RÖNTGEN FİZİĞİ 5 X-ışınlarının özellikleri, kalitesi ve kantitesi. Doç. Dr. Zafer KOÇ Başkent Üniversitesi Tıp Fak

Ebat: px
Şu sayfadan göstermeyi başlat:

Download "RÖNTGEN FİZİĞİ 5 X-ışınlarının özellikleri, kalitesi ve kantitesi. Doç. Dr. Zafer KOÇ Başkent Üniversitesi Tıp Fak"

Transkript

1 RÖNTGEN FİZİĞİ 5 X-ışınlarının özellikleri, kalitesi ve kantitesi Doç. Dr. Zafer KOÇ Başkent Üniversitesi Tıp Fak

2 X-ışınlarının özellikleri, kalitesi ve kantitesi X-ışınları cam veya metal kılıfın penceresinden tüp dışına değişik enerji seviyelerinde bir demet şeklinde verilir X-ışın demeti kantite (demetteki x-ışın sayısı) ve kalite (x-ışını penetrasyon yeteneği) ile karakterize edilir

3 X-IŞINLARININ KANTİTESİ Elde edilen x-ışınlarının miktarı (kantitesi) intensite ile tanımlanır ve x-ışını demetindeki foton sayısını gösterir İntensite enerji akışı birimidir ve enerji demetine dikey bir cm2 alandan bir sn geçen enerji miktarıdır ve birimi Joul dür X-ışın demeti intensitesi Röntgen (R) veya miliröntgen (mr) (mgy a ) ile ölçülür ve x-ışını kantitesi olarak ifade edilir Işın yoğunluğu veya radyasyon ekspojuru da sıklıkla intensite veya kantite yerine kullanılır Hepsi aynıdır ve Röntgen ile ölçülür

4 X-IŞINLARININ KANTİTESİ Röntgen (R); NŞA 1 cm 3 havada 1 elektrostatik yük birimi kadar (2.08x109) iyon çifti oluşturabilen radyasyon miktarıdır Expojur hızı mr/s, mr/dakika ile ifade edilir, veya mr/mas de x-ışını intensitesini ifade etmek için kullanılabilir Genel amaçlı x-ışın tüplerinin çoğu ~ 70 kvp ile çalıştırıldığında 100 cm lik kaynak-görüntü algılayıcı uzaklığında ~ 5 mr/mas (50 µgy a /mas) intensitede x-ışını üretir X ışını kantitesi kullanılabilir ışın demetindeki x-ışın sayısıdır

5 X-IŞINLARININ KANTİTESİNE ETKİ EDEN FAKTÖRLER 1. X-ışın tüp akımı ve ekspojur süresi (mas) 2. Tüp gerilimi - potansiyeli (kvp) 3. X-ışınının katettiği mesafe 4. Işın filtrasyonu 5. Target metali atom numarası (Z) 6. Tüp voltajının dalga şekli (voltaj dalgalanması = ripple)

6 X-IŞINI TÜP AKIMI Üretilen X-ışını miktarı tüp akımı ve ekspojur süresinin çarpımı (mas) ile doğru orantılıdır ma değerini iki katına çıkarmakla süreyi (sn) iki katına çıkarmak aynı etkiye sahiptir mas değerini iki katına çıkarmak üretilen x-ışın miktarını iki katına çıkarır ancak x-ışın spektrumunu değiştirmez X-ışını tüp akımı ışın şiddeti ile doğru orantılıdır Tüp akımı iki misli arttırılırsa iki misli sayıda foton oluşur X ışınının kantitesi mas ile orantılıdır

7

8 TÜP POTANSİYELİ Üretilen x-ışın miktarı tüp gerilimi- Potansiyeli (kvp) değeri ile de artar Tüp potansiyeli katot e - larının enerjisini belirler e - ların enerjisinin artması oluşan x- ışınlarının hem sayısını hem de enerjisini arttırır X-ışını kantitesi tüp gerilimindeki (kvp) artış oranının karesi ile doğru orantılı olarak artmaktadır

9 TÜP POTANSİYELİ kvp nin % 15 artması film üzerine düşen foton sayısını mas deki 2 kat artış kadar artırmaktadır Bu nedenle kvp % 15 artırıldığında mas yarıya indirilmelidir. Örneğin 60 kvp den 70 kvp e potansiyeli arttırma film dansitesini mas ın iki misli artması kadar etkiler. Gerçekte ışın miktarını iki misli artırmak için kvp % 40 arttırılmalıdır. Ancak yüksek enerjili x- ışınları hastadan daha fazla geçtiği ve filme ulaştığı için % 15 lik artış filme ulaşan ışın miktarını mas deki 2 kat artış gibi etkiler. X-ışını şiddeti, ışın demetindeki fotonların sayısı ile enerjilerinin çarpımıdır X ışını kantitesi kvp 2 ile orantılıdır

10 kvp deki artışla ışın şiddetinin eğrisi hem yükselir hem de daha yüksek enerjili alana kayar.

11 TARGET MATERYALİ Target maddesinin atom numarası arttıkça x-ışını oluşum etkinliği artar Atom numarası karakteristik radyasyonunun enerjisini belirler Atom numarası arttıkça kısmen frenleme (genel) radyasyon miktarı da artmaktadır

12

13

14 TARGET MATERYALİ Düşük atom numaralı targette frenleme (genel) radyasyon azalmaktadır. Düşük atom numaralı anot düşük kvp ile kullanıldığında toplam ışın demetindeki karakteristik radyasyon miktarı artar. Molybdenyum anodlar bu nedenle mammografide kullanılır 40 kvp ile kullanıldığında K karakteristik radyasyon kev arasında oluşur ki mammografi için idealdir

15 X-ışınlarının katettiği mesafe X-ışınlarının katettiği mesafeye bağlı olarak azalması temel bir özelliğidir. Bu özellik ters kare kanunu olarak bilinir ve noktasal bir kaynaktan çıkan x-ışını miktarı mesafenin karesi ile orantılı olarak azalır X ışını kantitesi kaynaktan uzaklığın karesi ile ters orantılıdır Kaynak- görüntü algılayıcı uzaklığı arttıkça sabit ekspojuru sağlamak için mas ı uzaklığın karesi kadar artırmak gerekir

16 FİLTRASYON Hem tüpe ait hem de ilave filtrasyon düşük enerjili x-ışınlarını tutarak x-ışını etkin enerjisini yani kalitesini artırır (ışın sertlesmesi), bu esnada foton sayısı azaldığı için x-ışını kantitesi (miktarı) azalır

17 VOLTAJ DALGA ŞEKLİNİN ETKİSİ Voltaj dalgalanmalarını (ripple = fluktuasyon) azaltmak ortalama foton enerjisini dolayısıyla x- ışın demetinin kalitesini artırır (ışın sertleşmesi) Trifaze voltajda potansiyel sıfıra düşmediği ve maksimum değerlere yakın seyrettiği için x-ışının hem enerjisi hem de miktarı artar Trifaze cihazla çalışıldığında tek fazlıya göre film dansitesinde %12 artış olur Monofaze cihazda 72 kvp gerektiren bir çekim için trifaze cihazda 64 kvp kullanmak yeterlidir

18

19 kvp ve mas ETKİSİ Radyografide kvp kantite, kalite ve pentrasyonu belirlerken mas sadece kantiteyi belirler X-ışını demetinin ilave filtrasyonu hasta dozunu azaltır

20 X-IŞINLARININ KALİTESİ Penetrasyon X-ışınlarının kalitesi, üretilen x-ışınının etkin foton enerjisidir ve maddeden geçebilme, yani penetrasyon özelliği olarak ifade edilir Tanısal radyolojide kullanılan x-ışını demeti polikromatiktir, enerjileri farklı düzeyde x- ışınlarından oluşur Penetrasyon x-ışınının maddeyi (dokuyu) geçebilme özelliğidir X-ışın demeti kalitesini spektrumun etkin x- ışını enerjisi belirler. Etkin x-ışını enerjisi spektrumdaki maksimum foton enerjisinin 1/3 ü ile 1/2 si arasındadır

21 X-IŞINLARININ KALİTESİ kvp artırılması: x-ışın miktarını, pik ve ortalama enerjisini artırır X-ışınının kalitesinin artması ile ortalama foton enerjisi ve bunun sonucu penetrasyon gücü artar Yüksek kaliteli x-ışını demeti daha monoenerjitiktir ve daha fazla yüksek enerjili foton içerir Aynı kvp ile üretilen x-ışın demetinden yüksek kaliteli olanı ile daha iyi görüntü elde edilir ve hasta daha az x-ışını alır

22 Yarı-değer kalınlığı X-ışını kalitesi yarı değer kalınlığı ile ifade edilir: X ışını sayısal değerini yarıya indirecek absorbsiyonu yaratan kalınlık olarak tanımlanır Bu kalınlık yaklaşık 80 kvp gerilim altında elde edilen x-ışınlarında 1 mm Bakır, 3-5 mm alüminyum veya 4-8 cm yumuşak doku kalınlığına eşdeğerdir Yarı-değer kalınlığı x-ışını kalitesini gösteren en özgün yöntemdir

