Doç. Dr. İskender AKKURT

Ebat: px
Şu sayfadan göstermeyi başlat:

Download "Doç. Dr. İskender AKKURT"

Transkript

1 Radyasyon Ölçüm Teknikleri ve Korunma Doç. Dr. İskender AKKURT Süleyman Demirel Üniversitesi it i Fen-Edebiyat Fakültesi Fizik Bölümü Isparta iskender@fef.sdu.edu.tr

2 Outline Giriş Radyasyon ve Özellikleri Radyasyon kaynakları Radyasyon Birimleri Radyasyon Ölçüm Teknikleri Radyasyon ölçüm Prensibi Alan Ölçümleri Kişisel doz ölçümleri Radyasyondan Korunma Temel korunma kriterleri Temel korunma yolları

3 Giriş Radyasyon Enerjinin bir kaynaktan emisyonu ve taşınması Kararsız bir çekirdekten tarafından yayılan parçacık EM dalga

4 Giriş Radyasyon kaynakları Doğal Yapay Background (doğal ğ lf fon)

5 DOĞAL RADYASYON KAYNAKLARI Dünyada ve evren oluşurken var olan uzun yarı ömürlü radyoaktif maddeler: Radyum (Ra yıl) Uranyum (U x10 9 yıl) Toryum (Th x10 10 yıl) Potasyum (K x10 9 yıl)

6 DOĞAL RADYASYON KAYNAKLARI TOPRAKTA İNSAN VÜCUDUNDA Toryum Potasyum-40 (4400 Bq) Uranyum Radyum Potasyum Karbon-14 Radyum Tirityum Radon Polonyum Kozmik %16 Radon %55 Gama 19% Dahili %10

7 RADON GAZI

8 KOZMİK RADYASYON Güneş sisteminden veya dışından gelen yüksek enerjili primer kozmik ışınlar (fotonlar veya muonlar) atmosferin üst tabakalarındaki atomlarla etkileşerek bir gama ışınları l çığı ğ ve radyoaktif atomlar meydana getirirler. Bunlar genelde atmosferde kalırlar, çok az bir oranı yeryüzüne ulaşır. Atmosfer ve yerin magnetik alanı kozmik radyasyona karşı yeryüzünü korur. Bu nedenle ekvatordan kutuplara gidildikçe ve aynı zamanda deniz seviyesinden yükseldikçe kozmik ışınların yoğunluğu artmaktadır

9 KOZMİK RADYASYON

10 BAZI BÖLGELERİN DOĞAL RADYASYON SEVİYELERİ Akkuyu Ankara Erzurum Uludağ Ağrıdağı Karaormanlar (Almanya) Hindistan msv / yıl msv / yıl msv / yıl msv / yıl msv / yıl msv / yıl msv / yıl Atlantik kıyıları (Brezilya) msv / yıl

11 YAPAY RADYASYON KAYNAKLARI Tıbbi Uy. %96 Nükleer Sant. %1 Tüketici Ürün. %1 Mesleki Işın. %1 Rad. Serpint %1

12 BAZI UYGULAMALAR SONUCU ALINAN RADYASYON DOZLARI TETKİKİ Radyoloji Etkin Doz Eşdeğeri (msv) TETKİKİ Nükleer Tıp Etkin Doz Eşdeğeri (msv) Akciğer Grafisi Kemik Akciğer Skopisi Beyin Karın Kalp Barsak Karaciğer/Dalak Anjiyografi 6.8 Akciğer Mamografi 1 Böbrek BT 4.3 Troid Uptake

13 TÜKETİCİ ÜRÜNLERİ Televizyonlar, az miktarlarda da olsa radyoaktif madde içeren duman dedektörleri, fosforlu saatler, paratonerler ve lüks lambası fitilleri i i gibi i bazı tüketici ürünleri, düşük düzeyde radyasyon yayarlar.

14 Radyasyon çeşitleri (etkisine göre) İyonizei İyonize olmayan (etmeyen) RADYASYON İYONLAŞTIRICI RADYASYON İYONLAŞTIRICI OLMAYAN RADYASYON PARÇACIK TİPİ DALGA TİPİ DALGA TİPİ Hızlı elektronlar Beta parçacıkları Alfa parçacıkları Dolaylı iyonlaştırıcı Nötron parçacıkları X-Işınları Gama ışınları Radyo dalgaları Mikrodalgalar Kızılötesi dalgalar Görülebilir ışık

15 Bir atomun elektron kaybetmesine iyonizasyon adı verilir. Bir fotonun enerjisi 15 ev veya daha fazla ise atom veya molekülleri iyonize edebilir. İyonizasyon sonucu yörüngeden ayrılan elektron negatif iyonu, geride kalan atom ise pozitif iyonu oluşturur ve bir iyon çifti ortaya çıkar. 1 santimetre küp havada 2.08x10 9 iyon çifti oluşmasına yol açacak radyasyon şiddetine 1 Röntgen ( R ) denilir.

16 RADYASYON DOZU ve BİRİMLERİ Radyasyon dozu; hedef kütle tarafından, belli bir sürede soğurulan veya alınan radyasyon miktarıdır. Radyasyon dozunun hedef kütlede meydana getireceği etki; radyasyonun çeşidine, doz hızına ve bu doza maruz kalış süresine bağlıdır

17 radiation miktarının sınıflandırılması Radyoaktivitenin miktarı aktivite (Bq, Ci) Radiometric miktar Akı(count/area) Etkileşim miktarı tesir kesiri (barn) Dosimetric miktar Soğrulan doze (Gray) Radyasyondan korunma miktar Etkin doze (Sv) kaynak Alan Alan-Madde maddede depolanan enerji sağlık etkisi

18 RADYASYON BİRİMLERİ Terim Birimi Eski Yeni Aktivite Curie,Ci Becquerel,Bq Işınlama Dozu Röntgen/saat, R/s Coulomb/kilogram,C/kg Soğurulmuş Dozradiation absorbed dose,rad Gray,Gy Doz Eşdeğeri röntgen equivalent man, rem Sievert,Sv Saniyede 1 bozunma yapan maddenin aktivitesi kg başına 1 C yük aktaran ışın ş miktarı 1 Gy = 1 J kg-1 Sv=K*Gy

19 Radyasyon Ölçüm Teknikleri Radyasyon ölçüm Prensibi Alan Ölçümleri Kişisel doz ölçümleri Diger Ölçümler

20 Ölçüm prensibi Radyasyon ölçümü Radyasyonla maddenin etkileşimi prensibine dayanır Latife ŞAHİN Bu etkileşim detektör materyalını ya iyonize etme yada uyarma şeklindedir.

21 Ölçüm prensibi radyasyon detector signal processing data handling analysis & control depo

22 Ölçüm prensibi α, p, e, n, Radiation detector electric signal X, γ

23 Ölçüm prensibi X rays gamma rays heavy charged particles PE CE PP BB δ e thermal neutrons nuclear reaction energetic neutrons matter proton δ

24 Detektör materyalı Detektör tipi Amaç G-M varlığını Orantılı sayaç enerjisini q ve m için farklı sinyal veren materyal tipini Farklı spin ve kutuplanmayı çözebilen spin ve kutuplanma Hepsini aynı anda ölçen YOK

25 Radyasyonun etkileştiği ortama göre Gazlı detektörler Sintilatör detektörleri Katı-hal detektörleri

26 Gazlı detectorler Yüklü parçacıkların gaz odalarında d iyonizasyon i oluşturmaları l prensibine dayanır. Bu prensiple çalışan 3 türlü detektör vardır Iyon odaları Orantılı sayaçlar Geiger-Muller sayaçları

27 Gazlı detectorler

28 Gazlı detectorler 1. Ionization Chamber Best used as photon measuring instruments but can be modified to monitor for alpha, beta, and even neutron radiation. Less sensitivity compared to G-M counter but can be used in high counting rate situations. Have good energy dependence characteristics. Examples are Condensed r-meter, fluoroscopic survey meter and Cutie Pie.

29 Gazlı detectorler Ionization Chamber

30 Gazlı detectorler 2. Orantılı sayaçlar Birincil iyonlar orantılı olarak ikincil iyonlaşma meydana getirirler. Bu sayaçlarla alfa ve betalar ayırt edilebilir.

31 Gazlı detectorler 3. Geiger-Muller (GM) Counter Düşük enerjili beta ve gammalar için kullanılır. Yüksek duyarlılıga sahiptir. Herhangi bir bölgede radyasyon sızıntısı (yada kirliliği) varsa bunun kaynağının ne oldugunun belirlenmesinde kullanılacak ilk detektör tipidir. Diger detektörlere göre uzun dead time ( kısa live time) bu yüzden yüksek counting rates ölçümlerinde uygun degildir.

32 Gazlı detectorler Hans Geiger ( ) Johannes Wilhelm Geiger was a German physicist He introduced the first reliable detector for alpha particles and other ionising radiation. Geiger served as an artillery officer during the First World War. He accepted his first teaching position in 1925 at the University of Kiel, where he worked with Walther Müller to improve the sensitivity and performance of his particle counter. The modern Geiger-Müller tube detects both alpha and beta radiation, along with other photons. He dead in 1945.

33 Sintilasyon detektorler 2. Sintillasyon Detektörleri Sintilasyon maddesine radyasyon enerjisinin nakli ile bu maddenin görünen ışık veya görünen ışığa yakın dalga boyunda bir radyasyonu yayınlaması prensibine dayanır. Kullanılan katı kristallere foton yayınlanmasını arttırmak için bazı maddeler aktive edilir. Örnegin NaI kristaline Talium aktive edilmesi gibi. Elde edilen ışığın çağaltılması için fotoçogaltıcı tüp kullanılmalıdır.

