Öğr.Gör.İnan ÜNAL Tunceli Üniversitesi Bilgisayar Mühendisliği Bölümü

Ebat: px
Şu sayfadan göstermeyi başlat:

Download "Öğr.Gör.İnan ÜNAL Tunceli Üniversitesi Bilgisayar Mühendisliği Bölümü"

Transkript

1 Öğr.Gör.İnan ÜNAL Tunceli Üniversitesi Bilgisayar Mühendisliği Bölümü

2 Büyük miktardaki veriler içerisinden önemli olanlarını bulup çıkarmaya veri Madenciliği denir. Veri madenciliği bir sorgulama işlemi veya istatistik programlarıyla yapılmış bir çalışma olmayıp milyarlarca veri ve çok fazla değişken ile ilgilenir. Veri madenciliği; daha önceden bilinmeyen geçerli ve uygulanabilir bilgilerin geniş veritabanlarından elde edilmesi ve bu bilgilerin işletme kararları verirken kullanılması olarak tanımlanır.

3 Her yaptığımız işlem sayısal ortamda kayıt altına alınmaktadır. Teknolojik gelişmeler dünyada gerçekleşen birçok işlemin elektronik olarak kayıt altına alınmasını, bu kayıtların kolayca saklanabilmesini ve gerektiğinde erişilebilmesini hem kolaylaştırıyor, hem de bu işlemlerin her geçen gün daha ucuza mal edilmesini sağlıyor Ancak, ilişkisel veri tabanlarında saklanan birçok veriden kararlar için anlamlı çıkarımlar yapabilmek bu verilerin bilinçli uzmanlarca analiz edilmesini gerektiriyor.

4 Elde var olan büyük miktardaki veri: Şirketler, keşfedilmeyi bekleyen bu verilerin iş stratejilerine rehberlik etmesi için gizli modelleri bulmak istiyorlar. Rekabetin artması : Şirketler uluslararası rekabet ile karşı karşıyalar ve bu noktada başarının anahtarı; var olan müşterileri korumak ve yenilerini elde etmek. Veri madenciliği, şirketlerin bu konuları etkileyen faktörleri analiz edebilmelerine izin veren teknolojiler içermektedir. Hazır teknoloji : Veri madenciliği teknolojileri son yıllarda olgunlaştı ve günümüz endüstrisinde kullanılmak için hazır hale geldi. Veri madenciliği için kullanılan programlama ara yüzleri standartlaşmakta, böylece geliştiriciler daha iyi veri madenciliği uygulamaları geliştirebilmektedirler.

5 1. Örnek olarak Amerika'da bir mağazada bebek bezlerinin yanında biralar sergileniyor. Bunu yapan mağaza bira satışlarında bir artış yaşamış. Bu Amerikan kadınlarının eşlerinden eve gelirken bebek bezi sipariş ettiğini farkeden mağazanın hemen bebek bezlerinin yanına biraları koymasından kaynaklanmış. Bebek bezi alan baba hemen yandaki reyonda bulanan birayı da almaya başlamış

6 2. Hile tespiti veri madenciliğinin en önemli uygulama alanlarından biridir. Kredi kartı usulsüzlükleri nedeniyle finansal kuruluşlar 2001 yılında 1 milyar dolardan fazla zarara uğradılar. (Kaynak: Meridien Research) Hile tespiti uygulamalarının gelişmesi, ödemeler sisteminin kayıplarının azalıp daha sağlıklı işlemesini sağlayacaktır.

7 Sigorta şirketleri günde binlerce talebi işleme alırlar. Her birinin gerçekliğini ayrı ayrı araştırmak çok da mümkün değildir. Veri madenciliği, gelen talebin sahte olabileceğini tanımlamak için yardımcı olabilir. Bu müşterinin kredi talebini onaylamalı mıyım? Veri madenciliği teknikleri, müşteriye risk seviyesini skorlamak için yardımcı olabilirler. Böylece her müşteri için doğru kararın verilmesine yardımcı olunabilir.

8 Bankacılık Pazarlama Sigortacılık Sağlık Gıda sektörü Vb

9 Pazarlama Yönetimi Müşterilerin satın alma örüntülerinin belirlenmesi Müşterilerin demografik özellikleri arasındaki bağıntıların bulunması Posta kampanlarına cevap verme oranlarının artırılması Mevcut müşterilerin elde tutulması yeni müşterilerin kazanılması Pazar sepeti analizi Müşteri ilişkileri yönetimi Müşteri değerlendirme Satış tahmini Çapraz Satış

10 Risk Yönetimi ve Dolandırıcılık Saptama Kredi kartı dolandırıcılığı İnternet işlemleri (bankacılık, alışveriş vb.) Sigorta dolandırıcılığı Kara para aklama Bilgisayar sistemleri ve ağlara sızma Telefon dolandırıcılığı

11 1. Veri: Veri madenciliğinin bu kadar gelişmesindeki en önemli faktördür. 2. Donanım: Gelişen bellek ve işlem hızı kapasitesi sayesinde, birkaç yıl önce madencilik yapılamayan veriler üzerinde çalışmayı mümkün hale getirmiştir. 3. Bilgisayar ağları: Yeni nesil internet, çok yüksek hızları kullanmayı sağlamaktadır. Böyle bir bilgisayar ağı ortamı oluştuktan sonra, dağıtık verileri analiz etmek ve farklı algoritmaları kullanmak mümkün olacaktır. 4. Bilimsel hesaplamalar: Günümüz bilim adamları ve mühendisleri, simülasyonu, bilimin üçüncü yolu olarak görmekteler. Veri madenciliği ve bilgi keşfi, teori, deney ve simülasyonu birbirine bağlamada önemli bir rol almaktadır. 5. Ticari eğilimler: Günümüzde, işletmeler rekabet ortamında varlıklarını koruyabilmek için daha hızlı hareket etmeli, daha yüksek kalitede hizmet sunmalı, bütün bunları yaparken de minimum maliyeti ve en az insan gücünü göz önünde bulundurmalıdır.

12 Artık veri: Artık veri, problemde istenilen sonucu elde etmek için kullanılan örneklem kümesindeki gereksiz niteliklerdir. Bu durum pek çok işlem sırasında karşımıza çıkabilir. Belirsizlik: Yanlışlıkların şiddeti ve verideki gürültünün derecesi ile ilgilidir. Boş veri: Bir veri tabanında boş değer, birincil anahtarda yer almayan herhangi bir niteliğin değeri olabilir. Boş değer, tanımı gereği kendisi de dâhil olmak üzere hiçbir değere eşit olmayan değerdir. Dinamik veri: Kurumsal çevrim içi veri tabanları dinamiktir ve içeriği sürekli olarak değişir. Bu durum, bilgi keşfi metotları için önemli sakıncalar doğurmaktadır.

13 Eksik veri: Veri kümesinin büyüklüğünden ya da doğasından kaynaklanmaktadır. Eksik veriler olduğunda yapılması gerekenler şunlardır: Eksik veri içeren kayıt veya kayıtlar çıkarılabilir. Değişkenin ortalaması eksik verilerin yerine kullanılabilir. Var olan verilere dayalı olarak en uygun değer kullanılabilir. Eksik veriler, yapılacak olan istatistiksel analizlerde önemli problemler yaratmaktadır. Çünkü istatistiksel analizler ve bu analizlerin yapılmasına olanak veren ilgili paket programlar, verilerin tümünün var olduğu durumlar için geliştirilmiştir.

14 Farklı tipteki verileri ele alma: Gerçek hayattaki uygulamalar makine öğreniminde olduğu gibi yalnızca sembolik veya kategorik veri türleri değil, fakat aynı zamanda tamsayı, kesirli sayılar, çoklu ortam verisi, coğrafi bilgi içeren veri gibi farklı tipteki veriler üzerinde işlem yapılmasını gerektirir. Gürültülü ve kayıp değerler: Veri girişi veya veri toplanması esnasında oluşan sistem dışı hatalara gürültü denir. Büyük veri tabanlarında pek çok niteliğin değeri yanlış olabilir. Veri toplanması esnasında oluşan hatalara ölçümden kaynaklanan hatalar da dâhil olmaktadır. Bu hataların sonucu olarak birçok niteliğin değeri yanlış olabilir ve bu yanlışlardan dolayı veri madenciliği amacına tam olarak ulaşmayabilir.

15 Sınırlı bilgi: Veri tabanları genel olarak basit öğrenme işlerini sağlayan özellik veya nitelikleri sunmak gibi veri madenciliği dışındaki amaçlar için hazırlanmışlardır. Bu yüzden, öğrenme görevini kolaylaştıracak bazı özellikler bulunmayabilir. Veri tabanı boyutu: Veri tabanı boyutları büyük bir hızla artmaktadır. Veri tabanı algoritması çok sayıda küçük örneklemi ele alabilecek biçimde geliştirilmiştir. Aynı algoritmaların yüzlerce kat büyük örneklemlerde kullanılabilmesi için çok dikkat gerekmektedir.

