GKS-1 Mesleki İngilizce Dersi Ders Notlar

Save this PDF as:
 WORD  PNG  TXT  JPG

Ebat: px
Şu sayfadan göstermeyi başlat:

Download "GKS-1 Mesleki İngilizce Dersi Ders Notlar"

Transkript

1 GKS-1 Mesleki İngilizce Dersi Ders Notlar Prof.Dr. Recep ASLANER İnönü Üniversitesi, Eğitim Fakültesi İlköğretim Matematik Eğitimi ABD MALATYA Şubat 2017

2 Bahar Dönemi

3 Giriş Tüm dünyada kullanılan matematik terimleri her dilde farklı ifade edilse de matematik insanlığın ortak dili olduğundan anlaşılması rahat bir konudur.

4 Giriş Tüm dünyada kullanılan matematik terimleri her dilde farklı ifade edilse de matematik insanlığın ortak dili olduğundan anlaşılması rahat bir konudur. Dersin işlenişi iki adımdan oluşacaktır:

5 Giriş Tüm dünyada kullanılan matematik terimleri her dilde farklı ifade edilse de matematik insanlığın ortak dili olduğundan anlaşılması rahat bir konudur. Dersin işlenişi iki adımdan oluşacaktır: 1.adım da: 5-8 ilköğretim programında yer alan ve sıkça karşılaşılan matematik terimlerinin ingilizcedeki karşılıklarını öğrenip matematiksel anlamlarını yine ingilizce olarak çeşitli web sayfalarından örneklerle açıklayacağız.

6 Giriş Tüm dünyada kullanılan matematik terimleri her dilde farklı ifade edilse de matematik insanlığın ortak dili olduğundan anlaşılması rahat bir konudur. Dersin işlenişi iki adımdan oluşacaktır: 1.adım da: 5-8 ilköğretim programında yer alan ve sıkça karşılaşılan matematik terimlerinin ingilizcedeki karşılıklarını öğrenip matematiksel anlamlarını yine ingilizce olarak çeşitli web sayfalarından örneklerle açıklayacağız. gibi sayfasında yer alan matematik deyimlerden bazılarını seçerek

7 Giriş Tüm dünyada kullanılan matematik terimleri her dilde farklı ifade edilse de matematik insanlığın ortak dili olduğundan anlaşılması rahat bir konudur. Dersin işlenişi iki adımdan oluşacaktır: 1.adım da: 5-8 ilköğretim programında yer alan ve sıkça karşılaşılan matematik terimlerinin ingilizcedeki karşılıklarını öğrenip matematiksel anlamlarını yine ingilizce olarak çeşitli web sayfalarından örneklerle açıklayacağız. gibi sayfasında yer alan matematik deyimlerden bazılarını seçerek genel anlamda Wikipedia, the free encyclopedia ve özel anlamda, Wolfram MathWorld/ gibi sitelerden ingilizce olarak ele alıp bu değimlerin hem matemetiksel anlamlarını hemde bu terimleri ingilizce nasıl anlatacağımızı öğreneceğiz.

8 Giriş Tüm dünyada kullanılan matematik terimleri her dilde farklı ifade edilse de matematik insanlığın ortak dili olduğundan anlaşılması rahat bir konudur. Dersin işlenişi iki adımdan oluşacaktır: 1.adım da: 5-8 ilköğretim programında yer alan ve sıkça karşılaşılan matematik terimlerinin ingilizcedeki karşılıklarını öğrenip matematiksel anlamlarını yine ingilizce olarak çeşitli web sayfalarından örneklerle açıklayacağız. gibi sayfasında yer alan matematik deyimlerden bazılarını seçerek genel anlamda Wikipedia, the free encyclopedia ve özel anlamda, Wolfram MathWorld/ gibi sitelerden ingilizce olarak ele alıp bu değimlerin hem matemetiksel anlamlarını hemde bu terimleri ingilizce nasıl anlatacağımızı öğreneceğiz. Bu konularla ilgili bazı videolerı izleyip benzer videolar hazırlayacağız.

