Nervürlü Düz Hasır Nervürlü

Ebat: px
Şu sayfadan göstermeyi başlat:

Download "Nervürlü Düz Hasır Nervürlü"

Transkript

1 ÇELĐK Nervürlü Düz Hasır Nervürlü

2 Çelik sınıfı tanımı(ts708/1996) Üretim yöntemine göre sınıflandırma: Steel(çelik) Akma dayanımı 420 Sıcak haddeleme işlemi ile üretilen, simgesi: a N/mm 2 Sıcak haddeleme esnasında ısıl işlem uygulanarak üretilen, simgesi: a Soğuk mekanik işlem(soğuk haddeleme, burma) uygulanarak üretilen, simgesi: b Sıcakta haddelenmiş En küçük akma sınırı gerilmesine göre sınıflandırma: En küçük akma sınırı 220 N/mm 2 olan çelik, simgesi: I En küçük akma sınırı 420 N/mm 2 olan çelik, simgesi: III En küçük akma sınırı 500 N/mm 2 olan çelik, simgesi: IV Yüzey özelliklerine göre: Düz yüzeyli çelik, simgesi: D Nervürlü çelik, simgesi: N Profilli çelik, simgesi: P Betonarme Çeliği S420a Akma dayanımı 420 N/mm 2 BÇIIIa Sıcakta haddelenmiş Nervürlü ve düz yüzeyli çelikler (TS 708/1996) ERSOY/ÖZCEBE, Sayfa 4445 Türkiye de üretilen nervürlü çelikler: S420a, S420b, S500a, S500b Türkiye de üretilen düz yüzeyli çelik: S220a

3 Hasır çelik Q TĐPĐ HASIR (15x15 cmxcm kare gözenekli) 150 mm Çelik Hasır S500bs, S500bk Kullanıldığı yerler: Döşemelerde Perde ve istinat duvarlarında Tünel kaplamalarında Yol ve saha kaplama betonlarında 2.15 m 5 m 150 mm Projede gösterilişi: R R TĐPĐ HASIR (15x25 cmxcm dikdörtgen gözenekli) 250 mm Hasır tipi Kısa doğrultuda dontı aralığı Uzun doğrultuda dontı aralığı Kısa doğrultuda dontı çapı Uzun doğrultuda dontı çapı 2.15 m 150 mm 5 m Q

4 Betonarme çeliğimekanik özellikleri ERSOY/ÖZCEBE, Sayfa 46 Gerilme N/mm 2 Çelik σ s ε s eğrileri Tanımlar: f y : çelik akma dayanımı f yk : çelik karakteristik dayanımı f su : çelik kopma dayanımı ε sy : çelik akma deformasyonu ε su : çelik kopma deformasyonu σ s : çelikteki gerilme ε s : çelik birim deformasyonu : çelik elastisite modülü E s Sıcakta haddelenmiş çelik (a) daha sünektir. Soğukta işlem görmüş çelik (b) gevrektir. Sıcakta işlem görmüş çeliğin akma eşiği belirgindir. Soğukta işlem görmüş çelikte ise akma sınırı gözlenemez. Her iki tür çelik de akma dayanımına kadar lineerelastik davranır. Bu bölgede HOOKE kanunu geçerlidir: σ s = E s ε s Çelik aktıktan sonra, HOOKE geçersizdir. Gerilme ile birim deformasyon arasında hiçbir bağıntı yoktur. Tan α = E s çeliğin elastisite modülüdür. Deprem bölgelerinde soğukta işlem görmüş çelik (b) kullanılamaz.

5 Donatı çeliğimekanik özellikleri ERSOY/ÖZCEBE, Sayfa 47 s Sıcakta haddelenmiş çelik Akma dayanımı tanımı: Sıcakta haddelenmiş çeliğin akma dayanımı f y a KOPMA Sıcakta haddelenmiş çeliğin akma eşiğine karşılık gelen gerilme akma dayanımı olarak alınır. Birim uzama s Gerilme N/mm 2 Soğukta işlem görmüş çeliğin, belirgin bir akma noktası olmadığından, akma dayanımışöyle belirlenir: Çekme deneyi yapılır, σ s ε s eğrisi çizilir kalıcı deformasyonundan çıkış doğrusuna paralel çizilir. Paralelin b eğrisini kestiği noktaya karşılık gelen gerilme soğukta işlem görmüş çeliğin akma dayanımı olarak alınır.

6 Donatı çeliği sınıfları (TS 708/1996, TS 500/2000) TS500/2000, Sayfa 11 ERSOY/ÖZCEBE, Sayfa 50 ÇELĐK SINIFLARI VE MEKANĐK ÖZELLĐKLERĐ (TS708/1996) Sıcakta haddelenmiş çelikler S220a S420a S500a Çelik sınıfı BÇIa BÇIIIa BÇIVa Minimum karakteristik akma dayanımı f yk (N/mm 2 ) Minimum Kopma dayanımı f su (N/mm 2 ) Min. Kopma uzaması ε su φ 32 mm φ > 32 mm yüzey D N, P N, P Soğukta işlem görmüş çelikler S420b S500bs S500bk BÇIIIb BÇIVbs BÇIVbk N, P N, P N, P Hasır çelik S220a dayanımı ve aderansı en düşük olan çeliktir. Kiriş, kolon ve perdelerde kullanılmaması önerilir. Deprem bölgelerinde soğukta işlem görmüş çelik (b) kullanılmamalıdır. Deprem yönetmeliği1997 akma dayanımı 420 N/mm 2 den yüksek çelik kullanımını yasaklar. Süneklik ve dayanım dikkate alındığında, S420a en uygun çelik olarak gözükmektedir. S420a ve S500a çeliklerinde φ>32 mm çaplı çubukların kullanımından kaçınılmalıdır (gevrek!). Kalın çaplı çelikler daha gevrektir. S220a çeliğinin kullanımı uygulamada giderek azalmaktadır.

7 Çelikdiğer bilgiler Elastisite modülü: E s =2x10 5 N/mm 2 Birim sıcaklık genleşme katsayısı: α s =10 5 Kütle : ρ=7850 kg/m 3 1/c o Piyasaya arz: Sıcakta işlem görmüş a sınıfı çelikler: Çapları 12 mm den küçük olanlar kangal, firkete veya çubuklar halinde, 12 mm ve daha kalın olanlar firkete veya çubuk olarak pazarlanır. Soğukta işlem görmüş b sınıfı çelikler: Sadece çubuklar halinde pazarlanırlar. Boy: Çubuk boyu genelde 12 m dir. Çap: BÇIa : 6, 8,...,22, 24, 25, 26, 28 mm BÇIIIa, BÇIIIb ve BÇIVa: 6, 8,..., 22, 24, 25, 26, 28, 30, 32, 40, 50 mm BÇIVb: 4, 4.5, 5, 5.5,..., 11, 11.5, 12, 14, 16 mm Depolama: Korozyonu önlemek için, üstü kapalı sundurma altında saklanmalıdır. Zorunlu hallerde 1 yıl kadar açıkta da depolanabilir.

8 Đşaretleme: Düz yüzeyli çelik BÇ Ia (S220a) dır. TS 708/1996 ya göre, nervürlü çelik çubuklar üzerinde çelik kalitesini (Çelik sınıfını) gösteren işaretleme olmak zorundadır. Bir yatay çizgi BÇ IIIa (S420a) çeliğini, birbirini izleyen iki yatay çizgi BÇ IVa (S500a) çeliğini ve birbirini izleyen üç eğik bölü çizgisi /// BÇ IVb (S500b) çeliğini simgeler. Üzerinde çelik kalite kodu olmayan nervürlü çubuklar BÇ IIIb (S420b) çeliğidir. TS kodu Firma kodu (4 nervür = 4 nolu firma) Kalite kodu ( = BÇ IIIa) Bir boşluk bir nokta=10 anlamındadır Geniş bilgi için TS 708/1996, Sayfa 20 ve 21 e bakınız TS kodu Firma kodu (103 nervür = 13 nolu firma) Kalite kodu ( = BÇ IVa) TS kodu Firma kodu (103 nervür = 13 nolu firma Kalite kodu ( /// = BÇ IVb)

9 BETONARME ERSOY/ÖZCEBE, Sayfa 51 Betonçelikiyi mühendislikiyi işçilikiyi bakım Betonarme Betonun basınç dayanımı yüksek, çekme dayanımı ise çok düşüktür. Çekme kuvvetleri betonu çatlatır. Betonarme elemanlarda çekme kuvvetlerini karşılamak için çekme bölgelerine çelik çubuklar konur. Betonarmede beton ile çeliğin birbirine kaynaşmış olarak birlikte çalışmasışarttır. Buna kenetlenme (aderans) denir. Kenetlenme betonarmenin temel koşuludur. Betonarmenin kullanıldığı yerler Çok katlı yapılar Her tür yapı için temel Köprüler Barajlar Đstinat duvarları Tüneller Viyadükler Yol, hava alanı kaplamaları Bordür ve parke taşlar Elektrik direkleri Kazıklar (temel) Bacalar (fabrika, termik santral) Çitler Travers Temiz ve atık su boruları (büz) Su depoları Arıtma tesisleri Su kanalları Silolar Nükleer reaktör zırhı Nükleer atık depoları

10 Betonarmenin avantajları Kolay işlenip şekillendirilebilir. Basınç dayanımı yığma yapı elemanlarına (ahşap, tuğla, gazbeton) nazaran yüksektir. Çelik ve ahşapa nazaran, yangına dayanıklıdır. Çelik yapıya nazaran daha rijit olduğundan büyük yer değiştirmeler olmaz. Korozyon tehlikesi azdır. Bakımı kolay ve yok denecek kadar azdır. Kullanım ömrü uzundur. Ani göçme olmaz, göçme olacağını haber verir. Ekonomiktir. Ana malzemesi (agrega, su) yerel olarak bulunur. Az enerji gerektirir. Đnşasında diğer yapılara nazaran (ahşap, çelik) büyük özen gerekmez. Kalifiye eleman gerektirmez. Betonarmenin dezavantajları Çekme dayanımı düşüktür, çelik kullanılması gerekir. Kalıp ve iskele pahalıdır, kalıp yapımı özen ister. Ağır yapılar oluşur (depremde sakıncalı). Taşıyıcı sistem faydalı yükten çok, öz ağırlığını taşımak zorundadır. Yeterli dayanım kazanıncaya kadar özenli bakım (kür) gerekir (ilk 714 gün). Hasar onarımı zor ve pahalıdır. Mevcut yapının donatı miktarı, dayanımı kesin belirlenemez. Kullanım ömrünü tamamlayan yapının yıkılması pahalıdır, çıkan malzeme tekrar değerlendirilemez ve çevre kirliliği yaratır. Gökdelen gibi çok yüksek yapılar inşa edilemez. Prefabrik inşa imkanları kısıtlıdır. Şantiyede beton imalatı zordur ve büyük özen gerektirir. Her tür hava şartında beton dökülemez, inşaat mevsimi kısadır.