16 1. Problemin tanımlanması, 2. Verilerin hazırlanması, 3. Modelin kurulması ve değerlendirilmesi, 4. Modelin kullanılması, 5. Modelin izlenmesi.

17

18 Problemin tanımlanması: Veri madenciliği çalışmalarında başarılı olmanın en önemli şartı, projenin hangi işletme amacı için yapılacağının ve elde edilecek sonuçların başarı düzeylerinin nasıl ölçüleceğinin tanımlanmasıdır. Verilerin hazırlanması: Modelin kurulması aşamasında ortaya çıkacak sorunlar, bu aşamaya sık sık geri dönülmesine ve verilerin yeniden düzenlenmesine neden olacaktır. Bu durum verilerin hazırlanması ve modelin kurulması aşamaları için, bir analistin veri keşfi sürecinin toplamı içerisinde enerji ve zamanının %50 - %85 ini harcamasına neden olmaktadır (Piramuthu,1998). Verilerin hazırlanması, toplama, değer biçme, birleştirme ve temizleme, örneklem seçimi ve dönüştürme aşamalarından oluşmaktadır.

19 Modelin kurulması ve değerlendirilmesi: Tanımlanan problem için en uygun modelin bulunabilmesi, olabildiğince çok sayıda modelin kurularak denenmesi ile mümkündür. Bu nedenle veri hazırlama ve model kurma aşamaları, en iyi olduğu düşünülen modele varılıncaya kadar yinelenen bir süreçtir. Modelin kullanılması: Kurulan ve geçerliliği kabul edilen model doğrudan bir uygulama olabileceği gibi, bir başka uygulamanın alt parçası olarak kullanılabilir. Modelin izlenmesi: Zaman içerisinde bütün sistemlerin özelliklerinde ve dolayısıyla ürettikleri verilerde ortaya çıkan değişiklikler, kurulan modellerin sürekli olarak izlenmesini ve yeniden düzenlenmesini gerektirecektir.

20 Veri Ambarları Belirli bir döneme ait yapılacak çalışmaya göre konu odaklı olarak düzenlenmiş, birleştirilmiş veya sabitlenmiş işletmelere ait veri tabanlarına veri ambarları denir. Veri ambarları, verilerin üzerine yazmaya ve verilerde değişiklik yapmak için değil sadece okumaya yönelik olarak oluşturulmaktadır. Bu nedenle veri ambarında veriler, analiz yapmayı kolaylaştıran bir formatta tutulmaktadır. Burada analiz; sorgular, raporlar, karar destek sistemleri veya istatistiki hesapları kapsamaktadır.

21 Veri Ambarları, sağlık sektöründen bilişim sistemlerine, işletmelerin pazarlama bölümünden üretime, geleceğe dönük tahminler yapmada, sonuçlar çıkarmada ve işletmelerin yönetim stratejilerini belirlemede kullanılmakta olan bir sistemdir. Pahalı bir yatırım maliyeti olsa bile sonuç olarak getirisi (yararı) bu maliyeti kat kat aşmaktadır.

22 Veri ambarları; 1. Konu odaklıdır 2. Bütünleşiktir 3. Belirli bir döneme ve zaman dilimine aittir. 4. Geçici ve uçucu değildir.

23 Veri ambarının içerdiği veriler; 1. Meta Data: Doğrudan işlemsel çevreden gelen veriyi içermez. Karar Destek Sistemleri analizlerine yardım etmek üzere yaratılan bir dizindir. İşlemsel çevreden veri ambarına dönüştürülen verilerin konumları hakkında bilgi verir. İşlemsel çevreden alınan verinin hangi algoritmaya göre düşük yada yüksek seviyede özetlendiği hakkında bilgi verir.

24 2. Ayrıntı Veri: Bu veri en son olayları içermektedir ve henüz işlenmetidiği için diğerlerine oranla daha büyük hacimlidir. 3. Eski ayrıntı Veri: Ayrıntı verinin dışında kalan verilerdir. Daha eski tarihe aitlerdir. 4. Düşük Düzeyde(seviyede) Özetlenmiş Veri:Ayrıntı veriden süzülerek elde edilen düşük seviyede özetlenmiş veridir. 5. Yüksek Seviyede Özetlenmiş Veri: Ayrıntı veri daha yüksek düzeyde özetlenerek, kolayca erişilebilir hale getirebilir.

25 Veri ambarlarının kullanım amaçları ; Müşterilerin gizli kalmış satın alma eğilimlerini tespit etmek Satış analizi ve trendler üzerine odaklanmak, Finansal analiz(maliyetlerin azaltılması dolayısıyla rekabet avantajının sağlanması) Stratejik Analiz (Bir Karar Destek Sistemi olmasından dolayı) İşler arasında ilişkilerin belirlenebilmesi Müşteri ihtiyaçlarına çabuk cevap verebilme

26 OLAP (Online Analytical Processing) Veri ambarları üzerinde çeşitli taktik ve stratejik konular hakkında karar vermeye yardımcı olacak veri analizi ve sorgulama işlemlerine OLAP denir. OLAP da yapılan işlem bilgisayarda bulunan veriler üzerinde insan aklını kullanarak sorgulama işlemi yapmaktır. Bir OLAP sistemi, büyük miktarlarda tarihi veriyi yönetir, özetleme ve toplamada kolaylıklar sağlar ve öğe boyutunda farklı seviyelerindeki bilgiyi saklar ve yönetir. Bu özellikler veriyi karar vermede kullanabilmek için daha kolay bir hale getirir. OLAP sistemi,tipik olarak ya yıldız yada kar tanesi modelini ve özne merkezli bir veri tabanı tasarımını tercih eder.

27 Veri Ambarları Mimarisi Veri ambarı mimarisinde 3 değişik veri ambarları şeması kullanılır. Yıldız Kartanesi Anatablo Birleşimi

28 Veri Mart Bir veri ambarının konulara göre düzenlenmiş ve işletmenin satış veya pazarlama gibi sadece belirli bir bölümünü ilgilendiren başka bir deyişle tek bir konu ya da bölüme odaklanan parçasına veri mart (datamart) denir. Data Mart lar veri ambarlarının alt kümeleridir. Veri ambarları bir iş probleminin tamamına yönelik bir bakış sağlarken, data mart lar sadece belli bir kısma bakış sağlarlar.

GENCAY KARAMAN. gencay@gencaykaraman.com gencaykaraman@gmail.com. DBA & Data Mining/Business Intelligence Specialist

GENCAY KARAMAN. gencay@gencaykaraman.com gencaykaraman@gmail.com. DBA & Data Mining/Business Intelligence Specialist Veri Madenciliği ile Çapraz Satış ve Risk Yönetimi Churn analyse, Cross selling, Fraud Detection, Risk Management, Customer Segmentation, Targeted ads, Sales Forecast GENCAY KARAMAN gencay@gencaykaraman.com

Detaylı

Veri Tabanı, Veri Ambarı, Veri Madenciliği. Veri Madenciliği Uygulama Alanları

Veri Tabanı, Veri Ambarı, Veri Madenciliği. Veri Madenciliği Uygulama Alanları 1 Veri Tabanı, Veri Ambarı, Veri Madenciliği Bilgi Keşfi Aşamaları Apriori Algoritması Veri Madenciliği Yöntemleri Problemler Veri Madenciliği Uygulama Alanları 2 Bir bilgisayarda sistematik şekilde saklanmış,

Detaylı

BAŞAK ÇOBAN MERVE SARITAŞ AZİME AKÇAÖZ BÜŞRA AYDEMİR

BAŞAK ÇOBAN MERVE SARITAŞ AZİME AKÇAÖZ BÜŞRA AYDEMİR VERİ MADENCİLİĞİ İSİMLER BAŞAK ÇOBAN MERVE SARITAŞ AZİME AKÇAÖZ BÜŞRA AYDEMİR MOLEKÜLER BİYOLOJİ ve GENETİK GEBZE TEKNİK ÜNİVERSİTESİ ARALIK 2015 İçindekiler ÖZET... iii 1.GİRİŞ... 1 1.1 Veri Ambarı, Veri

Detaylı

Veritabanı, Veri Madenciliği, Veri Ambarı, Veri Pazarı

Veritabanı, Veri Madenciliği, Veri Ambarı, Veri Pazarı Veritabanı, Veri Madenciliği, Veri Ambarı, Veri Pazarı Başkent Üniversitesi Bilgisayar Mühendisliği Yönetim Bilişim Sistemleri (Bil 483) 20394676 - Ümit Burak USGURLU Veritabanı Veri tabanı düzenli bilgiler

Detaylı

Konular. VERİ MADENCİLİĞİ Giriş. Problem Tanımı. Veri Madenciliği: Tarihçe. Veri Madenciliği Nedir? Bilgi Keşfi

Konular. VERİ MADENCİLİĞİ Giriş. Problem Tanımı. Veri Madenciliği: Tarihçe. Veri Madenciliği Nedir? Bilgi Keşfi VERİ MADENCİLİĞİ Giriş Yrd. Doç. Dr. Şule Gündüz Öğüdücü 1 2 Problem Tanımı Veri Madenciliği: Tarihçe teknolojinin gelişimiyle bilgisayar ortamında ve veritabanlarında tutulan veri miktarının da artması

Detaylı

VERI TABANLARıNDA BILGI KEŞFI

VERI TABANLARıNDA BILGI KEŞFI 1 VERİ MADENCİLİĞİ VERI TABANLARıNDA BILGI KEŞFI Veri Tabanlarında Bilgi Keşfi, veriden faydalı bilginin keşfedilmesi sürecinin tamamına atıfta bulunmakta ve veri madenciliği bu sürecin bir adımına karşılık

Detaylı

Veri Madenciliği. Veri madenciliği uygulamalarında alt yapı gereksinimi veri ambarı sayesinde sağlanır.