34 Sintilasyon detektorler α, p, e, n, Scintillation detector electric signal X, γ scintillator light detector

35 Sintilasyon detektorler Scintillator Scintillation mechanism conduction band luminescence q, i centre light sensor e-h light quanta diode photomultiplier tube valence band CsI:Tl a-si system Gd 2 O 2 S:Tb X-ray screen-film NaI:Tl gamma camera

36 Sintilasyon detektorler Light detection PMT reflector photocathode N η α N el δ2 dynodesd δ1 δ3 δn electron multiplication scintillator optical coupling ideal case: N el = α η N el

37 Material NaI (Tl) CsI (Na) CaWO 4 ZnS (Ag) p-terphenyl in toluene p-terphenyl in polystyrene Form crystal crystal crystal powder liquid Plastic NE213 Liquid scintillator Neutron detection

38 Sintilasyon detektorler Crystals and PMT s

39 Sintilasyon detektorler PMT types Venetian blind (old) Box-and-grid Focused linear structure Gains ~ 10 7 Circular grid

40 Sintilasyon detektorler NaI(Tl) ile 60 Co kaynağından yayılan gamma ölçümü I.Akkurt et al. Submitted

41 Sintilasyon detektorler Neutron ölçümü yüksüz olduğundan dolayı genellikle TOF (time-of flight) metodu ile yapılır Bu amaçla NE213 sıvı sintilatör kullanılan en yaygın sintilatör tipidir. Çünkü diğer yüksüz parçacık olan fotonlardan ayrlması için gerekliolan decay zaman karekteri çok elverişlidir.

42 Sintilasyon detektorler J.R.M.Annand, I. Akkurt NIM A 400(1997)345

43 (γ,nγ ) Experiment at Maxlab, 1996 Water target Collimated photon beam Neutron detector Photon beam monitor NaI(Tl) detector for γ measurement

44 Sintilasyon detektorler Neutron is uncharged Pulse-Height is not used for Tn Time-of-flight (TOF) is the best way T n = M n ( 1 1 β 2 1) β = v c = 1 c d t tof

45 Neutron Measurement I. Akkurt et al. Phys. Med.Biol. 48(2003)3345

46 Katı-Hal detektorler Radyasyon detektöre çarpınca elektronlar band içerisinde uyarılır ve valance bandında boşluklar oluşur. İçerideki E alanı elektronları eklemin pozitif (n) boşlukları da negatif (p) tarafına sürükler. Bu da elektronik olarak bir sayıcı ile sayılabilen puls meydana getirir. n + contact e h q e dv 1 dq = (q edv 1 + q hdv 2 )/V q h dv 2 i = dq/dt n-type silicon p + n junction -V 0 silicon diode germanium detector

47 Katı-Hal detektorler Silicon Detector Germanium Detector Lithium-Drifted Silicon Detector

48 Sintilasyon detektorler X-ray and gamma-ray spectroscopy 662 kev 137 Cs NaI:Tl Germanium 65%FWHM 6.5 2k kev VFWHM Pulse-height spectra Multiple Compton events

49 Radyasyondan korunma Radyasyondan korunma Niçin Korunmalıyız (radyasyonun biyolojik etkileri) Neden Korunmalıyız (radyasyon nerede) Nasıl korunmalıyız (limit değerler nelerdir ve korunma yolları)

50 Niçin korunmalıyız

51 Niçin korunmalıyız Radyasyonun iki tür etkisi Somatik (kişi üzerinde görülen ani hastalıklar) Genetik (Nesillere aktarılan gen bozukluklukları)

52 Niçin korunmalıyız RADYASYONDAN KORUNMA (Müsaade Edilen Maksimum Doz) Radyasyona karşı korunmada ana fikir, tahammül edilebilen (tolere edilebilen) dozları bilmek ve radyasyon çalışanları ile çevre halkının bunun üstünde doz almasını önlemektir. Radyasyon korunmasının hedefi ise; Doku hasarına sebep olan etkileri önlemek yada bu etkilerin meydana gelme olasılıklarını kabul edilebilir düzeyde sınırlamak. Uluslararası Radyolojik Korunma Komisyonu (ICRP) tarafından Müsaade Edilebilir Maksimum Doz (ALARA), bir insanda ömür boyunca hiçbir önemli vücut arazı ve bir genetik etki meydana getirmesi beklenmeyen iyonlaştırıcı radyasyon dozu olarak tarif edilir.

53 Neden korunmalıyız MÜSAADE EDİLEN MAKSİMUM DOZ ICRP nin önerilerine göre; Görevli Halk Yıllık Etkin Doz 20 msv 1 msv Yıllık Eşdeğer Doz Göz 150 msv 15 msv Cilt 500 msv 50 msv Kol-Bacak 500 msv 50 msv

54 TEMEL PRENSİPLER a)gereklilik (Justification) Net fayda sağlamayan hiçbir radyasyon uygulamasına izin verilmemelidir. b)etkinlik (Optimizasyon- ALARA) Maruz kalınacak dozlar mümkün oldukça düşük tutulmalıdır. c) Kişisel ş Doz-Risk Sınırları: Alınmasına izin verilen dozlar sınırlandırılmalıdır.

55 RADYASYONDAN KORUNMADA 3 ANA YOL ZAMAN MESAFE ZIRHLAMA

56 ZAMAN Radyasyon kaynağı ağ (yada) ortamında ne kadar az zaman geçirilirse o kadar az doza maruz kalınır. Alınan Doz= (Doz şiddeti)x(zaman) Böylece, bir ölçüm cihazının 50 msv/saat lik radyasyon dozunu gösterdiği bir bölgede kalınması halinde maruz kalınacak doz; saatte 50 msv, 2 saatte 100 msv, 3 saatte 150 msv, vs. dir.

57 MESAFE Radyasyon kaynağından ne kadar uzak durulursa maruz kalınan doz o kadar az olur.

58 Ters kare kanunu Radyasyon dozu uzaklığın karesi ile ters orantılı olarak değişir. 2 I 1 d 1 = 2 I 2 d 2

59 ZIRHLAMA Radyasyon kaynağı ile kişi arasına konulacak engel alınan dozu en aza indirecektir. Değişik radyasyon tipleri için seçilen zırh farklı olmalıdır. Video

60 γ-ray zayıflatma katsayısı N=N o e -μx N=N o /2 için x değeri yarı değer kalınlık (YDK) N=No/10 için x değeri ondabir değer kalınlık (ODK)

61 ZIRHLAMA Pb ile Betonun Yarı ve Ondabir Değer Kalınlıkları Radyoaktif kaynak Co-60 Ir-192 Cs-137 Zırh malzemesi YDK ODK YDK ODK YDK ODK Kurşun (cm) Beton (cm)

62 UYGUN ZIRHLAMA

63 GÜNLÜK PRATİKTE ZAMAN VE MESAFE FAKTÖRLERİNİ TAM ANLAMIYLA UYGULAMAK ZOR OLABİLİR. ANCAK ZIRHLAMADAN TAVİZ VERİLMESİ DOĞRU DEĞİLDİR!

64 UYGUN ZIRHLAMA KURŞUN PARAVAN KURŞUN ÖNLÜK TİROİD KALKANI GÖZLÜK DOMUZ TOPRAK BETON

65 RADYASYONDAN KORUNMA (MONİTORİNG) Monitoring, iyonlaştırıcı radyasyonların ve radyoaktif kontaminasyonun varlığını ve derecesini tayin etmektir. Kişisel monitoring Alan monitoring

66 Personel monitoring PERSONEL MONİTORİNG: Kişiler tarafından alınan toplam vücut dozunun rutin olarak ölçülmesidir. Bunun temel amacı: Personelin maruz kaldığı kişisel radyasyon dozlarının maksimum müsaade edilen seviyenin altında tutulabilmesi için, alınan dozları ölçmek ve kayıtlarını tutmak, Personele, radyasyon y bakımından sağlığının ğ ğ korunduğu güvencesini vermek, Kuruluş ve personel arasındaki fazla doz alma anlaşmazlıklarında ş kanuni koruma olanağığ sağlamak. ğ

67 Personel monitoring Film Dozimetreleri TLD Dozimetreleri Ekzo-elektrodozimetreleri lkt t l i Kimyasal Dozimetreler Cam Dozimetreleri

68

69 Personel monitoring Film Badges

70 Personel monitoring Film and TLD

71 Personel monitoring TLD

72 Personel monitoring TLD Whole body Extremity

73 Personel monitoring Whole Body Monitoring

74 Alan monitoring Radyasyon Alanlarının Sınıflandırılması Maruz kalınacak yıllık dozun 1 msv değerini geçme olasılığı bulunan alanlar radyasyon alanı olarak nitelendirilir ve radyasyon alanları radyasyon düzeylerine göre sınıflandırılır: 1- Denetimli Alanlar 2- Gözetimli Alanlar Dışradyasyonu kontrol etmek ve yüzeysel kirliliğinin i ölçümü ü Geiger Mueller sayacı ile yapılır.

75 Alan monitoring DENETİMLİ ALANLAR Radyasyon görevlilerinin giriş ve çıkışlarının özel denetime, çalışmalarının radyasyon korunması bakımından özel kurallara bağlı olduğu ve görevi gereği radyasyon ile çalışan kişilerin yıllık doz sınırlarının (ardışık beş yılın ortalaması) 3/10 undan (6 msv) fazla radyasyon y dozuna maruz kalabilecekleri alanlardır.

76 Alan monitoring GÖZETİMLİ ALANLAR Radyasyon görevlileri için yıllık doz sınırlarının 1/20 sinin aşılma olasılığı olup, 3/10 unun aşılması beklenmeyen, kişisel doz ölçümünü gerektirmeyen fakat çevresel radyasyonun izlenmesini gerektiren alanlardır.