11 Yapı güvenliğimalzeme katsayıları, yük birleşimleri ERSOY/ÖZCEBE, Sayfa TS 500/2000, Sayfa 1718 Betonarme bir elemanın güvenli olması için onun dayanımı (taşıma gücü), o elemandaki yük etkisinden büyük veya eşit olmalıdır: R d F d R d : Tasarım(hesap) dayanımı. Moment, kesme kuvveti, eksenel kuvvet v.b. etkilere karşı elemanın gösterebildiği taşıma gücüdür. F d : Tasarım (hesap) yükü etkisi. Moment, kesme kuvveti, eksenel kuvvet ve/veya bunların birleşimlerinden elemanda oluşan zorlamalardır. Örnek: Bir kirişin tüm yüklerinden oluşan tasarım momenti, kesme tasarım kuvveti,kirişin moment taşıma gücü M r, kesme taşıma gücü de V r olarak hesaplanmış olsun. M r olması durumunda kiriş momente karşı güvenli, aksi halde güvensizdir deriz. V r olması durumunda kiriş kesmeye karşı güvenli, aksi halde güvensizdir deriz. Kirişin güvenli olması için her iki kuvvete karşı da güvenli olması gerekir. Birine karşı güvenli, diğerine karşı güvensiz olması halinde kiriş güvensizdir. Çünkü o kuvvet kirişi kırıyor anlamındadır. Yük tipleri Kalıcı (sabit, zati, ölü) yükler: Yapı elemanlarının öz yükleridir. Döşeme ağırlığı, kiriş ağırlığı, duvar ağırlığı, kolon ağırlığı gibi, yeri ve ağırlığı zamanla değişmeyen yüklerdir. Hareketli yükler: Yapı elemanına zaman zaman etkiyen statik yüklerdir. Eşya yükleri, insan yükleri, kar yükü gibi, yeri ve değeri zamanla değişen, bazen olan bazen olmayan yüklerdir. Yatay yükler: Yapıya yatay olarak etkidiği varsayılan statik veya dinamik yüklerdir. Deprem yükü, rüzgâr yükü, toprak itkisi, sıvı yükü. Diğer yükler: Sıcaklık farkından oluşan yük, büzülme ve sünmeden oluşan yük, farklı oturmalardan oluşan yük, buz yükü. Düşey yükler

12 Yük etkileri Karakteristik yük etkisi simgeleri: G :Kalıcı yük etkisi Q :Hareketli yük etkisi E :Deprem etkisi W :Rüzgâr etkisi H :Toprak etkisi Sıvı etkisi(simgesi yok!) Düşey yük etkileri Yatay yük etkileri T : Sıcaklık etkisi, büzülme, sünme, farklı oturma vb. Diğer yük etkileri Yapılara etkiyen yüklerin hiçbirinin kesin değeri bilinemez. Yük değerleri istatistiksel yollarla belirlenmişlerdir, yani karakteristik yüklerdir. Karakteristik yükler yönetmeliklerde verilmiştir: TS 498/1997, TS ISO 9194/1997 : Kalıcı yükler, hareketli yükler, rüzgâr, kar ve buz yükü. Deprem yönetmeliği/1997 : Deprem yükleri. Malzeme katsayıları, tasarım (hesap) dayanımları ERSOY/ÖZCEBE, Sayfa TS500/2000, Sayfa 17 Malzeme (beton, çelik) için TS500/2000 de verilen karakteristik dayanımlar yerine hesaplarda Tasarım (Hesap) dayanımları kullanılır. Tasarım dayanımları karakteristik dayanımların malzeme katsayılarına bölünmesi ile bulunurlar. Malzeme katsayıları 1 (bir) den büyük değerler olduğundan daha küçük dayanımlar ile hesap yapılarak güvenlik sağlanır. Beton tasarım dayanımı: f f cd ctd f ck = f ck: : betonun karakteristik basınç dayanımı γ mc f = γ ctk mc f cd : betonun basınç tasarım dayanımı f ctk: : betonun karakteristik çekme dayanımı f ctd : betonun çekme tasarım dayanımı γ mc :betonun malzeme katsayısı γ mc =1.5 yerinde dökülen ve iyi denetilen betonlar için γ mc =1.4 öndöküm (prefabrik) betonlar için γ mc =1.7 denetimi iyi yapılamayan betonlar için

13 Çelik tasarım dayanımı: f yd f = γ yk ms f yk: : çelik karakteristik dayanımı f yd : çelik tasarım dayanımı γ ms :çelik malzeme katsayısı γ ms =1.15 (her tür çelik için) Çelik betona göre daha homojen bir malzeme olduğundan ve fabrikada üretildiğinden dayanımının karakteristik dayanımdan farklı olma olasılığı (riski) betona nazaran daha düşüktür. Bu nedenle yönetmelikte, çeliğin malzeme katsayısı γ ms betonun malzeme katsayısı γ mc den daha küçük tutulmuştur. Yük katsayıları ve yük birleşimleri (TS500/2000) ERSOY/ÖZCEBE, Sayfa TS 500/2000, Sayfa 1718 TS498/1997, TS ISO 9194/1997 ve Deprem Yönetmeliği1997 de verilen yükler karakteristik yüklerdir. Bu yüklerden oluşan yük etkileri (iç kuvvetler) de karakteristik olur. Yük etkilerinin karakteristik değerleri yerine; hesaplarda Tasarım etkileri ve birleşimleri kullanılır. Tasarım etkileri; karakteristik etkilerin yük katsayıları ile artırılması ve uygun birleştirilmesi ile belirlenirler. Bu yolla güvenlik sağlanır. TS500/2000 de tanımlı yük katsayıları ve birleşimleri aşağıda verilmiştir. Yalnız düşey yükler için (deprem ve rüzgarın etkin olmadığı durumlarda): F d =1.4G 1.6Q F d =1.0G 1.2Q 1.2T Deprem etkin ise: F d =1.4G 1.6Q F d =1.0G 1.2Q 1.2T F d =1.0G 1.0Q 1.0E F d =1.0G 1.0Q 1.0E F d =0.9G 1.0E F d =0.9G 1.0E Rüzgâr etkin ise: F d =1.4G 1.6Q F d =1.0G 1.2Q 1.2T F d =1.0G 1.3Q 1.3W F d =1.0G 1.3Q 1.3W F d =0.9G 1.3W F d =0.9G 1.3W NOT: Sıvı basıncı etkisinin bulunması durumunda, bu etki 1.4 ile çarpılır ve içinde Q etkisi görülen tüm birleşimlere eklenir. Deprem ve rüzgar yüklerinden hangisi daha elverişsiz ise o dikkate alınır. Bir yapıya aynı anda hem depremin hem de rüzgarın etkimeyeceği varsayılır (Deprem Yönetmeliği1997, S. 8, Madde ). Türkiye de genelde deprem etkin olur.

14 Yük Katsayıları ve Yük birleşimleriörnek Aşağıda verilen çerçevedeki yükler karakteristik yüklerdir. g kalıcı, q hareketli ve F deprem yüküdür. Kolonlar 30/70, kiriş 25/60 cm/cm boyutundadır. Her yüke ait moment, kesme ve normal kuvvet diyagramı verilmiştir. Kiriş ve kolonların statik hesaplarda çekme olduğu varsayılan tarafları kesikli çizgi ile gösterilmiştir. a) Çerçevenin 1, 2 ve 3 noktalarındaki tasarım momentlerini bulunuz. b) 1 ve 2 noktalarındaki tasarım kesme kuvvetlerini bulunuz. c) 1 noktasındaki tasarım normal kuvvetlerini bulunuz. d) Kirişin 2 ve 3 noktalarında hesaplanan tasarım momentlerinden hangileri betonarme hesaba (boyuna donatı) esas alınmalı ve bunlar için hesaplanan donatı kirişin hangi tarafına konmalıdır? e) Kirişin 2 noktasında hesaplanan tasarım kesme kuvvetlerinden hangisi betonarme hesaba(sargı donatısı hesabı) esas alınmalıdır?