Veri Madenciliği. Veri madenciliği uygulamalarında alt yapı gereksinimi veri ambarı sayesinde sağlanır. Veri Madenciliği Büyük miktardaki veriler içerisinden önemli olanlarını bulup çıkarmaya Veri Madenciliği denir. Veriler üzerinde çözümlemeler yapmak amacıyla ve veriyi çözümleyip bilgiye ulaşabilmek için

Detaylı

Birliktelik Kuralları Analizi. Yard. Doç. Dr. Derya BİRANT Prof. Dr. Alp KUT

Birliktelik Kuralları Analizi. Yard. Doç. Dr. Derya BİRANT Prof. Dr. Alp KUT İş Zekası Çözümleri için i Çok Boyutlu Birliktelik Kuralları Analizi Yard. Doç. Dr. Derya BİRANT Prof. Dr. Alp KUT İçerik 1 Veri Madenciliği 2 Birliktelik Kuralları Analizi 3 Uygulama 4 Algoritma 5 Sonuçlar

Detaylı

VERİ MADENCİLİĞİNE BAKIŞ

VERİ MADENCİLİĞİNE BAKIŞ VERİ MADENCİLİĞİNE BAKIŞ İçerik Veri Madenciliği Neden Veri Madenciliği? Veri ve Veri Madenciliğinin Önemi Günümüzde Kullanılan Veri Madenciliğinin Çeşitli İsimleri Veri Madenciliği Nedir? Neden Veri Madenciliği?

Detaylı

BİLGİ SİSTEMLERİNİN GELİŞTİRİLMESİ

BİLGİ SİSTEMLERİNİN GELİŞTİRİLMESİ BİLGİ SİSTEMLERİNİN GELİŞTİRİLMESİ Bilgi sistemi kavramı genellikle işletmelere yönelik olarak kullanılmaktadır. Bu yönüyle bilgi sisteminin amacını; yöneticilere teslim edilen ekonomik kaynakların kullanımına

Detaylı

SİSTEM ANALİZİ VE TASARIMI. Sistem Analizi -Bilgi Sistemleri-

SİSTEM ANALİZİ VE TASARIMI. Sistem Analizi -Bilgi Sistemleri- SİSTEM ANALİZİ VE TASARIMI Sistem Analizi -Bilgi Sistemleri- Bilgi Sistemi Bilgi sistemi, karar vericiler için verileri işleyerek bilgi sağlayan çoğunlukla bilgisayara dayalı sistemlerdir. Bilgi sistemi

Detaylı

Veri Madenciliği Süreci

Veri Madenciliği Süreci Veri Madenciliği Eda Coşlu Mehmet Akif Ersoy Üniversitesi, Yönetim Bilişim Sistemleri Bölümü, BURDUR edacoslu@hotmail.com Büyük miktardaki veriler içerisinden önemli olanlarını bulup çıkarmaya Veri Madenciliği

Detaylı

Veri Ambarları. Erdem Alparslan

Veri Ambarları. Erdem Alparslan Veri Ambarları Erdem Alparslan İçerik Veri Ambarı nedir? Data Mart OLTP ve Veri Ambarı arasındaki farklar Veri Ambarının Yararları Veri Ambarı Mimarileri Ana Kavramlar Araçlar ve Teknolojiler Veri Ambarı

Detaylı

Vizyon Uzmanlaştığımız alanda kusursuz ve güvenilir çözüm ortağınız olmak.

Vizyon Uzmanlaştığımız alanda kusursuz ve güvenilir çözüm ortağınız olmak. Vizyon Uzmanlaştığımız alanda kusursuz ve güvenilir çözüm ortağınız olmak. Misyon Müşteri odaklı çözümler sağlayarak güncel ve gelişen teknolojilerle uyumlu, nitelikli ve maliyet etkin ürün ve sistemler

Detaylı

MÜŞTERİ İLİŞKİLERİ YÖNETİMİ

MÜŞTERİ İLİŞKİLERİ YÖNETİMİ MİY(CRM) E GELENEKSEL YAKLAŞIM WEB ETKİN VE BÜTÜNLEŞİK YAKLAŞIM Ünite 4 Öğr. Gör. Cemile AVCI AKAN Bu dersimizde, sizlere Müşteri İlişkileri Yönetimi konusundan bahsedeceğiz. Telefon, mail ve çalışan yoluyla

Detaylı

28 Aralık 2013. Yıldız Teknik Üniversitesi Bilgisayar Mühendisliği Bölümü

28 Aralık 2013. Yıldız Teknik Üniversitesi Bilgisayar Mühendisliği Bölümü 28 Aralık 13 Yıldız Teknik Üniversitesi Bilgisayar Mühendisliği Bölümü 12-13 Eğitim Yılında (Ocak-Kasım 13 tarihleri arasında) doldurulmuş olan Bölümü Değerlendirme Anket Formları Raporu Öğrencilerin staj

Detaylı

BÖLÜM 13 HİPOTEZ TESTİ

BÖLÜM 13 HİPOTEZ TESTİ 1 BÖLÜM 13 HİPOTEZ TESTİ Bilimsel yöntem aşamalarıyla tanımlanmış sistematik bir bilgi üretme biçimidir. Bilimsel yöntemin aşamaları aşağıdaki gibi sıralanabilmektedir (Karasar, 2012): 1. Bir problemin

Detaylı

İş Zekâsı Sistemi Projesi

İş Zekâsı Sistemi Projesi BI İş Zekâsı Sistemi Projesi Ulaş Kula, Bilişim Ltd. Esinkap 5. Ar-Ge Proje Pazarı 31 Mayıs 2012 Bilişim Ltd. 1985 te kurulan Bilişim Ltd, Türkiye nin üstün başarıyla sonuçlanmış önemli projelerine imza

Detaylı

Kısaca. Müşteri İlişkileri Yönetimi. Nedir? İçerik. Elde tutma. Doğru müşteri 01.06.2011. Genel Tanıtım

Kısaca. Müşteri İlişkileri Yönetimi. Nedir? İçerik. Elde tutma. Doğru müşteri 01.06.2011. Genel Tanıtım Kısaca Müşteri İlişkileri Yönetimi Genel Tanıtım Başar Öztayşi Öğr. Gör. Dr. oztaysib@itu.edu.tr 1 MİY Genel Tanıtım 2 MİY Genel Tanıtım İçerik Müşteri İlişkileri Yönetimi Nedir? Neden? Tipleri Nelerdir?

Detaylı

İş Zekası Sistemi Veriyi Stratejik Bilgiye Dönüştürür

İş Zekası Sistemi Veriyi Stratejik Bilgiye Dönüştürür İş Zekası Sistemi İş Zekası Sistemi İş Zekâsı Sistemi kolay kullanılır, zengin raporlama ve çözümleme yeteneklerine sahip, farklı veri kaynaklarını birleştirir, yöneticilere çok boyutlu, kurumsal bir görüş

Detaylı

Trakya Kalkınma Ajansı. www.trakyaka.org.tr. İhracat Planı Hazırlanması Süreci

Trakya Kalkınma Ajansı. www.trakyaka.org.tr. İhracat Planı Hazırlanması Süreci Trakya Kalkınma Ajansı www.trakyaka.org.tr İhracat Planı Hazırlanması Süreci 2013 İHRACAT PLANI HAZIRLANMASI SÜRECİ İhracat Planı Neden Hazırlanır? İhracattan ne beklendiğinin belirlenmesi, İhracat amaçlarına

Detaylı

PAPATYA YAYINCILIK EĞİTİM Bilgisayar Sis. San. ve Tic. A.Ş. Veri Madenciliği Yöntemleri Dr. Yalçın ÖZKAN -II-

PAPATYA YAYINCILIK EĞİTİM Bilgisayar Sis. San. ve Tic. A.Ş. Veri Madenciliği Yöntemleri Dr. Yalçın ÖZKAN -II- Dr. Yalçın ÖZKAN Dr. Yalçın ÖZKAN PAPATYA YAYINCILIK EĞİTİM Bilgisayar Sis. San. ve Tic. A.Ş. Ankara Caddesi, Prof. Fahreddin Kerim Gökay Vakfı İşhanı Girişi, No: 11/3, Cağaloğlu (Fatih)/İstanbul Tel

