Zeki Optimizasyon Teknikleri

Save this PDF as:
 WORD  PNG  TXT  JPG

Ebat: px
Şu sayfadan göstermeyi başlat:

Download "Zeki Optimizasyon Teknikleri"

Transkript

1 Zeki Optimizasyon Teknikleri Genetik Algoritma (Genetic Algorithm) Doç.Dr. M. Ali Akcayol Genetik Algoritma 1970 li yıllarda John Holland tarafından geliştirilmiştir yılında David E. Goldberg Genetik Algoritma Uygulamaları üzerine klasik eser olarak kabul edilen kitabını yayınladı. Popülasyon tabanlı algoritmadır. Her birey problemin çözümü olmaya adaydır. Stokastik algoritmadır. Çözümler genellikle bit dizileri olarak kodlanır. Bireyleri değerlendirme fonksiyonu probleme yönelik olarak çalışan en önemli kısımdır. 1

2 Terminoloji Popülasyon (Topluluk): Çözüm kümesini oluşturan bireylerin tümüdür. Kromozom: Çözüm için kullanılan bireyler. Gen: Kromozom içindeki anlamlı en küçük bilgidir. Locus: Kromozom içindeki gen in bulunduğu yerdir. Mutasyon: Bir kromozomda rastgele yapılan değişikliktir. iklikti Jenerasyon: Yeni bir topluluktur. Mating: Bireyler arasındaki eşlemedir. İşlemler Çözümün veya bireyin gösterimi ve başlangıç popülasyonunun oluşturulması Bireylerin değerlendirilmesi (Fitness function) Bireylerin i yeni topluluk l için i seçilmesi i Yeni bir jenerasyon oluşturma 2

3 Başlangıç popülasyonunu oluşturma Bilinen bir çözüm kümesi alınarak başlanabilir. Rastgele bireyler oluşturulur. Belirli kriterleri sağlayan bireyler oluşturulur. Popülasyondaki birey sayısı genellikle 100 ile 300 arasında seçilir. Bireylerin Değerlendirilmesi Kromozomların çözüme uygunluk değerleri belirlenir. Her problem için uygun bir değerlendirme fonksiyonu kullanılması gerekir. Probleme yönelik olarak çalışan kısımdır. Değerlendirme her yeni jenerasyonun tüm bireyleri için yapılır. 3

4 Yeni Popülasyon Oluşturma Birey seçme Elitizm Seçilen iki bireyi çaprazlama Bir bireyin herhangi bir gen inin mutasyon işlemiyle rastgele değiştirilmesi Yeni Popülasyon Oluşturma Birey seçme Deterministik Rulet tekerleği Rastgele Turnuva seçimi 4

5 Yeni Popülasyon Oluşturma Deterministik Birey seçme Belirli sayıdaki en iyi olan bireyler ile yeni popülasyon oluşturulur. Kötü bireyler yeni popülasyona aktarılmaz. Yeni Popülasyon Oluşturma Rulet Tekerleği ile Birey seçme Her bireyin çözüme uygunluk derecesi arttıkça yeni popülasyona p aktarılma şansı artar. Başlangıç Birey 1: f(x) = 45 Birey 2: f(x) = 21 Birey 3: f(x) = 9 Birey 4: f(x) = 75 Birey 1: 45 /( ) = 30% Birey 2: 21 /( ) = 14% Birey 3: 9 /( ) = 6% Birey 4: 75 /( ) = 50% B1=30% B2=14% B4=50% B3=6% Hareket 5

6 Yeni Popülasyon Oluşturma Rastgele Birey seçme Bireyin çözüme uygunluk derecesi seçilme şanslarını etkilemez. Birey 1: f(x) = 45 Birey 2: f(x) = 21 Birey 3: f(x) = 9 Birey 4: f(x) = 75 B2=25% B1=25% B3=25% B4=25% Başlangıç Hareket Yeni Popülasyon Oluşturma Turnuva seçimi Rastgele seçilen iki bireyden uygunluk derecesi yüksek olan bir sonraki popülasyona aktarılır. İşlem popülasyondaki kromozom sayısı kadar tekrarlanır. 6

7 Yeni Popülasyon Oluşturma Elitizm Belirli sayıdaki en iyi birey hiçbir işleme tabi tutulmadan doğrudan yeni jenerasyona aktarılır. Elit birey sayısı arttıkça çözümdeki çeşitlilik azalır. Elit birey alınmazsa yeni jenerasyonun en iyi bireyi bir önceki jenerasyonun en iyi bireyinden daha kötü olabilir. Yeni Popülasyon Oluşturma Seçilen iki bireyi çaprazlama Bir noktalı çaprazlama Yeni iki birey Çok noktalı çaprazlama Yeni iki birey 7

8 Yeni Popülasyon Oluşturma Seçilen iki bireyi çaprazlama (Devam) Çaprazlama noktaları rastgele seçilir. Yeni elde edilen iki bireyin ikiside yeni poülasyona aktarılabilir. Yeni elde edilen bireyden uygunluk seviyesi daha yüksek k olan alınabilir. Yeni Popülasyon Oluşturma Mutasyon Herhanbir bir kromozomdaki bir gen in sebep olmadan rastgele değiştirilmesidir. Mutasyon oranı genellikle 0.01 ile arasında seçilir. Yeni popülasyondaki bir bireyin her gen i için verilen oranda mutasyon olma olasılığı vardır. Mutasyon popülasyona çeşitlilik kazandırır

9 Algoritmanın Çalışması 1. Başlangıç popülasyonunu oluştur 2. Popülasyondaki her kromozomu uygunluk fonksiyonuyla değerlendir 3. Yeni popülasyon için yeni kromozomlar oluştur (Seçme, Çaprazlama, Mutasyon, Elitizm) 4. Adım 2 ve 3 ü uygun bir çözüm bulununcaya kadar veya belirlenen iterasyona ulaşılıncaya kadar tekrarla 5. En iyi kromozomu çözüm olarak al Genetik Algoritma GA nın Performansını Etkileyen Faktörler Kromozom sayısı: Kromozom sayısını arttırmak çalışma süresini artırır. Azaltmak ise kromozom çeşitliliğini yok eder. Mutasyon Oranı: Kromozomlar birbirine benzemeye başladığında hala uygun çözüm bulunamadıysa mutasyon işlemi GA nın sıkıştığı yerden kurtulması için tek yoldur. Ancak yüksek bir değer vermek GA nın kararlı bir noktaya ulaşmasını engeller. Kaç Noktalı Çaprazlama Yapılacağı: Normal olarak çaprazlama tek noktada gerçekleştirilmekle beraber yapılan araştırmalar bazı problemlerde çok noktalı çaprazlamanın faydalı olduğunu göstermiştir. Çaprazlamanın sonucu elde edilen bireylerin nasıl değerlendirileceği: Elde edilen iki bireyin birden kullanılıp kullanılamayacağı bazen önemli olmaktadır. Uygunluk değerlendirmesinin yapılışı: Probleme tam uygun olarak oluşturulmamış bir değerlendirme fonksiyonu, çalışma süresini uzatmakta hatta çözüme hiçbir zaman ulaşılamamasına neden olabilmektedir. 9

10 Genetik Algoritma (Araştırma) Kaynaklar: 1. Goldberg, David E. Genetic Algorithms in Search, Optimization and Machine Learning, Addison-Wesley Pub. Co ISBN: İnternet adresleri : (GARAGe) Goldberg) Genetik Algoritma Haftalık Ödev: Genetik Algoritma kullanılarak yapılmış bir makale bulup elde edilen sonuçları içeren bir rapor hazırlayınız. İncelenen makalede Genetik Algoritma kullanılmasının gerekçeleri, uygulamanın sonuçları değerlendirilecektir. - İncelenen makale son 5 yılda yayınlanmış olacaktır. - Makale Yurtdışında SCI te taranan bir dergide yayınlanmış olacaktır. - Hazırlanan rapora makalenin tam metnide eklenecektir. - Hazırlanan rapor ve makalenin tamamı diğer öğrencilerin hepsine e-postayla gönderilecektir. 10

11 Genetik Algoritma Gelecek Hafta Yapay Sinir Ağları (Artificial Neural Networks) 11

GENETİK ALGORİTMALAR. Araş. Gör. Nesibe YALÇIN BİLECİK ÜNİVERSİTESİ

GENETİK ALGORİTMALAR. Araş. Gör. Nesibe YALÇIN BİLECİK ÜNİVERSİTESİ GENETİK ALGORİTMALAR Araş. Gör. Nesibe YALÇIN BİLECİK ÜNİVERSİTESİ GENETİK ALGORİTMALAR Genetik algoritmalar, Darwin in doğal seçim ve evrim teorisi ilkelerine dayanan bir arama ve optimizasyon yöntemidir.