15 Karakteristik yüklerden oluşan karakteristik iç kuvvetler (yük etkileri): g=100 kn/m kalıcı yükünden q=50 kn/m hareketli yükünden F=35 kn deprem yükünden 38.4 kn. m Moment M e Kesme V e kn Normal kuvvet N e kn 10.9

16 a) Tasarım momentleri: 1 noktasında tasarım momentleri: = = kn. m = (66.7) = = (66.7) = = (66.7) = 83.3 = (66.7) = noktasında tasarım momentleri: =1.4 (333.4)1.6 (166.7) = kn. m = = = = =0.9 (333.4)38.4 = =0.9 (333.4)38.4 = noktasında tasarım momentleri: = = kn. m = = = = = = = = b) Tasarım kesme kuvvetleri: 1 noktasında tasarım kesme kuvvetleri: =1.4 (83.4)1.6 (41.7) = kn = = = = =0.9 (83.4)17.5 = 57.6 =0.9 (83.4)17.5 = noktasında tasarım kesme kuvvetleri: = = kn = (10.9) = = (10.9) = = (10.9) = = (10.9) = c) Tasarım normal kuvvetleri: 1 noktasında tasarım normal kuvvetleri: N d =1.4 (350.0)1.6 (175.0) = kn N d = = N d = = N d =0.9 (350.0)10.9 = N d =0.9 (350.0)10.9 = 325.9

17 d) 2 ve 3 noktasında betonarme hesaba (boyuna donatı) esas alınacak tasarım momentleri: Tasarım momentleri Pozitif momentler, etkidiği noktada, kirişin kesik çizgili tarafına, negatif momentler de diğer tarafına çekme uygulamaktadır. Kirişin negatif momentlerinden mutlak değerce en büyük olanı kirişin üstüne konulacak boyuna donatının hesabına; pozitif momentlerden en büyüğü de kirişin altına konulacak donatının hesabına esas alınmalıdır. 2 noktasında: = kn. m momenti için hesaplanan boyuna donatı bu noktada kirişin üstüne konulmalıdır. Bu noktada pozitif tasarım momenti olmadığından kirişin altına donatı gerekmez, yönetmeliklerin ön gördüğü kadar minimum donatı konur. 3 noktasında: =614.1 kn. m momenti için hesaplanan donatı bu noktada kirişin altına konmalıdır. Kirişin üst tarafına donatı gerekmez, yönetmeliklerin ön gördüğü kadar minimum donatı konulmalıdır. e) 2 noktasında kesme (sargı donatısı) hesabına esas alınacak tasarım kesme kuvveti Kesme kuvvetinin işareti betonarme hesabın sonucunu değiştirmez. Mutlak değerce en büyük kesme kuvveti betonarme hesaba esas alınır. Tasarım kesme kuvvetleri 2 noktasında: = kn kesme kuvveti betonarme hesaba (sargı donatısı hesabı) esas alınmalıdır.

18 Hareketli yük düzenlemesi... Hareketli yük elemanda en elverişsiz kesit zorlamalarını yaratacak biçimde düzenlenecektir (TS 500/2000, sayfa 18, madde 6.3.3). SÜREKLĐ KĐRĐŞLERDE: Hareketli yük; tasarım etkileri araştırılan kesitte en büyük zorlamayı oluşturacak şekilde kirişe yüklenir. Sürekli kiriş tesir çizgileri görünümüne bakılarak; hareketli yük hangi açıklıklara yüklendiğinde en büyük etkinin oluşacağı belirlenebilir (dama yüklemesi). En büyük açıklık momenti yüklemesi: En büyük momenti aranan açıklık q ile yüklenir. Komşu açıklıklar bir boş bir dolu(q ile) olarak düzenlenir. En büyük mesnet momenti yüklemesi: En büyük momenti aranan mesnedin sağ ve sol açıklığı q ile yüklenir. Diğer açıklıklar bir boş bir dolu(q ile) olarak düzenlenir. En büyük kesme kuvveti yüklemesi: En büyük kesme kuvveti aranan noktanın açıklığı q ile yüklenir. Komşu açıklıklardan büyük olan da q ile yüklenir. Diğer açıklıklar bir boş bir dolu (q ile) olarak düzenlenir. ÇOK KATLI ÇOK AÇIKLIKLI ÇERÇEVELERDE: Gerçekte el hesabı yapılamayacak kadar farklı yükleme durumu vardır. Ancak, yeter doğrulukta sonuç veren beş farklı yükleme ile yetinilebilir (ERSOY/ÖZCEBE, Sayfa 176).

19 Sürekli kiriş tesir çizgilerinin görünümleri q q Đkinci açıklık momentini Max yapan hareketli yük yüklemesi q q Đkinci açıklık sol mesnet kesme kuvvetini Max yapan hareketli yük yüklemesi q q Đkinci mesnet momentini Max yapan hareketli yük yüklemesi

20 Hareketli yük düzenlemesiörnek ERSOY/ÖZCEBE, Sayfa 165 Aşağıdaki sürekli kirişte g sabit, q hareketli karakteristik yüklerdir. a) 1 ve 2 noktalarındaki tasarım momentini, b) 1 noktasındaki tasarım kesme kuvvetini belirleyiniz. ÇÖZÜM: Çözüm için aşağıdaki yüklemeler ayrı ayrı yapılmalıdır: a) Sistemin tüm açıklıkları g ile yüklenir. Moment ve kesme diyagramları çizilir. b) 2 noktasındaki açıklık momentini en büyük yapan q yüklemesi yapılır: Orta açıklık q ile yüklü, konsollar boş. Bu yüklemeden 2 noktasındaki en büyük moment belirlenir. c) 1 noktasındaki mesnet momentini en büyük yapan q yüklemesi yapılır: Orta açıklık q ile yüklü, sol konsol q ile yüklü, sağ konsol boş. Bu yüklemeden 1 noktasındaki en büyük moment belirlenir. d) 1 noktasındaki kesme kuvvetini en büyük yapan q yüklemesi yapılır: Orta açıklık q ile yüklü, sol konsol q ile yüklü, sağ konsol boş. Bu yüklemeden 1 noktasındaki en büyük kesme kuvveti belirlenir. Sağ konsol, sol konsoldan daha kısadır. Sağ mesnet moment ve kesme kuvvetleri 1 noktasında hesaplanacak olanlardan daha küçük olacaktır. Bu nedenle sağ mesnet etkileri için q yüklemesine gerek yoktur.

21 Sabit yük g yüklemesi: 1 noktasında max M ve Max V oluşturan q yüklemesi: q=15 kn/m m knm M q Max M q (mesnet) kn V q Max V q (mesnet) 2 noktasında max M oluşturan q yüklemesi: 1 noktasında tasarım momenti: =1.4 (40.00)1.6 (30.00) = knm Max M q (açıklık) 1 noktasında tasarım kesme kuvveti: = = kn 2 noktasında tasarım momenti: = = knm

11/10/2013 İNŞAAT MÜHENDİSLİĞİNE GİRİŞ BETONARME YAPILAR BETONARME YAPILAR

11/10/2013 İNŞAAT MÜHENDİSLİĞİNE GİRİŞ BETONARME YAPILAR BETONARME YAPILAR BETONARME YAPILAR İNŞAAT MÜHENDİSLİĞİNE GİRİŞ BETONARME YAPILAR 1. Giriş 2. Beton 3. Çelik 4. Betonarme yapı elemanları 5. Değerlendirme Prof.Dr. Zekai Celep 10.11.2013 2 /43 1. Malzeme (Beton) (MPa) 60

Detaylı

Yapılara Etkiyen Karakteristik. yükler

Yapılara Etkiyen Karakteristik. yükler Yapılara Etkiyen Karakteristik Yükler G etkileri Q etkileri E etkisi etkisi H etkisi T etkileri Kalıcı (sabit, zati, öz, ölü) yükler: Yapı elemanlarının öz yükleridir. Döşeme ağırlığı ( döşeme betonu+tesviye

Detaylı

BETONARME-II ONUR ONAT HAFTA-1 VE HAFTA-II

BETONARME-II ONUR ONAT HAFTA-1 VE HAFTA-II BETONARME-II ONUR ONAT HAFTA-1 VE HAFTA-II GENEL BİLGİLER Yapısal sistemler düşey yüklerin haricinde aşağıda sayılan yatay yüklerin etkisine maruz kalmaktadırlar. 1. Deprem 2. Rüzgar 3. Toprak itkisi 4.

Detaylı

Yapılara Etkiyen Karakteristik Yükler

Yapılara Etkiyen Karakteristik Yükler Yapılara Etkiyen Karakteristik Yükler Kalıcı (sabit, zati, öz, ölü) yükler (G): Yapı elemanlarının öz yükleridir. Döşeme ağırlığı ( döşeme betonu+tesviye betonu+kaplama+sıva). Kiriş ağırlığı. Duvar ağırlığı

Detaylı

BETONARME-I 5. Hafta KİRİŞLER. Onur ONAT Munzur Üniversitesi Mühendislik Fakültesi İnşaat Mühendisliği Bölümü, Tunceli

BETONARME-I 5. Hafta KİRİŞLER. Onur ONAT Munzur Üniversitesi Mühendislik Fakültesi İnşaat Mühendisliği Bölümü, Tunceli BETONARME-I 5. Hafta KİRİŞLER Onur ONAT Munzur Üniversitesi Mühendislik Fakültesi İnşaat Mühendisliği Bölümü, Tunceli 1 Malzeme Katsayıları Beton ve çeliğin üretilirken, üretim aşamasında hedefi tutmama

Detaylı

BETONARME YAPI ELEMANLARINDA DONATI DÜZENLEME İLKELERİ

BETONARME YAPI ELEMANLARINDA DONATI DÜZENLEME İLKELERİ BETONARME YAPI ELEMANLARINDA DONATI DÜZENLEME İLKELERİ Araş. Gör. İnş.Yük. Müh. Hayri Baytan ÖZMEN Bir Yanlışlık Var! 1 Donatı Düzenleme (Detaylandırma) Yapı tasarımının son ve çok önemli aşamasıdır. Yapının

Detaylı

10 - BETONARME TEMELLER ( TS 500)

10 - BETONARME TEMELLER ( TS 500) TS 500 / Şubat 2000 Temel derinliği konusundan hiç bahsedilmemektedir. EKİM 2012 10 - BETONARME TEMELLER ( TS 500) 10.0 - KULLANILAN SİMGELER Öğr.Verildi b d l V cr V d Duvar altı temeli genişliği Temellerde,

Detaylı

Kirişlerde sınır değerler

Kirişlerde sınır değerler Kirişlerde sınır değerler ERSOY/ÖZCEBE S. 275277 5 cm çekme tarafı (depremde çekme basınç) 5 cm 5 cm ρ 1 basınç tarafı s ρ φ s φ gövde s φw ρ φ φ w ρ w ρ gövde φ w ρ 1 çekme tarafı φ w basınç tarafı (depremde