Detaylı

DOĞRUDAN FAALİYET DESTEĞİ

DOĞRUDAN FAALİYET DESTEĞİ DOĞRUDAN FAALİYET DESTEĞİ Konusu İstanbul da Yazılım, Bilgisayar ve Video Oyunları Sektörü Durum Analizi ve Sektörün Geleceği Gerekçesi 2014-2023 İstanbul Bölge Planı nın ekonomik gelişme ekseni küresel

Detaylı

COĞRAFİ BİLGİ SİSTEMLERİ

COĞRAFİ BİLGİ SİSTEMLERİ COĞRAFİ BİLGİ SİSTEMLERİ HARİTA TABANLI PLANLAMA VE YÖNETİM Prof.Dr. Vahap TECİM Dokuz Eylül Üniversitesi HARİTADAN DA ÖTE COĞRAFİ BİLGİ SİSTEMLERİ BİLGİ SİSTEMİ Donanım Yazılım Veriler Personel Yeryüzü

Detaylı

Başlıca Ürün-Bilgi Sistemleri

Başlıca Ürün-Bilgi Sistemleri BİLGİ SİSTEMLERİ Başlıca Ürün-Bilgi Sistemleri Süreç İşleme Sistemleri, Ofis Otomasyon Sistemleri ve Bilgi İşleme Sistemleri, Yönetim Bilişim Sistemleri, Karar Destek Sistemleri, Uzman Sistemler ve Yapay

Detaylı

Yıldız Teknik Üniversitesi Bilgisayar Mühendisliği Bölümü. 13 Kasım 2010

Yıldız Teknik Üniversitesi Bilgisayar Mühendisliği Bölümü. 13 Kasım 2010 Yıldız Teknik Üniversitesi Bilgisayar Mühendisliği Bölümü 13 Kasım 2010 2010-2011 Eğitim Yılı (Haziran-Kasım 2010 tarihleri arasında) Bölümü Değerlendirme Anket Formu Raporu Öğrencilerimizin staj yaptıkları

Detaylı

Tedarik Zinciri Yönetimi

Tedarik Zinciri Yönetimi Tedarik Zinciri Yönetimi -Tedarik Zinciri Ağı Tasarımı- Yrd. Doç. Dr. Mert TOPOYAN Ağ tasarımı, tedarik zinciri açısından üç karar düzeyini de ilgilendiren ve bu düzeylerde etkisi olan bir konudur. Zincirin

Detaylı

BİLGİSAYAR MÜHENDİSLİĞİ BÖLÜMÜ ÖĞRENCİLERİ İÇİN YÖNETİM BİLİŞİM SİSTEMLERİ Ç.A.P. PROGRAMI

BİLGİSAYAR MÜHENDİSLİĞİ BÖLÜMÜ ÖĞRENCİLERİ İÇİN YÖNETİM BİLİŞİM SİSTEMLERİ Ç.A.P. PROGRAMI BİLGİSAYAR MÜHENDİSLİĞİ BÖLÜMÜ ÖĞRENCİLERİ İÇİN YÖNETİM BİLİŞİM SİSTEMLERİ Ç.A.P. PROGRAMI Sınıf Dönem 1 Sonbahar Ders Kodu Adı T U L Kr. AKTS Ortak/Muaf(*)/Alınacak AT 101 Atatürk İlkeleri ve İnkılap

Detaylı

MÜHENDİSLİK VE TEKNOLOJİ FAKÜLTESİ BİLGİSAYAR MÜHENDİSLİĞİ BÖLÜMÜ 2016/2017 ÖĞRETİM YILI 1. YARIYIL FİNAL SINAVI PROGRAMI 1. SINIF

MÜHENDİSLİK VE TEKNOLOJİ FAKÜLTESİ BİLGİSAYAR MÜHENDİSLİĞİ BÖLÜMÜ 2016/2017 ÖĞRETİM YILI 1. YARIYIL FİNAL SINAVI PROGRAMI 1. SINIF BİLGİSAYAR MÜHENDİSLİĞİ BÖLÜMÜ 1. SINIF 2 Ocak Pazartesi 3 Ocak Salı 4 Ocak Çarşamba 5 Ocak Perşembe 6 Ocak Cuma Bilgisayar Mühendisliğine Giriş Fransızca I Sınıf: 118-222 Kimya I Sınıf: 118-231-314 BİLGİSAYAR

Detaylı

8 Haziran 2007 TBD İstanbul Bilişim Kongresi

8 Haziran 2007 TBD İstanbul Bilişim Kongresi Finansal Uygulamalarda Veri Madenciliği Ali Alkan ali.alkan@infora.com.tr 1/48 Gündem 1. Neden veri madenciliği? 2. Veri madenciliği türleri 3. Veri madenciliği teknikleri 4. Veri madenciliği uygulamaları

Detaylı

Akdeniz Üniversitesi Mühendislik Fakültesi Bilgisayar Mühendisliği Bölüm Tanıtımı

Akdeniz Üniversitesi Mühendislik Fakültesi Bilgisayar Mühendisliği Bölüm Tanıtımı Akdeniz Üniversitesi Mühendislik Fakültesi Bilgisayar Mühendisliği Bölüm Tanıtımı cse@akdeniz.edu.tr Antalya, 2016 2 Özet Akdeniz Üniversitesi tanıtım filmi Neden Bilgisayar Mühendisliği Bilgisayar Mühendisi

Detaylı

İSTANBUL TEKNİK ÜNİVERSİTESİ ELEKTRİK-ELEKTRONİK FAKÜLTESİ. AKILLI FİYAT ARAMA MOTORU TiLQi.NET

İSTANBUL TEKNİK ÜNİVERSİTESİ ELEKTRİK-ELEKTRONİK FAKÜLTESİ. AKILLI FİYAT ARAMA MOTORU TiLQi.NET İSTANBUL TEKNİK ÜNİVERSİTESİ ELEKTRİK-ELEKTRONİK FAKÜLTESİ AKILLI FİYAT ARAMA MOTORU TiLQi.NET Bitirme Ödevi Kadir Kemal Dursun 040000643 Hakan Demirtaş 040000684 Bölüm : Bilgisayar Mühendisliği Anabilim

Detaylı

Bölüm 6 - İşletme Performansı

Bölüm 6 - İşletme Performansı Bölüm 6 - İşletme Performansı Performans Kavramı Performans, genel anlamda amaçlı ve planlanmış bir etkinlik sonucunda elde edileni, nicel ya da nitel olarak belirleyen bir kavramdır. Performans Kavramı

Detaylı

Ders Kodu Dersin Adı Dersin Ġntibak Durumu

Ders Kodu Dersin Adı Dersin Ġntibak Durumu ENDÜSTRĠ SĠSTEMLERĠ MÜHENDĠSLĠĞĠ BÖLÜMÜ ĠNTĠBAK ÇĠZELGESĠ 2010-2011 1.SINIF / GÜZ DÖNEMĠ IUE100 Akademik ve Sosyal Oryantasyon CS 115 Programlamaya Giriş I Bu ders 1. Sınıf güz döneminden 2. Sınıf güz

Detaylı

Stratejik Performans Yönetimi ve Dengeli Sonuç Kartı (Balanced Scorecard-BSC)

Stratejik Performans Yönetimi ve Dengeli Sonuç Kartı (Balanced Scorecard-BSC) Stratejik Performans Yönetimi ve Dengeli Sonuç Kartı (Balanced Scorecard-BSC) Kontrol Fonksiyonu Gerçekleştirilmek istenen amaçlara ne ölçüde ulaşıldığını belirlemek, planlanan amaçlar (standartlar), ile

Detaylı

Kullanılan Kaynaklar: - Mucuk, İ. (2012). Pazarlama İlkeleri. Türkmen Kitabevi - Altunışık, R., Özdemir, Ş. & Torlak, Ö. (2012). Modern Pazarlama.