Detaylı

METASEZGİSEL YÖNTEMLER. Genetik Algoritmalar

METASEZGİSEL YÖNTEMLER. Genetik Algoritmalar METASEZGİSEL YÖNTEMLER Genetik Algoritmalar 1970 li yıllarda John Holland tarafından geliştirilmiştir. 1989 yılında David E. Goldberg Genetik Genetik Algoritma Algoritma Uygulamaları üzerine klasik eser

Detaylı

Zeki Optimizasyon Teknikleri

Zeki Optimizasyon Teknikleri Zeki Optimizasyon Teknikleri Tabu Arama (Tabu Search) Doç.Dr. M. Ali Akcayol Tabu Arama 1986 yılında Glover tarafından geliştirilmiştir. Lokal minimum u elimine edebilir ve global minimum u bulur. Değerlendirme

Detaylı

Genetik Algoritmalar. Bölüm 1. Optimizasyon. Yrd. Doç. Dr. Adem Tuncer E-posta:

Genetik Algoritmalar. Bölüm 1. Optimizasyon. Yrd. Doç. Dr. Adem Tuncer E-posta: Genetik Algoritmalar Bölüm 1 Optimizasyon Yrd. Doç. Dr. Adem Tuncer E-posta: adem.tuncer@yalova.edu.tr Optimizasyon? Optimizasyon Nedir? Eldeki kısıtlı kaynakları en iyi biçimde kullanmak olarak tanımlanabilir.

Detaylı

Zeki Optimizasyon Teknikleri

Zeki Optimizasyon Teknikleri Zeki Optimizasyon Teknikleri Ara sınav - 25% Ödev (Haftalık) - 10% Ödev Sunumu (Haftalık) - 5% Final (Proje Sunumu) - 60% - Dönem sonuna kadar bir optimizasyon tekniğiyle uygulama geliştirilecek (Örn:

Detaylı

Google Maps ve Genetik Algoritmalarla GSP Çözümü İçin Öneri

Google Maps ve Genetik Algoritmalarla GSP Çözümü İçin Öneri Google Maps ve Genetik Algoritmalarla GSP Çözümü İçin Öneri Onur KARASOY 1, Serkan BALLI 2 1 Muğla Sıtkı Koçman Üniversitesi Bilgi İşlem Dairesi Başkanlığı 2 Muğla Sıtkı Koçman Üniversitesi Bilişim Sistemleri

Detaylı

Fonksiyon Optimizasyonunda Genetik Algoritmalar

Fonksiyon Optimizasyonunda Genetik Algoritmalar 01-12-06 Ümit Akıncı Fonksiyon Optimizasyonunda Genetik Algoritmalar 1 Fonksiyon Optimizasyonu Fonksiyon optimizasyonu fizikte karşımıza sık çıkan bir problemdir. Örneğin incelenen sistemin kararlı durumu

Detaylı

GENETĠK ALGORĠTMALAR ĠLE HAFTALIK DERS PROGRAMININ HAZIRLANMASI

GENETĠK ALGORĠTMALAR ĠLE HAFTALIK DERS PROGRAMININ HAZIRLANMASI ÖZEL EGE LĠSESĠ GENETĠK ALGORĠTMALAR ĠLE HAFTALIK DERS PROGRAMININ HAZIRLANMASI HAZIRLAYAN ÖĞRENCĠLER: Berkin ĠNAN Doğa YÜKSEL DANIġMAN ÖĞRETMEN: Aslı ÇAKIR ĠZMĠR 2014 ĠÇĠNDEKĠLER 1. PROJENĠN AMACI. 3

Detaylı

Zeki Optimizasyon Teknikleri

Zeki Optimizasyon Teknikleri Zeki Optimizasyon Teknikleri Yapay Sinir Ağları (Artificial Neural Network) Doç.Dr. M. Ali Akcayol Yapay Sinir Ağları Biyolojik sinir sisteminden esinlenerek ortaya çıkmıştır. İnsan beyninin öğrenme, eski

Detaylı

Zeki Optimizasyon Teknikleri

Zeki Optimizasyon Teknikleri Zeki Optimizasyon Teknikleri (nt lgorithm) Doç.Dr. M. li kcayol 996 yılında Marco Dorigo tarafından ortaya atılmıştır. Temel olarak karıncaların yiyecek madde ile yuvaları arasındaki en kısa yolu bulmalarından

Detaylı

Genetik Algoritmalar (GA) Genetik Algoritmalar Đçerik Nesin Matematik Köyü E rim Ç lı l ş ı ta t yı Nisan, 2012 Mustafa Suphi Erden

Genetik Algoritmalar (GA) Genetik Algoritmalar Đçerik Nesin Matematik Köyü E rim Ç lı l ş ı ta t yı Nisan, 2012 Mustafa Suphi Erden Genetik Algoritmalar Nesin Matematik Köyü Evrim Çalıştayı 20-23 Nisan, 202 Genetik Algoritmalar (GA Đçerik Biyolojiden esinlenme GA nın özellikleri GA nın unsurları uygulama Algoritma Şema teoremi Mustafa

Detaylı

X ve Y boş olmayan iki küme olsun. İki küme arasında tanımlanmış olan bir bulanık ilişki R, X x Y nin bir bulanık alt kümesidir.

X ve Y boş olmayan iki küme olsun. İki küme arasında tanımlanmış olan bir bulanık ilişki R, X x Y nin bir bulanık alt kümesidir. Bulanık İlişkiler X ve Y boş olmayan iki küme olsun. İki küme arasında tanımlanmış olan bir bulanık ilişki R, X x Y nin bir bulanık alt kümesidir. R F(X x Y) Eğer X = Y ise R bir ikilik (binary) bulanık

Detaylı

Yaklaşık Düşünme Teorisi

Yaklaşık Düşünme Teorisi Yaklaşık Düşünme Teorisi Zadeh tarafından 1979 yılında öne sürülmüştür. Kesin bilinmeyen veya belirsiz bilgiye dayalı işlemlerde etkili sonuçlar vermektedir. Genellikle bir f fonksiyonu ile x ve y değişkeni

Detaylı

DOĞRUSAL OLMAYAN REGRESYON ANALİZİNDE GERÇEK DEĞER KODLAMALI GENETİK ALGORİTMA

DOĞRUSAL OLMAYAN REGRESYON ANALİZİNDE GERÇEK DEĞER KODLAMALI GENETİK ALGORİTMA Istanbul Ticaret Üniversitesi Sosyal Bilimler Dergisi Yıl:8 Sayı:15 Bahar 2009 s.167-178 DOĞRUSAL OLMAYAN REGRESYON ANALİZİNDE GERÇEK DEĞER KODLAMALI GENETİK ALGORİTMA Timur KESKİNTÜRK * Serap ŞAHİN ÖZET

Detaylı

Gevşek Hesaplama (COMPE 474) Ders Detayları

Gevşek Hesaplama (COMPE 474) Ders Detayları Gevşek Hesaplama (COMPE 474) Ders Detayları Ders Adı Gevşek Hesaplama Ders Kodu COMPE 474 Dönemi Ders Uygulama Laboratuar Kredi AKTS Saati Saati Saati Bahar 3 0 0 3 5 Ön Koşul Ders(ler)i Dersin Dili Dersin

Detaylı

Genetik Algoritma ile Elde Edilen Uyumlu Renklerin Web Şablonları Üzerinde Gerçeklenmesi

Genetik Algoritma ile Elde Edilen Uyumlu Renklerin Web Şablonları Üzerinde Gerçeklenmesi Genetik Algoritma ile Elde Edilen Uyumlu Renklerin Web Şablonları Üzerinde Gerçeklenmesi Şerif Okumuş Melih Orhan Bilgisayar Mühendisliği Bölümü, Süleyman Demirel Üniversitesi, Isparta {serifokumus,melihorhan}@yahoo.com.tr

Detaylı

İLERİ ALGORİTMA ANALİZİ GENETİK ALGORİTMA

İLERİ ALGORİTMA ANALİZİ GENETİK ALGORİTMA İLERİ ALGORİTMA ANALİZİ 1. Giriş GENETİK ALGORİTMA Geniş çözüm uzaylarının klasik yöntemlerle taranması hesaplama zamanını artırmaktadır. Genetik algoritma ile kabul edilebilir doğrulukta kısa sürede bir

