Zeki Optimizasyon Teknikleri

Save this PDF as:
 WORD  PNG  TXT  JPG

Ebat: px
Şu sayfadan göstermeyi başlat:

Download "Zeki Optimizasyon Teknikleri"

Transkript

1 Zeki Optimizasyon Teknikleri (nt lgorithm) Doç.Dr. M. li kcayol 996 yılında Marco Dorigo tarafından ortaya atılmıştır. Temel olarak karıncaların yiyecek madde ile yuvaları arasındaki en kısa yolu bulmalarından esinlenilmiştir. Karınca algoritması genetik algoritma gibi popülasyon tabanlı yaklaşıma sahiptir. Karınca popülasyonu içindeki herbir karınca bir çözüm oluşturur ve daha sonra diğer karıncaların hareketini etkiler.

2 Engel d= F d= E d=0.5 D d= d= C d=

3 lgoritmanın çalışmasında kesikli (discrete) zaman (t) kullanılır. Her zaman aralığında her bir karınca bir birim yer değiştirir. Her yerdeğiştirmede birim feromen maddesi bırakır. aşlangıçta (t=0) hiçbir yolda (kenarda) feromen maddesi yoktur. D F E C 0.5 t= iken 6 karınca noktasında ve 6 karınca E noktasındadır. t=2 iken 8 karınca E noktasında 8 karınca noktasındadır. D noktasında 6 karınca vardır. Kenarlardan geçen karınca yoğunlukları ise FE=6, =6, C=6, CE=6, D=8, ED=8 olur. 6 karınca -F arasında 6 karınca F- arasında hareket ediyor. 3

4 Karınca algoritmaları sadece yol problemi çözümünde değil başka problemlerin çözümündede kullanılır. Sadece feromen maddesi çokluğuna ğ göre algoritma çalışırsa alt-optimal çözüme düşülür (lokal minimum). Global minimumu bulmak için yol seçiminde bazı olasılık seçimleri yapılır. Feromen birikmesi sınırsız ve sürekli değildir. Zamana bağlı olarak buharlaşma (yok olma) sözkonusudur ve her t zamanında belirli bir oranda azalır. (Yol problemi) Şehirler arasındaki en kısa yolu bulmak için her şehre bir karınca yerleştirilir. aşlangıç (t=0) için feromen miktarı tüm yollar için 0 olarak alınır. Her t+ zamanında her karınca yeni bir şehre hareket eder. Yeni şehrin belirlenmesinde bulunulan noktaya uzaklığı ile yoldaki feromen miktarına bağlı rastgele bir seçim kullanılır. Her zaman aralığında feromen miktarı için buharlaşma hesaplanır. uharlaşma 0 ile arasında bir değerdir. ir karıncanın bir şehre iki sefer gitmesi tabu listesi ile engellenir. Her hareketten sonra her karıncanın gittiği şehirler güncellenir. 4

5 (Yol problemi) - devam Her bir hareketten sonra feromen miktarı aşağıdaki formülle güncellenir. Fij(t+) = b.fij(t) + Fij Fij = Q / Kn (Her turdan sonraki güncelleme içinde i kullanılır) l urada Fij i. İle j. şehirler arasındaki yolda biriken feromen miktarı, b buharlaşma oranıdır. Q sabit katsayı ve Kn karıncanın kullandığı toplam yol uzunluğudur. ir sonraki şehre geçiş oranı aşağıdaki formülle belirlenir. yollar) Pij = Fij(t) α. Nij β / Σ Fik(t) α. Nik β k (k izin verilen urada Nij i. ile j. şehirler arasındaki yol uzunluğu, α ve β kontrol parametreleridir. (Uygulamalar ve raştırma) Gezgin satıcı problemi. raç yol problemi. Daha kapsamlı araştırma ş için Marco Dorigo nun bu konuyla ilgili Web sayfası kullanılabilir. Sitede şu ana kadar yapılmış olan çalışmalar ve yayınlarla ilgili bilgiler bulunmaktadır. Makale taramak için:

6 Haftalık Ödev: Karınca algoritması konusunda çalışmayı içeren bir makale incelenecek ve elde edilen sonuçları içeren bir rapor hazırlanacaktır. İncelenen makalede karınca algoritması kullanılmasının gerekçeleri, uygulamanın sonuçları değerlendirilecektir. - İncelenen makale son 5 yılda yayınlanmış olacaktır. - Makale Yurtdışında SCI te taranan bir dergide yayınlanmış olacaktır. - SCI te tarandığını gösterir bilgi ödeve eklenecektir. - Hazırlanan rapora makalenin tam metnide eklenecektir. Gelecek Hafta Tavlama enzetimi (Simulated nnealing) 6

Zeki Optimizasyon Teknikleri. Karınca Algoritması (Ant Algorithm)

Zeki Optimizasyon Teknikleri. Karınca Algoritması (Ant Algorithm) Zeki Optimizasyon Teknikleri Karınca Algoritması (Ant Algorithm) Karınca Algoritması 1996 yılında Marco Dorigo tarafından ortaya atılmıştır. Temel olarak karıncaların yiyecek madde ile yuvaları arasındaki

Detaylı

Zeki Optimizasyon Teknikleri

Zeki Optimizasyon Teknikleri Zeki Optimizasyon Teknikleri Ara sınav - 25% Ödev (Haftalık) - 10% Ödev Sunumu (Haftalık) - 5% Final (Proje Sunumu) - 60% - Dönem sonuna kadar bir optimizasyon tekniğiyle uygulama geliştirilecek (Örn:

Detaylı

KARINCA KOLONİ ALGORİTMASI BMÜ-579 Meta Sezgisel Yöntemler. Yrd. Doç. Dr. İlhan AYDIN Fırat Üniversitesi, Bilgisayar Mühendisliği Bölümü

KARINCA KOLONİ ALGORİTMASI BMÜ-579 Meta Sezgisel Yöntemler. Yrd. Doç. Dr. İlhan AYDIN Fırat Üniversitesi, Bilgisayar Mühendisliği Bölümü KARINCA KOLONİ ALGORİTMASI BMÜ-579 Meta Sezgisel Yöntemler Yrd. Doç. Dr. İlhan AYDIN Fırat Üniversitesi, Bilgisayar Mühendisliği Bölümü Karınca Koloni Algoritması Bilim adamları, böcek davranışlarını inceleyerek