9 Örneğin D harfi ile başlayan matematiksel terimler decimal system: onluk sayı sistemi dense: yoğun derivative: türev determinant: determinant differentiable: türevli, türevlenebilir differential equations: türevsel denklemler discontinuous: süreksiz discrete mathematics: ayrık matematik discriminant: diskriminant divergence: ıraksamak divergent: ıraksak dodecahedron: onikiyüzlü dot product: nokta çarpımı

10 Örneğin D harfi ile başlayan matematiksel terimler decimal system: onluk sayı sistemi dense: yoğun derivative: türev determinant: determinant differentiable: türevli, türevlenebilir differential equations: türevsel denklemler discontinuous: süreksiz discrete mathematics: ayrık matematik discriminant: diskriminant divergence: ıraksamak divergent: ıraksak dodecahedron: onikiyüzlü dot product: nokta çarpımı Bu örnekte görüldüğü üzere anlatıkmak için seçilen terimler cyan, öğrencilere araştırmaları için önerilen kelimeler red olarak belirtilmiştir.

11 Discriminant, Wikipedia da In algebra, the discriminant of a polynomial is a function of its coefficients, typically denoted by a capital D or the capital Greek letter Delta.

12 Discriminant, Wikipedia da In algebra, the discriminant of a polynomial is a function of its coefficients, typically denoted by a capital D or the capital Greek letter Delta. It gives information about the nature of its roots.

13 Discriminant, Wikipedia da In algebra, the discriminant of a polynomial is a function of its coefficients, typically denoted by a capital D or the capital Greek letter Delta. It gives information about the nature of its roots. The discriminant is zero if and only if (iff) the polynomial has a multiple root.

14 Discriminant, Wikipedia da In algebra, the discriminant of a polynomial is a function of its coefficients, typically denoted by a capital D or the capital Greek letter Delta. It gives information about the nature of its roots. The discriminant is zero if and only if (iff) the polynomial has a multiple root. For example, the discriminant of the quadratic polynomial Here for real a, b and c, ax 2 + bx + c is = b 2 4ac. [Why?]

15 Discriminant, Wikipedia da In algebra, the discriminant of a polynomial is a function of its coefficients, typically denoted by a capital D or the capital Greek letter Delta. It gives information about the nature of its roots. The discriminant is zero if and only if (iff) the polynomial has a multiple root. For example, the discriminant of the quadratic polynomial Here for real a, b and c, ax 2 + bx + c is = b 2 4ac. [Why?] if > 0, the polynomial has two real roots,

16 Discriminant, Wikipedia da In algebra, the discriminant of a polynomial is a function of its coefficients, typically denoted by a capital D or the capital Greek letter Delta. It gives information about the nature of its roots. The discriminant is zero if and only if (iff) the polynomial has a multiple root. For example, the discriminant of the quadratic polynomial Here for real a, b and c, ax 2 + bx + c is = b 2 4ac. [Why?] if > 0, the polynomial has two real roots, if = 0, the polynomial has one real double root, and

17 Discriminant, Wikipedia da In algebra, the discriminant of a polynomial is a function of its coefficients, typically denoted by a capital D or the capital Greek letter Delta. It gives information about the nature of its roots. The discriminant is zero if and only if (iff) the polynomial has a multiple root. For example, the discriminant of the quadratic polynomial Here for real a, b and c, ax 2 + bx + c is = b 2 4ac. [Why?] if > 0, the polynomial has two real roots, if = 0, the polynomial has one real double root, and if < 0, the two roots of the polynomial are complex conjugates.