Detaylı

THE EFFECT OF PRODUCT NUMBER ON SOLVING THE JOP-SHOP SCHEDULING PROBLEM BY USING GENETIC ALGORITHM

THE EFFECT OF PRODUCT NUMBER ON SOLVING THE JOP-SHOP SCHEDULING PROBLEM BY USING GENETIC ALGORITHM GENETİK ALGORİTMA İLE ÇÖZÜMÜ GERÇEKLEŞTİRİLEN ATÖLYE ÇİZELGELEME PROBLEMİNDE ÜRÜN SAYISININ ETKİSİ Serdar BİROĞUL*, Uğur GÜVENÇ* (*) Gazi Üniversitesi Teknik Eğitim Fakültesi Elektrik Eğitimi Bölümü, Beşevler

Detaylı

GENETİK ALGORİTMA İLE RÜZGAR TÜRBİNİ KANAT SAYISI SEÇİMİ

GENETİK ALGORİTMA İLE RÜZGAR TÜRBİNİ KANAT SAYISI SEÇİMİ VI. Ulusal Temiz Enerji Sempozyumu UTES 2006 25 27 Mayıs 2006, Isparta Sf.756 764 GENETİK ALGORİTMA İLE RÜZGAR TÜRBİNİ KANAT SAYISI SEÇİMİ Nida Nurbay ve Ali Çınar Kocaeli Üniversitesi Tek. Eğt. Fak. Makine

Detaylı

Evrimsel Çok amaçlı eniyileme. Tahir Emre Kalaycı Ege Üniversitesi Bilgisayar Mühendisliği Bölümü 25 Mart 2010

Evrimsel Çok amaçlı eniyileme. Tahir Emre Kalaycı Ege Üniversitesi Bilgisayar Mühendisliği Bölümü 25 Mart 2010 Evrimsel Çok amaçlı eniyileme Tahir Emre Kalaycı Ege Üniversitesi Bilgisayar Mühendisliği Bölümü 25 Mart 2010 Gündem Çok amaçlı eniyileme Giriş Evrimsel çok amaçlı eniyileme Sonuç Giriş Gerçek dünya problemleri

Detaylı

Gezgin Satıcı Probleminin İkili Kodlanmış Genetik Algoritmalarla Çözümünde Yeni Bir Yaklaşım. Mehmet Ali Aytekin Tahir Emre Kalaycı

Gezgin Satıcı Probleminin İkili Kodlanmış Genetik Algoritmalarla Çözümünde Yeni Bir Yaklaşım. Mehmet Ali Aytekin Tahir Emre Kalaycı Gezgin Satıcı Probleminin İkili Kodlanmış Genetik Algoritmalarla Çözümünde Yeni Bir Yaklaşım Mehmet Ali Aytekin Tahir Emre Kalaycı Gündem Gezgin Satıcı Problemi GSP'yi Çözen Algoritmalar Genetik Algoritmalar

Detaylı

Gezgin Satıcı Probleminin Karınca Kolonisi ve Genetik Algoritmalarla Eniyilemesi ve Karşılaştırılması

Gezgin Satıcı Probleminin Karınca Kolonisi ve Genetik Algoritmalarla Eniyilemesi ve Karşılaştırılması Süleyman Demirel Üniversitesi Fen Bilimleri Enstitüsü Dergisi Suleyman Demirel University Journal of Natural andappliedscience 18(1), 8-13, 2014 Gezgin Satıcı Probleminin Karınca Kolonisi ve Genetik Algoritmalarla

Detaylı

Polinom olmayan denklemlerin genetik algoritma tabanlı çözümü

Polinom olmayan denklemlerin genetik algoritma tabanlı çözümü 322 Polinom olmayan denklemlerin genetik algoritma tabanlı çözümü Nihat ÖZTÜRK *, Emre ÇELİK * Gazi Üniversitesi Teknoloji Fakültesi Elektrik Elektronik Mühendisliği Bölümü, ANKARA ÖZET Anahtar Kelimeler:

Detaylı

Genetik Algoritma ile Türkiye Net Elektrik Enerjisi Tüketiminin 2020 Yılına Kadar Tahmini

Genetik Algoritma ile Türkiye Net Elektrik Enerjisi Tüketiminin 2020 Yılına Kadar Tahmini International Journal of Engineering Research and Development, Vol.3, No.2, June 2011 37 Genetik Algoritma ile Türkiye Net Elektrik Enerjisi Tüketiminin 2020 Yılına Kadar Tahmini Vecihi Yigit Industrial

Detaylı

GÜNEŞ ENERJİSİ VE RÜZGÂR ENERJİSİ DÂHİL OLAN HİBRİT GÜÇ SİSTEMİNDE FARKLI ALGORİTMALAR İLE EKONOMİK YÜK DAĞITIMININ İNCELENMESİ

GÜNEŞ ENERJİSİ VE RÜZGÂR ENERJİSİ DÂHİL OLAN HİBRİT GÜÇ SİSTEMİNDE FARKLI ALGORİTMALAR İLE EKONOMİK YÜK DAĞITIMININ İNCELENMESİ 3. İzmir Rüzgâr Sempozyumu // 8-10 Ekim 2015 // İzmir 29 GÜNEŞ ENERJİSİ VE RÜZGÂR ENERJİSİ DÂHİL OLAN HİBRİT GÜÇ SİSTEMİNDE FARKLI ALGORİTMALAR İLE EKONOMİK YÜK DAĞITIMININ İNCELENMESİ Gül Kurt 1, Deniz

Detaylı

Web Madenciliği (Web Mining)

Web Madenciliği (Web Mining) Web Madenciliği (Web Mining) Hazırlayan: M. Ali Akcayol Gazi Üniversitesi Bilgisayar Mühendisliği Bölümü Konular Denetimli Öğrenmenin Temelleri Karar Ağaçları Entropi ID3 Algoritması C4.5 Algoritması Twoing

Detaylı

Serdar BİROĞUL YÜKSEK LİSANS TEZİ (ELEKTRİK EĞİTİMİ) GAZİ ÜNİVERSİTESİ FEN BİLİMLERİ ENSTİTÜSÜ ANKARA

Serdar BİROĞUL YÜKSEK LİSANS TEZİ (ELEKTRİK EĞİTİMİ) GAZİ ÜNİVERSİTESİ FEN BİLİMLERİ ENSTİTÜSÜ ANKARA i GENETİK ALGORİTMA YAKLAŞIMIYLA ATÖLYE ÇİZELGELEME Serdar BİROĞUL YÜKSEK LİSANS TEZİ (ELEKTRİK EĞİTİMİ) GAZİ ÜNİVERSİTESİ FEN BİLİMLERİ ENSTİTÜSÜ OCAK 2005 ANKARA ii Serdar BİROĞUL tarafından hazırlanan

Detaylı

Genetik Algoritmalar. Prof.Dr.Adem KALINLI

Genetik Algoritmalar. Prof.Dr.Adem KALINLI Genetik Algoritmalar Erciyes Üniversitesi Ekim 2012 Sunum İçeriği Giriş Evrimsel Hesaplama Genetik Algoritmalar Maliyet fonksiyonu Bilgi temsil mekanizması Başlangıç popülasyonu oluşturma Uygunluk veya

Detaylı

GridAE: Yapay Evrim Uygulamaları için Grid Tabanlı bir Altyapı

GridAE: Yapay Evrim Uygulamaları için Grid Tabanlı bir Altyapı GridAE: Yapay Evrim Uygulamaları için Grid Tabanlı bir Altyapı Erol Şahin Bilgisayar Mühendisliği Bölümü, Orta Doğu Teknik Üniversitesi Ankara, Türkiye 2. ULUSAL GRİD ÇALIŞTAYI, 1-2 Mart 2007, TÜBİTAK,

Detaylı

Genetik Algoritmalarla akış tipi çizelgelemede üreme yöntemi optimizasyonu

Genetik Algoritmalarla akış tipi çizelgelemede üreme yöntemi optimizasyonu itüdergisi/d mühendislik Cilt:1 Sayı:1 Ağustos 2002 Genetik Algoritmalarla akış tipi çizelgelemede üreme yöntemi optimizasyonu Orhan ENGİN *, Alpaslan FIĞLALI İTÜ İşletme Fakültesi, Endüstri Mühendisliği

Detaylı

Sigma 2006/2 Araştırma Makalesi / Research Article THE SIMULATION AND OPTIMIZATION OF LIFT CONTROL SYSTEMS WITH GENETIC ALGORITHMS