Detaylı

= ε s = 0,003*( ,3979)/185,3979 = 6,2234*10-3

= ε s = 0,003*( ,3979)/185,3979 = 6,2234*10-3 1) Şekilde verilen kirişte sehim denetimi gerektirmeyen donatı sınırı kadar donatı altında moment taşıma kapasitesi M r = 274,18 knm ise b w kiriş genişliğini hesaplayınız. d=57 cm Malzeme: C25/S420 b

Detaylı

BETONARME-I 3. Hafta. Onur ONAT Munzur Üniversitesi Mühendislik Fakültesi İnşaat Mühendisliği Bölümü, Tunceli

BETONARME-I 3. Hafta. Onur ONAT Munzur Üniversitesi Mühendislik Fakültesi İnşaat Mühendisliği Bölümü, Tunceli BETONARME-I 3. Hafta Onur ONAT Munzur Üniversitesi Mühendislik Fakültesi İnşaat Mühendisliği Bölümü, Tunceli 1 Betonun Nitelik Denetimi ile İlgili Soru Bir şantiyede imal edilen betonlardan alınan numunelerin

Detaylı

Temeller. Onur ONAT Munzur Üniversitesi Mühendislik Fakültesi İnşaat Mühendisliği Bölümü, Tunceli

Temeller. Onur ONAT Munzur Üniversitesi Mühendislik Fakültesi İnşaat Mühendisliği Bölümü, Tunceli Temeller Onur ONAT Munzur Üniversitesi Mühendislik Fakültesi İnşaat Mühendisliği Bölümü, Tunceli 1 2 Temel Nedir? Yapısal sistemlerin üzerindeki tüm yükleri, zemine güvenli bir şekilde aktaran yapısal

Detaylı

BÖLÜM 2: DÜŞEY YÜKLERE GÖRE HESAP

BÖLÜM 2: DÜŞEY YÜKLERE GÖRE HESAP BÖLÜM 2: DÜŞEY YÜKLERE GÖRE HESAP KONTROL KONUSU: 1-1 ile B-B aks çerçevelerinin zemin kat tavanına ait sürekli kirişlerinin düşey yüklere göre statik hesabı KONTROL TARİHİ: 19.02.2019 Zemin Kat Tavanı

Detaylı

Prefabrik Yapılar. Cem AYDEMİR Yıldız Teknik Üniversitesi / İstanbul

Prefabrik Yapılar. Cem AYDEMİR Yıldız Teknik Üniversitesi / İstanbul Prefabrik Yapılar Uygulama-1 Cem AYDEMİR Yıldız Teknik Üniversitesi / İstanbul 2010 Sunuma Genel Bir Bakış 1. Taşıyıcı Sistem Hakkında Kısa Bilgi 1.1 Sistem Şeması 1.2 Sistem Detayları ve Taşıyıcı Sistem

Detaylı

BİLGİLENDİRME EKİ 7E. LİFLİ POLİMER İLE SARGILANAN KOLONLARDA DAYANIM VE SÜNEKLİK ARTIŞININ HESABI

BİLGİLENDİRME EKİ 7E. LİFLİ POLİMER İLE SARGILANAN KOLONLARDA DAYANIM VE SÜNEKLİK ARTIŞININ HESABI BİLGİLENDİRME EKİ 7E. LİFLİ POLİMER İLE SARGILANAN KOLONLARDA DAYANIM VE SÜNEKLİK ARTIŞININ HESABI 7E.0. Simgeler A s = Kolon donatı alanı (tek çubuk için) b = Kesit genişliği b w = Kiriş gövde genişliği

Detaylı

Proje Genel Bilgileri

Proje Genel Bilgileri Proje Genel Bilgileri Çatı Kaplaması : Betonarme Döşeme Deprem Bölgesi : 1 Yerel Zemin Sınıfı : Z2 Çerçeve Aralığı : 5,0 m Çerçeve Sayısı : 7 aks Malzeme : BS25, BÇIII Temel Taban Kotu : 1,0 m Zemin Emniyet

Detaylı

YAPAN: ESKISEHIR G TIPI LOJMAN TARİH: 15.02.2010 REVİZYON: Hakan Şahin - ideyapi Bilgisayar Destekli Tasarım

YAPAN: ESKISEHIR G TIPI LOJMAN TARİH: 15.02.2010 REVİZYON: Hakan Şahin - ideyapi Bilgisayar Destekli Tasarım YAPAN: PROJE: TARİH: 15.02.2010 REVİZYON: Hakan Şahin - ideyapi Bilgisayar Destekli Tasarım YAPI GENEL YERLEŞİM ŞEKİLLERİ 1 4. KAT 1 3. KAT 2 2. KAT 3 1. KAT 4 ZEMİN KAT 5 1. BODRUM 6 1. BODRUM - Temeller

Detaylı

ANTAKYA MÜZE OTEL TAŞIYICI SİSTEM PROJESİ. İnş.Yük.Müh. Bülent DEVECİ

ANTAKYA MÜZE OTEL TAŞIYICI SİSTEM PROJESİ. İnş.Yük.Müh. Bülent DEVECİ ANTAKYA MÜZE OTEL TAŞIYICI SİSTEM PROJESİ İnş.Yük.Müh. Bülent DEVECİ Proje Künyesi : Yatırımcı Mimari Proje Müellifi Statik Proje Müellifi Çelik İmalat Yüklenicisi : Asfuroğlu Otelcilik : Emre Arolat Mimarlık

Detaylı

Şekil 1.1. Beton çekme dayanımının deneysel olarak belirlenmesi

Şekil 1.1. Beton çekme dayanımının deneysel olarak belirlenmesi Eksenel çekme deneyi A-A Kesiti Kiriş eğilme deneyi A: kesit alanı Betonun çekme dayanımı: L b h A A f ct A f ct L 4 3 L 2 2 bh 2 bh 6 Silindir yarma deneyi f ct 2 πld Küp yarma deneyi L: silindir numunenin

Detaylı

Yapı Sistemlerinde Elverişsiz Yüklemeler:

Yapı Sistemlerinde Elverişsiz Yüklemeler: Yapı Sistemlerinde Elverişsiz Yüklemeler: Yapılara etkiyen yükler ile ilgili çeşitli sınıflama tipleri vardır. Bu sınıflamalarda biri de yapı yükleri ve ilave yükler olarak yapılan sınıflamadır. Bu sınıflama;

Detaylı

Yapı Denetim Uygulama

Yapı Denetim Uygulama Yapı Denetim Uygulama ÇELİK ve BETON Yrd. Doç. Dr. Alper CUMHUR Kaynak: Sakarya Üniversitesi / İnşaat Mühendisliği Bölümü / Ders Notları / Profesör Adil ALTUNDAL ÇELİK Bu kısımda Betonarme yapı malzemesini

Detaylı

BETONARME YAPI ELEMANLARINDA DONATI DÜZENLEME İLKELERİ

BETONARME YAPI ELEMANLARINDA DONATI DÜZENLEME İLKELERİ BETONARME YAPI ELEMANLARINDA DONATI DÜZENLEME İLKELERİ Araş. Gör. İnş.Yük. Müh. Hayri Baytan ÖZMEN Bir Yanlışlık Var! 1 Donatı Düzenleme (Detaylandırma) Yapı tasarımının son ve çok önemli aşamasıdır. Yapının

Detaylı

Yapı Elemanlarının Davranışı

Yapı Elemanlarının Davranışı Kolon Türleri ve Eksenel Yük Etkisi Altında Kolon Davranışı Yapı Elemanlarının Davranışı Yrd. Doç. Dr. Barış ÖZKUL Kolonlar; bütün yapılarda temel ile diğer yapı elemanları arasındaki bağı sağlayan ana

Detaylı

Proje ile ilgili açıklamalar: Döşeme türleri belirlenir. Döşeme kalınlıkları belirlenir. Çatı döşemesi ve 1. kat normal döşemesinde döşeme yükleri

Proje ile ilgili açıklamalar: Döşeme türleri belirlenir. Döşeme kalınlıkları belirlenir. Çatı döşemesi ve 1. kat normal döşemesinde döşeme yükleri Proje ile ilgili açıklamalar: Döşeme türleri belirlenir. Döşeme kalınlıkları belirlenir. Çatı döşemesi ve 1. kat normal döşemesinde döşeme yükleri belirlenmesi 1. katta döşemelerin çözümü ve çizimi Döşeme

Detaylı

Dişli (Nervürlü) ve Asmolen Döşemeler

Dişli (Nervürlü) ve Asmolen Döşemeler Dişli (Nervürlü) ve Asmolen Döşemeler 3 2 diş Ana taşıyıcı kiriş 1 A a a Đnce plak B Dişli döşeme a-a plak diş kiriş Asmolen döşeme plak diş Asmolen (dolgu) Birbirine paralel, aynı boyutlu, aynı donatılı,

Detaylı

δ / = P L A E = [+35 kn](0.75 m)(10 ) = mm Sonuç pozitif olduğundan çubuk uzayacak ve A noktası yukarı doğru yer değiştirecektir.

δ / = P L A E = [+35 kn](0.75 m)(10 ) = mm Sonuç pozitif olduğundan çubuk uzayacak ve A noktası yukarı doğru yer değiştirecektir. A-36 malzemeden çelik çubuk, şekil a gösterildiği iki kademeli olarak üretilmiştir. AB ve BC kesitleri sırasıyla A = 600 mm ve A = 1200 mm dir. A serbest ucunun ve B nin C ye göre yer değiştirmesini belirleyiniz.

Detaylı

BETONARME YAPI ELEMANLARINDA HASAR VE ÇATLAK. NEJAT BAYÜLKE İnş. Y. Müh.