77 Alan monitoring Radyasyon kullanılan alanlar radyoaktif kirlenme (sızıntıya karşı) sürekli olarak gözlenmelidir. lidi Ölçümler yerinde portable cihazlarla yada alarm düzenine sahip monte edilmiş cihazlarla yapılmalıdır. Kalibration Alfa için ZnS türü detektör kullanılmasına ragmen gnellikle G-M tipi detektörler daha avantajlıdır

78

79 1 Radiation Detection and Measurement Glenn F. Knoll 4 John Wiley & Sons, Inc. New York 3rd edition, 2000 Computed Tomography WA W.A. Kalender Publicis MCD Verlag, Munich 1st edition, The Physics of Medical Imaging Ed. S. Webb Adam Hilger, Bristol or later Nucleaire Geneeskunde Ed. J.A.J. Camps et al. Elsevier/De Tijdstroom Inleiding tot de Stralingshygiëne 6 Radiotherapy Physics in Practice Ed. A.J.J. Bos and others Ed. J.R. Williams and D.I. Thwaites Elsevier Gezondheidszorg, Maarssen Oxford University Press 1st edition, nd edition, 2000

80 Yüksek İstek ancak düşük zeka düzeyi Yüksek zeka düzeyi ancak düşük istekten her zaman daha BAŞARILI olur. TEŞEKKÜRLER

Kaynak: Forum Media Yayıncılık; İş Sağlığı ve Güvenliği için Eğitim Seti

Kaynak: Forum Media Yayıncılık; İş Sağlığı ve Güvenliği için Eğitim Seti Kaynak: Forum Media Yayıncılık; İş Sağlığı ve Güvenliği için Eğitim Seti Radyasyonun Keşfi 1895 yılında Wilhelm Conrad Röntgen tarafından X-ışınlarının keşfi yapılmıştır. Radyasyonun Keşfi 1896 yılında

Detaylı

RADYASYON VE RADYASYONDAN KORUNMA

RADYASYON VE RADYASYONDAN KORUNMA RADYASYON VE RADYASYONDAN KORUNMA Mehmet YÜKSEL Çukurova Üniversitesi Fen Bilimleri Enstitüsü Fizik Anabilim Dalı MADDENİN YAPISI (ATOM) Çekirdek Elektronlar RADYASYON NEDİR? Radyasyon; iç dönüşüm geçiren

Detaylı

Kaynak: Forum Media Yayıncılık; İş Sağlığı ve Güvenliği için Eğitim Seti

Kaynak: Forum Media Yayıncılık; İş Sağlığı ve Güvenliği için Eğitim Seti Kaynak: Forum Media Yayıncılık; İş Sağlığı ve Güvenliği için Eğitim Seti Endüstriyel Uygulamalar Radyasyon endüstriyel alanda oldukça yaygın bir şekilde kullanılmaktadır. Örneğin, X ve gama ışınlarından

Detaylı

Radyasyon, Radyoaktivite, Doz, Birimler ve Tanımlar. Dr. Halil DEMİREL

Radyasyon, Radyoaktivite, Doz, Birimler ve Tanımlar. Dr. Halil DEMİREL Radyasyon, Radyoaktivite, Doz, Birimler ve Tanımlar Dr. Halil DEMİREL Radyasyon, Radyoaktivite, Doz ve Birimler Çekirdek Elektron Elektron Yörüngesi Nötron Proton Nükleon Atom 18.05.2011 TAEK - ADHK 2

Detaylı

RADYASYON GÜVENLİĞİ BARIŞ ÜNLÜ BİYOMEDİKAL MÜHENDİSİ

RADYASYON GÜVENLİĞİ BARIŞ ÜNLÜ BİYOMEDİKAL MÜHENDİSİ RADYASYON GÜVENLİĞİ BARIŞ ÜNLÜ BİYOMEDİKAL MÜHENDİSİ Radyasyon Nedir? Radyasyon veya ışınım, elektromanyetik dalgalar veya parçacıklar biçiminde ki enerji yayımı ya da aktarımıdır.radyoaktif maddelerin

Detaylı

RADYASYON VE SAĞLIK A.HİKMET ERİŞ TIBBİ RADYOFİZİK UZM. BEZMİALEM VAKIF ÜNİV.TIP FAK.

RADYASYON VE SAĞLIK A.HİKMET ERİŞ TIBBİ RADYOFİZİK UZM. BEZMİALEM VAKIF ÜNİV.TIP FAK. RADYASYON VE SAĞLIK A.HİKMET ERİŞ TIBBİ RADYOFİZİK UZM. BEZMİALEM VAKIF ÜNİV.TIP FAK. RADYASYON ÇALIŞANLARI VE BİLİNMESİ GEREKENLER RADYASYON TANIMI: DALGA VE TANECİK ÖZELLİKTE UZAYDA DOLAŞAN ENERJİ PAKETİ.

Detaylı

RADYASYON GÜVENLİĞİ. Öğr.Gör. Şükrü OĞUZ KTÜ Tıp Fakültesi Radyoloji AB

RADYASYON GÜVENLİĞİ. Öğr.Gör. Şükrü OĞUZ KTÜ Tıp Fakültesi Radyoloji AB RADYASYON GÜVENLİĞİ Öğr.Gör. Şükrü OĞUZ KTÜ Tıp Fakültesi Radyoloji AB İyonlaştırıcı radyasyonlar canlılar üzerinde olumsuz etkileri vardır. 1895 W.Conrad Roentgen X ışınını bulduktan 4 ay sonra saç dökülmesini

Detaylı

ALARA RGD RKS SINAVI ÇALIŞMA SORULARI

ALARA RGD RKS SINAVI ÇALIŞMA SORULARI 1) Radyoaktivite nedir? ALARA RGD RKS SINAVI ÇALIŞMA SORULARI a. Çekirdeğin enerji açığa çıkararak 2 farklı atoma bölünmesidir b. Atomun yörünge elektronlarından birinin koparılmasıdır. c. Karasız atom

Detaylı

RADYASYON KAYNAKLARI VE RADYASYONDAN KORUNMA

RADYASYON KAYNAKLARI VE RADYASYONDAN KORUNMA RADYASYON KAYNAKLARI VE RADYASYONDAN KORUNMA SABRİ HIZARCI Türkiye Atom Enerjisi Kurumu Radyasyon Sağlığı ve Güvenliği Dairesi RADYASYON NEDİR? ENERJİDİR Yaşamımızın doğal bir parçasıdır. Radyasyon Türleri

Detaylı

RADYASYON GÜVENLĠĞĠ VE KORUNMA

RADYASYON GÜVENLĠĞĠ VE KORUNMA RADYASYON GÜVENLĠĞĠ VE KORUNMA Radyasyonun KeĢfi 1895 yılında Wilhelm Conrad Röntgen tarafından X-ıĢınlarının keģfi (ilk klinik görüntü), Radyasyonun KeĢfi 1896 yılında H.Becquerel tarafından radyoaktivitenin

Detaylı

İYONLAŞTIRICI RADYASYON BULUNAN İŞYERLERİNDE RİSK DEĞERLENDİRMESİ

İYONLAŞTIRICI RADYASYON BULUNAN İŞYERLERİNDE RİSK DEĞERLENDİRMESİ İYONLAŞTIRICI RADYASYON BULUNAN İŞYERLERİNDE RİSK DEĞERLENDİRMESİ Dr. Sibel TÜRKEŞ YILMAZ İçerik Türkiye de Radyasyon Kaynakları Radyasyona Maruz Kalma Çeşitleri Temel Güvenlik Standartları Doz Sınırları

Detaylı

RADYASYON DEDEKTÖR ÇEŞİTLERİ

RADYASYON DEDEKTÖR ÇEŞİTLERİ GAZLI (İyon odası, Orantılı, G-M ded.) SİNTİLASYON YARIİLETKEN KALORİMETRİK BULUT /KABARCIK(Bubble) Kıvılcım(Spark) Odacıkları-YEF NÖTRON Dedektörleri ÇERENKOV Portal Monitörler Duman(smoke) dedektör Nükleer

Detaylı

İYONLAŞTIRICI RADYASYON BULUNAN İŞYERLERİNDE İŞ HİJYENİ

İYONLAŞTIRICI RADYASYON BULUNAN İŞYERLERİNDE İŞ HİJYENİ İYONLAŞTIRICI RADYASYON BULUNAN İŞYERLERİNDE İŞ HİJYENİ Dr. Sibel TÜRKEŞ YILMAZ Türkiye Atom Enerjisi Kurumu Radyasyon Sağlığı ve Güvenliği Dairesi Tel: +90 312 295 88 09 Fax: +90 295 89 56 İçerik Ayrıntılı

Detaylı

Bölüm 7 Radyasyon Güvenliği. Prof. Dr. Bahadır BOYACIOĞLU

Bölüm 7 Radyasyon Güvenliği. Prof. Dr. Bahadır BOYACIOĞLU Bölüm 7 Radyasyon Güvenliği Prof. Dr. Bahadır BOYACIOĞLU RADYASYON NEDİR? Radyasyon, elektromanyetik dalgalar veya parçacıklar biçiminde enerji yayılımı ya da aktarımıdır. RADYASYON ÇEŞİTLERİ İYONLAŞTIRICI

Detaylı

Doz Birimleri. SI birim sisteminde doz birimi Gray dir.