Kullanılan Kaynaklar: - Mucuk, İ. (2012). Pazarlama İlkeleri. Türkmen Kitabevi - Altunışık, R., Özdemir, Ş. & Torlak, Ö. (2012). Modern Pazarlama. Kullanılan Kaynaklar: - Mucuk, İ. (2012). Pazarlama İlkeleri. Türkmen Kitabevi - Altunışık, R., Özdemir, Ş. & Torlak, Ö. (2012). Modern Pazarlama. Değişim Yayınları. - Kotler, Philip & Armstrong, Gary

Detaylı

bilişim ltd İş Zekâsı Sistemi

bilişim ltd İş Zekâsı Sistemi BI İş Zekâsı Sistemi Bilişim Ltd. 1985 te kurulan Bilişim Ltd, Türkiye nin üstün başarıyla sonuçlanmış önemli projelerine imza atan öncü bir yazılımevi ve danışmanlık kurumu dur. Önemli kuruluşların bilgi

Detaylı

VERİ MADENCİLİĞİ VE SOSYAL AĞ ANALİZİ ARAŞTIRMA LABORATUVARI

VERİ MADENCİLİĞİ VE SOSYAL AĞ ANALİZİ ARAŞTIRMA LABORATUVARI BİLGİSAYAR MÜHENDİSLİĞİ BÖLÜMÜ VERİ MADENCİLİĞİ VE SOSYAL AĞ ANALİZİ ARAŞTIRMA LABORATUVARI 10 Aralık 2011, Cumartesi Fen ve Mühendislik Alanlarındaki Çeşitli Araştırma Projelerinden Örneklemeler İçerik

Detaylı

Akdeniz Üniversitesi Mühendislik Fakültesi Bilgisayar Mühendisliği Bölüm Tanıtımı

Akdeniz Üniversitesi Mühendislik Fakültesi Bilgisayar Mühendisliği Bölüm Tanıtımı Akdeniz Üniversitesi Mühendislik Fakültesi Bilgisayar Mühendisliği Bölüm Tanıtımı cse@akdeniz.edu.tr Antalya, 2015 2 Özet Akdeniz Üniversitesi tanıtım filmi Neden Bilgisayar Mühendisliği Bilgisayar Mühendisi

Detaylı

CRM UYGULAMALARINDA BAŞARI ĐÇĐN BĐLĐNMESĐ GEREKENLER

CRM UYGULAMALARINDA BAŞARI ĐÇĐN BĐLĐNMESĐ GEREKENLER 1-Pazarlama konsepti ve bilişim destekli CRM sistemleri 2-CRM Nedir? Neden CRM? 3- CRM modelleri 4-CRM uygulama noktaları 5-CRM projelerinde başarı ve başarısızlığı etkileyen faktörler CRM UYGULAMALARINDA

Detaylı

SİSTEM ANALİZİ ÖĞR. GÖR. MUSTAFA ÇETİNKAYA DERS 2 > GÜNÜMÜZ İŞLETMELERİNDE ENFORMASYON SİSTEMLERİ

SİSTEM ANALİZİ ÖĞR. GÖR. MUSTAFA ÇETİNKAYA DERS 2 > GÜNÜMÜZ İŞLETMELERİNDE ENFORMASYON SİSTEMLERİ SİSTEM ANALİZİ IT (ET) NEDİR?. BİLGİSAYAR DONANIM VE YAZILIMI VERİ YÖNETİMİ AĞ VE TELEKOMÜNİKASYON TEKNOLOJİLERİ WWW & İNTERNET İNTRANET & EKSTRANET SAYFA > 1 IS (ES) NEDİR?. ENFORMASYON SİSTEMİ BİRBİRİYLE

Detaylı

İŞLETME POLİTİKASI (Stratejik Yönetim Süreci)

İŞLETME POLİTİKASI (Stratejik Yönetim Süreci) İŞLETME POLİTİKASI (Stratejik Yönetim Süreci) İşletmenin uzun dönemde yaşamını devam ettirmesine ve sürdürülebilir rekabet üstünlüğü sağlamasına yönelik bilgi toplama, analiz, seçim, karar ve uygulama

Detaylı

TEDARİK ZİNCİRİ YÖNETİMİ

TEDARİK ZİNCİRİ YÖNETİMİ TEDARİK ZİNCİRİ YÖNETİMİ Trakya Üniversitesi Sosyal Bilimler Enstitüsü İşletme Anabilim Dalı Tezsiz Yüksek Lisans Lojistik Dersi Konuşmacı - Ali KAHRAMAN Danışman - Yrd.Doç.Dr. Nevin ALTUĞ İÇİNDEKİLER

Detaylı

Pazarlama araştırması

Pazarlama araştırması Pazarlama araştırması Etkin bir pazarlama kararı alabilmek için gerekli olan enformasyonun ve bilginin toplanması ve kullanılmasıdır. Bu sayede, pazarla ilgili risk ve belirsizlik azalacak ve başarı artacaktır.

Detaylı

Akdeniz Üniversitesi Mühendislik Fakültesi Bilgisayar Mühendisliği Bölüm Tanıtımı

Akdeniz Üniversitesi Mühendislik Fakültesi Bilgisayar Mühendisliği Bölüm Tanıtımı Akdeniz Üniversitesi Mühendislik Fakültesi Bilgisayar Mühendisliği Bölüm Tanıtımı cse@akdeniz.edu.tr Antalya, 2017 2 Özet Akdeniz Üniversitesi tanıtım filmi Neden Bilgisayar Mühendisliği Bilgisayar Mühendisi

Detaylı

Adnan Menderes Üniversitesi FAKÜLTESİ SÖKE İŞLETME. BÖLÜMLER ULUSLARARASI TİCARET ve İŞLETMECİLİK YÖNETİM BİLİŞİM SİSTEMLERİ

Adnan Menderes Üniversitesi FAKÜLTESİ SÖKE İŞLETME. BÖLÜMLER ULUSLARARASI TİCARET ve İŞLETMECİLİK YÖNETİM BİLİŞİM SİSTEMLERİ Adnan Menderes Üniversitesi SÖKE İŞLETME FAKÜLTESİ BÖLÜMLER ULUSLARARASI TİCARET ve İŞLETMECİLİK YÖNETİM BİLİŞİM SİSTEMLERİ SÖKE İŞLETME FAKÜLTESİ ULUSLARARASI TİCARET VE İŞLETMECİLİK BÖLÜMÜ DERS PROGRAMI

Detaylı

MİNİ MBA LİDERLİK AKADEMİSİ. NMT Danışmanlık ve Eğitim Merkezi- Koşuyolu Cad. Salih Omurtak Sok. No:5 Kadıköy/İST (216) 546.03.70 www.nmt.com.

MİNİ MBA LİDERLİK AKADEMİSİ. NMT Danışmanlık ve Eğitim Merkezi- Koşuyolu Cad. Salih Omurtak Sok. No:5 Kadıköy/İST (216) 546.03.70 www.nmt.com. MİNİ MBA LİDERLİK AKADEMİSİ MİNİ MBA LİDERLİK AKADEMİSİ Niçin ve Neden? Bu program çok kısa bir zaman diliminde normal bir MBA programında ele alınan Temel Kavram ve Teknikleri kapsamaktadır. İşletme yüksek

Detaylı

REKABET GÜCÜ VE DEĞİŞEN DÜNYA TUNCAY SONGÖR REKABET KURUMU II. BAŞKANI KURUL ÜYESİ

REKABET GÜCÜ VE DEĞİŞEN DÜNYA TUNCAY SONGÖR REKABET KURUMU II. BAŞKANI KURUL ÜYESİ REKABET GÜCÜ VE DEĞİŞEN DÜNYA TUNCAY SONGÖR REKABET KURUMU II. BAŞKANI KURUL ÜYESİ MÜŞTERİ ODAKLI YENİ EKONOMİ ESKİ EKONOMİ ARZ

Detaylı

Planla, Tahmin Et, Yönet IBM Perakende Planlama Çözümleri

Planla, Tahmin Et, Yönet IBM Perakende Planlama Çözümleri Planla, Tahmin Et, Yönet IBM Perakende Planlama Çözümleri Ajanda Perakende Sektöründe Planlama IBM Planlama Çözümleri Merchandise Planlama Çeşitlilik Planlama Kurumsal Karneleme Mağaza Bazında Planlama

Detaylı

Semantik Bilgi Yönetimi

Semantik Bilgi Yönetimi Semantik Bilgi Yönetimi Yaşar ar Tonta Hacettepe Üniversitesi Bilgi ve Belge Yönetimi Bölümü tonta@hacettepe.edu.tr yunus.hacettepe.edu.tr/~tonta/ 1 Plan Memex ten Semantik Web e... Semantik Bilgi Yönetimi

Detaylı

İŞLETME POLİTİKASI (Dış Çevre Analizi)

İŞLETME POLİTİKASI (Dış Çevre Analizi) 1) Genel Çevre Analizi Politik Çevre, Demografik Çevre, Teknolojik Çevre,Yasal Çevre, Ekonomik Çevre, Sosyokültürel Çevre, Uluslararası Çevre Ne Düşünürsünüz? Sizce bir beyaz eşya üreticisini yerel politikacılar

Detaylı

BAŞARI HİKAYESİ. AVM Kişi Sayım ve Raporlama Yönetim Paneli

BAŞARI HİKAYESİ. AVM Kişi Sayım ve Raporlama Yönetim Paneli BAŞARI HİKAYESİ AVM Kişi Sayım ve Raporlama Yönetim Paneli Müşteri Corio, dünyanın perakende odaklı en büyük gayrimenkul yatırım şirketlerinden biridir. Alışveriş Merkezleri geliştirme, iyileştirme ve

Detaylı

Kredi Limit Optimizasyonu:

Kredi Limit Optimizasyonu: Kredi Limit Optimizasyonu: «Teorik Değil Pratik" Simge Danışman Analitik Direktörü, Experian EMEA Kar Gelişimi Kredi Limit Optimizasyonu Optimizasyona Genel Bakış Profilleme Modelleme Karar Matrisleri

Detaylı

DERS BİLGİLERİ. Ders Adı Kodu Yarıyıl T+U Saat İŞL YL 501

DERS BİLGİLERİ. Ders Adı Kodu Yarıyıl T+U Saat İŞL YL 501 Müfredat I. Yarıyıl Bilimsel Araştırma Yöntemleri Ders Adı Kodu Yarıyıl T+U Saat İŞL YL 501 Kredi AKTS Güz 3 3 6 Dili Seviyesi Yüksek Lisans Türü Zorunlu Amacı Öğrencilerin bilim ve bilim felsefesi konusunda

Detaylı

AVĐVASA da Veri Madenciliği Reşat Fırat ERSĐN Stratejik Planlama ve ĐşGeliştirme Birim Yöneticisi

AVĐVASA da Veri Madenciliği Reşat Fırat ERSĐN Stratejik Planlama ve ĐşGeliştirme Birim Yöneticisi AVĐVASA da Veri Madenciliği Reşat Fırat ERSĐN Stratejik Planlama ve ĐşGeliştirme Birim Yöneticisi AvivaSA Bir emeklilik ve hayat sigortası şirketi 1 Kasım 2007. Ak Emeklilik A.Ş. ve Aviva Hayat ve Emeklilik

Detaylı

VERİ KAYNAKLARI. Bilgi sisteminin öğelerinden biride veri

VERİ KAYNAKLARI. Bilgi sisteminin öğelerinden biride veri VERİ KAYNAKLARI YÖNETİMİ İ İ 5. ÜNİTE GİRİŞ Bilgi sisteminin öğelerinden biride veri yönetimidir. Geleneksel yada çağdaş, birinci yada ikinci elden derlenen veriler amaca uygun veri formlarında tutulur.

Detaylı

YAZILIM MÜHENDİSLİĞİ BÖLÜMÜ İNTİBAK ÇİZELGESİ 2010-2011 1.SINIF / GÜZ DÖNEMİ

YAZILIM MÜHENDİSLİĞİ BÖLÜMÜ İNTİBAK ÇİZELGESİ 2010-2011 1.SINIF / GÜZ DÖNEMİ YAZILIM MÜHENDİSLİĞİ BÖLÜMÜ İNTİBAK ÇİZELGESİ 2010-2011 1.SINIF / GÜZ DÖNEMİ Bu ders 1. Sınıf güz döneminden 2. Sınıf güz dönemine alınmıştır. gerektiği halde alamayan öğrenciler 2010-2011 öğretim yılı

Detaylı

Street Smart Marketing

Street Smart Marketing Tek bir hedef için tasarlanmış kamu hizmeti şirket programları. Başarı. Street Smart Marketing Müşterilerinizi cezbeden pazarlama kampanyaları 30 yıllık deneyim Tasarlarız. Yakalarız. İlerleriz. 1.4 milyon

Detaylı

Öğr. Gör. S. M. Fatih APAYDIN

Öğr. Gör. S. M. Fatih APAYDIN Öğr. Gör. S. M. Fatih APAYDIN Dersle İlgili Konular Üretim Yönetimi Süreç Yönetimi Tedarik Zinciri Yönetimi Üretim Planlama ve Kontrolü Proje Yönetimi Kurumsal Kaynak Planlaması-ERP Kalite Yönetimi Modern

Detaylı

ARGUS Plus Version 1.0.1 ERP Sistemi

ARGUS Plus Version 1.0.1 ERP Sistemi ARGUS Plus Version 1.0.1 ERP Sistemi ERP'ye Bakış ve ARGUS Plus Zaman içinde firmalar geliştikçe, iş yapış şekilleri değişmekte ve ihtiyaçları artmaktadır. Bir çok gelişen firma, gerçekleştirdikleri operasyonel

Detaylı

MÜHENDİSLİK FAKÜLTESİ / ENSTİTÜSÜ / YÜKSEKOKULU BİLİŞİM SİSTEMLERİ MÜHENDİSLİĞİ BÖLÜMÜ /ABD LİSANS PROGRAMI - 1 ( yılı ve sonrasında birinci

MÜHENDİSLİK FAKÜLTESİ / ENSTİTÜSÜ / YÜKSEKOKULU BİLİŞİM SİSTEMLERİ MÜHENDİSLİĞİ BÖLÜMÜ /ABD LİSANS PROGRAMI - 1 ( yılı ve sonrasında birinci MÜHENDİSLİK FAKÜLTESİ / ENSTİTÜSÜ / YÜKSEKOKULU BİLİŞİM SİSTEMLERİ MÜHENDİSLİĞİ BÖLÜMÜ /ABD LİSANS PROGRAMI - 1 (2016-17 yılı ve sonrasında birinci sınıfa başlayan öğrenciler için) BİRİNCİ YIL 1. Dönem

Detaylı

Bölüm 2 Varlık-İlişki Veri Modeli: Araçlar ve Teknikler. Fundamentals, Design, and Implementation, 9/e

Bölüm 2 Varlık-İlişki Veri Modeli: Araçlar ve Teknikler. Fundamentals, Design, and Implementation, 9/e Bölüm 2 Varlık-İlişki Veri Modeli: Araçlar ve Teknikler Fundamentals, Design, and Implementation, 9/e Üç Şema Modeli Üç şema modeli 1975 de ANSI/SPARC tarafından geliştirildi Veri modellemeninç ve rolünü

Detaylı

ZAMAN SERİLERİNDE AYRIŞTIRMA YÖNTEMLERİ

ZAMAN SERİLERİNDE AYRIŞTIRMA YÖNTEMLERİ ZAMAN SERİLERİNDE AYRIŞTIRMA YÖNTEMLERİ 1 A. GİRİŞ Gözlemlerin belirli bir dönem için gün, hafta, ay, üç ay, altı ay, yıl gibi birbirini izleyen eşit aralıklarla yapılması ile elde edilen seriler zaman

Detaylı

Kurumsal Uygulamalar ve Bilgi Teknolojileri Entegrasyonu

Kurumsal Uygulamalar ve Bilgi Teknolojileri Entegrasyonu Kurumsal Uygulamalar ve Bilgi Teknolojileri Entegrasyonu 20.12.2013 Kurumsal Bilgi Sistemleri Satış ve Pazarlama Bilgi Sistemleri Muhasebe ve Finans Bilgi Sistemleri İnsan Kaynakları Bilgi Sistemi Üretim

Detaylı

Pazar Bölümlendirmesi

Pazar Bölümlendirmesi Pazar Bölümlendirmesi Umut Al H.Ü. Bilgi ve Belge Yönetimi Bölümü umutal@hacettepe.edu.tr Plan Pazar bölümlendirmesi Pazar araştırması Pazarlama araştırması Bilgi merkezlerinde pazar bölümlendirmesi SWOT

Detaylı

ULUSLARARASI ANTALYA ÜNİVERSİTESİ ENDÜSTRİ MÜHENDİSLİĞİ BÖLÜMÜ DERS KATALOĞU

ULUSLARARASI ANTALYA ÜNİVERSİTESİ ENDÜSTRİ MÜHENDİSLİĞİ BÖLÜMÜ DERS KATALOĞU ULUSLARARASI ANTALYA ÜNİVERSİTESİ ENDÜSTRİ MÜHENDİSLİĞİ BÖLÜMÜ DERS KATALOĞU ZORUNLU DERSLER IE 201 - Operasyon Modelleme Karar vermedeki belirsizlik rolü de dahil olmak üzere işletme kararlarının matematiksel

Detaylı

Alanya Alaaddin Keykubat UniversityInternational Relations Office

Alanya Alaaddin Keykubat UniversityInternational Relations Office Mühendislik Fakültesi Endüstri Mühendisliği Bölümü Endüstri Mühendisliği (Örgün Öğretim) Diploma Programı 2015 Müfredatı 1 2 ENM106 EKONOMİ 1 2 0 3 ENM109 Teknik Resim 2 2 ENM107 Genel Kimya 2 2 ENM105

Detaylı

ISLYLU1700 Uzmanlık Alan Dersi (Zorunlu) 4 0 0 6

ISLYLU1700 Uzmanlık Alan Dersi (Zorunlu) 4 0 0 6 TEZLİ YÜKSEKLİSANS Birinci Dönem ISLYLU1700 ISLYL 543 Uygulamalı İstatistiğe Giriş I (Zorunlu) 3 0 3 6 Toplam 16 0 12 30 ISLYL 503 Yönetim Düşüncesinin Evrimi 3 0 3 6 ISLYL 505 Örgütsel Davranış 3 0 3