BETONARME YAPI ELEMANLARINDA HASAR VE ÇATLAK. NEJAT BAYÜLKE İnş. Y. Müh. BETONARME YAPI ELEMANLARINDA HASAR VE ÇATLAK NEJAT BAYÜLKE İnş. Y. Müh. nbayulke@artiproje.net BETONARME Betonarme Yapı hasarını belirleme yöntemine geçmeden önce Betonarme yapı deprem davranış ve deprem

Detaylı

BÖLÜM 2: DÜŞEY YÜKLERE GÖRE HESAP

BÖLÜM 2: DÜŞEY YÜKLERE GÖRE HESAP BÖLÜM 2: DÜŞEY YÜKLERE GÖRE HESAP KONTROL KONUSU: 2-2 ile A-A aks çerçevelerinin zemin ve birinci kat tavanına ait sürekli kirişlerinin düşey yüklere göre statik hesabı SINAV ve KONTROL TARİHİ: 06.03.2017

Detaylı

BASMA DENEYİ MALZEME MÜHENDİSLİĞİ BÖLÜMÜ. 1. Basma Deneyinin Amacı

BASMA DENEYİ MALZEME MÜHENDİSLİĞİ BÖLÜMÜ. 1. Basma Deneyinin Amacı 1. Basma Deneyinin Amacı Mühendislik malzemelerinin çoğu, uygulanan gerilmeler altında biçimlerini kalıcı olarak değiştirirler, yani plastik şekil değişimine uğrarlar. Bu malzemelerin hangi koşullar altında

Detaylı

INSA 473 Çelik Tasarım Esasları

INSA 473 Çelik Tasarım Esasları INSA 473 Çelik Tasarım Esasları İÇERİK Yapı Malzemesi Olarak Çelik Birleşim Araçları Çekme Çubukları Basınç Çubukları Eğilmeye Çalışan Elemanlar-Kirişler Kiriş-kolonlar Birleşimler INSA 473 Çelik Tasarım

Detaylı

DÜSEY YÜKLERE GÖRE HESAP

DÜSEY YÜKLERE GÖRE HESAP DÜSEY YÜKLERE GÖRE HESAP 2-2 ile A-A aks çerçevelerinin zemin ve birinci kat tavanına ait sürekli kirişlerin düşey yüklere göre statik hesabı yapılacaktır. A A Aksı 2 2 Aksı Zemin kat dişli döşeme kalıp

Detaylı

GENEL KESİTLİ KOLON ELEMANLARIN TAŞIMA GÜCÜ (Ara donatılı dikdörtgen kesitler)

GENEL KESİTLİ KOLON ELEMANLARIN TAŞIMA GÜCÜ (Ara donatılı dikdörtgen kesitler) GENEL KESİTLİ KOLON ELEMANLARIN TAŞIMA GÜCÜ (Ara donatılı dikdörtgen kesitler) BOYUTLANDIRMA VE DONATI HESABI Örnek Kolon boyutları ne olmalıdır. Çözüm Kolon taşıma gücü abaklarının kullanımı Soruda verilenler

Detaylı

Çatı katında tüm çevrede 1m saçak olduğu kabul edilebilir.

Çatı katında tüm çevrede 1m saçak olduğu kabul edilebilir. Proje ile ilgili açıklamalar: Döşeme türleri belirlenir. Döşeme kalınlıkları belirlenir. Çatı döşemesi ve 1. kat normal döşemesinde döşeme yükleri belirlenmesi 1. katta döşemelerin çözümü ve çizimi Döşeme

Detaylı

MOMENT YENİDEN DAĞILIM

MOMENT YENİDEN DAĞILIM MOMENT YENİDEN DAĞILIM Yeniden Dağılım (Uyum) : Çerçeve kirişleri ile sürekli kiriş ve döşemelerde betonarme bir yapının lineer elastik davrandığı kabulüne dayalı bir statik çözüm sonucunda elde edilecek

Detaylı

Dişli (Nervürlü) ve Asmolen Döşemeler. Prof. Dr. Ahmet TOPÇU, Betonarme II, Eskişehir Osmangazi Üniversitesi, http://mmf.ogu.edu.

Dişli (Nervürlü) ve Asmolen Döşemeler. Prof. Dr. Ahmet TOPÇU, Betonarme II, Eskişehir Osmangazi Üniversitesi, http://mmf.ogu.edu. Dişli (Nervürlü) ve Asmolen Döşemeler Prof. Dr. Ahmet TOPÇU, Betonarme II, Eskişehir Osmangazi Üniversitesi, http://mmf.ogu.edu.tr/atopcu 192 3 A B Dişli döşeme Asmolen döşeme Birbirine paralel, aynı boyutlu,

Detaylı

KOLONLAR Sargı Etkisi. Prof. Dr. Ahmet TOPÇU, Betonarme I, Eskişehir Osmangazi Üniversitesi, http://mmf.ogu.edu.tr/atopcu 147

KOLONLAR Sargı Etkisi. Prof. Dr. Ahmet TOPÇU, Betonarme I, Eskişehir Osmangazi Üniversitesi, http://mmf.ogu.edu.tr/atopcu 147 KOLONLAR Sargı Etkisi Prof. Dr. Ahmet TOPÇU, Betonarme I, Eskişehir Osmangazi Üniversitesi, http://mmf.ogu.edu.tr/atopcu 147 Üç eksenli gerilme etkisinde beton davranışı (RICHART deneyi-1928) ERSOY/ÖZCEBE,

Detaylı

1.1 Statik Aktif Durum için Coulomb Yönteminde Zemin Kamasına Etkiyen Kuvvetler

1.1 Statik Aktif Durum için Coulomb Yönteminde Zemin Kamasına Etkiyen Kuvvetler TEORİ 1Yanal Toprak İtkisi 11 Aktif İtki Yöntemi 111 Coulomb Yöntemi 11 Rankine Yöntemi 1 Pasif İtki Yöntemi 11 Coulomb Yöntemi : 1 Rankine Yöntemi : 13 Sükunetteki İtki Danimarka Kodu 14 Dinamik Toprak

Detaylı

Taşıyıcı Sistem İlkeleri. Dr. Haluk Sesigür İ.T.Ü. Mimarlık Fakültesi Yapı ve Deprem Mühendisliği Çalışma Grubu

Taşıyıcı Sistem İlkeleri. Dr. Haluk Sesigür İ.T.Ü. Mimarlık Fakültesi Yapı ve Deprem Mühendisliği Çalışma Grubu Taşıyıcı Sistem İlkeleri Dr. Haluk Sesigür İ.T.Ü. Mimarlık Fakültesi TAŞIYICI SİSTEM ELEMANLARI YÜKLER YÜKLER ve MESNET TEPKİLERİ YÜKLER RÜZGAR YÜKLERİ BETONARME TAŞIYICI SİSTEM ELEMANLARI Rüzgar yönü

Detaylı

1.7 ) Çelik Yapılarda Yangın (Yüksek Sıcaklık) Etkisi

1.7 ) Çelik Yapılarda Yangın (Yüksek Sıcaklık) Etkisi 1.7 ) Çelik Yapılarda Yangın (Yüksek Sıcaklık) Etkisi Çelik yapıların en büyük dezavantajlarından biri yüksek ısı (yangın) etkisi altında mekanik özelliklerinin hızla olumsuz yönde etkilemesidir. Sıcaklık

Detaylı

TEMELLER. Farklı oturma sonucu yan yatan yapılar. Pisa kulesi/italya. İnşa süresi: 1173 1370

TEMELLER. Farklı oturma sonucu yan yatan yapılar. Pisa kulesi/italya. İnşa süresi: 1173 1370 TEMELLER Temeller yapının en alt katındaki kolon veya perdelerin yükünü (normal kuvvet, moment, v.s.) yer yüzeyine (zemine) aktarırlar. Diğer bir deyişle, temeller yapının ayaklarıdır. Kolon veya perdeler

Detaylı

İnşaat Mühendisleri İster yer üstünde olsun, ister yer altında olsun her türlü yapının(betonarme, çelik, ahşap ya da farklı malzemelerden üretilmiş)

İnşaat Mühendisleri İster yer üstünde olsun, ister yer altında olsun her türlü yapının(betonarme, çelik, ahşap ya da farklı malzemelerden üretilmiş) İnşaat Mühendisleri İster yer üstünde olsun, ister yer altında olsun her türlü yapının(betonarme, çelik, ahşap ya da farklı malzemelerden üretilmiş) tasarımından üretimine kadar geçen süreçte, projeci,

Detaylı

RİSKLİ YAPILARIN TESPİT EDİLMESİNE İLİŞKİN ESASLAR. 5- Risk Tespit Uygulaması: Betonarme Bina

RİSKLİ YAPILARIN TESPİT EDİLMESİNE İLİŞKİN ESASLAR. 5- Risk Tespit Uygulaması: Betonarme Bina RİSKLİ YAPILARIN TESPİT EDİLMESİNE İLİŞKİN ESASLAR 5- Risk Tespit Uygulaması: Betonarme Bina İncelenen Bina Binanın Yeri Bina Taşıyıcı Sistemi Bina 5 katlı Betonarme çerçeve ve perde sistemden oluşmaktadır.

Detaylı

Temeller. Onur ONAT Tunceli Üniversitesi Mühendislik Fakültesi İnşaat Mühendisliği Bölümü, Tunceli

Temeller. Onur ONAT Tunceli Üniversitesi Mühendislik Fakültesi İnşaat Mühendisliği Bölümü, Tunceli Temeller Onur ONAT Tunceli Üniversitesi Mühendislik Fakültesi İnşaat Mühendisliği Bölümü, Tunceli 1 Temel Nedir? Yapısal sistemlerin üzerindeki tüm yükleri, zemine güvenli bir şekilde aktaran yapısal elemanlara

Detaylı

Mühendislik Mimarlık Fakültesi Makine Mühendisliği Bölümü

Mühendislik Mimarlık Fakültesi Makine Mühendisliği Bölümü ÇEKME DENEYİ 1. DENEYİN AMACI Mühendislik malzemeleri rijit olmadığından kuvvet altında deforme olup, şekil ve boyut değişiklikleri gösterirler. Malzeme özelliklerini anlamak üzere mekanik testler yapılır.