23 X-IŞINLARININ KALİTESİNE ETKİ EDEN FAKTÖRLER 1. X-ışını enerjisi- kvp, 2. Filtrasyon 3. Kullanılan x-ışını tüpü anot yapısı =Anot metalinin atom numarası (Z), 4. jeneratör dalga şekli

24 X-ışını enerjisi X-ışını enerjisi onu oluşturan katottan salınan e - ların enerjisine bağlıdır e - ların enerjisi ise hızları ile doğru orantılıdır Katot ile anot arasında ne kadar yüksek gerilim uygulanırsa e - ların enerjisi de o kadar yükselir X-ışını hızını, enerjisini ve penetrasyonunu sonuç olarak kalitesini artırmak için gerilimi (voltaj = kvp) artırmak gereklidir kvp arttırılınca x-ışını kalitesi de artar, yani üretilen x-ışını spektrumu değişir

25 Filtrasyon X-ışınının tüpten çıkışı esnasında uygulanan filtrasyondaki filtre kalınlığı ve atom numarası x-ışını kalitesine etki eder Filtrenin kalınlığı ve atom numarası ne kadar fazla olursa ışın kalitesini artırma (ışını sertleştirme) özelliği de o kadar fazla olur Kullanılan filtre tipi radyasyon enerjisine göre de değişir. Genelde 100 kvp ye kadar 1-3 mm alüminyum (Al), kvp arası bakır (Cu), 250 kvp üzerinde Thoraseus adı verilen kalay, bakır ve Al dan yapılmış filtre tercih edilir x-ışını kalitesi voltaj veya filtrasyon ile belirlenebilir fakat HVL en uygunudur Filtrasyonun artırılması x-ışını kalitesini artırır

26 Anot yapısı X-ışın tüpünün anottaki targette yüksek atom numaralı metal kullanılması üretilen ışınların penetrasyon özelliğini (kalitesini) artırır X-ışın demetindeki karakteristik radyasyon enerjisini belirlediğinden kaliteyi etkiler

27 jeneratör dalga şekli Voltaj dalgalanmasını (ripple, fluktuasyon) azaltmak, ortalama foton enerjisini, dolayısıyla x-ışın demetinin kalitesini artırır Trifaze cihazla çalışıldığında tek fazlıya göre film dansitesinde %12 artış olur Monofaze cihazda 72 kvp gerektiren bir çekim için trifaze cihazda 64 kvp kullanmak yeterlidir

28

29 X-IŞIN KALİTE VE KANTİTESİNE ETKİ EDEN FAKTÖRLER Artış Kantite Kalite Akım (mas) Artar Değişmez Voltaj (kvp) Artar Artar Eklenen filtrasyon Azalır Artar Target atom no Artar Artar Voltaj dalgalanması Azalır Azalır

30 Kaynaklar 1. Bushong SC. Radiologic Science for Technologist: Physics, Biology and Protection. 9 th ed. St. Louis, Mosby Elsevier, Tuncel E. Klinik Radyoloji. Bursa, Nobel & Güneş, Kaya T. Temel Radyoloji Tekniği. Bursa, Güneş & Nobel, 1997.

RÖNTGEN FİZİĞİ X-Işını oluşumu. Doç. Dr. Zafer KOÇ Başkent Üniversitesi Tıp Fak

RÖNTGEN FİZİĞİ X-Işını oluşumu. Doç. Dr. Zafer KOÇ Başkent Üniversitesi Tıp Fak RÖNTGEN FİZİĞİ X-Işını oluşumu Doç. Dr. Zafer KOÇ Başkent Üniversitesi Tıp Fak X-IŞINI OLUŞUMU Hızlandırılmış elektronların anotla etkileşimi ATOMUN YAPISI VE PARÇACIKLARI Bir elementi temsil eden en küçük

Detaylı

RÖNTGEN FİZİĞİ X-Işınları Absorbsiyon ve saçılma. Doç. Dr. Zafer KOÇ Başkent Üniversitesi Tıp Fak

RÖNTGEN FİZİĞİ X-Işınları Absorbsiyon ve saçılma. Doç. Dr. Zafer KOÇ Başkent Üniversitesi Tıp Fak RÖNTGEN FİZİĞİ X-Işınları Absorbsiyon ve saçılma Doç. Dr. Zafer KOÇ Başkent Üniversitesi Tıp Fak ABSORBSİYON VE SAÇILMA X-ışınları maddeyi (hastayı) geçerken enerjileri absorbsiyon (soğurulma) ve saçılma

Detaylı

RÖNTGEN FİZİĞİ X-Işını oluşumu. Doç. Dr. Zafer KOÇ Başkent Üniversitesi Tıp Fak

RÖNTGEN FİZİĞİ X-Işını oluşumu. Doç. Dr. Zafer KOÇ Başkent Üniversitesi Tıp Fak RÖNTGEN FİZİĞİ X-Işını oluşumu Doç. Dr. Zafer KOÇ Başkent Üniversitesi Tıp Fak X-IŞINI TÜPÜ X-IŞINI TÜPÜ PARÇALARI 1. Metal korunak (hausing) 2. Havası alınmış cam veya metal tüp 3. Katot 4. Anot X-ışın

Detaylı

RÖNTGEN FİZİĞİ 6. X-Işınlarının madde ile etkileşimi. Doç. Dr. Zafer KOÇ Başkent Üniversitesi Tıp Fak

RÖNTGEN FİZİĞİ 6. X-Işınlarının madde ile etkileşimi. Doç. Dr. Zafer KOÇ Başkent Üniversitesi Tıp Fak RÖNTGEN FİZİĞİ 6 X-Işınlarının madde ile etkileşimi Doç. Dr. Zafer KOÇ Başkent Üniversitesi Tıp Fak X-IŞINI MADDE ETKİLEŞİMİ Elektromanyetik enerjiler kendi dalga boylarına yakın maddelerle etkileşime

Detaylı

Bölüm 1 Maddenin Yapısı ve Radyasyon. Prof. Dr. Bahadır BOYACIOĞLU

Bölüm 1 Maddenin Yapısı ve Radyasyon. Prof. Dr. Bahadır BOYACIOĞLU Bölüm 1 Maddenin Yapısı ve Radyasyon Prof. Dr. Bahadır BOYACIOĞLU İÇİNDEKİLER X-ışınlarının elde edilmesi X-ışınlarının Soğrulma Mekanizması X-ışınlarının özellikleri X-ışını cihazlarının parametreleri

Detaylı

RÖNTGEN FİZİĞİ X-Işını oluşumu Jeneratör ve konsol. Doç. Dr. Zafer KOÇ Başkent Üniversitesi Tıp Fak

RÖNTGEN FİZİĞİ X-Işını oluşumu Jeneratör ve konsol. Doç. Dr. Zafer KOÇ Başkent Üniversitesi Tıp Fak RÖNTGEN FİZİĞİ X-Işını oluşumu Jeneratör ve konsol Doç. Dr. Zafer KOÇ Başkent Üniversitesi Tıp Fak X-IŞIN CİHAZLARI TEMEL İŞLEVLERİ İstenilen kalite, miktar ve süre boyunca X-ışını elde edilmesidir Cihazlar

Detaylı

RADYASYON FİZİĞİ 3. Prof. Dr. Kıvanç Kamburoğlu

RADYASYON FİZİĞİ 3. Prof. Dr. Kıvanç Kamburoğlu RADYASYON FİZİĞİ 3 Prof. Dr. Kıvanç Kamburoğlu X ışın cihazında bulunan güç kaynağının görevleri 1- Filamentin ısınması için düşük voltaj sağlamak 2- Anot ve katot arasında yüksek potansiyel farkı yaratmak

Detaylı

RÖNTGEN FİZİĞİ. Doç. Dr. Zafer KOÇ Başkent Üniversitesi Tıp Fak

RÖNTGEN FİZİĞİ. Doç. Dr. Zafer KOÇ Başkent Üniversitesi Tıp Fak RÖNTGEN FİZİĞİ Doç. Dr. Zafer KOÇ Başkent Üniversitesi Tıp Fak RÖNTGEN FİZİĞİNE GİRİŞ VE RADYASYON RADYOLOJİ TANIMI ve Radyolojik görüntüleme yöntemleri ana prensipleri RADYOLOJİ BİLİMİNİN TANIMI Radyoloji

Detaylı

RÖNTGEN FİZİĞİ X-Işını oluşumu. Doç. Dr. Zafer KOÇ Başkent Üniversitesi Tıp Fak

RÖNTGEN FİZİĞİ X-Işını oluşumu. Doç. Dr. Zafer KOÇ Başkent Üniversitesi Tıp Fak RÖNTGEN FİZİĞİ X-Işını oluşumu Doç. Dr. Zafer KOÇ Başkent Üniversitesi Tıp Fak X-IŞINI TÜPÜ X-IŞINI TÜPÜ PARÇALARI 1. Metal korunak (hausing, haube) 2. Havası alınmış cam veya metal tüp 3. Katot 4. Anot