Detaylı

Zeki Optimizasyon Teknikleri

Zeki Optimizasyon Teknikleri Zeki Optimizasyon Teknikleri Tabu Arama (Tabu Search) Doç.Dr. M. Ali Akcayol Tabu Arama 1986 yılında Glover tarafından geliştirilmiştir. Lokal minimum u elimine edebilir ve global minimum u bulur. Değerlendirme

Detaylı

Zeki Optimizasyon Teknikleri

Zeki Optimizasyon Teknikleri Zeki Optimizasyon Teknikleri Genetik Algoritma (Genetic Algorithm) Doç.Dr. M. Ali Akcayol Genetik Algoritma 1970 li yıllarda John Holland tarafından geliştirilmiştir. 1989 yılında David E. Goldberg Genetik

Detaylı

Fonksiyon Optimizasyonunda Genetik Algoritmalar

Fonksiyon Optimizasyonunda Genetik Algoritmalar 01-12-06 Ümit Akıncı Fonksiyon Optimizasyonunda Genetik Algoritmalar 1 Fonksiyon Optimizasyonu Fonksiyon optimizasyonu fizikte karşımıza sık çıkan bir problemdir. Örneğin incelenen sistemin kararlı durumu

Detaylı

İLERİ ALGORİTMA ANALİZİ KARINCA KOLONİ ALGORİTMASI

İLERİ ALGORİTMA ANALİZİ KARINCA KOLONİ ALGORİTMASI İLERİ ALGORİTMA ANALİZİ 1. Gerçek Karıncaların Davranışları KARINCA KOLONİ ALGORİTMASI Gerçek karıncalar, yuvaları ile yiyecek kaynağı arasındaki en kısa yolu bulma kabiliyetine sahiptirler ve ayrıca çevredeki

Detaylı

Fonksiyon Minimizasyonunda Simulated Annealing Yöntemi

Fonksiyon Minimizasyonunda Simulated Annealing Yöntemi 07-04-006 Ümit Akıncı Fonksiyon Minimizasyonunda Simulated Annealing Yöntemi İçindekiler Fonksiyon Minimizasyonu Metropolis Algoritması. Algoritma.......................................... Bir boyutlu

Detaylı

Hülya Özdağ (YTÜ Matematik Bölümü Ö.Ü.) Nilgün Aygör (YTÜ Matematik Bölümü Ö.Ü.) Aykut Parlak (YTÜ Matematik Mühendisliği)

Hülya Özdağ (YTÜ Matematik Bölümü Ö.Ü.) Nilgün Aygör (YTÜ Matematik Bölümü Ö.Ü.) Aykut Parlak (YTÜ Matematik Mühendisliği) Karınca Kolonisi Algoritmasının Zaman Çizelgelemesi Üzerine: Bir Modellemesi ve Uygulaması Hülya Özdağ (YTÜ Matematik Bölümü Ö.Ü.) Nilgün Aygör (YTÜ Matematik Bölümü Ö.Ü.) Aykut Parlak (YTÜ Matematik Mühendisliği)

Detaylı

Yaklaşık Düşünme Teorisi

Yaklaşık Düşünme Teorisi Yaklaşık Düşünme Teorisi Zadeh tarafından 1979 yılında öne sürülmüştür. Kesin bilinmeyen veya belirsiz bilgiye dayalı işlemlerde etkili sonuçlar vermektedir. Genellikle bir f fonksiyonu ile x ve y değişkeni

Detaylı

Gezgin Satıcı Probleminin Karınca Kolonisi ve Genetik Algoritmalarla Eniyilemesi ve Karşılaştırılması

Gezgin Satıcı Probleminin Karınca Kolonisi ve Genetik Algoritmalarla Eniyilemesi ve Karşılaştırılması Süleyman Demirel Üniversitesi Fen Bilimleri Enstitüsü Dergisi Suleyman Demirel University Journal of Natural andappliedscience 18(1), 8-13, 2014 Gezgin Satıcı Probleminin Karınca Kolonisi ve Genetik Algoritmalarla

Detaylı

MAT223 AYRIK MATEMATİK

MAT223 AYRIK MATEMATİK MAT223 AYRIK MATEMATİK Gezgin Satıcı Problemi 9. Bölüm Emrah Akyar Anadolu Üniversitesi Fen Fakültesi Matematik Bölümü, ESKİŞEHİR 2014 2015 Öğretim Yılı Gezgin Satıcı Problemi Soru n tane şehri olan bir

Detaylı

MAT223 AYRIK MATEMATİK

MAT223 AYRIK MATEMATİK MAT223 AYRIK MATEMATİK Gezgin Satıcı Problemi 9. Bölüm Emrah Akyar Anadolu Üniversitesi Fen Fakültesi Matematik Bölümü, ESKİŞEHİR 2014 2015 Öğretim Yılı Gezgin Satıcı Problemi Soru n tane şehri olan bir

Detaylı

Bulanık Kural Tabanlı Sistemler

Bulanık Kural Tabanlı Sistemler Üçgen (Triangular) normlar: Üçgen normlar (t-norm) Schweizer ve Sklar tarafından öne sürülmüştür. Herhangi bir a [0,1] aralığı için t-norm T(a, 1) = a şeklinde tanımlanır ve aşağıdaki özellikleri sağlar;

Detaylı

VERİ MADENCİLİĞİ (Karar Ağaçları ile Sınıflandırma) Yrd.Doç.Dr. Kadriye ERGÜN

VERİ MADENCİLİĞİ (Karar Ağaçları ile Sınıflandırma) Yrd.Doç.Dr. Kadriye ERGÜN VERİ MADENCİLİĞİ (Karar Ağaçları ile Sınıflandırma) Yrd.Doç.Dr. Kadriye ERGÜN kergun@balikesir.edu.tr İçerik Sınıflandırma yöntemleri Karar ağaçları ile sınıflandırma Entropi Kavramı ID3 Algoritması C4.5

Detaylı

Ü Ü Ğ Ü Ğ Ü «Ğ Ğ» Ü

Ü Ü Ğ Ü Ğ Ü «Ğ Ğ» Ü Ü Ü Ğ Ü Ğ Ü «Ğ Ğ» Ü ğ ğ ğ ğ ğ ğ ğ ğ ğ ğ ğ ğ ğ ğ ğ ğ ğ ğ ğ ğ ğ ğ ğ ğ ğ ğ ğ ğ ğ ğ ğ ğ ğ Ü Ü ğ ğ ğ ğ ğ ğ Ğ ğ ğ ğ ğ ğ ğ ğ ğ Ü ğ ğ ğ ğ ğ ğ ğ ğ ğ ğ ğ ğ ğ ğ ğ ğ ğ ğ ğ ğ ğ ğ ğ ğ ğ ğ ğ ğ ğ ğ ğ ğ ğ ğ ğ ğ ğ ğ ğ ğ