Doz Birimleri. SI birim sisteminde doz birimi Gray dir. Doz Birimleri Bir canlının üzerine düşen radyasyon miktarından daha önemlisi ne kadar doz soğurduğudur. Soğurulan doz için kullanılan birimler aşağıdaki gibidir. 1 rad: Radyoaktif bir ışımaya maruz kalan

Detaylı

Nötronlar kinetik enerjilerine göre aşağıdaki gibi sınıflandırılırlar

Nötronlar kinetik enerjilerine göre aşağıdaki gibi sınıflandırılırlar Nötronlar kinetik enerjilerine göre aşağıdaki gibi sınıflandırılırlar Termal nötronlar (0.025 ev) Orta enerjili nötronlar (0.5-10 kev) Hızlı nötronlar (10 kev-10 MeV) Çok hızlı nötronlar (10 MeV in üzerinde)

Detaylı

6- RADYASYON KAYNAKLARI VE DOZU

6- RADYASYON KAYNAKLARI VE DOZU 6- RADYASYON KAYNAKLARI VE DOZU Güneşten gelen ısı ve ışık enerjisi radyasyonun doğal formudur. Bunlar çevremizde doğal olarak bulundukları gibi yapay olarak da elde edilmektedir. O nedenle radyasyon kaynağına

Detaylı

Radyasyon Ölçüm Cihazları

Radyasyon Ölçüm Cihazları Radyasyon Ölçüm Cihazları TÜRKİYE ATOM ENERJİSİ KURUMU Ayhan AKKAŞ ÇNAEM- 2013 SUNU İÇERİĞİ Radyasyon Ölçüm Sistemleri Radyasyon Ölçüm Cihazlarının Genel Özellikleri Verim Cevap Verme Süresi Enerji Bağımlılığı

Detaylı

İŞYERLERİNDE İYONLAŞTIRICI RADYASYONDAN KORUNMA

İŞYERLERİNDE İYONLAŞTIRICI RADYASYONDAN KORUNMA İŞYERLERİNDE İYONLAŞTIRICI RADYASYONDAN KORUNMA Dr. Sibel TÜRKEŞ YILMAZ Türkiye Atom Enerjisi Kurumu Radyasyon Sağlığı ve Güvenliği Dairesi sibel.turkes@taek.gov.tr İçerik Türkiye Atom Enerjisi Kurumu

Detaylı

RADYASYON ve RADYASYONDAN KORUNMA. Cansu Akbay Biyomedikal Yük. Mühendisi Elektrik Mühendisleri Odası Ankara Şubesi

RADYASYON ve RADYASYONDAN KORUNMA. Cansu Akbay Biyomedikal Yük. Mühendisi Elektrik Mühendisleri Odası Ankara Şubesi RADYASYON ve RADYASYONDAN KORUNMA Cansu Akbay Biyomedikal Yük. Mühendisi Elektrik Mühendisleri Odası Ankara Şubesi Radyasyon: Dalga veya parçacık şeklinde uzayda enerji yayılımı RADYASYON İyonlaştırıcı

Detaylı

İYON ODALARI VE DOZİMETRE KALİBRASYONLARI

İYON ODALARI VE DOZİMETRE KALİBRASYONLARI İYON ODALARI VE DOZİMETRE KALİBRASYONLARI Dr. Doğan YAŞAR TAEK,ÇNAEM Radyasyon Metrolojisi Birimi dogan.yasar@taek.gov.tr İçerik 2 Tedavi amaçlı dozimetreler Korunma amaçlı dozimetreler - doz hızı ölçerler

Detaylı

Bölüm 4 Nükleer Fiziğin Uygulamaları. Prof. Dr. Bahadır BOYACIOĞLU

Bölüm 4 Nükleer Fiziğin Uygulamaları. Prof. Dr. Bahadır BOYACIOĞLU Bölüm 4 Nükleer Fiziğin Uygulamaları Prof. Dr. Bahadır BOYACIOĞLU İÇİNDEKİLER Maddede Radyasyon Tahribatı Radyasyon Birimleri Radyasyonun Zararları Maddede Radyasyon Tahribatı Madde tarafından absorbe

Detaylı

Geçen Süre/Yarı ömür. İlk madde miktarı. Kalan madde miktarı

Geçen Süre/Yarı ömür. İlk madde miktarı. Kalan madde miktarı 27.10.2017 1 27.10.2017 2 27.10.2017 3 Geçen Süre/Yarı ömür Kalan madde miktarı İlk madde miktarı 27.10.2017 4 Soru 1: Yarı ömrü 18 gün olan radyoaktif bir elementin, 72 gün sonunda % kaçı bozunmadan kalır?

Detaylı

BAKIR ATOMUNDA K,L,M ZARFLARI

BAKIR ATOMUNDA K,L,M ZARFLARI HER ATOMUN YÖRÜNGE ZARFLARINDA (K,L,M,..) BULUNABİLECEK MAKSİMUM ELEKTRON SAYISI 2n 2 FORMÜLÜ İLE BULUNABİLİR. SON YÖRÜNGE ZARFINDA EN ÇOK 8 ELEKTRON BULUNUR. Helyum atomu BAKIR ATOMUNDA K,L,M ZARFLARI

Detaylı

İçerik. İçerik. Radyasyon. Radyasyon güvenliği ve radyasyondan korunma yöntemleri

İçerik. İçerik. Radyasyon. Radyasyon güvenliği ve radyasyondan korunma yöntemleri İçerik Radyasyon güvenliği ve radyasyondan korunma yöntemleri Dr. Zeynep Yazıcı Uludağ Üniversitesi, Radyoloji AD Radyasyon ve iyonlaştırıcı radyasyon nedir? İyonlaştırıcı radyasyonun biyolojik İyonlaştırıcı

Detaylı

Radyasyon nedir Nasıl ölçülür Günlük pratikte alınan radyasyon ERCP de durum ne Azaltmak için ne yapılabilir

Radyasyon nedir Nasıl ölçülür Günlük pratikte alınan radyasyon ERCP de durum ne Azaltmak için ne yapılabilir MÖ 460-377 980-1037 MÖ 460-377 980-1037 Radyasyon nedir Nasıl ölçülür Günlük pratikte alınan radyasyon ERCP de durum ne Azaltmak için ne yapılabilir RADYASYON NEDİR X ışınını 1895 te Wilhelm Conrad Roentgen

Detaylı

İŞYERLERİNDE İYONLAŞTIRICI RADYASYONDAN KORUNMA

İŞYERLERİNDE İYONLAŞTIRICI RADYASYONDAN KORUNMA İŞYERLERİNDE İYONLAŞTIRICI RADYASYONDAN KORUNMA Dr. Sibel TÜRKEŞ YILMAZ Türkiye Atom Enerjisi Kurumu Radyasyon Sağlığı ve Güvenliği Dairesi sibel.turkes@taek.gov.tr İçerik Türkiye Atom Enerjisi Kurumu

Detaylı

RADYASYON ÖLÇME SİSTEMLERİ

RADYASYON ÖLÇME SİSTEMLERİ RADYASYON ÖLÇME SİSTEMLERİ Ankara Üniversitesi Nükleer RADYASYON DOZU 1. Activite: Verilen bir zaman içersindeki parçalanma sayısı A. Becquerel 1 parçalanma / saniye Radyoaktif Çekirdek Saniyede bir parçalanma

Detaylı

Sağlık Fiziği. 1. Bölüm

Sağlık Fiziği. 1. Bölüm Sağlık Fiziği 1. Bölüm Tıbbi Uygulamalar Tanı Radyasyon başta Radyoloji olmak üzere, Nükleer Tıp, Radyoterapi ve çeşitli tıp dallarında tanı amaçlı kullanılmaktadır. En yüksek oranda tanı amaçlı kullanımı

Detaylı

Nükleer Spektroskopi Arş. Gör. Muhammed Fatih KULUÖZTÜRK fatih.fizik@gmail.com

Nükleer Spektroskopi Arş. Gör. Muhammed Fatih KULUÖZTÜRK fatih.fizik@gmail.com BİTLİS EREN ÜNİVERSİTESİ FİZİK BÖLÜMÜ BÖLÜM SEMİNERLERİ 26.03.2014 Nükleer Spektroskopi Arş. Gör. Muhammed Fatih KULUÖZTÜRK fatih.fizik@gmail.com NÜKLEER SPEKTROSKOPİ Radyasyon ve Radyoaktivite Radyasyon

Detaylı

27.01.2014. İçerik. Temel Atom ve Çekirdek Yapısı RADYASYON TEMEL KAVRAMLAR. Çekirdek. Nötronlar (yüksüz) Elektronlar (-1)

27.01.2014. İçerik. Temel Atom ve Çekirdek Yapısı RADYASYON TEMEL KAVRAMLAR. Çekirdek. Nötronlar (yüksüz) Elektronlar (-1) TEKNİKERLERE YÖNELİK BİLGİSAYARLI TOMOGRAFİ SİSTEMLERİNDE RADYASYONDAN KORUNMA VE PERFORMANS TESTLERİ BİLGİLENDİRME SEMİNERLERİ 24-25 OCAK 2014 RADYASYON TEMEL KAVRAMLAR Dr. Aydın PARMAKSIZ Türkiye Atom

Detaylı

RÖNTGEN FİZİĞİ 6. X-Işınlarının madde ile etkileşimi. Doç. Dr. Zafer KOÇ Başkent Üniversitesi Tıp Fak

RÖNTGEN FİZİĞİ 6. X-Işınlarının madde ile etkileşimi. Doç. Dr. Zafer KOÇ Başkent Üniversitesi Tıp Fak RÖNTGEN FİZİĞİ 6 X-Işınlarının madde ile etkileşimi Doç. Dr. Zafer KOÇ Başkent Üniversitesi Tıp Fak X-IŞINI MADDE ETKİLEŞİMİ Elektromanyetik enerjiler kendi dalga boylarına yakın maddelerle etkileşime

Detaylı

Bölüm 5. Tıbbi Görüntüleme Yöntemlerinin Temel İlkeleri. Prof. Dr. Bahadır BOYACIOĞLU

Bölüm 5. Tıbbi Görüntüleme Yöntemlerinin Temel İlkeleri. Prof. Dr. Bahadır BOYACIOĞLU Bölüm 5 Tıbbi Görüntüleme Yöntemlerinin Temel İlkeleri Prof. Dr. Bahadır BOYACIOĞLU İÇİNDEKİLER X-ışınları Görüntüleme Teknikleri Bilgisayarlı Tomografi (BT) Manyetik Rezonans Görüntüleme (MRI) Nükleer