Detaylı

YAPILARIN ONARIM VE GÜÇLENDİRİLMESİ DERS NOTU

YAPILARIN ONARIM VE GÜÇLENDİRİLMESİ DERS NOTU YAPILARIN ONARIM VE GÜÇLENDİRİLMESİ DERS NOTU Onarım ve Güçlendirme Onarım: Hasar görmüş bir yapı veya yapı elemanını önceki durumuna getirmek için yapılan işlemlerdir (rijitlik, süneklik ve dayanımın

Detaylı

MECHANICS OF MATERIALS

MECHANICS OF MATERIALS T E CHAPTER 2 Eksenel MECHANICS OF MATERIALS Ferdinand P. Beer E. Russell Johnston, Jr. John T. DeWolf Yükleme Fatih Alibeyoğlu Eksenel Yükleme Bir önceki bölümde, uygulanan yükler neticesinde ortaya çıkan

Detaylı

d : Kirişin faydalı yüksekliği E : Deprem etkisi E : Mevcut beton elastisite modülü

d : Kirişin faydalı yüksekliği E : Deprem etkisi E : Mevcut beton elastisite modülü 0. Simgeler A c A kn RİSKLİ BİNALARIN TESPİT EDİLMESİ HAKKINDA ESASLAR : Brüt kolon enkesit alanı : Kritik katta değerlendirmenin yapıldığı doğrultudaki kapı ve pencere boşluk oranı %5'i geçmeyen ve köşegen

Detaylı

Malzemelerin Mekanik Özellikleri

Malzemelerin Mekanik Özellikleri Malzemelerin Mekanik Özellikleri Bölüm Hedefleri Deneysel olarak gerilme ve birim şekil değiştirmenin belirlenmesi Malzeme davranışı ile gerilme-birim şekil değiştirme diyagramının ilişkilendirilmesi ÇEKME

Detaylı

29. Düzlem çerçeve örnek çözümleri

29. Düzlem çerçeve örnek çözümleri 9. Düzlem çerçeve örnek çözümleri 9. Düzlem çerçeve örnek çözümleri Örnek 9.: NPI00 profili ile imal edilecek olan sağdaki düzlem çerçeveni normal, kesme ve moment diyagramları çizilecektir. Yapı çeliği

Detaylı

SANDVİÇ PANEL MEKANİK DAYANIMI

SANDVİÇ PANEL MEKANİK DAYANIMI SANDVİÇ PANEL MEKANİK DAYANIMI Binaların çatı, cephe, iç bölme veya soğuk hava odalarında kaplama malzemesi olarak kullanılan sandviç panellerin hızlı montaj imkanı, yüksek yalıtım özelliklerinin yanısıra

Detaylı

GÜZ DÖNEMİ YAPI STATİĞİ 1 DERSİ PROJE RAPORU

GÜZ DÖNEMİ YAPI STATİĞİ 1 DERSİ PROJE RAPORU 2018-2019 GÜZ DÖNEMİ YAPI STATİĞİ 1 DERSİ PROJE RAPORU GRUP 1 ÖĞRENCİ NO - ADI SOYADI ÖĞRENCİ NO - ADI SOYADI ÖĞRENCİ NO - ADI SOYADI ÖĞRENCİ NO - ADI SOYADI ÖĞRENCİ NO - ADI SOYADI ÖĞRENCİ NO - ADI SOYADI

Detaylı

Prof. Dr. Cengiz DÜNDAR

Prof. Dr. Cengiz DÜNDAR Prof. Dr. Cengiz DÜNDAR TABLALI KESİTLER Betonarme inşaatın monolitik özelliğinden dolayı, döşeme ve kirişler birlikte çalışırlar. Bu nedenle kesit hesabı yapılırken, döşeme parçası kirişin basınç bölgesine

Detaylı

YTÜ Mimarlık Fakültesi Statik-Mukavemet Ders Notları

YTÜ Mimarlık Fakültesi Statik-Mukavemet Ders Notları KESİT TESİRLERİNDEN OLUŞAN GERİLME VE ŞEKİLDEĞİŞTİRMELERE GİRİŞ - MALZEME DAVRANIŞI- En Genel Kesit Tesirleri 1 Gerilme - Şekildeğiştirme Grafiği Gerilme - Şekildeğiştirme Grafiği 2 Malzemelere Uygulanan

Detaylı

Yapı Elemanlarının Davranışı

Yapı Elemanlarının Davranışı SÜNEKLİK KAVRAMI Yapı Elemanlarının Davranışı Yrd. Doç. Dr. Barış ÖZKUL Eğrilik; kesitteki şekil değişimini simgeleyen geometrik bir parametredir. d 2 d d y 1 2 dx dx r r z z TE Z z d x Eğrilik, birim

Detaylı

28. Sürekli kiriş örnek çözümleri

28. Sürekli kiriş örnek çözümleri 28. Sürekli kiriş örnek çözümleri SEM2015 programında sürekli kiriş için tanımlanmış özel bir eleman yoktur. Düzlem çerçeve eleman kullanılarak sürekli kirişler çözülebilir. Ancak kiriş mutlaka X-Y düzleminde

Detaylı

İnşaat Müh. Giriş. Konu: ÇELİK YAPILAR. İnşaat Müh. Giriş Dersi Konu: Çelik Yapılar 1

İnşaat Müh. Giriş. Konu: ÇELİK YAPILAR. İnşaat Müh. Giriş Dersi Konu: Çelik Yapılar 1 İnşaat Müh. Giriş Konu: ÇELİK YAPILAR İnşaat Müh. Giriş Dersi Konu: Çelik Yapılar 1 BALIKESİR Ü. MÜH. FAKÜLTESİ İnşaat Müh. Bölümü Çelik Yapı Dersleri Çelik Yapılar-I (Zorunlu ders, 3. sınıf I. Dönem)

Detaylı

BETONARME-II (KOLONLAR)

BETONARME-II (KOLONLAR) BETONARME-II (KOLONLAR) ONUR ONAT Kolonların Kesme Güvenliği ve Kesme Donatısının Belirlenmesi Kesme güvenliği aşağıdaki adımlar yoluyla yapılır; Elverişsiz yükleme şartlarından elde edilen en büyük kesme

Detaylı

MUKAVEMET DERSİ. (Temel Kavramlar) Prof. Dr. Berna KENDİRLİ

MUKAVEMET DERSİ. (Temel Kavramlar) Prof. Dr. Berna KENDİRLİ MUKAVEMET DERSİ (Temel Kavramlar) Prof. Dr. Berna KENDİRLİ Ders Planı HAFTA KONU 1 Giriş, Mukavemetin tanımı ve genel ilkeleri 2 Mukavemetin temel kavramları 3-4 Normal kuvvet 5-6 Gerilme analizi 7 Şekil

Detaylı

ÇATI KONSTRÜKSİYONLARINDA GAZBETON UYGULAMALARI Doç.Dr.Oğuz Cem Çelik İTÜ Mimarlık Fakültesi Yapı Statiği ve Betonarme Birimi

ÇATI KONSTRÜKSİYONLARINDA GAZBETON UYGULAMALARI Doç.Dr.Oğuz Cem Çelik İTÜ Mimarlık Fakültesi Yapı Statiği ve Betonarme Birimi ÇATI KONSTRÜKSİYONLARINDA GAZBETON UYGULAMALARI Doç.Dr.Oğuz Cem Çelik İTÜ Mimarlık Fakültesi Yapı Statiği ve Betonarme Birimi ÖZET Donatılı gazbeton çatı panellerinin çeşitli çatı taşıyıcı sistemlerinde

Detaylı

Yapı Elemanlarının Davranışı

Yapı Elemanlarının Davranışı Basit Eğilme Etkisindeki Elemanlar Yapı Elemanlarının Davranışı Yrd. Doç. Dr. Barış ÖZKUL Betonarme yapılardaki kiriş ve döşeme gibi yatay taşıyıcı elemanlar, uygulanan düşey ve yatay yükler ile eğilme

Detaylı

TEKNOLOJİNİN BİLİMSEL İLKELERİ. Öğr. Gör. Adem ÇALIŞKAN

TEKNOLOJİNİN BİLİMSEL İLKELERİ. Öğr. Gör. Adem ÇALIŞKAN TEKNOLOJİNİN BİLİMSEL İLKELERİ 3 Malzemelerin esnekliği Gerilme Bir cisme uygulanan kuvvetin, kesit alanına bölümüdür. Kuvvetin yüzeye dik olması halindeki gerilme "normal gerilme" adını alır ve şeklinde

Detaylı

Prof. Dr. Cengiz DÜNDAR

Prof. Dr. Cengiz DÜNDAR Prof. Dr. Cengiz DÜNDAR BASİT EĞİLME ETKİSİNDEKİ ELEMANLARIN TAŞIMA GÜCÜ Çekme çubuklarının temel işlevi, çekme gerilmelerini karşılamaktır. Moment kolunu arttırarak donatının daha etkili çalışmasını sağlamak

Detaylı

DEPREME DAYANIKLI YAPI TASARIMI

DEPREME DAYANIKLI YAPI TASARIMI DEPREME DAYANIKLI YAPI TASARIMI Düşey Doğrultuda Düzensizlik Durumları 7. Hafta Yrd. Doç. Dr. Alper CUMHUR Kaynak: Sakarya Üniversitesi / İnşaat Mühendisliği Bölümü / Depreme Dayanıklı Betonarme Yapı Tasarımı

Detaylı

2.2 KAYNAKLI BİRLEŞİMLER

2.2 KAYNAKLI BİRLEŞİMLER 2.2 KAYNAKLI BİRLEŞİMLER Aynı veya benzer alaşımlı metal parçaların ısı etkisi altında birleştirilmesine kaynak denir. Kaynaklama işlemi sırasında uygulanan teknik bakımından çeşitli kaynaklama yöntemleri