Sigma 2006/2 Araştırma Makalesi / Research Article THE SIMULATION AND OPTIMIZATION OF LIFT CONTROL SYSTEMS WITH GENETIC ALGORITHMS Journal of Engineering and Natural Sciences Mühendislik ve Fen Bilimleri Dergisi Sigma 2006/2 Araştırma Makalesi / Research Article THE SIMULATION AND OPTIMIZATION OF LIFT CONTROL SYSTEMS WITH GENETIC

Detaylı

Programı : YAPI MÜHENDİSLİĞİ

Programı : YAPI MÜHENDİSLİĞİ İSTANBUL TEKNİK ÜNİVERSİTESİ FEN BİLİMLERİ ENSTİTÜSÜ GENETİK ALGORİTMALAR KULLANILARAK SONLU ELEMAN GÜNCELLEMESİ YÖNTEMİYLE HASAR TESPİTİ VE PARAMETRE BELİRLENMESİ YÜKSEK LİSANS TEZİ İnş. Müh. Yıldırım

Detaylı

BESLENME PROBLEMİNDE GENETİK ALGORİTMA KULLANILMASI. e posta:

BESLENME PROBLEMİNDE GENETİK ALGORİTMA KULLANILMASI. e posta: IAAOJ, Scientific Science, 2013,1(1),19-26 BESLENME PROBLEMİNDE GENETİK ALGORİTMA KULLANILMASI Arş.Gör.Serpil Gümüştekin 1, Yrd.Doç.Dr.Talat Şenel 1 1Ondokuz Mayıs Üniversitesi, Fen Edebiyat Fakültesi,

Detaylı

Web Madenciliği (Web Mining)

Web Madenciliği (Web Mining) Web Madenciliği (Web Mining) Hazırlayan: M. Ali Akcayol Gazi Üniversitesi Bilgisayar Mühendisliği Bölümü Konular Sınıflandırıcıların Değerlendirilmesi Skorlar Karışıklık matrisi Accuracy Precision Recall

Detaylı

Büyük Veri Analitiği (Big Data Analytics)

Büyük Veri Analitiği (Big Data Analytics) Büyük Veri Analitiği (Big Data Analytics) M. Ali Akcayol Gazi Üniversitesi Bilgisayar Mühendisliği Bölümü Bu dersin sunumları, Mining of Massive Datasets, Jure Leskovec, Anand Rajaraman, Jeffrey David

Detaylı

VERİ MADENCİLİĞİ (Sınıflandırma Yöntemleri) Yrd.Doç.Dr. Kadriye ERGÜN kergun@balikesir.edu.tr

VERİ MADENCİLİĞİ (Sınıflandırma Yöntemleri) Yrd.Doç.Dr. Kadriye ERGÜN kergun@balikesir.edu.tr VERİ MADENCİLİĞİ (Sınıflandırma Yöntemleri) Yrd.Doç.Dr. Kadriye ERGÜN kergun@balikesir.edu.tr Genel İçerik Veri Madenciliğine Giriş Veri Madenciliğinin Adımları Veri Madenciliği Yöntemleri Sınıflandırma

Detaylı

YÖNEYLEM ARAŞTIRMASI - III

YÖNEYLEM ARAŞTIRMASI - III YÖNEYLEM ARAŞTIRMASI - III Prof. Dr. Cemalettin KUBAT Yrd. Doç. Dr. Özer UYGUN İçerik Altın Oran (Golden Section Search) Arama Metodu Tek değişkenli bir f(x) fonksiyonunu ele alalım. [Bazı x ler için f

Detaylı

ÜÇ BOYUTLU KARAYOLU GÜZÂRGAH OPTİMİZASYONUNDA KARAR DESTEK SİSTEMİ OLARAK GENETİK ALGORİTMALARIN KULLANIMI

ÜÇ BOYUTLU KARAYOLU GÜZÂRGAH OPTİMİZASYONUNDA KARAR DESTEK SİSTEMİ OLARAK GENETİK ALGORİTMALARIN KULLANIMI TMMOB Harita ve Kadastro Mühendisleri Odası 11. Türkiye Harita Bilimsel ve Teknik Kurultayı 2 6 Nisan 2007, Ankara ÜÇ BOYUTLU KARAYOLU GÜZÂRGAH OPTİMİZASYONUNDA KARAR DESTEK SİSTEMİ OLARAK GENETİK ALGORİTMALARIN

Detaylı

TABAKALI RASTGELE ÖRNEKLEMEDE ÖRNEKLEM BÜYÜKLÜKLERİNİN GENETİK ALGORİTMA İLE BELİRLENMESİ

TABAKALI RASTGELE ÖRNEKLEMEDE ÖRNEKLEM BÜYÜKLÜKLERİNİN GENETİK ALGORİTMA İLE BELİRLENMESİ TABAKALI RASTGELE ÖRNEKLEMEDE ÖRNEKLEM BÜYÜKLÜKLERİNİN GENETİK ALGORİTMA İLE BELİRLENMESİ DETERMINATION OF SAMPLE SIZES IN STRATIFIED RANDOM SAMPLING WITH GENETIC ALGORITHM DERYA TURFAN DOÇ. DR. ÖZGÜR

Detaylı

Tedarik Zinciri Yönetiminde Yapay Zeka Teknikler

Tedarik Zinciri Yönetiminde Yapay Zeka Teknikler Tedarik Zinciri Yönetiminde Yapay Zeka Teknikler Doç.Dr.Mehmet Hakan Satman mhsatman@istanbul.edu.tr İstanbul Üniversitesi 2014.10.22 Doç.Dr.Mehmet Hakan Satmanmhsatman@istanbul.edu.tr Tedarik Zinciri

Detaylı

YAPAY BAĞIŞIKLIK SİSTEMİ. Arş. Gör. Burcu ÇARKLI YAVUZ

YAPAY BAĞIŞIKLIK SİSTEMİ. Arş. Gör. Burcu ÇARKLI YAVUZ YAPAY BAĞIŞIKLIK SİSTEMİ Arş. Gör. Burcu ÇARKLI YAVUZ İnsanoğlu doğadaki müthiş uyumu yıllar önce keşfetmiş ve doğal sistemlerin işleyişini günümüz karmaşık problemlerinin çözümünde uygulayarak, karmaşık

Detaylı

KİNETİK MODEL PARAMETRELERİNİN BELİRLENMESİNDE KULLANILAN OPTİMİZASYON TEKNİKLERİNİN KIYASLANMASI

KİNETİK MODEL PARAMETRELERİNİN BELİRLENMESİNDE KULLANILAN OPTİMİZASYON TEKNİKLERİNİN KIYASLANMASI KİNETİK MODEL PARAMETRELERİNİN BELİRLENMESİNDE KULLANILAN OPTİMİZASYON TEKNİKLERİNİN KIYASLANMASI Hatice YANIKOĞLU a, Ezgi ÖZKARA a, Mehmet YÜCEER a* İnönü Üniversitesi Mühendislik Fakültesi Kimya Mühendisliği

Detaylı

MATEMATİK MÜHENDİSLİĞİ BÖLÜMÜ

MATEMATİK MÜHENDİSLİĞİ BÖLÜMÜ İSTANBUL TEKNİK ÜNİVERSİTESİ FEN EDEBİYAT FAKÜLTESİ MATEMATİK MÜHENDİSLİĞİ BÖLÜMÜ K-MEANS KÜMELEME ALGORİTMASININ GENETİK ALGORİTMA KULLANILARAK GELİŞTİRİLMESİ BİTİRME ÖDEVİ Yunus YÜNEL Tez Danışmanı:

Detaylı

SİPÂRİŞ TİPİ ATÖLYELERDE İŞ SIRALAMA PROBLEMİ İÇİN BİR GENETİK ALGORİTMA UYGULAMASI

SİPÂRİŞ TİPİ ATÖLYELERDE İŞ SIRALAMA PROBLEMİ İÇİN BİR GENETİK ALGORİTMA UYGULAMASI SİPÂRİŞ TİPİ ATÖLYELERDE İŞ SIRALAMA PROBLEMİ İÇİN BİR GENETİK ALGORİTMA UYGULAMASI Murat Baskak İ.T.Ü. İşletme Fakültesi, Endüstri Mühendisliği Bölümü, 34367 Maçka/İstanbul Vural Erol Yıldız Teknik Üniversitesi,