Detaylı

RADYASYONDAN KORUNMA. Radyofizik Uzm.YÜCEL SAĞLAM VKV Amerikan Hastanesi

RADYASYONDAN KORUNMA. Radyofizik Uzm.YÜCEL SAĞLAM VKV Amerikan Hastanesi 1 RADYASYONDAN KORUNMA Radyofizik Uzm.YÜCEL SAĞLAM VKV Amerikan Hastanesi 2 Sunum İçeriği Radyasyon birimleri Radyasyonun biyolojik etkileri Radyasyondan Korunmada Prensipleri Doz sınırlamaları Radyoterapide

Detaylı

RÖNTGEN FİZİĞİ X-Işını oluşumu. Doç. Dr. Zafer KOÇ Başkent Üniversitesi Tıp Fak

RÖNTGEN FİZİĞİ X-Işını oluşumu. Doç. Dr. Zafer KOÇ Başkent Üniversitesi Tıp Fak RÖNTGEN FİZİĞİ X-Işını oluşumu Doç. Dr. Zafer KOÇ Başkent Üniversitesi Tıp Fak X-IŞINI OLUŞUMU Hızlandırılmış elektronların anotla etkileşimi ATOMUN YAPISI VE PARÇACIKLARI Bir elementi temsil eden en küçük

Detaylı

9- RADYASYONUN ETKİ MEKANİZMALARI 9.1- RADYASYONUN İNDİREKT (DOLAYLI) ETKİSİ

9- RADYASYONUN ETKİ MEKANİZMALARI 9.1- RADYASYONUN İNDİREKT (DOLAYLI) ETKİSİ 9- RADYASYONUN ETKİ MEKANİZMALARI 9.1- RADYASYONUN İNDİREKT (DOLAYLI) ETKİSİ Radyasyonun indirekt etkisi iyonlaştırdığı su moleküllerinin oluşturdukları serbest radikaller aracılığıyla olmaktadır. Çünkü

Detaylı

3- KİMYASAL ELEMENTLER VE FONKSİYONLARI

3- KİMYASAL ELEMENTLER VE FONKSİYONLARI 3- KİMYASAL ELEMENTLER VE FONKSİYONLARI Doğada 103 elementin olduğu bilinmektedir. Bunlardan 84 metal elementlerdir. Metal elementler toksik olan ve toksik olmayan elementler olarak ikiye ayrılmaktadır.

Detaylı

Nükleer Tekniklerin Endüstriyel Uygulamalarında Radyasyondan Korunma. Prof.Dr.Ali Nezihi BİLGE İstanbul Bilgi Üniversitesi

Nükleer Tekniklerin Endüstriyel Uygulamalarında Radyasyondan Korunma. Prof.Dr.Ali Nezihi BİLGE İstanbul Bilgi Üniversitesi Nükleer Tekniklerin Endüstriyel Uygulamalarında Radyasyondan Korunma Prof.Dr.Ali Nezihi BİLGE İstanbul Bilgi Üniversitesi Endüstride Nükleer Teknikler Radyoaktif izleyiciler Radyasyonla Ölçüm Cihazları

Detaylı

X-Işınları. 4. Ders: X-ışını sayaçları. Numan Akdoğan.

X-Işınları. 4. Ders: X-ışını sayaçları. Numan Akdoğan. X-Işınları 4. Ders: X-ışını sayaçları Numan Akdoğan akdogan@gyte.edu.tr Gebze Yüksek Teknoloji Enstitüsü Fizik Bölümü Nanomanyetizma ve Spintronik Araştırma Merkezi (NASAM) X-ışını sayaç çeşitleri 1. Fotoğraf

Detaylı

TIPTA RADYASYONDAN KORUNMA

TIPTA RADYASYONDAN KORUNMA TIPTA RADYASYONDAN KORUNMA 1. Ulusal Radyasyondan Korunma Kongresi İş Sağlığı ve Güvenliğinde Temel Radyasyondan Korunma Kursu Prof. Dr. Doğan BOR Ankara Üniversitesi Mühendislik Fakültesi Fizik Mühendisliği

Detaylı

Prof. Dr. Niyazi MERİÇ

Prof. Dr. Niyazi MERİÇ Prof. Dr. Niyazi MERİÇ Ankara Üniversitesi Nükleer Bilimler Enstitüsü meric@ankara.edu.tr Proton (pozitiv yük) Nötron (yüksüz) Elektron (negativ yük) Prof. Dr. Niyazi MERİÇ 2 Prof. Dr. Niyazi MERİÇ ÇEKİRDEKTE

Detaylı

Radyasyon Uygulamalarının Fizik Mühendisliği ve Eğitiminden Beklentileri. Dr. Abdullah ZARARSIZ Fizik Mühendisleri Odası

Radyasyon Uygulamalarının Fizik Mühendisliği ve Eğitiminden Beklentileri. Dr. Abdullah ZARARSIZ Fizik Mühendisleri Odası Radyasyon Uygulamalarının Fizik Mühendisliği ve Eğitiminden Beklentileri Dr. Abdullah ZARARSIZ Fizik Mühendisleri Odası İÇERİK - İYONLAŞTIRICI RADYASYON Endüstriyel Uygulamalar Medikal Uygulamalar Diğer

Detaylı

1. Hafta. İzotop : Proton sayısı aynı nötron sayısı farklı olan çekirdeklere izotop denir. ÖRNEK = oksijenin izotoplarıdır.

1. Hafta. İzotop : Proton sayısı aynı nötron sayısı farklı olan çekirdeklere izotop denir. ÖRNEK = oksijenin izotoplarıdır. 1. Hafta 1) GİRİŞ veya A : Çekirdeğin Kütle Numarası (Nükleer kütle ile temel kütle birimi arasıdaki orana en yakın bir tamsayı) A > Z Z: Atom Numarası (Protonların sayısı ) N : Nötronların Sayısı A =

Detaylı

ÇALIŞTAY İŞ SAĞLIĞI VE GÜVENLİĞİNDE RADYASYONDAN KORUNMANIN YERİ VE ÖNEMİ. Prof. Dr. Doğan Bor

ÇALIŞTAY İŞ SAĞLIĞI VE GÜVENLİĞİNDE RADYASYONDAN KORUNMANIN YERİ VE ÖNEMİ. Prof. Dr. Doğan Bor ÇALIŞTAY İŞ SAĞLIĞI VE GÜVENLİĞİNDE RADYASYONDAN KORUNMANIN YERİ VE ÖNEMİ 11, Ekim, 2014 Antalya Radyasyondan Korunma Uzmanlığı Eğitim programları ve Uygulamaları Prof. Dr. Doğan Bor RADYASYON Yaşamın

Detaylı

HIZLANDIRICILARDA RADYASYON GÜVENL

HIZLANDIRICILARDA RADYASYON GÜVENL HIZLANDIRICILARDA RADYASYON GÜVENLİĞİ Doç. Dr. Yeşim ÖKTEM İstanbul Üniversitesi İÇERİK Radyasyondan korunma ve radyasyon güvenliği Radyasyon dozimetrisinde i i d nicelikler ve birimler Hızlandırıcılarda

Detaylı

RADYASYON ALANLARINDA RADYASYON GÜVENLİĞİ VE İŞ GÜVENLİĞİ

RADYASYON ALANLARINDA RADYASYON GÜVENLİĞİ VE İŞ GÜVENLİĞİ RADYASYON ALANLARINDA RADYASYON GÜVENLİĞİ VE İŞ GÜVENLİĞİ İYONİZE RADYASYON ALANINDA RİSK DEĞERLENDİRMESİ Fizikçi Okan ŞAR A Sınıfı İş Güvenliği Uzmanı Radyasyon Güvenliği Uzmanı İSG DE BAZI TANIMLAR VE

Detaylı

Radyasyon Tespiti ve Ölçümü

Radyasyon Tespiti ve Ölçümü DERLEME DOI:10.4274/nts.2017.018 Nucl Med Semin 2017;3:172-177 Radyasyon Tespiti ve Ölçümü Radiation Detection and Measurement Semra Dönmez Sağlık Bilimleri Üniversitesi, Gülhane Tıp Fakültesi, Nükleer

Detaylı

Radyoaktivitenin Canlılar Üzerindeki Etkisi

Radyoaktivitenin Canlılar Üzerindeki Etkisi Radyoaktivitenin Canlılar Üzerindeki Etkisi Atom: Elementin tüm özelliklerini gösteren en küçük yapı taşıdır. Yunanlı filozofların, tüm maddelerin bölünmeyen yapıtaşları ndan oluştuğunu ilk olarak öne

Detaylı

RETROSPEKTİF DOZİMETRE UYGULAMA LABORATUARI OSL (OPTİK UYARMALI LÜMİNESANS) TARİHLENDİRME DENEY FÖYÜ

RETROSPEKTİF DOZİMETRE UYGULAMA LABORATUARI OSL (OPTİK UYARMALI LÜMİNESANS) TARİHLENDİRME DENEY FÖYÜ RETROSPEKTİF DOZİMETRE UYGULAMA LABORATUARI OSL (OPTİK UYARMALI LÜMİNESANS) TARİHLENDİRME DENEY FÖYÜ 1. GENEL BİLGİ: Tarihlendirme için kullanılan materyaller doğal ortamlarında ışık veya ısı gibi uyarıcılardan

Detaylı

UBT Foton Algılayıcıları Ara Sınav Cevap Anahtarı Tarih: 22 Nisan 2015 Süre: 90 dk. İsim:

UBT Foton Algılayıcıları Ara Sınav Cevap Anahtarı Tarih: 22 Nisan 2015 Süre: 90 dk. İsim: UBT 306 - Foton Algılayıcıları Ara Sınav Cevap Anahtarı Tarih: 22 Nisan 2015 Süre: 90 dk. İsim: 1. (a) (5) Radyoaktivite nedir, tanımlayınız? Bir radyoizotopun aktivitesi (A), izotopun birim zamandaki