Detaylı

Kasetin arka yüzeyi filmin yerleştirildiği kapaktır. Bu kapakların farklı farklı kapanma mekanizmaları vardır. Bu taraf ön yüzeyin tersine atom

Kasetin arka yüzeyi filmin yerleştirildiği kapaktır. Bu kapakların farklı farklı kapanma mekanizmaları vardır. Bu taraf ön yüzeyin tersine atom KASET Röntgen filmi kasetleri; radyografi işlemi sırasında filmin ışık almasını önleyen ve ranforsatör-film temasını sağlayan metal kutulardır. Özel kilitli kapakları vardır. Kasetin röntgen tüpüne bakan

Detaylı

RADYASYON FİZİĞİ 4. Prof. Dr. Kıvanç Kamburoğlu

RADYASYON FİZİĞİ 4. Prof. Dr. Kıvanç Kamburoğlu RADYASYON FİZİĞİ 4 Prof. Dr. Kıvanç Kamburoğlu Filtrasyon X ışın demeti içerisinde farklı enerjili fotonlar bulunur (farklı dalga boylu ışınlar heterojen ışın demetini ifade eder) Sadece, anatomik yapılardan

Detaylı

RADYOLOJİDE KALİTE KONTROL VE KALİBRASYONUN ÖNEMİ ÖĞR. GÖR. GÜRDOĞAN AYDIN İLKE EĞİTİM VE SAĞLIK VAKFI KAPADOKYA MYO TIBBİ GÖRÜNTÜLEME PRG.

RADYOLOJİDE KALİTE KONTROL VE KALİBRASYONUN ÖNEMİ ÖĞR. GÖR. GÜRDOĞAN AYDIN İLKE EĞİTİM VE SAĞLIK VAKFI KAPADOKYA MYO TIBBİ GÖRÜNTÜLEME PRG. RADYOLOJİDE KALİTE KONTROL VE KALİBRASYONUN ÖNEMİ ÖĞR. GÖR. GÜRDOĞAN AYDIN İLKE EĞİTİM VE SAĞLIK VAKFI KAPADOKYA MYO TIBBİ GÖRÜNTÜLEME PRG. RÖNTGENCİ??? RÖNTGENCİ??? RÖNTGENCİ??? RÖNTGENCİ??? R Ö N T G

Detaylı

RÖNTGEN FİZİĞİ Işın sınırlayıcı cihazlar ve gridler. Doç. Dr. Zafer KOÇ Başkent Üniversitesi Tıp Fak

RÖNTGEN FİZİĞİ Işın sınırlayıcı cihazlar ve gridler. Doç. Dr. Zafer KOÇ Başkent Üniversitesi Tıp Fak RÖNTGEN FİZİĞİ Işın sınırlayıcı cihazlar ve gridler Doç. Dr. Zafer KOÇ Başkent Üniversitesi Tıp Fak SAÇILAN RADYASYONUN KONTROLÜ Saçılan radyasyon, sapma nedeniyle hasta hakkında yararlı bilgi taşımaz,

Detaylı

GÖRÜNTÜ OLUŞUMUNU ETKİLEYEN FAKTÖRLER (RADYOGRAFİK KALİTE)

GÖRÜNTÜ OLUŞUMUNU ETKİLEYEN FAKTÖRLER (RADYOGRAFİK KALİTE) GÖRÜNTÜ OLUŞUMUNU ETKİLEYEN FAKTÖRLER (RADYOGRAFİK KALİTE) Dental yapıların radyograflarında, uygun ölçülerde densite, kontrast, detay keskinliği ile minimum büyüme (magnifikasyon) ve distorsiyonlu filmler

Detaylı

Güç kaynağı. Tüp Akımı

Güç kaynağı. Tüp Akımı Anot Anot, bakır bir gövdeye gömülmüş tungsten target içerir.targetin amacı çarpan elektronların kinetik enerjilerini x ışını fotonlarına dönüştürmektir. Target tungstenden yapılmıştır çünkü tungstenin

Detaylı

Diyafram ve Enstantane

Diyafram ve Enstantane Diyafram ve Enstantane Diyafram Diyafram mercekler dizisi içinde film üzerine düşecek ışık miktarını denetlemeye yarayan bir araçtır. Fotoğraf çekerken kullanılan filmin yeteri kadar pozlanması için belli

Detaylı

Doz azaltma teknikleri. Süre. Mesafe. Zırhlama. Yapısal Zırhlama 11/18/2015 RADYOLOJİDE ZIRHLAMA. Prof.Dr.Nail Bulakbaşı

Doz azaltma teknikleri. Süre. Mesafe. Zırhlama. Yapısal Zırhlama 11/18/2015 RADYOLOJİDE ZIRHLAMA. Prof.Dr.Nail Bulakbaşı Doz azaltma teknikleri RADYOLOJİDE ZIRHLAMA Radyasyondan korunma parametreleri Prof.Dr.Nail Bulakbaşı Süre Mesafe Zırhlama Süre Mesafe Doz = (Doz Şiddeti)x(Süre) Bir ölçüm cihazının 50 µsv/saat lik radyasyon

Detaylı

Bölüm 7 Radyasyon Güvenliği. Prof. Dr. Bahadır BOYACIOĞLU

Bölüm 7 Radyasyon Güvenliği. Prof. Dr. Bahadır BOYACIOĞLU Bölüm 7 Radyasyon Güvenliği Prof. Dr. Bahadır BOYACIOĞLU RADYASYON NEDİR? Radyasyon, elektromanyetik dalgalar veya parçacıklar biçiminde enerji yayılımı ya da aktarımıdır. RADYASYON ÇEŞİTLERİ İYONLAŞTIRICI

Detaylı

İYON ODALARI VE DOZİMETRE KALİBRASYONLARI

İYON ODALARI VE DOZİMETRE KALİBRASYONLARI İYON ODALARI VE DOZİMETRE KALİBRASYONLARI Dr. Doğan YAŞAR TAEK,ÇNAEM Radyasyon Metrolojisi Birimi dogan.yasar@taek.gov.tr İçerik 2 Tedavi amaçlı dozimetreler Korunma amaçlı dozimetreler - doz hızı ölçerler

Detaylı

MANYETİK REZONANS TEMEL PRENSİPLERİ

MANYETİK REZONANS TEMEL PRENSİPLERİ MANYETİK REZONANS TEMEL PRENSİPLERİ Dr. Ragıp Özkan Eskişehir Osmangazi Üniversitesi Tıp Fakültesi Radyoloji ABD REZONANS Sinyal intensitesini belirleyen faktörler Proton yoğunluğu TR T1 TE T2

Detaylı

Lineer Enerji Transferi (LET) ve Rölatif Biyolojik Etkinin (RBE) Radyobiyolojik Önemi

Lineer Enerji Transferi (LET) ve Rölatif Biyolojik Etkinin (RBE) Radyobiyolojik Önemi Lineer Enerji Transferi (LET) ve Rölatif Biyolojik Etkinin (RBE) Radyobiyolojik Önemi Klinik Radyobiyoloji Kursu 19-20 Şubat 2010 Dr. Serra Kamer serra.kamer@ege.edu.tr Radyosensitiviteyi Etkileyen Fiziksel

Detaylı

BÖLÜM 2. FOTOVOLTAİK GÜNEŞ ENERJİ SİSTEMLERİ (PV)

BÖLÜM 2. FOTOVOLTAİK GÜNEŞ ENERJİ SİSTEMLERİ (PV) BÖLÜM 2. FOTOOLTAİK GÜNEŞ ENERJİ SİSTEMLERİ (P) Fotovoltaik Etki: Fotovoltaik etki birbirinden farklı iki malzemenin ortak temas bölgesinin (common junction) foton radyasyonu ile aydınlatılması durumunda

Detaylı

Harici Fotoelektrik etki ve Planck sabiti deney seti

Harici Fotoelektrik etki ve Planck sabiti deney seti Deneyin Temeli Harici Fotoelektrik etki ve Planck sabiti deney seti Fotoelektrik etki modern fiziğin gelişimindeki anahtar deneylerden birisidir. Filaman lambadan çıkan beyaz ışık ızgaralı spektrometre

Detaylı

ALETLİ ANALİZ YÖNTEMLERİ. X-Işını Spektroskopisi Yrd. Doç. Dr. Gökçe MEREY

ALETLİ ANALİZ YÖNTEMLERİ. X-Işını Spektroskopisi Yrd. Doç. Dr. Gökçe MEREY ALETLİ ANALİZ YÖNTEMLERİ X-Işını Spektroskopisi Yrd. Doç. Dr. Gökçe MEREY X-IŞINI SPEKTROSKOPİSİ X-ışını spektroskopisi, X-ışınlarının emisyonu, absorbsiyonu ve difraksiyonuna (saçılması) dayanır. Kalitatif

