POMPASI EĞİTİM SETİ 2012 OSG 305 ÇOKLU EVAPORATÖRLÜ ISI POMPASI EĞİTİM SETİ www.ogendidactic.com GİRİŞ Eğitim seti; endüstriyel soğutma sistemlerinde özellikle de market soğutma sistemlerinde kullanılan farklı buharlaşma

Detaylı

AYTEK SOĞUTMA SİSTEMLERİ HAVA SOĞUTMALI SU SOĞUTMA ÜNİTELERİ

AYTEK SOĞUTMA SİSTEMLERİ HAVA SOĞUTMALI SU SOĞUTMA ÜNİTELERİ AYTEK SOĞUTMA SİSTEMLERİ HAVA SOĞUTMALI SU SOĞUTMA ÜNİTELERİ www.ayteksogutma.com Tek veya çift birbirinden bağımsız soğutma devresi standarttır. Kompresörler ısı yüküne göre tam veya parçalı otomatik

Detaylı

a) Hava damperlerinin temizliğinde biriken toz, nemli bez ile temizlenir. a) Menfez b) Anemometre c) Damper d) Difüzör

a) Hava damperlerinin temizliğinde biriken toz, nemli bez ile temizlenir. a) Menfez b) Anemometre c) Damper d) Difüzör Soru 1) Hava hızı ölçmeye yarayan cihaza ne ad verilir? a) Menfez b) Anemometre c) Damper d) Difüzör Soru 4) Aşağıdakilerden hangisi doğrudur? a) Hava damperlerinin temizliğinde biriken toz, nemli bez

Detaylı

GIDALARIN BAZI FİZİKSEL ÖZELLİKLERİ

GIDALARIN BAZI FİZİKSEL ÖZELLİKLERİ GIDALARIN BAZI FİZİKSEL ÖZELLİKLERİ Gıdalara uygulanan çeşitli işlemlere ilişkin bazı hesaplamalar için, gıdaların bazı fiziksel özelliklerini yansıtan sayısal değerlere gereksinim bulunmaktadır. Gıdaların

Detaylı

Sogutma Çevrimi. Teknik Bülten No: 9 E K İ M 2 011 İDEAL BUHAR SIKIŞTIRMALI SOĞUTMA ÇEVRİMİ

Sogutma Çevrimi. Teknik Bülten No: 9 E K İ M 2 011 İDEAL BUHAR SIKIŞTIRMALI SOĞUTMA ÇEVRİMİ Teknik Bülten No: 9 E K İ M 2 011 Sogutma Çevrimi B ir maddenin veya ortamın sıcaklığını onu çevreleyen hacim sıcaklığının altına indirmek ve orada muhafaza etmek üzere ısının alınması işlemine soğutma

Detaylı

BİLECİK ŞEYH EDEBALİ ÜNİVERSİTESİ MÜHENDİSLİK FAKÜLTESİ MAKİNE VE İMALAT MÜHENDİSLİĞİ BÖLÜMÜ

BİLECİK ŞEYH EDEBALİ ÜNİVERSİTESİ MÜHENDİSLİK FAKÜLTESİ MAKİNE VE İMALAT MÜHENDİSLİĞİ BÖLÜMÜ BİLECİK ŞEYH EDEBALİ ÜNİVERSİTESİ MÜHENDİSLİK FAKÜLTESİ MAKİNE VE İMALAT MÜHENDİSLİĞİ BÖLÜMÜ MÜHENDİSLİKTE DENEYSEL METOTLAR II DOĞRUSAL ISI İLETİMİ DENEYİ 1.Deneyin Adı: Doğrusal ısı iletimi deneyi..

Detaylı

DENEYİN ADI: İKLİMLENDİRME-I DENEYİN AMACI:

DENEYİN ADI: İKLİMLENDİRME-I DENEYİN AMACI: DENEYİN ADI: İKLİMLENDİRME-I DENEYİN AMACI: Kuru hava ile atmosferik hava arasındaki farkın ayırt edilebilmesi. Atmosferik havanın özgül ve bağıl neminin tanımlanıp, hesaplanabilmesi. Atmosferik havanın

Detaylı

6. GENLEŞME DEPOLARI 6.1 AÇIK GENLEŞME DEPOSU

6. GENLEŞME DEPOLARI 6.1 AÇIK GENLEŞME DEPOSU 6. GENLEŞME DEPOLARI Genleşme depoları sistemdeki basıncın kontrolü ve sisteme gerekli su desteğinin sağlanması bakımından çok önemlidir. Genleşme depoları açık ve kapalı olmak üzere iki tiptedir. 6.1

Detaylı

TAMGA ENDÜSTRİYEL KONTROL SİSTEMLERİ LTD.ŞTİ., ENERJİ YÖNETİMİNDE SINIRSIZ ÇÖZÜMLER SUNAR. HOŞGELDİNİZ

TAMGA ENDÜSTRİYEL KONTROL SİSTEMLERİ LTD.ŞTİ., ENERJİ YÖNETİMİNDE SINIRSIZ ÇÖZÜMLER SUNAR. HOŞGELDİNİZ TAMGA ENDÜSTRİYEL KONTROL SİSTEMLERİ LTD.ŞTİ., ENERJİ YÖNETİMİNDE SINIRSIZ ÇÖZÜMLER SUNAR. HOŞGELDİNİZ TAMGA TRİO YANMA VERİMİ Yakma ekipmanları tarafından yakıtın içerdiği enerjinin, ısı enerjisine dönüştürülme

Detaylı