Detaylı

DİFERANSİYEL GELİŞİM ALGORİTMASI

DİFERANSİYEL GELİŞİM ALGORİTMASI İstanbul Ticaret Üniversitesi Fen Bilimleri Dergisi Yıl: 5 Sayı: 9 Bahar 2006/1 s.85-99 DİFERANSİYEL GELİŞİM ALGORİTMASI Timur KESKİNTÜRK ÖZET Doğrusal olmayan problemlerin çözümüne yönelik olarak geliştirilmiş

Detaylı

Doğal Hesaplama (COMPE 564) Ders Detayları

Doğal Hesaplama (COMPE 564) Ders Detayları Doğal Hesaplama (COMPE 564) Ders Detayları Ders Adı Doğal Hesaplama Ders Kodu COMPE 564 Dönemi Ders Uygulama Laboratuar Kredi AKTS Saati Saati Saati Güz 3 0 0 3 7.5 Ön Koşul Ders(ler)i Öğretim üyesinin

Detaylı

Oğuz ÜSTÜN. Geliş Tarihi/Received : 16.07.2009, Kabul Tarihi/Accepted : 02.09.2009

Oğuz ÜSTÜN. Geliş Tarihi/Received : 16.07.2009, Kabul Tarihi/Accepted : 02.09.2009 Pamukkale Üniversitesi Mühendislik Bilimleri Dergisi Cilt 15, Sayı 3, 2009, Sayfa 395-403 Genetik Algoritma Kullanılarak İleri Beslemeli Bir Sinir Ağında Etkinlik Fonksiyonlarının Belirlenmesi Determination

Detaylı

4 th International Advanced Technologies Symposium September 28 30, 2005 Konya / Türkiye DÜZ DİŞLİ HIZ KUTUSUNUN GENETİK ALGORİTMA İLE ENİYİLENMESİ

4 th International Advanced Technologies Symposium September 28 30, 2005 Konya / Türkiye DÜZ DİŞLİ HIZ KUTUSUNUN GENETİK ALGORİTMA İLE ENİYİLENMESİ 4 th International Advanced Technologies Symposium September 8 3, 5 Konya / Türkiye DÜZ DİŞLİ HIZ KUTUSUNUN GENETİK ALGORİTMA İLE ENİYİLENMESİ Metin ZEYVELİ Cevdet GÖLOĞLU Kürşad DÜNDAR ) Gazi Üniversitesi

Detaylı

Hücresel İmalat Sistemlerinin K-Means Algoritması ve Genetik Algoritma İle Tasarlanması: Bir Uygulama

Hücresel İmalat Sistemlerinin K-Means Algoritması ve Genetik Algoritma İle Tasarlanması: Bir Uygulama Hücresel İmalat Sistemlerinin K-Means Algoritması ve Genetik Algoritma İle Tasarlanması: Bir Uygulama Öz *1 Serap Ercan Cömert, 1 Seda Hatice Gökler, 1 Harun Reşit Yazgan 1 Sakarya Üniversitesi, Mühendislik

Detaylı

Yapı Yaklaşık Maliyet Hesaplarında Yapay Zeka Tekniğinin Uygulanabilirliğinin Bir Vaka Çalışması Üzerinde İncelenmesi

Yapı Yaklaşık Maliyet Hesaplarında Yapay Zeka Tekniğinin Uygulanabilirliğinin Bir Vaka Çalışması Üzerinde İncelenmesi 217 Published in 5th International Symposium on Innovative Technologies in Engineering and Science 29-3 September 217 (ISITES217 Baku - Azerbaijan) Yapı Yaklaşık Maliyet Hesaplarında Yapay Zeka Tekniğinin

Detaylı

EĞİTİMDE VERİMLİLİĞİ ARTIRAN DERS PROGRAMLARININ HAZIRLANMASI İÇİN GENETİK ALGORİTMA KULLANIMI

EĞİTİMDE VERİMLİLİĞİ ARTIRAN DERS PROGRAMLARININ HAZIRLANMASI İÇİN GENETİK ALGORİTMA KULLANIMI EĞİTİMDE VERİMLİLİĞİ ARTIRAN DERS PROGRAMLARININ HAZIRLANMASI İÇİN GENETİK ALGORİTMA KULLANIMI Fatma Daban Dr. Ersin Özdemir Mustafa Kemal Üniversitesi Özet Eğitim kurumları, kaynaklarını belirli zaman

Detaylı

PARALEL MAKĠNALARIN GENETĠK ALGORĠTMA ĠLE ÇĠZELGELENMESĠNDE MUTASYON ORANININ ETKĠNLĠĞĠ

PARALEL MAKĠNALARIN GENETĠK ALGORĠTMA ĠLE ÇĠZELGELENMESĠNDE MUTASYON ORANININ ETKĠNLĠĞĠ Ege Akademik BakıĢ / Ege Academic Review 10 (1) 2010: 199-210 PARALEL MAKĠNALARIN GENETĠK ALGORĠTMA ĠLE ÇĠZELGELENMESĠNDE MUTASYON ORANININ ETKĠNLĠĞĠ EFFICIENCY OF MUTATION RATE FOR PARALLEL MACHINE SCHEDULING

Detaylı

DC Motorlarda Maksimum Verimin Genetik Algoritma Kullanılarak Optimizasyonu. Optimization of DC Motors Maximum Efficiency Using Genetic Algorithm

DC Motorlarda Maksimum Verimin Genetik Algoritma Kullanılarak Optimizasyonu. Optimization of DC Motors Maximum Efficiency Using Genetic Algorithm DC Motorlarda Maksimum Verimin Genetik Algoritma Kullanılarak Optimizasyonu *1 Kürşat M. KARAOĞLAN and *2 Metin ZEYVELİ 1 Mekatronik Mühendisliği, Fen Bilimleri Enstitüsü, Karabük Üniversitesi, Karabük,

Detaylı

SÜREKLİ OLASILIK DAĞILIŞLARI

SÜREKLİ OLASILIK DAĞILIŞLARI SÜREKLİ OLASILIK DAĞILIŞLARI Sürekli verilerin göstermiş olduğu dağılışa sürekli olasılık dağılışı denir. Sürekli olasılık dağılışlarının fonksiyonlarına yoğunluk fonksiyonu denilmekte ve bu dağılışlarla

Detaylı

Hardy Weinberg Kanunu

Hardy Weinberg Kanunu Hardy Weinberg Kanunu Neden populasyonlarla çalışıyoruz? Popülasyonları analiz edebilmenin ilk yolu, genleri sayabilmekten geçer. Bu sayım, çok basit bir matematiksel işleme dayanır: genleri sayıp, tüm

Detaylı

2011 Third International Conference on Intelligent Human-Machine Systems and Cybernetics

2011 Third International Conference on Intelligent Human-Machine Systems and Cybernetics 2011 Third International Conference on Intelligent Human-Machine Systems and Cybernetics Özet: Bulanık bir denetleyici tasarlanırken karşılaşılan en önemli sıkıntı, bulanık giriş çıkış üyelik fonksiyonlarının

Detaylı

ALTIN ORAN ARAMA (GOLDEN SECTION SEARCH) METODU

ALTIN ORAN ARAMA (GOLDEN SECTION SEARCH) METODU ALTIN ORAN ARAMA (GOLDEN SECTION SEARCH) METODU Tek değişkenli bir f(x) fonksiyonunu ele alalım. [Bazı x ler için f (x) bulunamayabilir.] Aşağıdaki DOP modelini çözmek istediğimizi var sayalım. Max f(x)

Detaylı

ADIM ADIM YGS LYS Adım EKOLOJİ 15 POPÜLASYON GENETİĞİ

ADIM ADIM YGS LYS Adım EKOLOJİ 15 POPÜLASYON GENETİĞİ ADIM ADIM YGS LYS 108. Adım EKOLOJİ 15 POPÜLASYON GENETİĞİ Belirli bir bölgede yaşayan aynı türlerin oluşturduğu topluluğa popülasyon denir. Popülasyon genetiği, popülasyonu temel alan genetik koludur.