Detaylı

Prof.Dr.Nail Bulakbaşı Yakın Doğu Üniversitesi Tıp Fakültesi Radyoloji Anabilim Dalı

Prof.Dr.Nail Bulakbaşı Yakın Doğu Üniversitesi Tıp Fakültesi Radyoloji Anabilim Dalı Prof.Dr.Nail Bulakbaşı Yakın Doğu Üniversitesi Tıp Fakültesi Radyoloji Anabilim Dalı İncelenen anatomik yapının kabul edilebilir dansite sınırlarında, istenilen keskinlikte görüntülenebilmesidir Kaliteyi

Detaylı

Elektromanyetik Işıma Electromagnetic Radiation (EMR)

Elektromanyetik Işıma Electromagnetic Radiation (EMR) Elektromanyetik Işıma Electromagnetic Radiation (EMR) Elektromanyetik ışıma (ışık) bir enerji şeklidir. Işık, Elektrik (E) ve manyetik (H) alan bileşenlerine sahiptir. Light is a wave, made up of oscillating

Detaylı

SPECT/BT 16-19 MAYIS 2015 XV ULUSAL MEDİKAL FİZİK KONGRESİ TRABZON

SPECT/BT 16-19 MAYIS 2015 XV ULUSAL MEDİKAL FİZİK KONGRESİ TRABZON SPECT/BT 16-19 MAYIS 2015 XV ULUSAL MEDİKAL FİZİK KONGRESİ TRABZON * Nükleer tıp SPECT görüntülerinde artan tutulum bölgesini tanımlamada, Bölgenin kesin anatomik lokalizasyonunu belirlemekte zorlanılmaktadır.

Detaylı

LCD 4 Fantomu Üzerinde Sayım ve Görüntüleme Dedektörleri Kullanılarak Yapılan Kontrast Ölçümlerinin Karşılaştırılması

LCD 4 Fantomu Üzerinde Sayım ve Görüntüleme Dedektörleri Kullanılarak Yapılan Kontrast Ölçümlerinin Karşılaştırılması Ankara Üniversitesi Nükleer Bilimler Enstitüsü LCD 4 Fantomu Üzerinde Sayım ve Görüntüleme Dedektörleri Kullanılarak Yapılan Kontrast Ölçümlerinin Karşılaştırılması Emre GÜLLÜOĞLU, Alptuğ Özer YÜKSEL,

Detaylı

Yarıiletken devre elemanlarında en çok kullanılan maddeler;

Yarıiletken devre elemanlarında en çok kullanılan maddeler; 1.. Bölüm: Diyotlar Doç.. Dr. Ersan KABALCI 1 Yarı iletken Maddeler Yarıiletken devre elemanlarında en çok kullanılan maddeler; Silisyum (Si) Germanyum (Ge) dur. 2 Katkı Oluşturma Silisyum ve Germanyumun

Detaylı

RADYASYON FİZİĞİ 2. Prof. Dr. Kıvanç Kamburoğlu

RADYASYON FİZİĞİ 2. Prof. Dr. Kıvanç Kamburoğlu RADYASYON FİZİĞİ 2 Prof. Dr. Kıvanç Kamburoğlu 1800 lü yıllarda değişik ülkelerdeki fizikçiler elektrik ve manyetik kuvvetler üzerine detaylı çalışmalar yaptılar Bu çalışmalardan çıkan en önemli sonuç;

Detaylı

ISI TRANSFER MEKANİZMALARI

ISI TRANSFER MEKANİZMALARI ISI TRANSFER MEKANİZMALARI ISI; sıcaklık farkından dolayı sistemden diğerine transfer olan bir enerji türüdür. Termodinamik bir sistemin hal değiştirirken geçen ısı transfer miktarıyla ilgilenir. Isı transferi

Detaylı

Öğrenim hedefleri. X ışın tüpü. X ışın özellikleri. X ışınının madde ile etkileşimi. Ranforsatörlerin yapısı Röntgen filminin yapısı ve film banyosu

Öğrenim hedefleri. X ışın tüpü. X ışın özellikleri. X ışınının madde ile etkileşimi. Ranforsatörlerin yapısı Röntgen filminin yapısı ve film banyosu X ışın tüpü Yapısı X ışın oluşumu X ışın özellikleri Öğrenim hedefleri X ışınının madde ile etkileşimi Tanıda kullanımı ile ilgili özellikleri Ranforsatörlerin yapısı Röntgen filminin yapısı ve film banyosu

Detaylı

Radyasyon nedir Nasıl ölçülür Günlük pratikte alınan radyasyon ERCP de durum ne Azaltmak için ne yapılabilir

Radyasyon nedir Nasıl ölçülür Günlük pratikte alınan radyasyon ERCP de durum ne Azaltmak için ne yapılabilir MÖ 460-377 980-1037 MÖ 460-377 980-1037 Radyasyon nedir Nasıl ölçülür Günlük pratikte alınan radyasyon ERCP de durum ne Azaltmak için ne yapılabilir RADYASYON NEDİR X ışınını 1895 te Wilhelm Conrad Roentgen

Detaylı

Doç.Dr.Bahar DİRİCAN Gülhane Askeri Tıp Akademisi Radyasyon Onkolojisi AD 10 Nisan 2014 -ANKARA

Doç.Dr.Bahar DİRİCAN Gülhane Askeri Tıp Akademisi Radyasyon Onkolojisi AD 10 Nisan 2014 -ANKARA Elektron Dozimetrisi IAEA TRS-398 Doç.Dr.Bahar DİRİCAN Gülhane Askeri Tıp Akademisi Radyasyon Onkolojisi AD 10 Nisan 2014 -ANKARA Elektron Derin Doz Eğrisi Farklı Enerjilerdeki Elektronların Derin Doz

Detaylı

Makine Mühendisliği İçin Elektrik-Elektronik Bilgisi. Ders Notu-2 Hazırlayan: Yrd. Doç. Dr. Ahmet DUMLU

Makine Mühendisliği İçin Elektrik-Elektronik Bilgisi. Ders Notu-2 Hazırlayan: Yrd. Doç. Dr. Ahmet DUMLU Makine Mühendisliği İçin Elektrik-Elektronik Bilgisi Ders Notu-2 Hazırlayan: Yrd. Doç. Dr. Ahmet DUMLU DİRENÇLER Direnci elektrik akımına gösterilen zorluk olarak tanımlayabiliriz. Bir iletkenin elektrik

Detaylı

TANISAL ve GİRİŞİMSEL RADYOLOJİDE RADYASYONDAN KORUNMA

TANISAL ve GİRİŞİMSEL RADYOLOJİDE RADYASYONDAN KORUNMA www.trkd.org.tr e-posta:bilgi@trkd.org.tr Tel :0312 384 00 00 Fax:0312 217 41 11 TANISAL ve GİRİŞİMSEL RADYOLOJİDE RADYASYONDAN KORUNMA RADYOLOJİ LABORATUVARLARININ TASARIMI ve ZIRHLANMASI 1 Zırhlama Hesaplamaları

Detaylı

MIG-MAG GAZALTI KAYNAĞINDA KAYNAK PAMETRELERİ VE SEÇİMİ

MIG-MAG GAZALTI KAYNAĞINDA KAYNAK PAMETRELERİ VE SEÇİMİ MIG-MAG GAZALTI KAYNAĞINDA KAYNAK PAMETRELERİ VE SEÇİMİ Prof. Dr. Ramazan YILMAZ Sakarya Üniversitesi, Teknoloji Fakültesi, Metalurji ve Malzeme Mühendisliği Bölümü Esentepe Kampüsü, 54187, SAKARYA Kaynak

Detaylı

METRİ HIZLANDIRICILAR. Mehmet YÜKSELY ÇÜ FBE Fizik ABD. www.yukselmehmet.com

METRİ HIZLANDIRICILAR. Mehmet YÜKSELY ÇÜ FBE Fizik ABD. www.yukselmehmet.com TG-51 DOZİMETR METRİ PROTOKOLÜ VE LİNEER L HIZLANDIRICILAR Mehmet YÜKSELY ÇÜ FBE Fizik ABD İÇERİK 1. TG-51 DOZİMETR METRİ PROTOKOLÜ a) Araç-Gere Gereçler b) Ölçüm m Sistemi c) TG-51 51 de Veriler d) Ölçüm

Detaylı

RADYASYON VE SAĞLIK A.HİKMET ERİŞ TIBBİ RADYOFİZİK UZM. BEZMİALEM VAKIF ÜNİV.TIP FAK.