Detaylı

Morötesi ışınlar (ultraviole ışınlar); güneş ışını içerisinde bulunduğu gibi yapay olarak da meydana getirilir ve x-ışınlarına göre dalga boyları

Morötesi ışınlar (ultraviole ışınlar); güneş ışını içerisinde bulunduğu gibi yapay olarak da meydana getirilir ve x-ışınlarına göre dalga boyları RADYASYON 1.Radyasyonun tanımı, türleri, kaynakları: Radyasyon Latince bir kelime olup dilimizde ışıma olarak kullanılır. Atomlardan, Güneş ten ve diğer yıldızlardan yayılan enerjiye, radyasyon enerji

Detaylı

ELEKTROMANYETİK İ ALANLAR. Prof. Dr. M. Tunaya KALKAN İÜ Cerrahpaşa Tıp Fakültesi

ELEKTROMANYETİK İ ALANLAR. Prof. Dr. M. Tunaya KALKAN İÜ Cerrahpaşa Tıp Fakültesi ELEKTROMANYETİK İ ALANLAR ve RADYASYON ÖLÇÜMLERİ Prof. Dr. M. Tunaya KALKAN İÜ Cerrahpaşa Tıp Fakültesi Biyofizik Anabilim Dalı GİRİŞ Dört temel kuvvet a) Gravitasyonel kuvvetler, kütleler gezegenler ve

Detaylı

RÖNTGEN FİZİĞİ 5 X-ışınlarının özellikleri, kalitesi ve kantitesi. Doç. Dr. Zafer KOÇ Başkent Üniversitesi Tıp Fak

RÖNTGEN FİZİĞİ 5 X-ışınlarının özellikleri, kalitesi ve kantitesi. Doç. Dr. Zafer KOÇ Başkent Üniversitesi Tıp Fak RÖNTGEN FİZİĞİ 5 X-ışınlarının özellikleri, kalitesi ve kantitesi Doç. Dr. Zafer KOÇ Başkent Üniversitesi Tıp Fak X-ışınlarının özellikleri, kalitesi ve kantitesi X-ışınları cam veya metal kılıfın penceresinden

Detaylı

RADYASYON FİZİĞİ 5. Prof. Dr. Kıvanç Kamburoğlu

RADYASYON FİZİĞİ 5. Prof. Dr. Kıvanç Kamburoğlu RADYASYON FİZİĞİ 5 Prof. Dr. Kıvanç Kamburoğlu X ışını atenuasyonu X ışını, madde içerisinden geçerken başlıca fotoelektrik absorbsiyon ve compton saçılma ile şiddetini kaybeder Işın demetinin absorbsiyonu

Detaylı

REVİZYON DURUMU. Revizyon Tarihi Açıklama Revizyon No

REVİZYON DURUMU. Revizyon Tarihi Açıklama Revizyon No REVİZYON DURUMU Revizyon Tarihi Açıklama Revizyon No Hazırlayan: Onaylayan: Onaylayan: Hasta Değerlendirme Kurulu Adem Aköl Kalite Konseyi Başkanı Sinan Özyavaş Kalite Koordinatörü 1/6 1. AMAÇ Yakın Doğu

Detaylı

ATOM ve İZOTOPlar RADYOAKTİVİTE ve RADYASYON. Prof. Dr. Arif Altıntaş

ATOM ve İZOTOPlar RADYOAKTİVİTE ve RADYASYON. Prof. Dr. Arif Altıntaş ATOM ve İZOTOPlar RADYOAKTİVİTE ve RADYASYON Prof. Dr. Arif Altıntaş Atom nedir? Atomlar tüm maddeler için yapıyı oluşturan çok küçük partiküllerdir. Atom; bir elementin kimyasal özelliklerini gösteren

Detaylı

Büyük Patlama ve Evrenin Oluşumu. Test 1 in Çözümleri

Büyük Patlama ve Evrenin Oluşumu. Test 1 in Çözümleri 7 Büyük Patlama ve Evrenin Oluşumu 225 Test 1 in Çözümleri 1. Elektrikçe yüksüz parçacıklar olan fotonların kütleleri yoktur. Işık hızıyla hareket ettikleri için atom içerisinde bulunamazlar. Fotonlar

Detaylı

ATOM ve İZOTOPLAR. Prof. Dr. Arif Altıntaş.

ATOM ve İZOTOPLAR. Prof. Dr. Arif Altıntaş. ATOM ve İZOTOPLAR RADYOAKTİVİTE TE ve RADYASYON Prof. Dr. Arif Altıntaş altintas@veterinary.ankara.edu.tr Atom nedir? Atomlar tüm maddeler için yapıyı oluşturan çok küçük partiküllerdir. Atom; bir elementin

Detaylı

Prof. Dr. Niyazi MERİÇ Ankara Üniversitesi Nükleer Bilimler Enstitüsü

Prof. Dr. Niyazi MERİÇ Ankara Üniversitesi Nükleer Bilimler Enstitüsü 101537 RADYASYON FİZİĞİ Prof. Dr. Niyazi MERİÇ Ankara Üniversitesi Nükleer Bilimler Enstitüsü TEMEL KAVRAMLAR Radyasyon, Elektromanyetik Dalga, Uyarılma ve İyonlaşma, peryodik cetvel radyoaktif bozunum

Detaylı

Alüminyum Hedefte Depolanan Enerjinin Elektron Enerjisi ile Değişimi. Variation of Deposition Energy with Electron Energy in Aluminum Target

Alüminyum Hedefte Depolanan Enerjinin Elektron Enerjisi ile Değişimi. Variation of Deposition Energy with Electron Energy in Aluminum Target Alüminyum Hedefte Depolanan Enerjinin Elektron Enerjisi ile Değişimi Zehra Nur Demirci 1,*, Nilgün Demir 2, İskender Akkurt 1 1 Süleyman Demirel Üniversitesi, Fen-Edebiyat Fakültesi, Fizik Bölümü, Çünür

Detaylı

Radyoaktif Çekirdekler

Radyoaktif Çekirdekler NÜKLEER TIP Tıpta radyoaktif çekirdeklerin kullanılması esasen 1920 lerde önerilmiş ve 1940 larda kullanılmaya başlamıştır. Nükleer tıp görüntülemede temel, hasta vücudunda bir gama aktif bölge oluşturmak

Detaylı

İşyeri ortamlarında, çalışanların sağlığını. ve güvenliğini korumak amacıyla yapılan bilimsel çalışmaların tümü diye tanımlanabilir.

İşyeri ortamlarında, çalışanların sağlığını. ve güvenliğini korumak amacıyla yapılan bilimsel çalışmaların tümü diye tanımlanabilir. İş Sağlığı ve Güvenliği İşyeri ortamlarında, çalışanların sağlığını ve güvenliğini korumak amacıyla yapılan bilimsel çalışmaların tümü diye tanımlanabilir. Çalışanların sağlığı ve güvenliğin bozulması

Detaylı

X IŞINLARININ ELDE EDİLİŞİ

X IŞINLARININ ELDE EDİLİŞİ X IŞINLARININ ELDE EDİLİŞİ Radyografide ve radyoterapide kullanılan X- ışınları, havası boşaltılmış bir tüp içinde, yüksek gerilim altında, ısıtılan katottan çıkan elektron demetinin hızlandırılarak anota

Detaylı

MANYETİK REZONANS TEMEL PRENSİPLERİ

MANYETİK REZONANS TEMEL PRENSİPLERİ MANYETİK REZONANS TEMEL PRENSİPLERİ Dr. Ragıp Özkan Eskişehir Osmangazi Üniversitesi Tıp Fakültesi Radyoloji ABD REZONANS Sinyal intensitesini belirleyen faktörler Proton yoğunluğu TR T1 TE T2

Detaylı

ÇEVRESEL RADYASYON KAYNAKLARI

ÇEVRESEL RADYASYON KAYNAKLARI ÇEVRESEL RADYASYON KAYNAKLARI Çevresel radyasyon kaynakları Doğal radyasyon kaynakları Kozmik radyasyon Topraktan gelen radyasyon Radon Vücuttaki radyasyon (besinle alınan) Yapaya radyasyon kaynakları

Detaylı

Doz azaltma teknikleri. Süre. Mesafe. Zırhlama. Yapısal Zırhlama 11/18/2015 RADYOLOJİDE ZIRHLAMA. Prof.Dr.Nail Bulakbaşı

Doz azaltma teknikleri. Süre. Mesafe. Zırhlama. Yapısal Zırhlama 11/18/2015 RADYOLOJİDE ZIRHLAMA. Prof.Dr.Nail Bulakbaşı Doz azaltma teknikleri RADYOLOJİDE ZIRHLAMA Radyasyondan korunma parametreleri Prof.Dr.Nail Bulakbaşı Süre Mesafe Zırhlama Süre Mesafe Doz = (Doz Şiddeti)x(Süre) Bir ölçüm cihazının 50 µsv/saat lik radyasyon

Detaylı

Türkiye de Kişisel Dozimetri Hizmeti

Türkiye de Kişisel Dozimetri Hizmeti 1. ULUSAL RADYASYONDAN KORUNMA KONGRESİ 19-21 Kasım 2015 Türkiye de Kişisel Dozimetri Hizmeti Dr. Çiğdem YILDIZ Türkiye Atom Enerjisi Kurumu Sarayköy Nükleer Araştırma ve Eğitim Merkezi Sağlık Fiziği Bölümü

Detaylı

X IŞINLARININ NİTELİĞİ VE MİKTARI

X IŞINLARININ NİTELİĞİ VE MİKTARI X IŞINLARININ NİTELİĞİ VE MİKTARI X IŞINI MİKTARINI ETKİLEYENLER X-ışınlarının miktarı Röntgen (R) ya da miliröntgen (mr) birimleri ile ölçülmektedir. Bu birimlerle ifade edilen değerler ışın yoğunluğu