Detaylı

Betonarme Bina Tasarımı Dersi Yapı Özellikleri

Betonarme Bina Tasarımı Dersi Yapı Özellikleri 2016-2017 Betonarme Bina Tasarımı Dersi Yapı Özellikleri Adı Soyadı Öğrenci No: L K J I H G F E D C B A A Malzeme Deprem Yerel Zemin Dolgu Duvar Dişli Döşeme Dolgu Bölgesi Sınıfı Cinsi Cinsi 0,2,4,6 C30/

Detaylı

DEPREME DAYANIKLI YAPI İNŞAATI SORULAR

DEPREME DAYANIKLI YAPI İNŞAATI SORULAR DEPREME DAYANIKLI YAPI İNŞAATI SORULAR 1- Dünyadaki 3 büyük deprem kuşağı bulunmaktadır. Bunlar nelerdir. 2- Deprem odağı, deprem fay kırılması, enerji dalgaları, taban kayası, yerel zemin ve merkez üssünü

Detaylı

Yapı Elemanlarının Davranışı

Yapı Elemanlarının Davranışı Önceki Depremlerden Edinilen Tecrübeler ZEMİN ile ilgili tehlikeler Yapı Elemanlarının Davranışı Yrd. Doç. Dr. Barış ÖZKUL MİMARİ tasarım dolayısıyla oluşan hatalar 1- Burulmalı Binalar (A1) 2- Döşeme

Detaylı

BETONARME ELEMANLARDA DONATI DÜZENLEME İLKELERİ

BETONARME ELEMANLARDA DONATI DÜZENLEME İLKELERİ TMMOB İNŞAAT MÜHENDİSLERİ ODASI DİYARBAKIR ŞUBESİ Meslekiçi Eğitim Semineri BETONARME ELEMANLARDA DONATI DÜZENLEME İLKELERİ Prof. Dr. Kadir GÜLER kguler@itu.edu.tr İstanbul Teknik Üniversitesi İnşaat Fakültesi,

Detaylı

Prefabrik yapıların tasarımı, temelde geleneksel betonarme yapıların tasarımı ile benzerdir.

Prefabrik yapıların tasarımı, temelde geleneksel betonarme yapıların tasarımı ile benzerdir. Prefabrik yapıların tasarımı, temelde geleneksel betonarme yapıların tasarımı ile benzerdir. Tasarımda kullanılan şartname ve yönetmelikler de prefabrik yapılara has bazıları dışında benzerdir. Prefabrik

Detaylı

Öndökümlü (Prefabrik) Döşeme Sistemleri-4 Prefabrik Asmolen Döşeme Kirişleri

Öndökümlü (Prefabrik) Döşeme Sistemleri-4 Prefabrik Asmolen Döşeme Kirişleri Öndökümlü (Prefabrik) Döşeme Sistemleri-4 Prefabrik Asmolen Döşeme Kirişleri Günkut BARKA 1974 yılında mühendis oldu. 1978-2005 yılları arasında Gök İnşaat ve Tic. A.Ş de şantiye şefliğinden Genel Müdürlüğe

Detaylı

Tanım: Boyuna doğrultuda eksenel basınç kuvveti taşıyan elemanlara Basınç Çubuğu denir.

Tanım: Boyuna doğrultuda eksenel basınç kuvveti taşıyan elemanlara Basınç Çubuğu denir. BASINÇ ÇUBUKLARI Tanım: Boyuna doğrultuda eksenel basınç kuvveti taşıyan elemanlara Basınç Çubuğu denir. Basınç çubukları, sadece eksenel basınç kuvvetine maruz kalırlar. Bu çubuklar üzerinde Eğilme ve

Detaylı

Malzeme Bilimi Ve Labaratuvarı MEKANİK ÖZELLİKLER

Malzeme Bilimi Ve Labaratuvarı MEKANİK ÖZELLİKLER Malzeme Bilimi Ve Labaratuvarı MEKANİK ÖZELLİKLER Sakarya Üniversitesi Teknoloji Fakültesi Mekanik Özellikler Mekanik Özellikler Basınç Dayanımı Çekme dayanımı Kesme Dayanımı Mekanik Özellikler - Genel

Detaylı

Kirişsiz Döşemelerin Uygulamada Tasarım ve Detaylandırılması

Kirişsiz Döşemelerin Uygulamada Tasarım ve Detaylandırılması Kirişsiz Döşemelerin Uygulamada Tasarım ve Detaylandırılması İnş. Y. Müh. Sinem KOLGU Dr. Müh. Kerem PEKER kolgu@erdemli.com / peker@erdemli.com www.erdemli.com İMO İzmir Şubesi Tasarım Mühendislerine

Detaylı

Mukavemet 1. Fatih ALİBEYOĞLU. -Çalışma Soruları-

Mukavemet 1. Fatih ALİBEYOĞLU. -Çalışma Soruları- 1 Mukavemet 1 Fatih ALİBEYOĞLU -Çalışma Soruları- Soru 1 AB ve BC silindirik çubukları şekilde gösterildiği gibi, B de kaynak edilmiş ve yüklenmiştir. P kuvvetinin büyüklüğünü, AB çubuğundaki çekme gerilmesiyle

Detaylı

Gerilme. Bölüm Hedefleri. Normal ve Kayma gerilmesi kavramının anlaşılması Kesme ve eksenel yük etkisindeki elemanların analiz ve tasarımı

Gerilme. Bölüm Hedefleri. Normal ve Kayma gerilmesi kavramının anlaşılması Kesme ve eksenel yük etkisindeki elemanların analiz ve tasarımı Gerilme Bölüm Hedefleri Normal ve Kayma gerilmesi kavramının anlaşılması Kesme ve eksenel yük etkisindeki elemanların analiz ve tasarımı Copyright 2011 Pearson Education South sia Pte Ltd GERİLME Kesim

Detaylı

İNŞAAT MALZEME BİLGİSİ

İNŞAAT MALZEME BİLGİSİ İNŞAAT MALZEME BİLGİSİ Prof. Dr. Metin OLGUN Ankara Üniversitesi Ziraat Fakültesi Tarımsal Yapılar ve Sulama Bölümü HAFTA KONU 1 Giriş, yapı malzemelerinin önemi 2 Yapı malzemelerinin genel özellikleri,

Detaylı

Çekme Elemanları. 4 Teller, halatlar, ipler ve kablolar. 3 Teller, halatlar, ipler ve kablolar

Çekme Elemanları. 4 Teller, halatlar, ipler ve kablolar. 3 Teller, halatlar, ipler ve kablolar 1 Çekme Elemanları 2 Çekme Elemanları Kesit tesiri olarak yalnız eksenleri doğrultusunda ve çekme kuvveti taşıyan elemanlara Çekme Elemanları denir. Çekme elemanları 4 (dört) ana gurupta incelenebilir

Detaylı

BETONARME-II ONUR ONAT HAFTA-4

BETONARME-II ONUR ONAT HAFTA-4 BETONARME-II ONUR ONAT HAFTA-4 DİŞLİ DÖŞEMELER Serbest açıklığı 700 mm yi geçmeyecek biçimde düzenlenmiş dişlerden ve ince bir tabakadan oluşmuş döşemelere dişli döşemeler denir. Geçilecek açıklık eğer

Detaylı

Deneyin Amacı Çekme deneyinin incelenmesi ve metalik bir malzemeye ait çekme deneyinin yapılması.

Deneyin Amacı Çekme deneyinin incelenmesi ve metalik bir malzemeye ait çekme deneyinin yapılması. 1 Deneyin Adı Çekme Deneyi Deneyin Amacı Çekme deneyinin incelenmesi ve metalik bir malzemeye ait çekme deneyinin yapılması. Teorik Bilgi Malzemelerin statik (darbesiz) yük altındaki mukavemet özelliklerini

Detaylı

CS MÜHENDİSLİK PROJE YAZILIM HİZMETLERİ www.csproje.com. EUROCODE-2'ye GÖRE MOMENT YENİDEN DAĞILIM

CS MÜHENDİSLİK PROJE YAZILIM HİZMETLERİ www.csproje.com. EUROCODE-2'ye GÖRE MOMENT YENİDEN DAĞILIM Moment CS MÜHENİSLİK PROJE YAZILIM HİZMETLERİ EUROCOE-2'ye GÖRE MOMENT YENİEN AĞILIM Bir yapıdaki kuvvetleri hesaplamak için elastik kuvvetler kullanılır. Yapının taşıma gücüne yakın elastik davranmadığı

Detaylı

Taşıyıcı Sistem İlkeleri

Taşıyıcı Sistem İlkeleri İTÜ Mimarlık Fakültesi Mimarlık Bölümü Yapı ve Deprem Mühendisliği Çalışma Grubu BETONARME YAPILAR MIM 232 Taşıyıcı Sistem İlkeleri 2015 Bir yapı taşıyıcı sisteminin işlevi, kendisine uygulanan yükleri

Detaylı

BETONARME YAPI TASARIMI -KOLON ÖN BOYUTLANDIRILMASI-

BETONARME YAPI TASARIMI -KOLON ÖN BOYUTLANDIRILMASI- BETONARME YAPI TASARIMI -KOLON ÖN BOYUTLANDIRILMASI- Yrd. Doç. Dr. Güray ARSLAN Arş. Gör. Cem AYDEMİR 28 GENEL BİLGİ Betonun Gerilme-Deformasyon Özellikleri Betonun basınç altındaki davranışını belirleyen

Detaylı

Betonarme Çatı Çerçeve ve Kemerler

Betonarme Çatı Çerçeve ve Kemerler İTÜ Mimarlık Fakültesi Mimarlık Bölümü Yapı ve Deprem Mühendisliği Çalışma Grubu BETONARME YAPILAR MIM 232 Betonarme Çatı Çerçeve ve Kemerler 2015 Betonarme Çatılar Görevi, belirli bir hacmi örtmek olan