Detaylı

İĞİ ğ ş. ğ ş ğ ğ ğ Ş İ. ş ş. ş ğ ğ. ş ş ğ ş ş ş. ğ ş ş İ İ İ. ş ş

İĞİ ğ ş. ğ ş ğ ğ ğ Ş İ. ş ş. ş ğ ğ. ş ş ğ ş ş ş. ğ ş ş İ İ İ. ş ş İĞİ ğ ş ğ ş ğ ğ ğ ğ ş ş ş Ş İ İ İ İ ş ş ş ğ ğ ş ş ğ ş ş ş ğ ş ş ş ğ ş ş ş ş ş İ İ İ ş ş ş ğ İ ş ş ş ğ ş ş ğ ş ş ş ğ ğ ş ş ş ğ ş ş ş ğ ğ ş ş ğ ş ğ ğ ğ ş ş ğ ğ ş ş ğ ş ğ ğ ş ğ İ ğ ğ ş ğ ğ ş ş ğ ş ğ ğ ş ş

Detaylı

ö Ö ğ

ö Ö ğ Ü ö ö ö Ğ ğ Ü Ğ Ğ Ö ğ ö ö ğ «ö Ö ğ Ü Ü Ü Ğ Ö Ö Ü Ğ ğ ö ö Ö ğ ğ ğ ğ ö ğ ğ Ü ğ ğ ğ ö ğ Ü ğ ğ ö ğ ğ ğ ğ Ü Ü ö ğ ğ ğ ğ ğ ğ ğ ğ ğ ğ ğ ğ ğ ğ ğ ğ ğ ö ğ ğ Ö ö ğ ğ ö ğ ğ ö» ğ ö ğ ğ ğ ğ ö ğ ğ ö ö ö ö ğ Ö ğ Ğ ğ ö

Detaylı

Ğ ç ğ ç ç ğ ç ğ ç ç ğ ç ğ ğ ç ç ğ ç ç ğ ç ç ç ğ ç ç ğ ç ç ç İ ğ ğ ğ ç ğ ğ ç ğ ğ ğ ğ ğ ç ç ç ç ğ ç ğ ç ç ğ ğ ç ç ç ğ ğ ç ğ ğ ç ç ç ç İ ğ ç ğ ç ğ ç ç ğ

Ğ ç ğ ç ç ğ ç ğ ç ç ğ ç ğ ğ ç ç ğ ç ç ğ ç ç ç ğ ç ç ğ ç ç ç İ ğ ğ ğ ç ğ ğ ç ğ ğ ğ ğ ğ ç ç ç ç ğ ç ğ ç ç ğ ğ ç ç ç ğ ğ ç ğ ğ ç ç ç ç İ ğ ç ğ ç ğ ç ç ğ İ Ü İ İ İ ç ğ ğ ç ç Ğ «Ö Ğ ğ ç ğ ç ğ ç ç ğ ğ ç ğ ç ğ ç ğ ç ğ ç ç Ö ğ Ö ğ ç Ğ ç ğ ç ç ğ ç ğ ç ç ğ ç ğ ğ ç ç ğ ç ç ğ ç ç ç ğ ç ç ğ ç ç ç İ ğ ğ ğ ç ğ ğ ç ğ ğ ğ ğ ğ ç ç ç ç ğ ç ğ ç ç ğ ğ ç ç ç ğ ğ ç ğ ğ ç

Detaylı

ö ü ü ö ö ü ö ü ü ğ ö ç ü Ç ğ ç ç ö ü ç ü ö Ş ğ üç ğ ç ü ö ç ç ç ç ğ ç ü ü ç ö ç ü ç ü ö ğ ç ç ö ç ğ ğ ç ç ö ç ö ü ğ ü Ş Ü Ü ö

ö ü ü ö ö ü ö ü ü ğ ö ç ü Ç ğ ç ç ö ü ç ü ö Ş ğ üç ğ ç ü ö ç ç ç ç ğ ç ü ü ç ö ç ü ç ü ö ğ ç ç ö ç ğ ğ ç ç ö ç ö ü ğ ü Ş Ü Ü ö ö Ş ü ö ü ö ğ ç ü Ç ç ü ğ ü ü ğ ç ö ğ ö ç ö ç ü ö ü ö ğ ü ç ö ğ ö ö ğ ğ ğ ç ö ğ ö ç ö «Ö ö ü ğ Ç ğ ğ ç ü ç ö ö ö ğ ç ö ü ü ö ö ü ö ü ü ğ ö ç ü Ç ğ ç ç ö ü ç ü ö Ş ğ üç ğ ç ü ö ç ç ç ç ğ ç ü ü ç ö ç ü ç

Detaylı

ö Ş Ç ö ö ö ö ö Ö ö Ö ö Ç ö ö ö Ö Ğ Ğ

ö Ş Ç ö ö ö ö ö Ö ö Ö ö Ç ö ö ö Ö Ğ Ğ ö ö ö ö ö ö ö ö ö ö ö ö ö Ş Ş ö ö Ş Ç ö ö ö ö ö Ö ö Ö ö Ç ö ö ö Ö Ğ Ğ ö ö Ç Ş Ğ Ç Ş Ş Ğ ö Ü Ğ ö Ü ö ö Ü Ü Ç Ü Ç ö ö ö ö Ç ö ö ö ö Ö Ü Ö ö ö ö ö ö ö ö Ö Ü ö ö ö ö ö ö ö ö ö Ü ö ö Ö ö ö ö ö Ö ö ö ö ö Ş ö

Detaylı

Ş Ğ ş Ğ İ Ğ İ ş ş Ü Ü Ş Ü İ ş ş ş

Ş Ğ ş Ğ İ Ğ İ ş ş Ü Ü Ş Ü İ ş ş ş İ İ Ğ Ğ İ İ ş Ğ Ğ «Ğ İ Ğ ş ş ş ş ş Ç ş ş İ ş Ç ş İ İ İ ş Ş Ğ ş Ğ İ Ğ İ ş ş Ü Ü Ş Ü İ ş ş ş Ğ İ İ Ş Ğ ş ş İ ş ş Ş ş İ İ ş Ğ ş ş ş Ü ş ş ş İ ş Ğ ş ş ş Ş ş İ ş İ İ ş İ İ ş İ İ Ö Ü ş Ö ş ş ş İ ş ş ş ş İ ş