RADYASYON VE SAĞLIK A.HİKMET ERİŞ TIBBİ RADYOFİZİK UZM. BEZMİALEM VAKIF ÜNİV.TIP FAK. RADYASYON VE SAĞLIK A.HİKMET ERİŞ TIBBİ RADYOFİZİK UZM. BEZMİALEM VAKIF ÜNİV.TIP FAK. RADYASYON ÇALIŞANLARI VE BİLİNMESİ GEREKENLER RADYASYON TANIMI: DALGA VE TANECİK ÖZELLİKTE UZAYDA DOLAŞAN ENERJİ PAKETİ.

Detaylı

Fotovoltaik Teknoloji

Fotovoltaik Teknoloji Fotovoltaik Teknoloji Bölüm 3: Güneş Enerjisi Güneşin Yapısı Güneş Işınımı Güneş Spektrumu Toplam Güneş Işınımı Güneş Işınımının Ölçülmesi Dr. Osman Turan Makine ve İmalat Mühendisliği Bilecik Şeyh Edebali

Detaylı

X-IŞINLARININ ÖZELLİKLERİ VE ELDE EDİLMELERİ. X-ışınları Alman fizikçi Wilhelm RÖNTGEN tarafından 1895 yılında keşfedilmiştir.

X-IŞINLARININ ÖZELLİKLERİ VE ELDE EDİLMELERİ. X-ışınları Alman fizikçi Wilhelm RÖNTGEN tarafından 1895 yılında keşfedilmiştir. X-IŞINLARININ ÖZELLİKLERİ VE ELDE EDİLMELERİ X-ışınları Alman fizikçi Wilhelm RÖNTGEN tarafından 1895 yılında keşfedilmiştir. X-ışınlarının oluşum mekanizması fotoelektrik olaya neden olanın tam tersidir.

Detaylı

RADYASYON GÜVENLİĞİ. Öğr.Gör. Şükrü OĞUZ KTÜ Tıp Fakültesi Radyoloji AB

RADYASYON GÜVENLİĞİ. Öğr.Gör. Şükrü OĞUZ KTÜ Tıp Fakültesi Radyoloji AB RADYASYON GÜVENLİĞİ Öğr.Gör. Şükrü OĞUZ KTÜ Tıp Fakültesi Radyoloji AB İyonlaştırıcı radyasyonlar canlılar üzerinde olumsuz etkileri vardır. 1895 W.Conrad Roentgen X ışınını bulduktan 4 ay sonra saç dökülmesini

Detaylı

Dijital Görüntüleme Sistemlerinde Radyasyon Dozunun Optimizasyonu

Dijital Görüntüleme Sistemlerinde Radyasyon Dozunun Optimizasyonu Dijital Görüntüleme Sistemlerinde Radyasyon Dozunun Optimizasyonu Prof. Dr. Doğan Bor Ankara Üniversitesi Nükleer Bilimler Enstitüsü 28 ULUSAL RADYOLOJİ KONGRESİ 27 31 Ekim 2007 Antalya Dijital Görüntülemenin

Detaylı

GÜNEŞİN ELEKTROMANYETİK SPEKTRUMU

GÜNEŞİN ELEKTROMANYETİK SPEKTRUMU GÜNEŞİN ELEKTROMANYETİK SPEKTRUMU Güneş ışınımı değişik dalga boylarında yayılır. Yayılan bu dalga boylarının sıralı görünümü de güneş spektrumu olarak isimlendirilir. Tam olarak ifade edilecek olursa;

Detaylı

Farklı Radyolojik İnceleme Koşulları için Geniş Alan Dedektörü Kullanılarak DQE ve edqe Kıyaslaması

Farklı Radyolojik İnceleme Koşulları için Geniş Alan Dedektörü Kullanılarak DQE ve edqe Kıyaslaması Nükleer Bilimler Enstitüsü Medikal Fizik Ana Bilim Dalı Mühendislik Fakültesi Fizik Mühendisliği Bölümü Farklı Radyolojik İnceleme Koşulları için Geniş Alan Dedektörü Kullanılarak DQE ve edqe Kıyaslaması

Detaylı

YÜKSEK ENERJİLİ X- IŞINLARIYLA YAPILAN TEDAVİLERDE KARBON FİBER MASANIN CİLT VE İZOMERKEZ DOZUNA ETKİLERİNİN ARAŞTIRILMASI

YÜKSEK ENERJİLİ X- IŞINLARIYLA YAPILAN TEDAVİLERDE KARBON FİBER MASANIN CİLT VE İZOMERKEZ DOZUNA ETKİLERİNİN ARAŞTIRILMASI YÜKSEK ENERJİLİ X- IŞINLARIYLA YAPILAN TEDAVİLERDE KARBON FİBER MASANIN CİLT VE İZOMERKEZ DOZUNA ETKİLERİNİN ARAŞTIRILMASI TÜLAY MEYDANCI, Prof. Dr. GÖNÜL KEMİKLER Medikal Fizik Kongresi 15-18 Kasım 2007

Detaylı

ALAN ETKİLİ TRANSİSTÖR

ALAN ETKİLİ TRANSİSTÖR ALAN ETKİLİ TRANİTÖR Y.oç.r.A.Faruk BAKAN FET (Alan Etkili Transistör) gerilim kontrollu ve üç uçlu bir elemandır. FET in uçları G (Kapı), (rain) ve (Kaynak) olarak tanımlanır. FET in yapısı ve sembolü

Detaylı

GÜNEŞ ENERJİ SİSTEMLERİ

GÜNEŞ ENERJİ SİSTEMLERİ DENEY 1 GÜNEŞ ENERJİ SİSTEMLERİ YENİLEBİLİR ENERJİ SİSTEMLERİ LABORATUAR YRD. DOÇ. DR. BEDRİ KEKEZOĞLU DENEY 1 GÜNEŞ ENERJİSİ SİSTEMLERİ 1. GÜNEŞ ENERJİ SİSTEMLERİ Dünyamızın en büyük enerji kaynağı olan

Detaylı

X-Işınları. Numan Akdoğan. 1. Ders: X-ışınları hakkında genel bilgiler.

X-Işınları. Numan Akdoğan. 1. Ders: X-ışınları hakkında genel bilgiler. X-Işınları 1. Ders: X-ışınları hakkında genel bilgiler Numan Akdoğan akdogan@gyte.edu.tr Gebze Yüksek Teknoloji Enstitüsü Fizik Bölümü Nanomanyetizma ve Spintronik Araştırma Merkezi (NASAM) X-Işınları

Detaylı

Ankara Yıldırım Beyazıt Üniversitesi Medikal Metroloji Uygulama ve Araştırma Merkezi

Ankara Yıldırım Beyazıt Üniversitesi Medikal Metroloji Uygulama ve Araştırma Merkezi Ankara Yıldırım Beyazıt Üniversitesi Medikal Metroloji Uygulama ve Araştırma Merkezi Kalibrasyon ve Kalite Kontrol Nedir? Kalibrasyon; Ülke çapında ya da uluslararası standartlara göre izlenebilirliği

Detaylı

X-Işınları. 1. Ders: X-ışınları hakkında genel bilgiler. Numan Akdoğan. akdogan@gyte.edu.tr

X-Işınları. 1. Ders: X-ışınları hakkında genel bilgiler. Numan Akdoğan. akdogan@gyte.edu.tr X-Işınları 1. Ders: X-ışınları hakkında genel bilgiler Numan Akdoğan akdogan@gyte.edu.tr Gebze Yüksek Teknoloji Enstitüsü Fizik Bölümü Nanomanyetizma ve Spintronik Araştırma Merkezi (NASAM) X-Işınları

Detaylı

DİŞ RÖNTGEN CİHAZI ŞARTNAMESİ

DİŞ RÖNTGEN CİHAZI ŞARTNAMESİ Marka : TAKARA BELMONT Geçerlilik Tarih : 20/06/2008 Model : BELRAY RÖNTGEN CIHAZI Toplam Sayfa : 1 1. Cihaz diş hekimliğinde kullanılmak üzere tasarlanmış olmalıdır. 2. Mobil veya duvara monte edilebilir

Detaylı

X-IŞINI FLORESANS SPEKTROSKOPİSİ. X-ışınları spektrometresi ile numunelerin yarı kantitatif olarak içeriğinin belirlenmesi.

X-IŞINI FLORESANS SPEKTROSKOPİSİ. X-ışınları spektrometresi ile numunelerin yarı kantitatif olarak içeriğinin belirlenmesi. X-IŞINI FLORESANS SPEKTROSKOPİSİ 1. DENEYİN AMACI X-ışınları spektrometresi ile numunelerin yarı kantitatif olarak içeriğinin belirlenmesi. 2. TEORİK BİLGİ X-ışınları, yüksek enerjiye sahip elektronların

Detaylı

Hareket halindeki elektrik yüklerinin oluşturduğu bir sistem düşünelim. Belirli bir bölgede net bir yük akışı olduğunda, akımın mevcut olduğu

Hareket halindeki elektrik yüklerinin oluşturduğu bir sistem düşünelim. Belirli bir bölgede net bir yük akışı olduğunda, akımın mevcut olduğu Akım ve Direnç Elektriksel olaylarla ilgili buraya kadar yaptığımız tartışmalar durgun yüklerle veya elektrostatikle sınırlı kalmıştır. Şimdi, elektrik yüklerinin hareket halinde olduğu durumları inceleyeceğiz.