Detaylı

GEZGİN SATICI PROBLEMİ TABANLI BİR SİSTEMİN DİNAMİK BULANIK GENETİK ALGORİTMALAR İLE OPTİMİZASYONU

GEZGİN SATICI PROBLEMİ TABANLI BİR SİSTEMİN DİNAMİK BULANIK GENETİK ALGORİTMALAR İLE OPTİMİZASYONU YILDIZ TEKNİK ÜNİVERSİTESİ FEN BİLİMLERİ ENSTİTÜSÜ GEZGİN SATICI PROBLEMİ TABANLI BİR SİSTEMİN DİNAMİK BULANIK GENETİK ALGORİTMALAR İLE OPTİMİZASYONU Erdinç KURUCA FBE Endüstri Mühendisliği Anabilim Dalı

Detaylı

ANKARA ÜNİVERSİTESİ FEN BİLİMLERİ ENSTİTÜSÜ YÜKSEK LİSANS TEZİ

ANKARA ÜNİVERSİTESİ FEN BİLİMLERİ ENSTİTÜSÜ YÜKSEK LİSANS TEZİ ANKARA ÜNİVERSİTESİ FEN BİLİMLERİ ENSTİTÜSÜ YÜKSEK LİSANS TEZİ GENEL ATAMA PROBLEMLERİNİN ÇÖZÜMÜNDE DETERMİNİSTİK, OLASILIK TEMELLİ VE SEZGİSEL YÖNTEMLERİN UYGULANMASI Çağatay SEL ELEKTRİK-ELEKTRONİK MÜHENDİSLİĞİ

Detaylı

TAŞ DOLGU DALGAKIRANLARIN GENETİK ALGORİTMA İLE GÜVENİRLİK ANALİZİ. M. Levent Koç* Can E. Balas**

TAŞ DOLGU DALGAKIRANLARIN GENETİK ALGORİTMA İLE GÜVENİRLİK ANALİZİ. M. Levent Koç* Can E. Balas** TAŞ DOLGU DALGAKIRANLARIN GENETİK ALGORİTMA İLE GÜVENİRLİK ANALİZİ M. Levent Koç* Can E. Balas** (*) Yrd. Doç. Dr., Cumhuriyet Üniversitesi, Mühendislik Fakültesi İnşaat Mühendisliği Bölümü, Sivas Tel:

Detaylı

Tabakalı Kompozit Bir Malzemenin Genetik Algoritma Yöntemiyle Rijitlik Optimizasyonu

Tabakalı Kompozit Bir Malzemenin Genetik Algoritma Yöntemiyle Rijitlik Optimizasyonu th International Adanced Technologies Symposium (IATS ), -8 May 20, Elazığ, Turkey Tabakalı Kompozit Bir Malzemenin Genetik Algoritma Yöntemiyle Rijitlik Optimizasyonu Ö. Soykasap e K. B. Sugözü Afyon

Detaylı

Yrd. Doç. Dr. Osman Kaan EROL (İ.T.Ü)

Yrd. Doç. Dr. Osman Kaan EROL (İ.T.Ü) İSTANBUL TEKNİK ÜNİVERSİTESİ FEN BİLİMLERİ ENSTİTÜSÜ KONTROL SİSTEMLERİ İÇİN BULANIK PID KONTROLÖRLERİN GENETİK ALGORİTMALAR YARDIMIYLA AYARLANMASI Tezin Enstitüye Verildiği Tarih: 20 Mart 2007 Tezin Savunulduğu

Detaylı

Yapay Zeka Yöntemlerinin Otomotiv Sektöründe Ürün Tasarımı Çalışmalarında Kullanılması

Yapay Zeka Yöntemlerinin Otomotiv Sektöründe Ürün Tasarımı Çalışmalarında Kullanılması Yapay Zeka Yöntemlerinin Otomotiv Sektöründe Ürün Tasarımı Çalışmalarında Kullanılması Doç. Dr. Ali Rıza YILDIZ 04.11.2014 Doç. Dr. Ali Rıza YILDIZ - "Hibrid Evrimsel Yöntemler İle Taşıt Elemanlarının

Detaylı

GENETİK ALGORİTMALAR VE ÇALIŞMA PRENSİPLERİ

GENETİK ALGORİTMALAR VE ÇALIŞMA PRENSİPLERİ GAP IV. Mühendislik Kongresi Bildiriler Kitabı, 06-08 Haziran 2002, Şanlıurfa. Proceedings of the Fourth GAP Engineering Congress, 06-08 June 2002, Şanlıurfa. GENETİK ALGORİTMALAR VE ÇALIŞMA PRENSİPLERİ

Detaylı

Güncel Sezgisel Arama Algoritmalarının Denetleyici Parametrelerinin Optimizasyonunda Başarım Kıyaslaması

Güncel Sezgisel Arama Algoritmalarının Denetleyici Parametrelerinin Optimizasyonunda Başarım Kıyaslaması th International Advanced Technologies Symposium (IATS 11), 1-1 May 211, Elazığ, Turkey Güncel Sezgisel Arama Algoritmalarının Denetleyici Parametrelerinin Optimizasyonunda Başarım Kıyaslaması M. Kesler

Detaylı

DİNAMİK GEZGİN SATICI PROBLEMİNİN ÇÖZÜMÜ İÇİN BİR ENİYİLEME KÜTÜPHANESİNİN TASARIMI VE GÖRSEL YAZILIM GELİŞTİRME ORTAMI İLE BİRLİKTE GERÇEKLEŞTİRİMİ

DİNAMİK GEZGİN SATICI PROBLEMİNİN ÇÖZÜMÜ İÇİN BİR ENİYİLEME KÜTÜPHANESİNİN TASARIMI VE GÖRSEL YAZILIM GELİŞTİRME ORTAMI İLE BİRLİKTE GERÇEKLEŞTİRİMİ EGE ÜNİVERSİTESİ FEN BİLİMLERİ ENSTİTÜSÜ (YÜKSEK LİSANS TEZİ) DİNAMİK GEZGİN SATICI PROBLEMİNİN ÇÖZÜMÜ İÇİN BİR ENİYİLEME KÜTÜPHANESİNİN TASARIMI VE GÖRSEL YAZILIM GELİŞTİRME ORTAMI İLE BİRLİKTE GERÇEKLEŞTİRİMİ

Detaylı

GENETĐK ALGORĐTMA VE UYGULAMA ALANLARI

GENETĐK ALGORĐTMA VE UYGULAMA ALANLARI GENETĐK ALGORĐTMA VE UYGULAMA ALANLARI Mustafa KURT*, Cumali SEMETAY* *M.Ü.Teknik Eğitim Fakültesi Makina Bölümü Bu çalışmada, geleneksel yöntemlerle çözümü zor veya imkansız olan problemlerin çözümünde

Detaylı

İSTATİSTİK HAFTA. ÖRNEKLEME METOTLARI ve ÖRNEKLEM BÜYÜKLÜĞÜNÜN TESPİTİ

İSTATİSTİK HAFTA. ÖRNEKLEME METOTLARI ve ÖRNEKLEM BÜYÜKLÜĞÜNÜN TESPİTİ ÖRNEKLEME METOTLARI ve ÖRNEKLEM BÜYÜKLÜĞÜNÜN TESPİTİ HEDEFLER Bu üniteyi çalıştıktan sonra; Örneklemenin niçin ve nasıl yapılacağını öğreneceksiniz. Temel Örnekleme metotlarını öğreneceksiniz. Örneklem

Detaylı

Zeki Optimizasyon Teknikleri. Karınca Algoritması (Ant Algorithm)

Zeki Optimizasyon Teknikleri. Karınca Algoritması (Ant Algorithm) Zeki Optimizasyon Teknikleri Karınca Algoritması (Ant Algorithm) Karınca Algoritması 1996 yılında Marco Dorigo tarafından ortaya atılmıştır. Temel olarak karıncaların yiyecek madde ile yuvaları arasındaki

Detaylı

İleri Algoritma (COMPE 574) Ders Detayları

İleri Algoritma (COMPE 574) Ders Detayları İleri Algoritma (COMPE 574) Ders Detayları Ders Adı Ders Kodu Dönemi Ders Saati Uygulama Saati Laboratuar Saati Kredi AKTS İleri Algoritma COMPE 574 Güz 3 0 0 3 7.5 Ön Koşul Ders(ler)i Dersin Dili Dersin

Detaylı

DEÜ MÜHENDİSLİK FAKÜLTESİ FEN VE MÜHENDİSLİK DERGİSİ Cilt: 6 Sayı: 3 s. 1-18 Ekim 2004

DEÜ MÜHENDİSLİK FAKÜLTESİ FEN VE MÜHENDİSLİK DERGİSİ Cilt: 6 Sayı: 3 s. 1-18 Ekim 2004 ÖZET/ ABSTRACT DEÜ MÜHENDİSLİK FAKÜLTESİ FEN VE MÜHENDİSLİK DERGİSİ Cilt: 6 Sayı: 3 s. 1-18 Ekim 2004 SU DAĞITIM SİSTEMLERİNİN GENETİK ALGORİTMA İLE OPTİMİZASYONU OPTIMIZATION OF WATER DISTRIBUTION SYSTEMS