Detaylı

ğ Ü ğ ğ ğ ğ ğ ğ ğ İ ğ ğ ğ İ ğ ğ ğ ğ ğ ğ

ğ Ü ğ ğ ğ ğ ğ ğ ğ İ ğ ğ ğ İ ğ ğ ğ ğ ğ ğ İ İ İ İ İ İ İ İ İ İ Ö İ İ İ Ö İ ğ ğ ğ ğ ğ ğ Ü ğ ğ ğ ğ ğ ğ Ü ğ ğ ğ ğ ğ ğ ğ İ ğ ğ ğ İ ğ ğ ğ ğ ğ ğ ğ ğ ğ ğ ğ Ü ğ ğ Ö ğ ğ ğ Ö ğ ğ ğ ğ ğ ğ ğ Ü ğ ğ ğ İ ğ ğ ğ Ö ğ ğ Ç ğ ğ ğ ğ ğ ğ ğ ğ ğ ğ ğ ğ ğ Ü ğ ğ ğ ğ Ç ğ ğ

Detaylı

Ç Ç Ç Ş İ ğ ğ ğ Ç Ş İ ğ Ç ğ ğ ğ Ç ğ Ş ğ ğ ğ Ç ğ Ş ğ ğ ğ ğ İ ğ İ İ ğ ğ ğ ğ ğ ğ ğ ğ ğ

Ç Ç Ç Ş İ ğ ğ ğ Ç Ş İ ğ Ç ğ ğ ğ Ç ğ Ş ğ ğ ğ Ç ğ Ş ğ ğ ğ ğ İ ğ İ İ ğ ğ ğ ğ ğ ğ ğ ğ ğ Ğ İ Ü Ş İ İ Ş İ Ş Ğ Ç Ö İĞİ Ç Ç ğ ğ ğ ğ ğ ğ ğ ğ ğ ğ ğ İ İ ğ ğ ğ ğ ğ ğ Ç Ç Ç Ş İ ğ ğ ğ Ç Ş İ ğ Ç ğ ğ ğ Ç ğ Ş ğ ğ ğ Ç ğ Ş ğ ğ ğ ğ İ ğ İ İ ğ ğ ğ ğ ğ ğ ğ ğ ğ ğ ğ ğ İ İ ğ ğ ğ ğ ğ ğ ğ ğ ğ ğ ğ Ü Ü İŞ İ İ ğ İ

Detaylı

ç ç ç ç ç

ç ç ç ç ç Ğ Ö Ş ç ç ç ç ç ç ç Ç Ş Ü Ş Ü ç ç ç ç Ö ç ç ç ç ç ç ç Ş ç ç Ö ç ç ç ç ç ç ç ç ç ç ç ç ç ç ç ç ç ç ç ç ç ç ç ç ç ç ç ç ç ç ç ç ç ç ç Ö ç ç ç Ş ç ç ç Ö ç ç ç ç ç ç ç ç ç ç ç ç ç ç ç ç ç ç ç ç ç ç ç ç ç ç

Detaylı

ö Ç ş ş ö ç ç ş ş ö ö ö Ç ö ş ş ö

ö Ç ş ş ö ç ç ş ş ö ö ö Ç ö ş ş ö Ğ Ğ Ğ Ğ Ğ Ğ ş ş ş ş ş ş ş ş ş ş ş ç ç ş ş ç ö ş ö ö ş ö ö ş ö Ç ş ş ö ç ç ş ş ö ö ö Ç ö ş ş ö Ğ Ğ Ğ Ğ ş Ğ ş ş ş ş ş ş ş ş ş ş ş ş ş ş ş ç ş ç ş ş ç ö ö ş ö ö ş ş ş ş ö ş ş ö Ğ Ğ Ğ Ğ ş Ğ ş Ğ ş ş ş ş ş ş

Detaylı

Zeki Optimizasyon Teknikleri

Zeki Optimizasyon Teknikleri Zeki Optimizasyon Teknikleri Yapay Sinir Ağları (Artificial Neural Network) Doç.Dr. M. Ali Akcayol Yapay Sinir Ağları Biyolojik sinir sisteminden esinlenerek ortaya çıkmıştır. İnsan beyninin öğrenme, eski

Detaylı

Büyük Veri Analitiği (Big Data Analytics)

Büyük Veri Analitiği (Big Data Analytics) Büyük Veri Analitiği (Big Data Analytics) M. Ali Akcayol Gazi Üniversitesi Bilgisayar Mühendisliği Bölümü Bu dersin sunumları, Mining of Massive Datasets, Jure Leskovec, Anand Rajaraman, Jeffrey David

Detaylı

DOKUZ EYLÜL ÜNİVERSİTESİ MÜHENDİSLİK FAKÜLTESİ DEKANLIĞI DERS/MODÜL/BLOK TANITIM FORMU. Dersin Kodu: END 4903

DOKUZ EYLÜL ÜNİVERSİTESİ MÜHENDİSLİK FAKÜLTESİ DEKANLIĞI DERS/MODÜL/BLOK TANITIM FORMU. Dersin Kodu: END 4903 Dersi Veren Birim: Endüstri Mühendisliği Dersin Türkçe Adı: KESİKLİ OPTİMİZASYON MOD. VE ALGORİTMALARI Dersin Orjinal Adı: KESİKLİ OPTİMİZASYON MOD. VE ALGORİTMALARI Dersin Düzeyi:(Ön lisans, Lisans, Yüksek

Detaylı

YZM ALGORİTMA ANALİZİ VE TASARIM DERS#9: AÇGÖZLÜ ALGORİTMALAR

YZM ALGORİTMA ANALİZİ VE TASARIM DERS#9: AÇGÖZLÜ ALGORİTMALAR YZM 3207- ALGORİTMA ANALİZİ VE TASARIM DERS#9: AÇGÖZLÜ ALGORİTMALAR Aç Gözlü (Hırslı) Algoritmalar (Greedy ) Bozuk para verme problemi Bir kasiyer 48 kuruş para üstünü nasıl verir? 25 kuruş, 10 kuruş,