Detaylı

RÖNTGEN FİLMLERİ. Işınlama sonrası organizmanın incelenen bölgesi hakkında elde edilebilen bilgileri taşıyan belgedir.

RÖNTGEN FİLMLERİ. Işınlama sonrası organizmanın incelenen bölgesi hakkında elde edilebilen bilgileri taşıyan belgedir. RÖNTGEN FİLMLERİ Işınlama sonrası organizmanın incelenen bölgesi hakkında elde edilebilen bilgileri taşıyan belgedir. Tanısal radyolojide röntgen filmine radyogram, Röntgen filmi elde etmek için yapılan

Detaylı

Elektrik Müh. Temelleri

Elektrik Müh. Temelleri Elektrik Müh. Temelleri ELK184 2 @ysevim61 https://www.facebook.com/groups/ktuemt/ 1 Akım, Gerilim, Direnç Anahtar Pil (Enerji kaynağı) V (Akımın yönü) R (Ampül) (e hareket yönü) Şekildeki devrede yük

Detaylı

RADYASYON VE RADYASYONDAN KORUNMA

RADYASYON VE RADYASYONDAN KORUNMA RADYASYON VE RADYASYONDAN KORUNMA Mehmet YÜKSEL Çukurova Üniversitesi Fen Bilimleri Enstitüsü Fizik Anabilim Dalı MADDENİN YAPISI (ATOM) Çekirdek Elektronlar RADYASYON NEDİR? Radyasyon; iç dönüşüm geçiren

Detaylı

ALETLİ ANALİZ YÖNTEMLERİ

ALETLİ ANALİZ YÖNTEMLERİ ALETLİ ANALİZ YÖNTEMLERİ Nükleer Manyetik Rezonans (NMR) Spektroskopisi Yrd. Doç. Dr. Gökçe MEREY GİRİŞ NMR organik bilesiklerin yapılarının belirlenmesinde kullanılan en güçlü tekniktir. Çok çesitli çekirdeklerin

Detaylı

Asla veya 5, 20 veya 60 dak. kullanım dışı kalma sonrasında

Asla veya 5, 20 veya 60 dak. kullanım dışı kalma sonrasında Xi-PRESTIGE X-IŞINI ÖLÇÜMLEME SİSTEMİ Xi Genel Özellikler Gerçekleştirilen EMC Testi EN 61000-6-1:2007 ve EN 61000-6-3:2007 standartlarına uygun İhtiyaç duyulan pozlamalar Tek Sıfırlama Otomatik Sıcaklık

Detaylı

İçerik. İçerik. Radyasyon. Radyasyon güvenliği ve radyasyondan korunma yöntemleri

İçerik. İçerik. Radyasyon. Radyasyon güvenliği ve radyasyondan korunma yöntemleri İçerik Radyasyon güvenliği ve radyasyondan korunma yöntemleri Dr. Zeynep Yazıcı Uludağ Üniversitesi, Radyoloji AD Radyasyon ve iyonlaştırıcı radyasyon nedir? İyonlaştırıcı radyasyonun biyolojik İyonlaştırıcı

Detaylı

Radyoterapide Zırhlama Hesapları (NCRP 151) Medikal Fizik Uzmanı Güngör ARSLAN

Radyoterapide Zırhlama Hesapları (NCRP 151) Medikal Fizik Uzmanı Güngör ARSLAN Radyoterapide Zırhlama Hesapları (NCRP 151) Medikal Fizik Uzmanı Güngör ARSLAN Radyasyon Kaynakları Birincil Radyasyon ; Cihaz kolimatörleri ile yönlendirilen ve tedavi amacıyla kullanılan radyasyasyon

Detaylı

YILDIRIM BEYAZIT ÜNİVERSİTESİ

YILDIRIM BEYAZIT ÜNİVERSİTESİ YILDIRIM BEYAZIT ÜNİVERSİTESİ Medikal Metroloji Uygulama ve Araştırma Merkezi KALİBRASYON ve KALİTE KONTROL NEDİR? Kalibrasyon; ülke çapında ya da uluslararası standartlara göre izlenebilirliği mevcut

Detaylı

Isı Kütle Transferi. Zorlanmış Dış Taşınım

Isı Kütle Transferi. Zorlanmış Dış Taşınım Isı Kütle Transferi Zorlanmış Dış Taşınım 1 İç ve dış akışı ayır etmek, AMAÇLAR Sürtünme direncini, basınç direncini, ortalama direnc değerlendirmesini ve dış akışta taşınım katsayısını, hesaplayabilmek

Detaylı

Nötronlar kinetik enerjilerine göre aşağıdaki gibi sınıflandırılırlar

Nötronlar kinetik enerjilerine göre aşağıdaki gibi sınıflandırılırlar Nötronlar kinetik enerjilerine göre aşağıdaki gibi sınıflandırılırlar Termal nötronlar (0.025 ev) Orta enerjili nötronlar (0.5-10 kev) Hızlı nötronlar (10 kev-10 MeV) Çok hızlı nötronlar (10 MeV in üzerinde)

Detaylı

3. AKIŞKANLARDA FAZ DEĞİŞİKLİĞİ OLMADAN ISI TRANSFERİ

3. AKIŞKANLARDA FAZ DEĞİŞİKLİĞİ OLMADAN ISI TRANSFERİ 1 3. AKIŞKANLARDA FAZ DEĞİŞİKLİĞİ OLMADAN ISI TRANSFERİ (Ref. e_makaleleri) Isı değiştiricilerin büyük bir kısmında ısı transferi, akışkanlarda faz değişikliği olmadan gerçekleşir. Örneğin, sıcak bir petrol

Detaylı

Isı ve sıcaklık arasındaki fark : Isı ve sıcaklık birbiriyle bağlantılı fakat aynı olmayan iki kavramdır.

Isı ve sıcaklık arasındaki fark : Isı ve sıcaklık birbiriyle bağlantılı fakat aynı olmayan iki kavramdır. MADDE VE ISI Madde : Belli bir kütlesi, hacmi ve tanecikli yapısı olan her şeye madde denir. Maddeler ısıtıldıkları zaman tanecikleri arasındaki mesafe, hacmi ve hareket enerjisi artar, soğutulduklarında

Detaylı

İçerik. BT de Temel Prensipler. BT: Tarihçe. İçerik. BT: Tarihçe. BT: Tarihçe. Dr.Gürsel Savcı

İçerik. BT de Temel Prensipler. BT: Tarihçe. İçerik. BT: Tarihçe. BT: Tarihçe. Dr.Gürsel Savcı BT de Temel Prensipler Dr.Gürsel Savcı BT: Tarihçe 1967: çok yönlü projeksiyon ile görüntü oluşturulması konsepti 1971: İlk BT prototipi Atkinson-Morley s Hospital, Londra 1972: İnsanda ilk BT görüntüsü

Detaylı

Modern Fiziğin Teknolojideki Uygulamaları

Modern Fiziğin Teknolojideki Uygulamaları 40 Modern Fiziğin Teknolojideki Uygulamaları 1 Test 1 in Çözümleri 1. USG ve MR cihazları ile ilgili verilen bilgiler doğrudur. BT cihazı c-ışınları ile değil X-ışınları ile çalışır. Bu nedenle I ve II.

Detaylı

Elektrot Potansiyeli. (k) (k) (k) Tepkime vermez

Elektrot Potansiyeli. (k) (k) (k) Tepkime vermez Elektrot Potansiyeli Uzun metal parçası, M, elektrokimyasal çalışmalarda kullanıldığında elektrot adını alır. M n+ metal iyonları içeren bir çözeltiye daldırılan bir elektrot bir yarı-hücre oluşturur.

Detaylı

RÖNTGEN FİZİĞİ Röntgen aygıtları. Doç. Dr. Zafer KOÇ Başkent Üniversitesi Tıp Fak

RÖNTGEN FİZİĞİ Röntgen aygıtları. Doç. Dr. Zafer KOÇ Başkent Üniversitesi Tıp Fak RÖNTGEN FİZİĞİ Röntgen aygıtları Doç. Dr. Zafer KOÇ Başkent Üniversitesi Tıp Fak RÖNTGEN AYGITLARI Radyolojide genel olarak iki grup röntgen aygıtı kullanılır 1. Radyografi aygıtları 2. Fluoroskopi aygıtları

Detaylı

Gamma Bozunumu

Gamma Bozunumu Gamma Bozunumu Genelde beta ( ) ve alfa ( ) bozunumu sonunda çekirdek uyarılmış haldedir. Uyarılmış çekirdek gamma ( ) salarak temel seviyeye döner. Gamma görünür ışın ve x ışını gibi elektromanyetik radyasyon

Detaylı

X-Işınları. 4. Ders: X-ışını sayaçları. Numan Akdoğan.