Detaylı

ÇELİK YAPILAR 7 ÇELİK İSKELETTE DÖŞEMELER DÖŞEMELER DÖŞEMELER DÖŞEMELER. DÖŞEMELER Yerinde Dökme Betonarme Döşemeler

ÇELİK YAPILAR 7 ÇELİK İSKELETTE DÖŞEMELER DÖŞEMELER DÖŞEMELER DÖŞEMELER. DÖŞEMELER Yerinde Dökme Betonarme Döşemeler Döşemeler, yapının duvar, kolon yada çerçeve gibi düşey iskeleti üzerine oturan, modülasyon ızgarası üzerini örterek katlar arası ayırımı sağlayan yatay levhalardır. ÇELİK YAPILAR 7 ÇELİK İSKELETTE Döşemeler,

Detaylı

ÇELİK YAPILAR (2+1) Yrd. Doç. Dr. Ali SARIBIYIK

ÇELİK YAPILAR (2+1) Yrd. Doç. Dr. Ali SARIBIYIK ÇELİK YAPILAR (2+1) Yrd. Doç. Dr. Ali SARIBIYIK Dersin Amacı Çelik yapı sistemlerini, malzemelerini ve elemanlarını tanıtarak, çelik yapı hesaplarını kavratmak. Dersin İçeriği Çelik yapı sistemleri, kullanım

Detaylı

EKSENEL YÜKLERDEN OLUŞAN GERILME VE ŞEKİL DEĞİŞİMİ Eksenel yüklü elemanlarda meydana gelen normal gerilmelerin nasıl hesaplanacağı daha önce ele

EKSENEL YÜKLERDEN OLUŞAN GERILME VE ŞEKİL DEĞİŞİMİ Eksenel yüklü elemanlarda meydana gelen normal gerilmelerin nasıl hesaplanacağı daha önce ele EKSENEL YÜKLERDEN OLUŞAN GERILME VE ŞEKİL DEĞİŞİMİ Eksenel yüklü elemanlarda meydana gelen normal gerilmelerin nasıl hesaplanacağı daha önce ele alınmıştı. Bu bölümde ise, eksenel yüklü elemanların şekil

Detaylı

HASAR TÜRLERİ, MÜDAHALEDE GÜVENLİK VE ÖNCELİKLER

HASAR TÜRLERİ, MÜDAHALEDE GÜVENLİK VE ÖNCELİKLER HASAR TÜRLERİ, MÜDAHALEDE GÜVENLİK VE ÖNCELİKLER Yapım amacına göre bina sınıflandırması Meskenler-konutlar :Ev,apartman ve villalar Konaklama Binaları: Otel,motel,kamp ve mokamplar Kültür Binaları: Okullar,müzeler,kütüphaneler

Detaylı

BETONARME BİNALARDA DEPREM HASARLARININ NEDEN VE SONUÇLARI

BETONARME BİNALARDA DEPREM HASARLARININ NEDEN VE SONUÇLARI BETONARME BİNALARDA DEPREM HASARLARININ NEDEN VE SONUÇLARI Z. CANAN GİRGİN 1, D. GÜNEŞ YILMAZ 2 Türkiye de nüfusun % 70 i 1. ve 2.derece deprem bölgesinde yaşamakta olup uzun yıllardan beri orta şiddetli

Detaylı

Orta Doğu Teknik Üniversitesi İnşaat Mühendisliği Bölümü

Orta Doğu Teknik Üniversitesi İnşaat Mühendisliği Bölümü Orta Doğu Teknik Üniversitesi İnşaat Mühendisliği Bölümü Gazbeton, Tuğla ve Bims Blok Kullanımının Bina Statik Tasarımına ve Maliyetine olan Etkilerinin İncelenmesi 4 Mart 2008 Bu rapor Orta Doğu Teknik

Detaylı

MÜHENDİSLİK MEKANİĞİ (STATİK)

MÜHENDİSLİK MEKANİĞİ (STATİK) MÜHENDİSLİK MEKANİĞİ (STATİK) Prof. Dr. Metin OLGUN Ankara Üniversitesi Ziraat Fakültesi Tarımsal Yapılar ve Sulama Bölümü HAFTA KONU 1 Giriş, temel kavramlar, statiğin temel ilkeleri 2-3 Düzlem kuvvetler

Detaylı

Elastisite modülü çerçevesi ve deneyi: σmaks

Elastisite modülü çerçevesi ve deneyi: σmaks d) Betonda Elastisite modülü deneyi: Elastisite modülü, malzemelerin normal gerilme (basınç, çekme) altında elastik şekil değiştirmesinin ölçüsüdür. Diğer bir ifadeyle malzemenin sekil değiştirmeye karşı

Detaylı

Temel sistemi seçimi;

Temel sistemi seçimi; 1 2 Temel sistemi seçimi; Tekil temellerden ve tek yönlü sürekli temellerden olabildiğince uzak durulmalıdır. Zorunlu hallerde ise tekil temellerde her iki doğrultuda rijit ve aktif bağ kirişleri kullanılmalıdır.

Detaylı

Perdelerde Kesme Kuvveti Tasarımı ve Yatay Donatı Uygulaması

Perdelerde Kesme Kuvveti Tasarımı ve Yatay Donatı Uygulaması Perdelerde Kesme Kuvveti Tasarımı ve Yatay Donatı Uygulaması SUNUMU HAZIRLAYAN: İNŞ. YÜK. MÜH. COŞKUN KUZU 1.12.2017 Perdelerde Kesme Kuvveti Tasarımı ve Yatay Donatı Uygulaması 1 İÇERİK Giriş Perdelerde

Detaylı

RİSKLİ YAPILARIN TESPİT EDİLMESİNE İLİŞKİN ESASLAR. 4- Özel Konular

RİSKLİ YAPILARIN TESPİT EDİLMESİNE İLİŞKİN ESASLAR. 4- Özel Konular RİSKLİ YAPILARIN TESPİT EDİLMESİNE İLİŞKİN ESASLAR 4- Özel Konular Konular Kalibrasyonda Kullanılan Binalar Bina Risk Tespiti Raporu Hızlı Değerlendirme Metodu Sıra Dışı Binalarda Tespit 2 Amaç RYTE yönteminin

Detaylı

Malzeme yavaşça artan yükler altında denendiği zaman, belirli bir sınır gerilmede dayanımı sona erip kopmaktadır.

Malzeme yavaşça artan yükler altında denendiği zaman, belirli bir sınır gerilmede dayanımı sona erip kopmaktadır. YORULMA 1 Malzeme yavaşça artan yükler altında denendiği zaman, belirli bir sınır gerilmede dayanımı sona erip kopmaktadır. Bulunan bu gerilme değerine malzemenin statik dayanımı adı verilir. 2 Ancak aynı

Detaylı

Kitabın satışı yapılmamaktadır. Betonarme Çözümlü Örnekler adlı kitaba üniversite kütüphanesinden erişebilirsiniz.

Kitabın satışı yapılmamaktadır. Betonarme Çözümlü Örnekler adlı kitaba üniversite kütüphanesinden erişebilirsiniz. Kitap Adı : Betonarme Çözümlü Örnekler Yazarı : Murat BİKÇE (Öğretim Üyesi) Baskı Yılı : 2010 Sayfa Sayısı : 256 Kitabın satışı yapılmamaktadır. Betonarme Çözümlü Örnekler adlı kitaba üniversite kütüphanesinden

Detaylı

BETONARME BİNA TASARIMI

BETONARME BİNA TASARIMI BETONARME BİNA TASARIMI (ZEMİN KAT ve 1. KAT DÖŞEMELERİN HESABI) BETONARME BİNA TASARIMI Sayfa No: 1 ZEMİN KAT TAVANI (DİŞLİ DÖŞEME): X1, X2, ile verilen ölçüleri belirleyebilmek için önce 1. kat tavanı

Detaylı

Gazbeton Duvar ve Döşeme Elemanları ile İnşa Edilen Az Katlı Konut Binalarının Deprem Güvenliği*

Gazbeton Duvar ve Döşeme Elemanları ile İnşa Edilen Az Katlı Konut Binalarının Deprem Güvenliği* Gazbeton Duvar ve Döşeme Elemanları ile İnşa Edilen Az Katlı Konut Binalarının Deprem Güvenliği* Dr.Haluk SESİGÜR Yrd.Doç.Dr. Halet Almıla BÜYÜKTAŞKIN Prof.Dr.Feridun ÇILI İTÜ Mimarlık Fakültesi Giriş

Detaylı

Proje Adı: İstinat Duvarı Sayfa 1. Analiz Yapı Ltd. Şti. Tel:

Proje Adı: İstinat Duvarı Sayfa 1.  Analiz Yapı Ltd. Şti. Tel: Proje Adı: İstinat Duvarı Sayfa 1 BETONARME NERVÜRLÜ İSTİNAT DUVARI HESAP RAPORU GEOMETRİ BİLGİLERİ Duvarın zeminden itibaren yüksekliği H1 10 [m] Nervür Üst Genişliği N1 0,5 [m] Nervürün Alt Genişliği

Detaylı

Projemizde bir adet sürekli temel örneği yapılacaktır. Temel genel görünüşü aşağıda görülmektedir.

Projemizde bir adet sürekli temel örneği yapılacaktır. Temel genel görünüşü aşağıda görülmektedir. 1 TEMEL HESABI Projemizde bir adet sürekli temel örneği yapılacaktır. Temel genel görünüşü aşağıda görülmektedir. Uygulanacak olan standart sürekli temel kesiti aşağıda görülmektedir. 2 Burada temel kirişi

Detaylı

Ç E R Ç E V E L E R. L y2. L y1

Ç E R Ç E V E L E R. L y2. L y1 ADİL ALTUDAL Mart 2011 Ç E R Ç E V E L E R Betonarme yapıların özelliklerinden bir tanesi de monolitik olmasıdır. Bu özellik sayesinde, kirişlerin birleştiği kolonlarla birleşme noktaları olan düğüm noktalarının

Detaylı