Detaylı

DGridSim Gerçek Zamanlı Veri Grid Simülatörü. Gerçek-Zamanlı Veri Dağıtımı Dokümanı v 1.0.1 01.08.2011

DGridSim Gerçek Zamanlı Veri Grid Simülatörü. Gerçek-Zamanlı Veri Dağıtımı Dokümanı v 1.0.1 01.08.2011 DGridSim Gerçek Zamanlı Veri Grid Simülatörü Gerçek-Zamanlı Veri Dağıtımı Dokümanı v 1.0.1 01.08.2011 Mustafa Atanak Sefai Tandoğan Doç. Dr. Atakan Doğan 1. Tek Rotadan Veri Dağıtımı 1.1 Gerçek-Zamanlı

Detaylı

AKILLI TATIL PLANLAMA SISTEMI

AKILLI TATIL PLANLAMA SISTEMI AKILLI TATIL PLANLAMA SISTEMI Istanbul Teknik Üniversitesi Bilgisayar ve Bilişim Fakültesi Bitirme Ödevi Ali Mert Taşkın taskinal@itu.edu.tr Doç. Dr. Feza Buzluca buzluca@itu.edu.tr Ocak 2017 İçerik Giriş

Detaylı

Genetik Algoritmalar. Bölüm 1. Optimizasyon. Yrd. Doç. Dr. Adem Tuncer E-posta:

Genetik Algoritmalar. Bölüm 1. Optimizasyon. Yrd. Doç. Dr. Adem Tuncer E-posta: Genetik Algoritmalar Bölüm 1 Optimizasyon Yrd. Doç. Dr. Adem Tuncer E-posta: adem.tuncer@yalova.edu.tr Optimizasyon? Optimizasyon Nedir? Eldeki kısıtlı kaynakları en iyi biçimde kullanmak olarak tanımlanabilir.

Detaylı

METASEZGİSEL YÖNTEMLER. Genetik Algoritmalar

METASEZGİSEL YÖNTEMLER. Genetik Algoritmalar METASEZGİSEL YÖNTEMLER Genetik Algoritmalar 1970 li yıllarda John Holland tarafından geliştirilmiştir. 1989 yılında David E. Goldberg Genetik Genetik Algoritma Algoritma Uygulamaları üzerine klasik eser

Detaylı

GENETİK ALGORİTMALAR. Araş. Gör. Nesibe YALÇIN BİLECİK ÜNİVERSİTESİ

GENETİK ALGORİTMALAR. Araş. Gör. Nesibe YALÇIN BİLECİK ÜNİVERSİTESİ GENETİK ALGORİTMALAR Araş. Gör. Nesibe YALÇIN BİLECİK ÜNİVERSİTESİ GENETİK ALGORİTMALAR Genetik algoritmalar, Darwin in doğal seçim ve evrim teorisi ilkelerine dayanan bir arama ve optimizasyon yöntemidir.

Detaylı

Karınca Kolonisi Algoritmasının Zaman Çizelgelemesi Üzerine: Bir Modellemesi ve Uygulaması

Karınca Kolonisi Algoritmasının Zaman Çizelgelemesi Üzerine: Bir Modellemesi ve Uygulaması Karınca Kolonisi Algoritmasının Zaman Çizelgelemesi Üzerine: Bir Modellemesi ve Uygulaması Hülya Özdağ 1, Nilgün Aygör 1, Aykut Parlak 2 1 Yıldız Teknik Üniversitesi Matematik Bölümü, İstanbul 2 Yıldız

Detaylı

AKADEMİK DEĞERLENDİRME KISTASLARI GENEL KURALLAR

AKADEMİK DEĞERLENDİRME KISTASLARI GENEL KURALLAR AKADEMİK DEĞERLENDİRME KISTASLARI GENEL KURALLAR (DOĞU AKDENİZ ÜNİVERSİTESİ AKADEMİK PERSONELİN ÜNVAN TÜZÜĞÜ 6. Maddesi altında Üniversite Yönetim Kurulu Onayı ile hazırlanıp sunulmuştur. ) Aşağıdaki kurallar

Detaylı

GEZGİN SATICI PROBLEMİ İÇİN BİR MEMETİK ALGORİTMA ÖNERİSİ

GEZGİN SATICI PROBLEMİ İÇİN BİR MEMETİK ALGORİTMA ÖNERİSİ GEZGİN SATICI PROBLEMİ İÇİN BİR MEMETİK ALGORİTMA ÖNERİSİ Engin Sansarcı İ.T.Ü. İşletme Fakültesi, İSTANBUL enginsansarci@gmail.com Abdullah Aktel İ.T.Ü. İşletmeFakültesi, İSTANBUL abdullahaktel@gmail.com

Detaylı

BİL-142 Bilgisayar Programlama II

BİL-142 Bilgisayar Programlama II BİL-142 Bilgisayar Programlama II (C/C++) Hazırlayan: M.Ali Akcayol Gazi Üniversitesi Bilgisayar Mühendisliği Bölümü Konular Giriş math Kütüphane Fonksiyonları Çok Parametreyle Fonksiyon Tanımı Fonksiyon

Detaylı

Algoritmalar. Çizge Algoritmaları. Bahar 2017 Doç. Dr. Suat Özdemir 1

Algoritmalar. Çizge Algoritmaları. Bahar 2017 Doç. Dr. Suat Özdemir 1 Algoritmalar Çizge Algoritmaları Bahar 201 Doç. Dr. Suat Özdemir 1 En Kısa Yol Problemi Çizgelerdeki bir diğer önemli problem de bir düğümden diğer bir düğüme olan en kısa yolun bulunmasıdır. Bu problem

Detaylı

VERİ MADENCİLİĞİ (Kümeleme) Yrd.Doç.Dr. Kadriye ERGÜN

VERİ MADENCİLİĞİ (Kümeleme) Yrd.Doç.Dr. Kadriye ERGÜN VERİ MADENCİLİĞİ (Kümeleme) Yrd.Doç.Dr. Kadriye ERGÜN kergun@balikesir.edu.tr İçerik Kümeleme İşlemleri Kümeleme Tanımı Kümeleme Uygulamaları Kümeleme Yöntemleri Kümeleme (Clustering) Kümeleme birbirine