X-Işınları. 4. Ders: X-ışını sayaçları. Numan Akdoğan. X-Işınları 4. Ders: X-ışını sayaçları Numan Akdoğan akdogan@gyte.edu.tr Gebze Yüksek Teknoloji Enstitüsü Fizik Bölümü Nanomanyetizma ve Spintronik Araştırma Merkezi (NASAM) X-ışını sayaç çeşitleri 1. Fotoğraf

Detaylı

Kuantum Fiziğinin Gelişimi (Quantum Physics) 1900 den 1930 a

Kuantum Fiziğinin Gelişimi (Quantum Physics) 1900 den 1930 a Kuantum Fiziğinin Gelişimi (Quantum Physics) 1900 den 1930 a Kuantum Mekaniği Düşüncesinin Gelişimi Dalga Mekaniği Olarak da Adlandırılır Atom, Molekül ve Çekirdeği Açıklamada Oldukça Başarılıdır Kuantum

Detaylı

The Physics of Particle Accelerators - Klaus Wille (1.3.5-1.3.6-1.3.7)

The Physics of Particle Accelerators - Klaus Wille (1.3.5-1.3.6-1.3.7) - Klaus Wille (1.3.5-1.3.6-1.3.7) 2 Temmuz 2012 HF Çalışma Topluluğu İçerik 1.3.5 - Doğrusal Hızlandırıcılar 1 1.3.5 - Doğrusal Hızlandırıcılar 2 3 Doğrusal Hızlandırıcılar Tüm elektrostatik hızlandırıcılar

Detaylı

Doç. Dr. Sabri KAYA Erciyes Üni. Müh. Fak. Elektrik-Elektronik Müh. Bölümü. Ders içeriği

Doç. Dr. Sabri KAYA Erciyes Üni. Müh. Fak. Elektrik-Elektronik Müh. Bölümü. Ders içeriği ANTENLER Doç. Dr. Sabri KAYA Erciyes Üni. Müh. Fak. Elektrik-Elektronik Müh. Bölümü Ders içeriği BÖLÜM 1: Antenler BÖLÜM 2: Antenlerin Temel Parametreleri BÖLÜM 3: Lineer Tel Antenler BÖLÜM 4: Halka Antenler

Detaylı

1. Diyot Çeşitleri ve Yapıları 1.1 Giriş 1.2 Zener Diyotlar 1.3 Işık Yayan Diyotlar (LED) 1.4 Fotodiyotlar. Konunun Özeti

1. Diyot Çeşitleri ve Yapıları 1.1 Giriş 1.2 Zener Diyotlar 1.3 Işık Yayan Diyotlar (LED) 1.4 Fotodiyotlar. Konunun Özeti Elektronik Devreler 1. Diyot Çeşitleri ve Yapıları 1.1 Giriş 1.2 Zener Diyotlar 1.3 Işık Yayan Diyotlar (LED) 1.4 Fotodiyotlar Konunun Özeti * Diyotlar yapım tekniğine bağlı olarak; Nokta temaslı diyotlar,

Detaylı

Fotovoltaik Teknoloji

Fotovoltaik Teknoloji Fotovoltaik Teknoloji Bölüm 5: Fotovoltaik Hücre Karakteristikleri Fotovoltaik Hücrede Enerji Dönüşümü Fotovoltaik Hücre Parametreleri I-V İlişkisi Yük Çizgisi Kısa Devre Akımı Açık Devre Voltajı MPP (Maximum

Detaylı

Faz Dönüşümleri ve Faz (Denge) Diyagramları

Faz Dönüşümleri ve Faz (Denge) Diyagramları Faz Dönüşümleri ve Faz (Denge) Diyagramları 1. Giriş Bir cisim bağ kuvvetleri etkisi altında en düşük enerjili denge konumunda bulunan atomlar grubundan oluşur. Koşullar değişirse enerji içeriği değişir,

Detaylı

KORONA KAYIPLARI Korona Nedir?

KORONA KAYIPLARI Korona Nedir? KORONA KAYIPLARI Korona Nedir? Korona olayı bir elektriksel boşalma türüdür. Genelde iletkenler, elektrotlar yüzeyinde görüldüğünden dış kısmı boşalma olarak tanımlanır. İç ve dış kısmı boşalmalar, yerel

Detaylı

TOBB Ekonomi ve Teknoloji Üniversitesi. chem.libretexts.org

TOBB Ekonomi ve Teknoloji Üniversitesi. chem.libretexts.org 9. Atomun Elektron Yapısı Elektromanyetik ışıma (EMI) Atom Spektrumları Bohr Atom Modeli Kuantum Kuramı - Dalga Mekaniği Kuantum Sayıları Elektron Orbitalleri Hidrojen Atomu Orbitalleri Elektron Spini

Detaylı

FRANCK HERTZ DENEYİ (CIVA TÜPLÜ 1. BİLGİSAYAR ORTAMINDA SONUÇ ALMAK İÇİN; DENEYİN YAPILIŞI:

FRANCK HERTZ DENEYİ (CIVA TÜPLÜ 1. BİLGİSAYAR ORTAMINDA SONUÇ ALMAK İÇİN; DENEYİN YAPILIŞI: FRANCK HERTZ DENEYİ (CIVA TÜPLÜ 1. BİLGİSAYAR ORTAMINDA SONUÇ ALMAK İÇİN; DENEYİN YAPILIŞI: Şekil 6 dan Franck-Hertz kontrol ünitesinde 6 numaralı bilgisayar çıkışını RS 232 kablosuyla seri olarak bilgisayara

Detaylı

ÖĞRENME ALANI : FĐZĐKSEL OLAYLAR ÜNĐTE 3 : YAŞAMIMIZDAKĐ ELEKTRĐK (MEB)

ÖĞRENME ALANI : FĐZĐKSEL OLAYLAR ÜNĐTE 3 : YAŞAMIMIZDAKĐ ELEKTRĐK (MEB) ÖĞENME ALANI : FZKSEL OLAYLA ÜNTE 3 : YAŞAMIMIZDAK ELEKTK (MEB) B ELEKTK AKIMI (5 SAAT) (ELEKTK AKIMI NED?) 1 Elektrik Akımının Oluşması 2 Elektrik Yüklerinin Hareketi ve Yönü 3 ler ve Özellikleri 4 Basit

Detaylı

DENEY 6 TUNGSTEN FİTİLLİ AMPUL VE YARIİLETKEN DİYOT

DENEY 6 TUNGSTEN FİTİLLİ AMPUL VE YARIİLETKEN DİYOT YALITKAN YARI- İLETKEN METAL DENEY 6 TUNGSTEN FİTİLLİ AMPUL VE YARIİLETKEN DİYOT Amaç: Birinci deneyde Ohmik bir devre elemanı olan direncin uçları arasındaki gerilimle üzerinden geçen akımın doğru orantılı

Detaylı

GÜNEŞ PİLLERİ VE ÖZELLİKLERİ Batur BEKİROĞLU Dr. Vatan TUĞAL Marmara Üniversitesi Teknik Eğitim Fakültesi Elektrik Eğitimi Bölümü Göztepe, İstanbul

GÜNEŞ PİLLERİ VE ÖZELLİKLERİ Batur BEKİROĞLU Dr. Vatan TUĞAL Marmara Üniversitesi Teknik Eğitim Fakültesi Elektrik Eğitimi Bölümü Göztepe, İstanbul Özet: Bu çalışmada güneş ışığının güneş pilleri üzerindeki etkisi incelenmiştir. Ayrıca güneş pillerinde temel yapıtaşlarını oluşturan kısa-devre akımı ( ), açık-devre gerilimi ( ) ve dolum faktörü (FF)

Detaylı

FİZ209A OPTİK LABORATUVARI DENEY KILAVUZU

FİZ209A OPTİK LABORATUVARI DENEY KILAVUZU T.C. GAZİ ÜNİVERSİTESİ GAZİ EĞİTİM FAKÜLTESİ ORTAÖĞRETİM FEN VE MATEMATİK ALANLARI EĞİTİMİ BÖLÜMÜ FİZİK EĞİTİMİ ANABİLİM DALI FİZ209A OPTİK LABORATUVARI DENEY KILAVUZU TÇ 2007 & ҰǓ 2012 Öğrencinin Adı

Detaylı

12. ÜNİTE IŞIK KONULAR 1. IŞIK VE IŞIK KAYNAKLARI 7. IŞIK ŞİDDETİ, TAYİNİ VE AYDINLATMA BİRİMLERİ 9. ÖZET 10. DEĞERLENDİRME SORULARI

12. ÜNİTE IŞIK KONULAR 1. IŞIK VE IŞIK KAYNAKLARI 7. IŞIK ŞİDDETİ, TAYİNİ VE AYDINLATMA BİRİMLERİ 9. ÖZET 10. DEĞERLENDİRME SORULARI 12. ÜNİTE IŞIK KONULAR 1. IŞIK VE IŞIK KAYNAKLARI 2. Işık 3. Işık Nasıl Yayılır? 4. Tam Gölge ve Yarı Gölge 5. Güneş Tutulması 6. Ay Tutulması 7. IŞIK ŞİDDETİ, TAYİNİ VE AYDINLATMA BİRİMLERİ 8. Işık Şiddeti