Detaylı

SNP TEK NÜKLEOTİD POLİMORFİZMLERİ (SINGLE NUCLEOTIDE POLYMORPHISMS)

SNP TEK NÜKLEOTİD POLİMORFİZMLERİ (SINGLE NUCLEOTIDE POLYMORPHISMS) SNP TEK NÜKLEOTİD POLİMORFİZMLERİ (SINGLE NUCLEOTIDE POLYMORPHISMS) Herhangi iki bireyin DNA dizisi %99.9 aynıdır. %0.1 = ~3x10 6 nükleotid farklılığı sağlar. Genetik materyalde varyasyon : Polimorfizm

Detaylı

ZAMANA BAĞLI DİNAMİK EN KISA YOL PROBLEMİ İÇİN GENETİK ALGORİTMA TABANLI YENİ BİR ALGORİTMA

ZAMANA BAĞLI DİNAMİK EN KISA YOL PROBLEMİ İÇİN GENETİK ALGORİTMA TABANLI YENİ BİR ALGORİTMA Gazi Üniv. Müh. Mim. Fak. Der. J. Fac. Eng. Arch. Gazi Univ. Cilt 26, No 4, 915-928, 2011 Vol 26, No 4, 915-928, 2011 ZAMANA BAĞLI DİNAMİK EN KISA YOL PROBLEMİ İÇİN GENETİK ALGORİTMA TABANLI YENİ BİR ALGORİTMA

Detaylı

GERÇEK ZAMAN KISITLARI ALTINDA SEYRÜSEFER

GERÇEK ZAMAN KISITLARI ALTINDA SEYRÜSEFER GERÇEK ZAMAN KISITLARI ALTINDA SEYRÜSEFER Ferhat Uçan (a), (b) (a), 41470,Gebze, Kocaeli, ferhat.ucan@bte.tubitak.gov.tr (b) du.tr ÖZ seklik t k Problemin en uygun çözümü, tüm a birlikte eniyileyen zordur.

Detaylı

Weight Optimization of a Dry Transformer by Genetic Algorithm and Validation by Finite Element Method

Weight Optimization of a Dry Transformer by Genetic Algorithm and Validation by Finite Element Method KSÜ Mühendislik Bilimleri Dergisi, (), 9 3 KSU Journal of Engineering Sciences, (), 9 Genetik Algoritma ile Kuru Bir Trafonun Ağırlık Optimizasyonu ve Sonlu Elemanlar Metodu ile Analizi Mehmed ÇELEBĐ Atatürk

Detaylı

Bulanık Kural Tabanlı Sistemler

Bulanık Kural Tabanlı Sistemler Üçgen (Triangular) normlar: Üçgen normlar (t-norm) Schweizer ve Sklar tarafından öne sürülmüştür. Herhangi bir a [0,1] aralığı için t-norm T(a, 1) = a şeklinde tanımlanır ve aşağıdaki özellikleri sağlar;

Detaylı

2 e-posta: aeyilmaz@eng.ankara.edu.tr

2 e-posta: aeyilmaz@eng.ankara.edu.tr BULUT AĞLARINA YÖNELİK DAĞINIK ÖNBELLEK YÖNETİM SİSTEMİ NDE FARKLI OPTİMİZASYON VE ATAMA TEKNİKLERİNİN PERFORMANS KARŞILAŞTIRMASI Hüseyin Seçkin Dikbayır 1 Asım Egemen Yılmaz 2 Ali Arda Diri 3 1,3 Dirisoft

Detaylı

ELEKTRİK ENERJİ DAĞITIM SİSTEMİNDE EKONOMİK AKTİF GÜÇ DAĞITIMININ GENETİK ALGORİTMA İLE BELİRLENMESİ

ELEKTRİK ENERJİ DAĞITIM SİSTEMİNDE EKONOMİK AKTİF GÜÇ DAĞITIMININ GENETİK ALGORİTMA İLE BELİRLENMESİ Eskişehir Osmangazi Üniversitesi Mühendislik Mimarlık Fakültesi Dergisi Cilt:XXII, Sayı:3, 009 Journal of Engineering and Architecture Faculty of Eskişehir Osmangazi University, Vol: XXII, No:3, 009 Makalenin

Detaylı

KARINCA KOLONİ ALGORİTMASI BMÜ-579 Meta Sezgisel Yöntemler. Yrd. Doç. Dr. İlhan AYDIN Fırat Üniversitesi, Bilgisayar Mühendisliği Bölümü

KARINCA KOLONİ ALGORİTMASI BMÜ-579 Meta Sezgisel Yöntemler. Yrd. Doç. Dr. İlhan AYDIN Fırat Üniversitesi, Bilgisayar Mühendisliği Bölümü KARINCA KOLONİ ALGORİTMASI BMÜ-579 Meta Sezgisel Yöntemler Yrd. Doç. Dr. İlhan AYDIN Fırat Üniversitesi, Bilgisayar Mühendisliği Bölümü Karınca Koloni Algoritması Bilim adamları, böcek davranışlarını inceleyerek

Detaylı

Kaotik Tabanlı Diferansiyel (Farksal) Gelişim Algoritması

Kaotik Tabanlı Diferansiyel (Farksal) Gelişim Algoritması Kaotik Tabanlı Diferansiyel (Farksal) Gelişim Algoritması 1 Mehmet Eser * 1 Uğur Yüzgeç 1 Bilecik Şeyh Edebali Üniversitesi, Bilgisayar Mühendisliği Bölümü, 111, Gülümbe, Bilecik 1. Giriş Abstract Differential

Detaylı

ERCİYES ÜNİVERSİTESİ FEN BİLİMLERİ ENSTİTUSÜ BİLGİSAYAR MÜHENDİSLİĞİ ANABİLİMDALI. I. GENEL BİLGİLER Ders Adı

ERCİYES ÜNİVERSİTESİ FEN BİLİMLERİ ENSTİTUSÜ BİLGİSAYAR MÜHENDİSLİĞİ ANABİLİMDALI. I. GENEL BİLGİLER Ders Adı BİM618 Evrimsel Algoritmalar Öğretim Üyesi Prof. Dr. Derviş Karaboğa Görüşme Saatleri 8.00-17.00 E posta: karaboga@erciyes.edu.tr http://abis.erciyes.edu.tr/sorgu.aspx?sorgu=236 Erciyes Üniversitesi, Mühendislik

Detaylı

Altın Oran Arama Metodu(Golden Search)

Altın Oran Arama Metodu(Golden Search) Altın Oran Arama Metodu(Golden Search) Bir f(x) (tek değişkenli) fonksiyonunu ele alalım. [Bazı x ler için f (x) bulunamayabilir.] Aşağıdaki DOP modelini çözmek istediğimizi var sayalım. Max f(x) a x b

Detaylı

Kablosuz Sensör Ağlar ve Eniyileme. Tahir Emre KALAYCI. 21 Mart 2008

Kablosuz Sensör Ağlar ve Eniyileme. Tahir Emre KALAYCI. 21 Mart 2008 Kablosuz Sensör Ağlar ve Eniyileme Tahir Emre KALAYCI 21 Mart 2008 Gündem Genel Bilgi Alınan Dersler Üretilen Yayınlar Yapılması Planlanan Doktora Çalışması Kablosuz Sensör Ağlar Yapay Zeka Teknikleri

Detaylı

BİR UÇAĞIN YATAY DENGELEYİCİSİNİN GENETİK ALGORİTMA YÖNTEMİ İLE YAPISAL OPTİMİZASYONU. Serkan DEHNELİLER YÜKSEK LİSANS TEZİ MAKİNE MÜHENDİSLİĞİ

BİR UÇAĞIN YATAY DENGELEYİCİSİNİN GENETİK ALGORİTMA YÖNTEMİ İLE YAPISAL OPTİMİZASYONU. Serkan DEHNELİLER YÜKSEK LİSANS TEZİ MAKİNE MÜHENDİSLİĞİ BİR UÇAĞIN YATAY DENGELEYİCİSİNİN GENETİK ALGORİTMA YÖNTEMİ İLE YAPISAL OPTİMİZASYONU Serkan DEHNELİLER YÜKSEK LİSANS TEZİ MAKİNE MÜHENDİSLİĞİ GAZİ ÜNİVERSİTESİ FEN BİLİMLERİ ENSTİTÜSÜ ŞUBAT 2011 ANKARA

Detaylı

KARIŞIK MODELLİ MONTAJ HATLARININ GENETİK ALGORİTMA KULLANILARAK DENGELENMESİ

KARIŞIK MODELLİ MONTAJ HATLARININ GENETİK ALGORİTMA KULLANILARAK DENGELENMESİ Yönetim, Yıl: 17, Sayı: 53, Şubat 2006 KARIŞIK MODELLİ MONTAJ HATLARININ GENETİK ALGORİTMA KULLANILARAK DENGELENMESİ Arş. Grv. Timur KESKİNTÜRK İ.Ü.İşletme Fakültesi Sayısal Yöntemler Anabilim Dalı Arş.