Detaylı

Google Maps ve Genetik Algoritmalarla GSP Çözümü İçin Öneri

Google Maps ve Genetik Algoritmalarla GSP Çözümü İçin Öneri Google Maps ve Genetik Algoritmalarla GSP Çözümü İçin Öneri Onur KARASOY 1, Serkan BALLI 2 1 Muğla Sıtkı Koçman Üniversitesi Bilgi İşlem Dairesi Başkanlığı 2 Muğla Sıtkı Koçman Üniversitesi Bilişim Sistemleri

Detaylı

Serdar BİROĞUL YÜKSEK LİSANS TEZİ (ELEKTRİK EĞİTİMİ) GAZİ ÜNİVERSİTESİ FEN BİLİMLERİ ENSTİTÜSÜ ANKARA

Serdar BİROĞUL YÜKSEK LİSANS TEZİ (ELEKTRİK EĞİTİMİ) GAZİ ÜNİVERSİTESİ FEN BİLİMLERİ ENSTİTÜSÜ ANKARA i GENETİK ALGORİTMA YAKLAŞIMIYLA ATÖLYE ÇİZELGELEME Serdar BİROĞUL YÜKSEK LİSANS TEZİ (ELEKTRİK EĞİTİMİ) GAZİ ÜNİVERSİTESİ FEN BİLİMLERİ ENSTİTÜSÜ OCAK 2005 ANKARA ii Serdar BİROĞUL tarafından hazırlanan

Detaylı

YZM 3217 YAPAY ZEKA DERS#10: KÜMELEME

YZM 3217 YAPAY ZEKA DERS#10: KÜMELEME YZM 317 YAPAY ZEKA DERS#10: KÜMELEME Sınıflandırma (Classification) Eğiticili (supervised) sınıflandırma: Sınıflandırma: Sınıf sayısı ve bir grup örneğin hangi sınıfa ait olduğunu bilinir Eğiticisiz (unsupervised)

Detaylı

Rastgele değişken nedir?

Rastgele değişken nedir? Rastgele değişken nedir? Şİmdiye kadar hep, kümelerden ve bu kümelerin alt kümelerinden (yani olaylar)dan bahsettik Bu kümelerin elemanları sayısal olmak zorunda değildi. Örneğin, yazı tura, kız erkek

Detaylı

EVREN, ÖRNEK, TEMSİLİYET. Prof. Mustafa Necmi İlhan

EVREN, ÖRNEK, TEMSİLİYET. Prof. Mustafa Necmi İlhan EVREN, ÖRNEK, TEMSİLİYET Prof. Mustafa Necmi İlhan MD, PhD, PhD, MBA Gazi Üniversitesi Tıp Fakültesi Halk Sağlığı AbD mnilhan@gazi.edu.tr 1 Neden Araştırma Yaparız? Bilimsel gerçeğe ulaşmak Bilinenlerin

Detaylı

i5000 Serisi Tarayıcılar

i5000 Serisi Tarayıcılar i5000 Serisi Tarayıcılar Yama Kodu Bilgileri A-61801_tr Yama Kodu Bilgileri İçindekiler Yama deseni detayları... 4 Yama deseni yönlendirme... 5 Çubuk deseni detayları... 7 Yama konumlandırma... 9 Kağıt

Detaylı

KOMBİNATORYAL OPTİMİZASYON

KOMBİNATORYAL OPTİMİZASYON KOMBİNATORYAL OPTİMİZASYON İnsanların, daha iyi nasıl olabilir ya da nasıl elde edilebilir?, sorusuna cevap aramaları, teknolojinin gelişmesini sağlayan en önemli etken olmuştur. Gerçek hayatı daha kolay

Detaylı

Temel ve Uygulamalı Araştırmalar için Araştırma Süreci

Temel ve Uygulamalı Araştırmalar için Araştırma Süreci BÖLÜM 8 ÖRNEKLEME Temel ve Uygulamalı Araştırmalar için Araştırma Süreci 1.Gözlem Genel araştırma alanı 3.Sorunun Belirlenmesi Sorun taslağının hazırlanması 4.Kuramsal Çatı Değişkenlerin açıkça saptanması

Detaylı

Uzaktan Algılama Teknolojileri

Uzaktan Algılama Teknolojileri Uzaktan Algılama Teknolojileri Ders 11 Hiperspektral Görüntülerde Kümeleme ve Sınıflandırma Alp Ertürk alp.erturk@kocaeli.edu.tr Sınıflandırma Sınıflandırma işleminin amacı, her piksel vektörüne bir ve

Detaylı

HİTİT ÜNİVERSİTESİ AKADEMİK TEŞVİK ÖDEMESİNE ESAS OLARAK YAPILACAK PUANLAMADA İSTENEN BELGELER

HİTİT ÜNİVERSİTESİ AKADEMİK TEŞVİK ÖDEMESİNE ESAS OLARAK YAPILACAK PUANLAMADA İSTENEN BELGELER HİTİT ÜNİVERSİTESİ AKADEMİK TEŞVİK ÖDEMESİNE ESAS OLARAK YAPILACAK PUANLAMADA İSTENEN BELGELER Faaliyet/Alt Faaliyet Türü Proje Araştırma Araştırma kitabı, ders kitabı, kitapta editörlük, kitap bölümü,

Detaylı

YAPAY SİNİR AĞLARI. Araş. Gör. Nesibe YALÇIN BİLECİK ÜNİVERSİTESİ

YAPAY SİNİR AĞLARI. Araş. Gör. Nesibe YALÇIN BİLECİK ÜNİVERSİTESİ YAPAY SİNİR AĞLARI Araş. Gör. Nesibe YALÇIN BİLECİK ÜNİVERSİTESİ İÇERİK Sinir Hücreleri Yapay Sinir Ağları Yapısı Elemanları Çalışması Modelleri Yapılarına Göre Öğrenme Algoritmalarına Göre Avantaj ve

Detaylı

İstatistiksel Yorumlama

İstatistiksel Yorumlama İstatistiksel Yorumlama Amaç, popülasyon hakkında yorumlamalar yapmaktadır. Populasyon Parametre Karar Vermek Örnek İstatistik Tahmin 1 Tahmin Olaylar hakkında tahminlerde bulunmak ve karar vermek zorundayız

Detaylı

SÜREKLĠ OLASILIK DAĞILIMLARI

SÜREKLĠ OLASILIK DAĞILIMLARI SÜREKLĠ OLASILIK DAĞILIMLARI Sayı ekseni üzerindeki tüm noktalarda değer alabilen değişkenler, sürekli değişkenler olarak tanımlanmaktadır. Bu bölümde, sürekli değişkenlere uygun olasılık dağılımları üzerinde