Detaylı

BAZI KAYNAK PARAMETRELERİNİN SIÇRAMA KAYIPLARINA ETKİSİ

BAZI KAYNAK PARAMETRELERİNİN SIÇRAMA KAYIPLARINA ETKİSİ BAZI KAYNAK PARAMETRELERİNİN SIÇRAMA KAYIPLARINA ETKİSİ ÖZET CO 2 kaynağında tel çapının, gaz debisinin ve serbest tel boyunun sıçrama kayıpları üzerindeki etkisi incelenmiştir. MIG kaynağının 1948 de

Detaylı

2.5. İletkenlerde R, L, C Hesabı İletim Hatlarında Direnç (R) İletim hatlarında gerilim düşümüne ve güç kaybına sebebiyet veren direncin doğru

2.5. İletkenlerde R, L, C Hesabı İletim Hatlarında Direnç (R) İletim hatlarında gerilim düşümüne ve güç kaybına sebebiyet veren direncin doğru 2.5. İletkenlerde R, L, C Hesabı 2.5.1. İletim Hatlarında Direnç (R) İletim hatlarında gerilim düşümüne ve güç kaybına sebebiyet veren direncin doğru hesaplanması gerekir. DA direnci, R=ρ.l/A eşitliğinden

Detaylı

1. Giriş 2. Yayınma Mekanizmaları 3. Kararlı Karasız Yayınma 4. Yayınmayı etkileyen faktörler 5. Yarı iletkenlerde yayınma 6. Diğer yayınma yolları

1. Giriş 2. Yayınma Mekanizmaları 3. Kararlı Karasız Yayınma 4. Yayınmayı etkileyen faktörler 5. Yarı iletkenlerde yayınma 6. Diğer yayınma yolları 1. Giriş 2. Yayınma Mekanizmaları 3. Kararlı Karasız Yayınma 4. Yayınmayı etkileyen faktörler 5. Yarı iletkenlerde yayınma 6. Diğer yayınma yolları Sol üstte yüzey seftleştirme işlemi uygulanmış bir çelik

Detaylı

RÖNTGEN FİZİĞİ Dijital röntgen. Doç. Dr. Zafer KOÇ Başkent Üniversitesi Tıp Fak

RÖNTGEN FİZİĞİ Dijital röntgen. Doç. Dr. Zafer KOÇ Başkent Üniversitesi Tıp Fak RÖNTGEN FİZİĞİ Dijital röntgen Doç. Dr. Zafer KOÇ Başkent Üniversitesi Tıp Fak Dijital röntgen Dijital görüntü ve temel fizik prensipler Dijital görüntünün görülmesi Dijital gösterim kalite kontrolü Dijital

Detaylı

BARA SİSTEMLERİ HAKKINDA GENEL BİLGİLER

BARA SİSTEMLERİ HAKKINDA GENEL BİLGİLER BARA SİSTEMLERİ HAKKINDA GENEL BİLGİLER Günümüzde bara sistemlerinde iletken olarak iki metalden biri tercih edilmektedir. Bunlar bakır ya da alüminyumdur. Ağırlık haricindeki diğer tüm özellikler bakırın

Detaylı

Sıkıştırma enerjisi arttıkça optimum su muhtevası azalmakta, kuru birim hacim ağırlık artmaktadır. Optimum su muhtevasına karşılık gelen birim hacim

Sıkıştırma enerjisi arttıkça optimum su muhtevası azalmakta, kuru birim hacim ağırlık artmaktadır. Optimum su muhtevasına karşılık gelen birim hacim KOMPAKSİYON KOMPAKSİYON Zeminlerin stabilizasyonu için kullanılan en ucuz yöntemdir. Sıkıştırma, zeminin kayma mukavemetini, şişme özelliğini arttırır. Ancak yeniden sıkışabilirliğini, permeabilitesini

Detaylı

F.Ü. SHMYO Tıbbi Görüntüleme Teknikleri Radyolojik İnceleme

F.Ü. SHMYO Tıbbi Görüntüleme Teknikleri Radyolojik İnceleme F.Ü. SHMYO Tıbbi Görüntüleme Teknikleri Radyolojik İnceleme Selami SERHATLIOĞLU 2011 Pozisyon Hastanın duruşu ve Kasetin nasıl yerleştirileceği Santralizasyon Tüpün açısı ve Yönlendirileceği merkez noktası

Detaylı

18/11/2015. PA (posteroanterior) AKCİĞER. Önerilen pozisyonlar. Toraks grafileri Çekim teknikleri ve Radyografik Anatomi

18/11/2015. PA (posteroanterior) AKCİĞER. Önerilen pozisyonlar. Toraks grafileri Çekim teknikleri ve Radyografik Anatomi Toraks grafileri Çekim teknikleri ve Radyografik Anatomi Prof.Dr. Murat Kocaoğlu Yakın Doğu Üniversitesi Tıp Fakültesi Radyoloji Anabilim Dalı Önerilen pozisyonlar Temel: Postero-anterior (PA) erekt (ayakta)

Detaylı

Theory Tajik (Tajikistan)

Theory Tajik (Tajikistan) Q3-1 Büyük Hadron Çarpıştırıcısı Bu probleme başlamadan önce ayrı bir zarfta verilen genel talimatları lütfen okuyunuz. Bu görevde, CERN de bulunan parçacık hızlandırıcısının LHC ( Büyük Hadron Çarpıştırıcısı)

Detaylı

RADYASYON FİZİĞİ 1. Prof. Dr. Kıvanç Kamburoğlu

RADYASYON FİZİĞİ 1. Prof. Dr. Kıvanç Kamburoğlu RADYASYON FİZİĞİ 1 Prof. Dr. Kıvanç Kamburoğlu Herbirimiz kısa bir süre yaşarız ve bu kısa süre içerisinde tüm evrenin ancak çok küçük bir bölümünü keşfedebiliriz Evrenle ilgili olarak en anlaşılamayan

Detaylı

Nükleer Manyetik Rezonans Spektroskopisi

Nükleer Manyetik Rezonans Spektroskopisi Nükleer Manyetik Rezonans Spektroskopisi Giriş NMR organik bileşiklerin yapılarının belirlenmesinde kullanılan en güçlü tekniktir. Çok çeşitli çekirdeklerin çalışılmasında kullanılabilir : 1 H 13 C 15

Detaylı

RÖNTGEN FİZİĞİ Röntgende Görüntü Oluşumu. Doç. Dr. Zafer KOÇ Başkent Üniversitesi Tıp Fak

RÖNTGEN FİZİĞİ Röntgende Görüntü Oluşumu. Doç. Dr. Zafer KOÇ Başkent Üniversitesi Tıp Fak RÖNTGEN FİZİĞİ Röntgende Görüntü Oluşumu Doç. Dr. Zafer KOÇ Başkent Üniversitesi Tıp Fak Röntgende Görüntü Oluşumu Görüntü kaydı ve röntgen filmi Röntgen filminin kalitesi, saklanması, taşınması Görüntü

Detaylı

3) Oksijenin pek çok bileşiğindeki yükseltgenme sayısı -2 dir. Ancak, H 2. gibi peroksit bileşiklerinde oksijenin yükseltgenme sayısı -1 dir.

3) Oksijenin pek çok bileşiğindeki yükseltgenme sayısı -2 dir. Ancak, H 2. gibi peroksit bileşiklerinde oksijenin yükseltgenme sayısı -1 dir. 5.111 Ders Özeti #25 Yükseltgenme/İndirgenme Ders 2 Konular: Elektrokimyasal Piller, Faraday Yasaları, Gibbs Serbest Enerjisi ile Pil-Potansiyelleri Arasındaki İlişkiler Bölüm 12 YÜKSELTGENME/İNDİRGENME

Detaylı

RADYOLOJİ DE DOZ AZALTIM YÖNTEMLERİ. Yrd.Doç.Dr. Ayşegül YURT DOKUZ EYLÜL ÜNİVERSİTESİ MEDİKAL FİZİK AD.

RADYOLOJİ DE DOZ AZALTIM YÖNTEMLERİ. Yrd.Doç.Dr. Ayşegül YURT DOKUZ EYLÜL ÜNİVERSİTESİ MEDİKAL FİZİK AD. RADYOLOJİ DE DOZ AZALTIM YÖNTEMLERİ Yrd.Doç.Dr. Ayşegül YURT DOKUZ EYLÜL ÜNİVERSİTESİ MEDİKAL FİZİK AD. 1895 X ışınlarının keşfi 1896 ilk radyasyon yaralanmaları ile ilgili raporlar Diagnostik Görüntülemede

Detaylı