Detaylı

Radyasyon Yaralılarının Tıbbi Yönetimi

Radyasyon Yaralılarının Tıbbi Yönetimi Radyasyon Yaralılarının Tıbbi Yönetimi İyonize Radyasyonun Tipleri Radyasyon Kaynağı Alfa Partikülü Kağıt Beta Partikülü Plastik, Deri Gamma Işını Kurşun veya beton 2 / 19 Radyoaktif Materyal ÖLÇÜM FİZİKİ

Detaylı

NÖTRON RADYASYONU ZIRHLAMA MALZEMESİ OLARAK POLYESTER MATRİSLİ VERMİKÜLİT TAKVİYELİ NUMUNE HAZIRLANMASI VE ZIRHLAMA KABİLİYETİNİN ARAŞTIRILMASI

NÖTRON RADYASYONU ZIRHLAMA MALZEMESİ OLARAK POLYESTER MATRİSLİ VERMİKÜLİT TAKVİYELİ NUMUNE HAZIRLANMASI VE ZIRHLAMA KABİLİYETİNİN ARAŞTIRILMASI NÖTRON RADYASYONU ZIRHLAMA MALZEMESİ OLARAK POLYESTER MATRİSLİ VERMİKÜLİT TAKVİYELİ NUMUNE HAZIRLANMASI VE ZIRHLAMA KABİLİYETİNİN ARAŞTIRILMASI Selim AYDIN-Tuncay TUNA TAEK SANAEM-ÇNAEM 2017 ÇALIŞMANIN

Detaylı

Radyasyona Bağlı Hücre Zedelenmesi. Doç. Dr. Halil Kıyıcı 2015

Radyasyona Bağlı Hücre Zedelenmesi. Doç. Dr. Halil Kıyıcı 2015 Radyasyona Bağlı Hücre Zedelenmesi Doç. Dr. Halil Kıyıcı 2015 Radyasyon nedir? «Yüksek hızlı partiküller ya da dalgalar şeklinde yayılan enerji» Radyasyon kaynakları 1- Doğal kaynaklar 2- Yapay kaynaklar

Detaylı

LCD 4 Fantomu Üzerinde Sayım ve Görüntüleme Dedektörleri Kullanılarak Yapılan Kontrast Ölçümlerinin Karşılaştırılması

LCD 4 Fantomu Üzerinde Sayım ve Görüntüleme Dedektörleri Kullanılarak Yapılan Kontrast Ölçümlerinin Karşılaştırılması Ankara Üniversitesi Nükleer Bilimler Enstitüsü LCD 4 Fantomu Üzerinde Sayım ve Görüntüleme Dedektörleri Kullanılarak Yapılan Kontrast Ölçümlerinin Karşılaştırılması Emre GÜLLÜOĞLU, Alptuğ Özer YÜKSEL,

Detaylı

GÜNEŞİN ELEKTROMANYETİK SPEKTRUMU

GÜNEŞİN ELEKTROMANYETİK SPEKTRUMU GÜNEŞİN ELEKTROMANYETİK SPEKTRUMU Güneş ışınımı değişik dalga boylarında yayılır. Yayılan bu dalga boylarının sıralı görünümü de güneş spektrumu olarak isimlendirilir. Tam olarak ifade edilecek olursa;

Detaylı

Radyasyondan Korunma Prensipleri ve Yönetmelikler Dr. Emin GÜNGÖR

Radyasyondan Korunma Prensipleri ve Yönetmelikler Dr. Emin GÜNGÖR Radyasyondan Korunma Prensipleri ve Yönetmelikler Dr. Emin GÜNGÖR İçerik Radyasyon Nedir? Radyasyonun Biyolojik Etkileri Radyasyondan Korunma Yapay kaynaklardan toplum ışınlanmaları Radyasyon etkilerinin

Detaylı

Yüksek Enerjili İyonlaştırıcı Radyasyon DedeksiyonundaKullanılmak Üzere Polimer Esaslı Sintilatör Üretimi

Yüksek Enerjili İyonlaştırıcı Radyasyon DedeksiyonundaKullanılmak Üzere Polimer Esaslı Sintilatör Üretimi Yüksek Enerjili İyonlaştırıcı Radyasyon DedeksiyonundaKullanılmak Üzere Polimer Esaslı Sintilatör Üretimi Production Scintillator For Use in High-Energy Ionizing Radiation Detection Uğur Adnan SEVİL Hitit

Detaylı

RADYASYON ÖLÇÜM YÖNTEMLERİ

RADYASYON ÖLÇÜM YÖNTEMLERİ RADYASYON ÖLÇÜM YÖNTEMLERİ Prof. Dr. Doğan BOR ORANTILI SAYAÇLAR DERS 2 GAZ DOLDURULMUŞ DEDEKTÖRLERİN FARKLI ÇALIŞMA BÖLGELERİ N 2 = 10 000 N 1 = 100 İyonizasyon Bölgesi İyonizasyon akımı primer iyon çiftlerinin

Detaylı

ÇUKUROVA ÜNİVERSİTESİ FEN BİLİMLERİ ENSTİTÜSÜ

ÇUKUROVA ÜNİVERSİTESİ FEN BİLİMLERİ ENSTİTÜSÜ ÇUKUROVA ÜNİVERSİTESİ FEN BİLİMLERİ ENSTİTÜSÜ YÜKSEK LİSANS TEZİ Ayşe Gülbin ÖZGER CEYHAN, YUMURTALIK VE POZANTI BÖLGELERİNİN DOĞAL RADYOAKTİVİTE DÜZEYLERİNİN BELİRLENMESİ FİZİK ANABİLİM DALI ADANA, 2005

Detaylı

12. SINIF KONU ANLATIMLI

12. SINIF KONU ANLATIMLI 12. SINIF KONU ANLATIMLI 3. ÜNİTE: DALGA MEKANİĞİ 2. Konu ELEKTROMANYETİK DALGA ETKİNLİK VE TEST ÇÖZÜMLERİ 2 Elektromanyetik Dalga Testin 1 in Çözümleri 1. B manyetik alanı sabit v hızıyla hareket ederken,

Detaylı

Çok kanallı analizör deneylerinin ilk aşaması olan enerji kalibrasyonu incelenecektir.

Çok kanallı analizör deneylerinin ilk aşaması olan enerji kalibrasyonu incelenecektir. 6. Enerji Kalibrasyonu Amaç Çok kanallı analizör deneylerinin ilk aşaması olan enerji kalibrasyonu incelenecektir. Deney Malzemeleri Ortec 296 model ScintiPack fotoçoğaltıcı tüp Yüksek gerilim (HV) güç

Detaylı

Fisyon,Füzyon, Nükleer Güç Santralleri ve Radyasyon. Prof. Dr. Niyazi MERİÇ A.Ü. Nükleer Bilimler Enstitüsü

Fisyon,Füzyon, Nükleer Güç Santralleri ve Radyasyon. Prof. Dr. Niyazi MERİÇ A.Ü. Nükleer Bilimler Enstitüsü Fisyon,Füzyon, Nükleer Güç Santralleri ve Radyasyon Prof. Dr. Niyazi MERİÇ A.Ü. Nükleer Bilimler Enstitüsü Fisyon Otto Hahn ve Fritz Strassmann 1939 yılında 235 U i bir n ile bombardıman edilmesiyle ilk

Detaylı

RADYONÜKLİTLERİN KİMYASI VE ANALİZİ

RADYONÜKLİTLERİN KİMYASI VE ANALİZİ RADYONÜKLİTLERİN KİMYASI VE ANALİZİ 6. ALKALİ TOPRAK METALLERİN RADYOKİMYASI Doç. Dr. Gaye Çakal ALKALİ TOPRAK METALLERİN RADYOKİMYASI 1. ALKALİ TOPRAK METALLERİN EN ÖNEMLİ RADYONÜKLİTLERİ 2. ALKALİ TOPRAK

Detaylı

Bitlis Eren Üniversitesi Đleri Araştırma Laboratuarı Nükleer Fizik Birimi

Bitlis Eren Üniversitesi Đleri Araştırma Laboratuarı Nükleer Fizik Birimi Bitlis Eren Üniversitesi Đleri Araştırma Laboratuarı Nükleer Fizik Birimi Đleri araştırma laboratuarı bünyesindeki nükleer fizik biriminde alfa ve gama radyasyonlarını algılamaya olanak sağlayan spektroskopi

Detaylı

RADYASYON ÖLÇÜM YÖNTEMLERİ

RADYASYON ÖLÇÜM YÖNTEMLERİ RADYASYON ÖLÇÜM YÖNTEMLERİ Konu 4 SİNTİLASYON DEDEKTÖRLERİ Prof. Dr. Doğan BOR SİNTİLATÖRLER Soğurdukları radyasyonun sintilasyon ışığı olarak veren kristallerdir. FLORESANS : uyarılmış bir maddenin aniden

Detaylı

GİRİŞ. Sayın Tıbbi cihaz sektör çalışanları ve Yöneticileri

GİRİŞ. Sayın Tıbbi cihaz sektör çalışanları ve Yöneticileri TCESİS GİRİŞ Sayın Tıbbi cihaz sektör çalışanları ve Yöneticileri Sağlık sektöründeki yöneticiler ve çalışanlar, çalıştıkları ortamlarda zaman zaman radyoaktif risklerle karşı karşıya kalabilirler. Sağlık

Detaylı

T.C. MİLLÎ EĞİTİM BAKANLIĞI EĞİTİM TEKNOLOJİLERİ GENEL MÜDÜRLÜĞÜ Ölçme Değerlendirme ve Açıköğretim Kurumları Daire Başkanlığı