Detaylı

FIRAT ÜNİVERSİTESİ FEN BİLİMLERİ ENSTİTÜSÜ EN BAŞARILI LİSANSÜSTÜ TEZ ÖDÜLÜ YÖNERGESİ

FIRAT ÜNİVERSİTESİ FEN BİLİMLERİ ENSTİTÜSÜ EN BAŞARILI LİSANSÜSTÜ TEZ ÖDÜLÜ YÖNERGESİ FIRAT ÜNİVERSİTESİ FEN BİLİMLERİ ENSTİTÜSÜ EN BAŞARILI LİSANSÜSTÜ TEZ ÖDÜLÜ YÖNERGESİ Amaç Madde 1- Bu yönerge, Fırat Üniversitesi Fen Bilimleri Enstitüsü bünyesinde hazırlanacak olan lisansüstü tezlerin

Detaylı

Herhangi bir oranın belli bir değere eşit olmadığını test etmek için kullanılır.

Herhangi bir oranın belli bir değere eşit olmadığını test etmek için kullanılır. Hipotez testleri-oran testi Oran Testi Herhangi bir oranın belli bir değere eşit olmadığını test etmek için kullanılır Örnek: Yüz defa atılan bir para 34 defa yazı gelmiştir Paranın yazı gelme olasılığının

Detaylı

Mühendislik Mekaniği Statik. Yrd.Doç.Dr. Akın Ataş

Mühendislik Mekaniği Statik. Yrd.Doç.Dr. Akın Ataş Mühendislik Mekaniği Statik Yrd.Doç.Dr. Akın Ataş Bölüm 2 Kuvvet Vektörleri Kaynak: Mühendislik Mekaniği: Statik, R.C.Hibbeler, S.C.Fan, Çevirenler: A. Soyuçok, Ö.Soyuçok. 2 Kuvvet Vektörleri Bu bölümde,

Detaylı

Seminer Dersi Ders Kimlik Formu (DEKİM)

Seminer Dersi Ders Kimlik Formu (DEKİM) Sosyal Bilimler Enstitüsü, Ticari Bilimler Fakültesi Yüksek Lisans Programı Seminer Dersi Ders Kimlik Formu (DEKİM) Prof. Dr. Hüner Şencan İstanbul, 2015 İSTANBUL TİCARET ÜNİVERSİTESİ SOSYAL BİLİMLER ENSTİTÜSÜ,

Detaylı

Karar Destek Sistemi

Karar Destek Sistemi Karar Destek Sistemi Müşteri Seçimi ve Rut Optimizasyonu Üretilen bir mamülün/hizmetin üretici firma ya da pazarlama şirketlerince, satış noktalarına verimli olarak yapılan müşteri ziyaretlerine rut diyebiliriz.

Detaylı

PARAMETRİK OLMAYAN İSTATİSTİKSEL TEKNİKLER 8

PARAMETRİK OLMAYAN İSTATİSTİKSEL TEKNİKLER 8 PARAMETRİK OLMAYAN İSTATİSTİKSEL TEKNİKLER 8 Prof. Dr. Ali ŞEN İki Populasyonun Karşılaştırılması: Eşleştirilmiş Örnekler için Wilcoxon İşaretli Mertebe Testi -BÜYÜK ÖRNEK Bağımsız populasyonlara uygulanan

Detaylı

EŞANLI DENKLEM MODELLERİ

EŞANLI DENKLEM MODELLERİ EŞANLI DENKLEM MODELLERİ Eşanlı denklem modelleri, tek denklemli modeller ile açıklanamayan iktisadi olayları açıklamak için kullanılan model türlerinden birisidir. Çift yönlü neden-sonuç ilişkisi söz

Detaylı

EK 1 TAVAN EK ÖDEME TUTARINA ESAS KATSAYILAR

EK 1 TAVAN EK ÖDEME TUTARINA ESAS KATSAYILAR EK 1 TAVAN EK ÖDEME TUTARINA ESAS KATSAYILAR Mesai İçi Tavan Ek Ödeme Tutarına Esas Katsayılar Eğitim görevlisi ile uzman tabip kadrosuna atanan profesör ve 8 doçentler Uzman tabip ve tıpta uzmanlık mevzuatında

Detaylı

FAZ (FArklı Zar) Temmuz 2011. Umut & Yeşim Uludağ FAZ V. 1.0. Kişi Sayısı: 3 Yaş grubu: 8 yaş ve üstü Oyun Türü: Taş hareketi, strateji, olasılık

FAZ (FArklı Zar) Temmuz 2011. Umut & Yeşim Uludağ FAZ V. 1.0. Kişi Sayısı: 3 Yaş grubu: 8 yaş ve üstü Oyun Türü: Taş hareketi, strateji, olasılık FAZ (FArklı Zar) Kişi Sayısı: 3 Yaş grubu: 8 yaş ve üstü Oyun Türü: Taş hareketi, strateji, olasılık FAZ oyununda, kırmızı (birinci oyuncu), beyaz (ikinci oyuncu), ve mavi (üçüncü oyuncu) renkli, 3 adet

Detaylı

ULUDAĞ ÜNİVERİTESİ BİLİM, SANAT VE TEŞVİK ÖDÜLLERİ ADAY ÖNERİ FORMU *

ULUDAĞ ÜNİVERİTESİ BİLİM, SANAT VE TEŞVİK ÖDÜLLERİ ADAY ÖNERİ FORMU * I. KİŞİSEL BİLGİLER Adı Soyadı Doğum Yeri ve Yılı Çalıştığı Birim Adresi Telefon No Elektronik Posta Faks No ÖĞRENİMİ Mezun Olduğu Üniversite Mezuniyet Tarihi Lisans Yüksek Lisans Doktora / Tıpta Uzmanlık

Detaylı

Gezgin Satıcı Probleminin İkili Kodlanmış Genetik Algoritmalarla Çözümünde Yeni Bir Yaklaşım. Mehmet Ali Aytekin Tahir Emre Kalaycı

Gezgin Satıcı Probleminin İkili Kodlanmış Genetik Algoritmalarla Çözümünde Yeni Bir Yaklaşım. Mehmet Ali Aytekin Tahir Emre Kalaycı Gezgin Satıcı Probleminin İkili Kodlanmış Genetik Algoritmalarla Çözümünde Yeni Bir Yaklaşım Mehmet Ali Aytekin Tahir Emre Kalaycı Gündem Gezgin Satıcı Problemi GSP'yi Çözen Algoritmalar Genetik Algoritmalar

Detaylı

Bu form ekleriyle birlikte Dekanlık veya M üdürlükler tarafından ön yazı ile Rektörlük Makamına iletilecektir.