Detaylı

HAM VERİNİN NİTELİKLİ BİLGİYE DÖNÜŞTÜRÜLME SÜRECİ

HAM VERİNİN NİTELİKLİ BİLGİYE DÖNÜŞTÜRÜLME SÜRECİ HAM VERİNİN NİTELİKLİ BİLGİYE DÖNÜŞTÜRÜLME SÜRECİ Cenk BALKAN Kavramlar HAM VERİ İngilizcesi raw data olan, düzenlenmemiş veri olarak ifade edilebilir. VERİ Satır ve kolonlar bazında ifade edilmiş, bir

Detaylı

3. sınıf. Bilgisayarla kataloglamanın doğuşu gelişimi ve bugünkü durum ele alınmaktadır. Bu derste

3. sınıf. Bilgisayarla kataloglamanın doğuşu gelişimi ve bugünkü durum ele alınmaktadır. Bu derste 3. sınıf 5. Yarıyıl (Güz Dönemi) Bilgi Kaynaklarının Tanımlanması ve Erişimi I (AKTS 5) 3 saat Bilgisayarla kataloglamanın doğuşu gelişimi ve bugünkü durum ele alınmaktadır. Bu derste Kütüphane Otomasyon

Detaylı

1.1.1. Klasik Dosya Yapıları

1.1.1. Klasik Dosya Yapıları Dersin Hedefi Bu ders kapsamında veri madenciliğine bir giriş yapılarak bazı temel yöntemleri üzerinde durulmaktadır. Özellikle çok büyüt boyutdaki verilerle karşılaşıldığında, bu veriler içinden anlamlı

Detaylı

2014-2015 Bahar Y.Y. E-Mühendislik Yönetimi Proje Dersi Danışman Listesi ve İlgi Alanları

2014-2015 Bahar Y.Y. E-Mühendislik Yönetimi Proje Dersi Danışman Listesi ve İlgi Alanları 2014-2015 Bahar Y.Y. E-Mühendislik Yönetimi Proje Dersi Danışman Listesi ve İlgi Alanları Prof. Dr. Orhan TORKUL 1. Bilişim Sistemleri Analiz ve Tasarımı 2. İş Zekası Sistemleri 3. Ortak Çalışma Sistemleri

Detaylı

Neden Endüstri Mühendisliği Bölümünde Yapmalısınız?

Neden Endüstri Mühendisliği Bölümünde Yapmalısınız? Lisansüstü Eğitiminizi Neden Endüstri Mühendisliği Bölümünde Yapmalısınız? Uludağ Üniversitesi Mühendislik-Mimarlık Fakültesi Endüstri Mühendisliği Bölümü, 1990 yılında kurulmuş ve ilk mezunlarını 1994

Detaylı

DENETİM KOÇLUĞU EĞİTİM SERİSİ

DENETİM KOÇLUĞU EĞİTİM SERİSİ DENETİM KOÇLUĞU EĞİTİM SERİSİ Sayın İlgili: İç denetim teknik bir uzmanlık alanı olmanın ötesinde çok temel bir yönetim aracıdır. Yönetim sürecinin temel bir unsuru olan kontrol ve izleme rolü iç denetim

Detaylı

VERİ TABANI SİSTEMLERİ

VERİ TABANI SİSTEMLERİ VERİ TABANI SİSTEMLERİ 1- Günümüzde bilgi sistemleri Teknoloji ve bilgi. 2- Bilgi sistemlerinin Geliştirilmesi İşlevsel Gereksinimleri 1.AŞAMA Gereksinim Belirleme ve Analiz Veri Gereksinimleri Gereksinimler

Detaylı

Eme Sistem simülasyonu. Giriş. Simulasyonun Kullanım Alanları (Devam) Simulasyonun Kullanım Alanları. Sistem Simülasyonuna Giriş

Eme Sistem simülasyonu. Giriş. Simulasyonun Kullanım Alanları (Devam) Simulasyonun Kullanım Alanları. Sistem Simülasyonuna Giriş Eme 3105 Giriş Sistem simülasyonu Gerçek Dünya Sureci Sistemin davranışıyla ilişkili varsayımlar seti Modelleme & Analiz Sistem Simülasyonuna Giriş Ders 1 Simülasyon, gerçek bir dünya sureci yada sistemindeki

Detaylı

9/14/2016 EME 3117 SİSTEM SIMÜLASYONU. Giriş. (Devam) Simulasyonun Kullanım Alanları. Sistem Simülasyonuna Giriş. Hafta 1. Yrd.Doç.Dr.

9/14/2016 EME 3117 SİSTEM SIMÜLASYONU. Giriş. (Devam) Simulasyonun Kullanım Alanları. Sistem Simülasyonuna Giriş. Hafta 1. Yrd.Doç.Dr. EME 3117 SİSTEM SIMÜLASYONU Sistem Simülasyonuna Giriş Hafta 1 Yrd.Doç.Dr.Beyazıt Ocaktan Giriş Simülasyon, gerçek bir dünya süreci yada sistemindeki işlemlerin zamana bağlı değişimlerinin taklit edilmesidir.

Detaylı

UZAKTAN EĞİTİM MERKEZİ

UZAKTAN EĞİTİM MERKEZİ ÜNİTE 2 VERİ TABANI İÇİNDEKİLER Veri Tabanı Veri Tabanı İle İlgili Temel Kavramlar Tablo Alan Sorgu Veri Tabanı Yapısı BAYBURT ÜNİVERSİTESİ UZAKTAN EĞİTİM MERKEZİ BİLGİSAYAR II HEDEFLER Veri tabanı kavramını

Detaylı

VERİ MADENCİLİĞİ (Veri Önişleme-1) Yrd.Doç.Dr. Kadriye ERGÜN

VERİ MADENCİLİĞİ (Veri Önişleme-1) Yrd.Doç.Dr. Kadriye ERGÜN VERİ MADENCİLİĞİ (Veri Önişleme-1) Yrd.Doç.Dr. Kadriye ERGÜN kergun@balikesir.edu.tr Genel İçerik Veri Madenciliğine Giriş Veri Madenciliğinin Adımları Veri Madenciliği Yöntemleri Sınıflandırma Kümeleme

Detaylı

MESLEKİ TERMİNOLOJİ I 1. HAFTA YAZILIM MÜH. TEMEL KAVRAMLAR

MESLEKİ TERMİNOLOJİ I 1. HAFTA YAZILIM MÜH. TEMEL KAVRAMLAR YAZILIM: SOFTWARE Yazılım (Software): Yazılım sadece bir bilgisayar programı değildir. Basılı veya elektronik ortamdaki her tür dokümanı da içeren ürün. Dokümanlar yazılım mühendislerine ve son kullanıcıya

Detaylı

vizyon escarus hakkında misyon hakkında Escarus un misyonu, müşterilerine sürdürülebilirlik çözümleri sunan öncü bir şirket olmaktır.

vizyon escarus hakkında misyon hakkında Escarus un misyonu, müşterilerine sürdürülebilirlik çözümleri sunan öncü bir şirket olmaktır. escarus hakkında Nisan 2011 de faaliyetine başlayan Escarus Sürdürülebilir Danışmanlık A.Ş., deneyimli ve profesyonel kadrosuyla sürdürülebilirlik çözümleri geliştirerek, danışmanlık hizmetleri vermek

Detaylı

www.maviperde.com Elektronik ticaret e-ticaret

www.maviperde.com Elektronik ticaret e-ticaret www.maviperde.com 1995 li yıllardan sonra Dünyada ve Türkiye'de elektronik ticaretin ön plana çıkmasıyla ve gelecek yıllarda mekanik perde sistemi pazarının çoğunu elektronik ticaretle olacağı varsayımı

Detaylı

EME 3105 Giriş SISTEM SIMÜLASYONU Sistem Simülasyonuna Giriş Simülasyon Ders 1 Simülasyon, Yrd.Doç.Dr.Beyazıt Ocaktan

EME 3105 Giriş SISTEM SIMÜLASYONU Sistem Simülasyonuna Giriş Simülasyon Ders 1 Simülasyon, Yrd.Doç.Dr.Beyazıt Ocaktan EME 3105 Giriş SISTEM SIMÜLASYONU Sistem Simülasyonuna Giriş Gerçek Dünya Sureci Sistemin davranışıyla ilişkili varsayımlar seti Modelleme & Analiz Ders 1 Yrd.Doç.Dr.Beyazıt Ocaktan Simülasyon, gerçek

Detaylı

Donatılar-Hesap Makinesi

Donatılar-Hesap Makinesi Donatılar-Hesap Makinesi Hesap Makinesi Hesap Makinesi ni toplama, çıkarma, çarpma ve bölme işlemleri gibi basit hesaplamalar için kullanabilirsiniz. Hesap Makinesi ayrıca programlama, bilimsel ve istatistiksel

Detaylı

MÜHENDİSLİK KARİYERİ Mühendislik Kariyeri Mezun olduktan sonra çalışmak için seçtiğiniz şirket ne olursa olsun genelde işe basit projelerle başlayacaksınız. Mühendis olmak için üniversitede 4 yıl harcamanıza