T.C. MİLLÎ EĞİTİM BAKANLIĞI EĞİTİM TEKNOLOJİLERİ GENEL MÜDÜRLÜĞÜ Ölçme Değerlendirme ve Açıköğretim Kurumları Daire Başkanlığı T.C. MİLLÎ EĞİTİM BKNLIĞI EĞİTİM TEKNOLOJİLERİ GENEL MÜDÜRLÜĞÜ Ölçme Değerlendirme ve çıköğretim Kurumları Daire Başkanlığı KİTPÇIK TÜRÜ T.C. SĞLIK BKNLIĞI PERSONELİNİN UNVN DEĞİŞİKLİĞİ SINVI 12. GRUP:

Detaylı

İÜ ONKOLOJİ ENSTİTÜSÜ RADYASYON GÜVENLİĞİ PROSEDÜRÜ

İÜ ONKOLOJİ ENSTİTÜSÜ RADYASYON GÜVENLİĞİ PROSEDÜRÜ Sayfa No :1 / 7 1. Amaç Bu prosedürün amacı, Enstitümüzün Radyoterapi Ünitesinden hizmet alan hasta ve hasta yakınlarının, tüm radyasyon alanlarında çalışanlarının, ayrıca görevi gereği radyasyon alanlarında

Detaylı

Radyasyondan Korunma. Radyofizik Uzm.Dr.Öznur Şenkesen

Radyasyondan Korunma. Radyofizik Uzm.Dr.Öznur Şenkesen Radyasyondan Korunma Radyofizik Uzm.Dr.Öznur Şenkesen Acıbadem Kozyatağı Hastanesi İçerik Radyasyonun biyolojik etkileri Radyasyon dozu birimleri Radyasyondan korunmada temel prensipler ve doz sınırlamaları

Detaylı

Bölüm 1 Maddenin Yapısı ve Radyasyon. Prof. Dr. Bahadır BOYACIOĞLU

Bölüm 1 Maddenin Yapısı ve Radyasyon. Prof. Dr. Bahadır BOYACIOĞLU Bölüm 1 Maddenin Yapısı ve Radyasyon Prof. Dr. Bahadır BOYACIOĞLU İÇİNDEKİLER X-ışınlarının elde edilmesi X-ışınlarının Soğrulma Mekanizması X-ışınlarının özellikleri X-ışını cihazlarının parametreleri

Detaylı

ÖĞRENME HEDEFLERİ. Bezmialem Vakıf Üniversitesi Tıp Fakültesi Tıbbi Radyofizik Uzm.A.Hikmet Eriş

ÖĞRENME HEDEFLERİ. Bezmialem Vakıf Üniversitesi Tıp Fakültesi Tıbbi Radyofizik Uzm.A.Hikmet Eriş ÖĞRENME HEDEFLERİ Radyasyon,radyasyon doz birimleri Radyasyonun günlük kullanımdaki yeri Atom nedir?atomun temel parçacıkları Cep telefonlarının zararlı etkisi,termal görüntü. Radyasyon çeşitleri,enerji

Detaylı

X-IŞINLARININ ÖZELLİKLERİ VE ELDE EDİLMELERİ. X-ışınları Alman fizikçi Wilhelm RÖNTGEN tarafından 1895 yılında keşfedilmiştir.

X-IŞINLARININ ÖZELLİKLERİ VE ELDE EDİLMELERİ. X-ışınları Alman fizikçi Wilhelm RÖNTGEN tarafından 1895 yılında keşfedilmiştir. X-IŞINLARININ ÖZELLİKLERİ VE ELDE EDİLMELERİ X-ışınları Alman fizikçi Wilhelm RÖNTGEN tarafından 1895 yılında keşfedilmiştir. X-ışınlarının oluşum mekanizması fotoelektrik olaya neden olanın tam tersidir.

Detaylı

NORMAL ÖĞRETİM DERS PROGRAMI

NORMAL ÖĞRETİM DERS PROGRAMI NORMAL ÖĞRETİM DERS PROGRAMI 1. Yarıyıl 1. Hafta ( 19.09.2011-23.09.2011 ) Nükleer reaktör türleri ve çalışma prensipleri Atomik boyuttaki parçacıkların yapısı Temel kavramlar Elektrostatiğin Temelleri,

Detaylı

Epsilon Landauer Hakkında. OSL Nedir? Neden OSL? Kişisel Dozimetre Sistemi Kullanım. Kişisel Dozimetre Değerlendirme ve Doz Raporu.

Epsilon Landauer Hakkında. OSL Nedir? Neden OSL? Kişisel Dozimetre Sistemi Kullanım. Kişisel Dozimetre Değerlendirme ve Doz Raporu. İçindekiler Epsilon Landauer Hakkında 2 OSL Nedir? 5 Neden OSL? 7 Kişisel Dozimetre Sistemi Kullanım 11 Kişisel Dozimetre Değerlendirme ve Doz Raporu 12 OSL Teknolojisi 15 Dozimetre Teknolojilerinin Karşılaştırılması

Detaylı

Kazdağları/Edremit Ormanlık Alanlarında 137 Cs Kaynaklı Gama Doz Hızı Tahmini

Kazdağları/Edremit Ormanlık Alanlarında 137 Cs Kaynaklı Gama Doz Hızı Tahmini Kazdağları/Edremit Ormanlık Alanlarında 137 Cs Kaynaklı Gama Doz Hızı Tahmini Rukiye Çakır 1 ve Özlem Karadeniz 2 1 Dokuz Eylül Üniversitesi, Sağlık Bilimleri Enstitüsü, Medikal Fizik Anabilim Dalı, İzmir;

Detaylı

tarih ve sayılı Resmi Gazetede yayınlanan Yönetmelik ile

tarih ve sayılı Resmi Gazetede yayınlanan Yönetmelik ile 5.7.2012 tarih ve 28344 sayılı Resmi Gazetede yayınlanan Yönetmelik ile YÜRÜRLÜKTEN KALDIRILMIŞTIR. Sağlık Bakanlığından: KAMU SAĞLIK HİZMETLERİNDE İYONLAŞTIRICI RADYASYON KAYNAKLARI İLE ÇALIŞAN PERSONELİN

Detaylı

RADYASYON ÖLÇÜM YÖNTEMLERİ DERS. Prof. Dr. Haluk YÜCEL RADYASYON DEDEKSİYON VERİMİ, ÖLÜ ZAMAN, PULS YIĞILMASI ÖZELLİKLERİ

RADYASYON ÖLÇÜM YÖNTEMLERİ DERS. Prof. Dr. Haluk YÜCEL RADYASYON DEDEKSİYON VERİMİ, ÖLÜ ZAMAN, PULS YIĞILMASI ÖZELLİKLERİ RADYASYON ÖLÇÜM YÖNTEMLERİ Prof. Dr. Haluk YÜCEL 101516 DERS RADYASYON DEDEKSİYON VERİMİ, ÖLÜ ZAMAN, PULS YIĞILMASI ÖZELLİKLERİ DEDEKTÖRLERİN TEMEL PERFORMANS ÖZELLİKLERİ -Enerji Ayırım Gücü -Uzaysal Ayırma

Detaylı

RÖNTGEN FİZİĞİ. Doç. Dr. Zafer KOÇ Başkent Üniversitesi Tıp Fak

RÖNTGEN FİZİĞİ. Doç. Dr. Zafer KOÇ Başkent Üniversitesi Tıp Fak RÖNTGEN FİZİĞİ Doç. Dr. Zafer KOÇ Başkent Üniversitesi Tıp Fak RÖNTGEN FİZİĞİNE GİRİŞ VE RADYASYON RADYOLOJİ TANIMI ve Radyolojik görüntüleme yöntemleri ana prensipleri RADYOLOJİ BİLİMİNİN TANIMI Radyoloji

Detaylı

İÇİNDEKİLER ANA BÖLÜM I: RADYASYON, RADYOAKTİVİTE,VÜCUDA ETKİLER VE RİSK KAVRAMI...1. Bölüm 1: Radyasyonla İlgili Kısa Açıklamalar...

İÇİNDEKİLER ANA BÖLÜM I: RADYASYON, RADYOAKTİVİTE,VÜCUDA ETKİLER VE RİSK KAVRAMI...1. Bölüm 1: Radyasyonla İlgili Kısa Açıklamalar... İÇİNDEKİLER ANA BÖLÜM I: RADYASYON, RADYOAKTİVİTE,VÜCUDA ETKİLER VE RİSK KAVRAMI...1 Bölüm 1: Radyasyonla İlgili Kısa Açıklamalar...3 Bölüm 2: İyonlaştırıcı Radyasyonlar Vücudumuzu Nasıl Etkiliyor?...7

Detaylı

Radyoaktif elementin tek başına bulunması, bileşik içinde bulunması, katı, sıvı, gaz, iyon halinde bulunması radyoaktif özelliğini etkilemez.

Radyoaktif elementin tek başına bulunması, bileşik içinde bulunması, katı, sıvı, gaz, iyon halinde bulunması radyoaktif özelliğini etkilemez. RADYOAKTİFLİK Kendiliğinden ışıma yapabilen maddelere radyoaktif maddeler denir. Radyoaktiflik çekirdek yapısıyla ilişkilidir. Radyoaktif bir atom hangi bileşiğin yapısına girerse o bileşiği radyoaktif

Detaylı

Giriş. Radyoaktivite bir atomun, ve ışınları yayarak başka bir elementin atomuna dönüşmesi olayıdır.

Giriş. Radyoaktivite bir atomun, ve ışınları yayarak başka bir elementin atomuna dönüşmesi olayıdır. Giriş Radyoaktivite bir atomun, ve ışınları yayarak başka bir elementin atomuna dönüşmesi olayıdır. Bu özellikteki elementlere radyoaktif element denir. Doğada bulunan kayaçlar farklı oranlarda radyoaktif

Detaylı