Bu form ekleriyle birlikte Dekanlık veya M üdürlükler tarafından ön yazı ile Rektörlük Makamına iletilecektir. ONU/ s. ULUSLARARASI BİLİMSEL ETKİNLİK DESTEK (UBED) BAŞVURU FORMU > b Bu form ekleriyle birlikte Dekanlık veya M üdürlükler tarafından ön yazı ile Rektörlük Makamına iletilecektir. Başvuru Sahibi Bilgile

Detaylı

Temel Matematik Testi - 8

Temel Matematik Testi - 8 Test kodunu sitemizde kullanarak sonucunuzu öğrenebilir, soruların video çözümlerini izleyebilirsiniz. Test Kodu: D008. u testte 40 soru vardır.. Tavsiye edilen süre 40 dakikadır. Temel Matematik Testi

Detaylı

Parti Bazında Kabul Örneklemesi

Parti Bazında Kabul Örneklemesi KABUL ÖRNEKLEMESİ Hammadde, yarı mamul veya bitmiş (son) ürünün kabul / red kararının verilebilmesi için kullanılan bir yaklaşımdır. Kabul örneklemesi sadece partinin kabul / red kararı için kullanılır,

Detaylı

Deniz ERSOY Elektrik Yük. Müh.

Deniz ERSOY Elektrik Yük. Müh. Deniz ERSOY Elektrik Yük. Müh. AMACIMIZ Yenilenebilir enerji kaynaklarının tesis edilmesi ve enerji üretimi pek çok araştırmaya konu olmuştur. Fosil yakıtların giderek artan maliyeti ve giderek tükeniyor

Detaylı

Olasılık Kavramı. Recep YURTAL. Mühendislikte İstatistik Metotlar. Çukurova Üniversitesi İnşaat Mühendisliği Bölümü

Olasılık Kavramı. Recep YURTAL. Mühendislikte İstatistik Metotlar. Çukurova Üniversitesi İnşaat Mühendisliği Bölümü Olasılık Kavramı Mühendislikte İstatistik Metotlar Çukurova Üniversitesi İnşaat Mühendisliği ölümü OLSILIK KVRMI KÜME KVRMI irlikte ele alınan belirli nesneler topluluğuna küme, Kümede içerilen nesnelere

Detaylı

Rasgele Sayıların Özellikleri

Rasgele Sayıların Özellikleri Rasgele Sayı Üretme Rasgele Sayıların Özellikleri İki önemli istaiksel özelliği var : Düzgünlük (Uniformity) Bağımsızlık R i, rasgele sayısı olasılık yoğunluk fonksiyonu aşağıdaki gibi olan uniform bir

Detaylı

ANT SYSTEM ALGORİTMASININ JAVA İLE GÖRSELLEŞTİRİLMESİ

ANT SYSTEM ALGORİTMASININ JAVA İLE GÖRSELLEŞTİRİLMESİ ANT SYSTEM ALGORİTMASININ JAVA İLE GÖRSELLEŞTİRİLMESİ ÖZET Aybars Uğur Ege Üniversitesi Bilgisayar Müh. Bölümü aybars.ugur@ege.edu.tr Bu çalışmada sürü zekası, karınca kolonisi optimizasyonu ve Ant System

Detaylı

YAVAŞ DEĞİŞEN ÜNİFORM OLMAYAN AKIM

YAVAŞ DEĞİŞEN ÜNİFORM OLMAYAN AKIM YAVAŞ DEĞİŞEN ÜNİFORM OLMAYAN AKIM Yavaş değişen akımların analizinde kullanılacak genel denklem bir kanal kesitindeki toplam enerji yüksekliği: H = V g + h + z x e göre türevi alınırsa: dh d V = dx dx

Detaylı

İÇİNDEKİLER. Bölüm 1 YÖNEYLEM ARAŞTIRMASINA GİRİŞ 11. 1.1. Temel Kavramlar 14 1.2. Modeller 17 1.3. Diğer Kavramlar 17 Değerlendirme Soruları 19

İÇİNDEKİLER. Bölüm 1 YÖNEYLEM ARAŞTIRMASINA GİRİŞ 11. 1.1. Temel Kavramlar 14 1.2. Modeller 17 1.3. Diğer Kavramlar 17 Değerlendirme Soruları 19 İÇİNDEKİLER ÖNSÖZ III Bölüm 1 YÖNEYLEM ARAŞTIRMASINA GİRİŞ 11 1.1. Temel Kavramlar 14 1.2. Modeller 17 1.3. Diğer Kavramlar 17 Değerlendirme Soruları 19 Bölüm 2 DOĞRUSAL PROGRAMLAMA 21 2.1 Doğrusal Programlamanın

Detaylı

I) DÖNEM PROJESİ. A) Sektörel Proje. Kapak Sayfası Başlık Öğrencinin Adı Soyadı Teslim Edildiği Tarih

I) DÖNEM PROJESİ. A) Sektörel Proje. Kapak Sayfası Başlık Öğrencinin Adı Soyadı Teslim Edildiği Tarih I) DÖNEM PROJESİ Dönem projesinin amacı, öğrencinin bir sektörel proje ya da bir literatür araştırmasını bağımsız olarak yürütebilmesi için gerekli yetenekleri kazanmasına yardımcı olmaktır. Öğrenciler

Detaylı

Görüntü Segmentasyonu (Bölütleme)

Görüntü Segmentasyonu (Bölütleme) Görüntü Segmentasyonu (Bölütleme) Segmentasyon, görüntüyü aynı cinsten obje ve bölgelere ayırmaktır. 20 Aralık 2014 Cumartesi 1 Görüntü Segmentasyonu 20 Aralık 2014 Cumartesi 2 Gestalt kanunları Görüntü

Detaylı

Bilginin Görselleştirilmesi ve Sunumu

Bilginin Görselleştirilmesi ve Sunumu Bilginin Görselleştirilmesi ve Sunumu Umut Al umutal@hacettepe.edu.tr - 1 Plan Dersin amacı, kapsamı, işlenişi Dersin gerekleri Proje hakkında Dersin değerlendirmesi - 2 Dersin Amacı Dersin temel amacı

Detaylı