Detaylı

Gezgin Satıcı Probleminin Genetik Algoritmalarla Eniyilemesi ve Etkileşimli Olarak İnternet Üzerinde Görselleştirilmesi

Gezgin Satıcı Probleminin Genetik Algoritmalarla Eniyilemesi ve Etkileşimli Olarak İnternet Üzerinde Görselleştirilmesi Gezgin Satıcı Probleminin Genetik Algoritmalarla Eniyilemesi ve Etkileşimli Olarak İnternet Üzerinde Görselleştirilmesi Utku Cevre 1, Barış Özkan 1, Aybars Uğur 2 1 Ege Üniversitesi, Bilgisayar Mühendisliği

Detaylı

DOĞAL GAZ & ENERJİ YÖNETİMİ BİLDİRİLER KİTABI

DOĞAL GAZ & ENERJİ YÖNETİMİ BİLDİRİLER KİTABI TMMOB MAKİNA MÜHENDİSLERİ ODASI İİ DOĞAL GAZ & ENERJİ YÖNETİMİ KONGRE ve SERGİSİ BİLDİRİLER KİTABI GAZİANTEP EYLÜL 2001 TMMOB MAKİNA MÜHENDİSLERİ ODASİ Sümer Sok. 36/1-A Uemirtepc /ANKARA Tel : 0(312)231

Detaylı

YÜKSEK LİSANS TEZİ. Nezihe KÜÇÜK

YÜKSEK LİSANS TEZİ. Nezihe KÜÇÜK İSTANBUL TEKNİK ÜNİVERSİTESİ FEN BİLİMLERİ ENSTİTÜSÜ EVİRİCİLERİN HARMONİK ELİMİNASYONUNDA OPTİMUM ANAHTARLAMA AÇILARININ GENETİK ALGORİTMALAR İLE ELDE EDİLMESİ YÜKSEK LİSANS TEZİ Nezihe KÜÇÜK Anabilim

Detaylı

Kompleks Su Dağıtım Şebekelerinin Genetik Algoritma ile Optimizasyonu 1

Kompleks Su Dağıtım Şebekelerinin Genetik Algoritma ile Optimizasyonu 1 İMO Teknik Dergi, 2006 3851-3867, Yazı 253 Kompleks Su Dağıtım Şebekelerinin Genetik Algoritma ile Optimizasyonu 1 Davut ÖZDAĞLAR * Ertuğrul BENZEDEN ** A. Murat KAHRAMAN *** ÖZ Bu çalışmada Genetik Algoritmalarla

Detaylı

YÜKSEK LİSANS TEZİ Müh. Ayça ALTAY. Anabilim Dalı : ENDÜSTRİ MÜHENDİSLİĞİ. Programı : ENDÜSTRİ MÜHENDİSLİĞİ

YÜKSEK LİSANS TEZİ Müh. Ayça ALTAY. Anabilim Dalı : ENDÜSTRİ MÜHENDİSLİĞİ. Programı : ENDÜSTRİ MÜHENDİSLİĞİ İSTANBUL TEKNİK ÜNİVERSİTESİ FEN BİLİMLERİ ENSTİTÜSÜ GENETİK ALGORİTMA VE BİR UYGULAMA YÜKSEK LİSANS TEZİ Müh. Ayça ALTAY Anabilim Dalı : ENDÜSTRİ MÜHENDİSLİĞİ Programı : ENDÜSTRİ MÜHENDİSLİĞİ HAZİRAN

Detaylı

2-D KESİM OPTİMİZASYONU

2-D KESİM OPTİMİZASYONU 2-D KESİM OPTİMİZASYONU Hazırlayan: Gürkan Bayır YTÜ Bilgisayar Mühendisliği Bölümü Proje Yürütücüsü: Yrd. Doç. Songül Albayrak İstanbul, 2007 GİRİŞ Paketleme ya da stok kesimi olarak bilinen problem yıllardır

Detaylı

ETKİLEŞİMLİ DOĞA-ESİNLİ ALGORİTMALARLA YÜZ ÜRETME

ETKİLEŞİMLİ DOĞA-ESİNLİ ALGORİTMALARLA YÜZ ÜRETME ETKİLEŞİMLİ DOĞA-ESİNLİ ALGORİTMALARLA YÜZ ÜRETME PROJEYİ YAPANLAR GÜL NİLDEM DEMİR ALP EMRE KANLIKILIÇER TUĞBA AKBAL MERVE CAN KUŞ PROJE YÖNETİCİLERİ YRD. DOÇ. DR. A. ŞİMA UYAR ÖĞR. GÖR. BİNNUR KURT 1.

Detaylı

Evrimsel Algoritmalar Kullanarak Daha Düşük Dereceden Sistem Modeli Tasarımı Design of Lower Order System Model Using Evolutionary Algorithms

Evrimsel Algoritmalar Kullanarak Daha Düşük Dereceden Sistem Modeli Tasarımı Design of Lower Order System Model Using Evolutionary Algorithms 2016 Published in 4th International Symposium on Innovative Technologies in Engineering and Science 3-5 November 2016 (ISITES2016 Alanya/Antalya - Turkey) Evrimsel Algoritmalar Kullanarak Daha Düşük Dereceden

Detaylı

Değişken Çaprazlama ve Mutasyon Faktörleri Kullanılmış Genetik Algoritma ile Kafes Yapıların Optimizasyonu

Değişken Çaprazlama ve Mutasyon Faktörleri Kullanılmış Genetik Algoritma ile Kafes Yapıların Optimizasyonu Değişken Çaprazlama ve Mutasyon Faktörleri Kullanılmış Genetik Algoritma ile Kafes Yapıların Optimizasyonu Hilmi COŞKUN İskenderun Teknik Üniversitesi, İnşaat Mühendisliği Bölümü, İskenderun, HATAY Tel:

Detaylı

ADIM ADIM YGS LYS Adım EVRİM

ADIM ADIM YGS LYS Adım EVRİM ADIM ADIM YGS LYS 191. Adım EVRİM EVRİM İLE İLGİLİ GÖRÜŞLER Evrim, geçmiş ile gelecekteki canlıların ve olayların yorumlanmasını sağlayarak, bugün dünyada yaşayan canlılar arasındaki akrabalık derecesini

Detaylı

Hibrid Algoritma ve Isıl İşlem Algoritmasıyla Test Kümesi Önceliklendirilmesi

Hibrid Algoritma ve Isıl İşlem Algoritmasıyla Test Kümesi Önceliklendirilmesi Hibrid Algoritma ve Isıl İşlem Algoritmasıyla Test Kümesi Önceliklendirilmesi Şefik Temel 1, M. Özgür Cingiz 2, Oya Kalıpsız 3 1,2,3 Bilgisayar Mühendisliği Bölümü, Yıldız Teknik Üniversitesi, İstanbul

Detaylı

ANALYSİS OF THE EFFECTS OF DİFFERENT SLACK BUS SELECTİON ON THE OPTİMAL POWER FLOW

ANALYSİS OF THE EFFECTS OF DİFFERENT SLACK BUS SELECTİON ON THE OPTİMAL POWER FLOW FARKLI SALINIM BARASI SEÇİMLERİNİN OPTİMAL GÜÇ AKIŞI ÜZERİNDEKİ ETKİLERİNİN İNCELENMESİ Serdar ÖZYÖN Celal YAŞAR ÖZET Günümüzde enerjiye olan ihtiyacın artmasına bağlı olarak enerji sistemlerinin büyümesi,

Detaylı

Dairesel Anten Dizilerinin Genetik Algoritma ile Tasarımı. Design of Circular Array Antennas using Genetic Algorithm

Dairesel Anten Dizilerinin Genetik Algoritma ile Tasarımı. Design of Circular Array Antennas using Genetic Algorithm Dairesel Anten Dizilerinin Genetik Algoritma ile Tasarımı Design of Circular Array Antennas using Genetic Algorithm Banu ÖZEN 1, Erkan AFACAN 2 1 Orman Genel Müdürlüğü banuozen@gmail.com 2 Elektrik-Elektronik

Detaylı