Detaylı

Türkiye de Yazılım Üreticilerinin Yetkinlik Düzeyi Firmaların ve Sektörün Gelişimi Cilt II NERMİN SÖKMEN TÜBİTAK BİLGEM

Türkiye de Yazılım Üreticilerinin Yetkinlik Düzeyi Firmaların ve Sektörün Gelişimi Cilt II NERMİN SÖKMEN TÜBİTAK BİLGEM Türkiye de Yazılım Üreticilerinin Yetkinlik Düzeyi Firmaların ve Sektörün Gelişimi Cilt II NERMİN SÖKMEN TÜBİTAK BİLGEM Türkiye de Yazılım Üreticilerinin Yetkinlik Düzeyi Firmaların ve Sektörün Gelişimi

Detaylı

İK Yöneticilerinin Vazgeçemeyeceği 7 Analiz Uygulaması

İK Yöneticilerinin Vazgeçemeyeceği 7 Analiz Uygulaması Giriş İnsan Kaynakları verilerinin doğru değerlendirme ölçütleriyle analiz edilmesi, insan kaynaklarının daha verimli kullanılmasını sağladığı gibi, kurumun başarısında insan kaynaklarının oynadığı önemli

Detaylı

2. Hafta DEPOLAR VE DEPOLAMA 1. DEPO VE DEPOLAMA KAVRAMLARI. 2. Hafta

2. Hafta DEPOLAR VE DEPOLAMA 1. DEPO VE DEPOLAMA KAVRAMLARI. 2. Hafta Öğr. Gör. Murat BURUCUOĞLU Gerek üretim hattı için gereken malzeme ve hammaddeler, gerekse dağıtım için bekleyen tamamlanmış ürünleri genel olarak stok olarak tanımlamaktayız. Stoklar ekonomik gelişmenin

Detaylı

Karar Verme ve Pazarlama Bilgisi: Yönetim Kurulu Odasına Giden Yol

Karar Verme ve Pazarlama Bilgisi: Yönetim Kurulu Odasına Giden Yol Karar Verme ve Pazarlama Bilgisi: Yönetim Kurulu Odasına Giden Yol Bilgi pazarındaki sert rekabet ortamı pazarlama araştırması endüstrisinin müşterilerin bilgi ihtiyaçlarına daha fazla yoğunlaşmasını gerektiriyor.

Detaylı

İletişim: Bir düşüncenin, bilginin, haberin veya mesajın kişiler, gruplar ve örgütler arasında karşılıklı değiş tokuş sürecidir.

İletişim: Bir düşüncenin, bilginin, haberin veya mesajın kişiler, gruplar ve örgütler arasında karşılıklı değiş tokuş sürecidir. PAZARLAMA İLETİŞİMİ İLETİŞİM NEDİR? İletişim: Bir düşüncenin, bilginin, haberin veya mesajın kişiler, gruplar ve örgütler arasında karşılıklı değiş tokuş sürecidir. -SÖZLÜ -SÖZSÜZ *İletişimden Söz Edebilmek

Detaylı

Bütünleşik Örnek Olay Çalışması: Bandon Grup Şirketi. Bölüm 1 Kurumsal Kaynak Planlaması Sistemlerine Giriş 1

Bütünleşik Örnek Olay Çalışması: Bandon Grup Şirketi. Bölüm 1 Kurumsal Kaynak Planlaması Sistemlerine Giriş 1 iv Bütünleşik Örnek Olay Çalışması: Bandon Grup Şirketi K onular Bölüm 1 Kurumsal Kaynak Planlaması Sistemlerine Giriş 1 Bölüm 2 Yeniden Yapılanma ve KKP Sistemleri 17 Bölüm 3 KKP Sistemlerinde Planlama,

Detaylı

Bilkent Üniversitesi Bilgisayar Mühendisliği Bölümü. Bilgisayar Mühendisliği

Bilkent Üniversitesi Bilgisayar Mühendisliği Bölümü. Bilgisayar Mühendisliği Bilkent Üniversitesi Bilgisayar Mühendisliği Bölümü Bilgisayar Mühendisliği Bilgisayar Mühendisliği Günümüzde, finans, tıp, sanat, güvenlik, enerji gibi bir çok sektör, bilgisayar mühendisliğindeki gelişimlerden

Detaylı

Bilgiyi Keşfedin! Özelleştirme, Eklenti ve Veri Entegrasyonu Kurumsal Seviyede Yönetim ve Performans

Bilgiyi Keşfedin! Özelleştirme, Eklenti ve Veri Entegrasyonu Kurumsal Seviyede Yönetim ve Performans Bilgiyi Keşfedin! LOGO MIND INSIGHT (powered by Qlik) İŞ ANALİTİĞİ ÜRÜNÜ, HERKESİN SEZGİLERİ İLE ARAŞTIRMA VE KEŞİF YAPMASINI SAĞLAYAN ÇOK ÇEŞİTLİ ESNEK VE İNTERAKTİF GÖRSELLER OLUŞTURABİLECEĞİ YENİ NESİL

Detaylı

E-Ticaretin özelliklerini ve araçlarını tanımlayabileceksiniz. E-Ticaretin yararlarını karşılaştırabileceksiniz.

E-Ticaretin özelliklerini ve araçlarını tanımlayabileceksiniz. E-Ticaretin yararlarını karşılaştırabileceksiniz. Mehmet Can HANAYLI Sanal ortamda hukuksal kurallara uyarak e-ticaret yapabileceksiniz. E-Ticaretin özelliklerini ve araçlarını tanımlayabileceksiniz. E-Ticaretin yararlarını karşılaştırabileceksiniz. E-Ticarette

Detaylı

2013-2014 Bahar Y.Y. E-Mühendislik Yönetimi Proje Dersi Danışman Listesi ve İlgi Alanları

2013-2014 Bahar Y.Y. E-Mühendislik Yönetimi Proje Dersi Danışman Listesi ve İlgi Alanları 2013-2014 Bahar Y.Y. E-Mühendislik Yönetimi Proje Dersi Danışman Listesi ve İlgi Alanları Prof. Dr. Orhan TORKUL 1. Bilişim Sistemleri Analiz ve Tasarımı 2. İş Zekası Sistemleri 3. Ortak Çalışma Sistemleri

Detaylı

Web Mağazaları İş Modelleri

Web Mağazaları İş Modelleri BİLİŞİM HİZMETLERİ LİMİTED ŞİRKETİ Web mağazaları ile ilgili iş modellerini incelemeden önce bilinmesi gereken; online satmak ile online mağazada satmak arasındaki farktır. Online Satış Online satış kısaca

Detaylı

SÜREÇ YÖNETİMİ UZMANLIK PROGRAMI

SÜREÇ YÖNETİMİ UZMANLIK PROGRAMI SÜREÇ YÖNETİMİ UZMANLIK PROGRAMI. Süreç Yönetimi Uzmanlık Programı Amacı Bu eğitim, süreç yönetimi konularında çalışma yapacak kişilere uzmanlık seviyesinde süreç analiz ve iyileştirme tekniklerini aktarmak

Detaylı

iş zekası business intelligence- harita- performans göstergeleri - balanced scorecard 7 boyut da görsel tasarım LOGOBI İş Zekası Platformu

iş zekası business intelligence- harita- performans göstergeleri - balanced scorecard 7 boyut da görsel tasarım LOGOBI İş Zekası Platformu iş zekası business intelligence- harita- performans göstergeleri - balanced scorecard 7 boyut da görsel tasarım LOGOBI İş Zekası Platformu LOGOBI LOGOBI İş Zekası Platformu İnternet veya intranet ortamlarda

Detaylı

Bölüm 9. İş Yönetim Stratejileri : Rekabet Stratejileri İş Yönetim Stratejileri/Rekabet Stratejileri KURUMSAL STRATEJİLER

Bölüm 9. İş Yönetim Stratejileri : Rekabet Stratejileri İş Yönetim Stratejileri/Rekabet Stratejileri KURUMSAL STRATEJİLER Bölüm 9 İş Yönetim Stratejileri : Rekabet Stratejileri İş Yönetim Stratejileri/Rekabet Stratejileri İşletmenin günlük yaşamı ile ilgili olarak, içinde bulunduğu pazarda rakiplerine karşı nasıl hareket

Detaylı

Eğitim Yönetimi ve Denetimi Tezsiz Yüksek Lisans Programı (5 Zorunlu Ders+ 6 Seçmeli Ders)

Eğitim Yönetimi ve Denetimi Tezsiz Yüksek Lisans Programı (5 Zorunlu Ders+ 6 Seçmeli Ders) Eğitim Yönetimi ve Denetimi Tezsiz Yüksek Lisans Programı (5 Zorunlu Ders+ 6 Seçmeli Ders) Eğitim Yönetimi ve Denetimi Tezsiz Yüksek Lisans Programı Dersin Kodu Dersin Adı T U/L Kredi ECTS EYD-504 Eğitim

Detaylı