18 Discriminant, Wikipedia da In algebra, the discriminant of a polynomial is a function of its coefficients, typically denoted by a capital D or the capital Greek letter Delta. It gives information about the nature of its roots. The discriminant is zero if and only if (iff) the polynomial has a multiple root. For example, the discriminant of the quadratic polynomial Here for real a, b and c, ax 2 + bx + c is = b 2 4ac. [Why?] if > 0, the polynomial has two real roots, if = 0, the polynomial has one real double root, and if < 0, the two roots of the polynomial are complex conjugates. http : //hotmath.com/hotmath help/topics/discriminant.html Sitesinde konu ile ilgili video lar bulunmaktadır.

19 Discriminant, Wikipedia da In algebra, the discriminant of a polynomial is a function of its coefficients, typically denoted by a capital D or the capital Greek letter Delta. It gives information about the nature of its roots. The discriminant is zero if and only if (iff) the polynomial has a multiple root. For example, the discriminant of the quadratic polynomial Here for real a, b and c, ax 2 + bx + c is = b 2 4ac. [Why?] if > 0, the polynomial has two real roots, if = 0, the polynomial has one real double root, and if < 0, the two roots of the polynomial are complex conjugates. http : //hotmath.com/hotmath help/topics/discriminant.html Sitesinde konu ile ilgili video lar bulunmaktadır. Diğer kaynakları word dosyasından devam et...

20 2.adım 2.adım da ise;

21 2.adım 2.adım da ise; Queens College of the City University of New York hocalarından

22 2.adım 2.adım da ise; Queens College of the City University of New York hocalarından Alan Sultan & Alice F. Artzt tarafından ortaokul öğretmenlerine hitap etmek üzere yazılmış olan

23 2.adım 2.adım da ise; Queens College of the City University of New York hocalarından Alan Sultan & Alice F. Artzt tarafından ortaokul öğretmenlerine hitap etmek üzere yazılmış olan THE MATHEMATICS THAT EVERY SECONDARY SCHOOL MATH TEACHER NEEDS TO KNOW isimli kitap baz alınarak seçilen bazı pragralar üzerinde çalışılacaktır.

24 A-B abelian group: Abel grubu absolute value: mutlak değer abstract: soyut- özet accumulation point: yığılma noktası addition: toplama algebra: cebir algebraic numbers: cebirsel sayılar angle bisector: açıortay [Geometri] applied mathematics: uygulamalı matematik approximate: yaklaşık değer associativity: birleşme özelliği assume: varsaymak, kabul etmek average: ortalama axiom: temel önerme axis: eksen base (basis): taban bijection: birebir örte, eşleme binary operation: ikili işlem binary system: ikilik sayı sistemi bounded: sınırlı bracked: parantez by means of: vasıtasıyla

25 absolute value: mutlak değer In mathematics, the absolute value or modulus x of a real number x is the non-negative value of x without regard to its sign.

26 absolute value: mutlak değer In mathematics, the absolute value or modulus x of a real number x is the non-negative value of x without regard to its sign. Namely, x = x for a positive x, x = x for a negative x (in which case x is positive), and 0 = 0.

27 absolute value: mutlak değer In mathematics, the absolute value or modulus x of a real number x is the non-negative value of x without regard to its sign. Namely, x = x for a positive x, x = x for a negative x (in which case x is positive), and 0 = 0. For example, the absolute value of 3 is 3, and the absolute value of -3 is also 3.

28 absolute value: mutlak değer In mathematics, the absolute value or modulus x of a real number x is the non-negative value of x without regard to its sign. Namely, x = x for a positive x, x = x for a negative x (in which case x is positive), and 0 = 0. For example, the absolute value of 3 is 3, and the absolute value of -3 is also 3. The absolute value of a number may be thought of as its distance from zero.

29 absolute value: mutlak değer In mathematics, the absolute value or modulus x of a real number x is the non-negative value of x without regard to its sign. Namely, x = x for a positive x, x = x for a negative x (in which case x is positive), and 0 = 0. For example, the absolute value of 3 is 3, and the absolute value of -3 is also 3. The absolute value of a number may be thought of as its distance from zero. Generalisations of the absolute value for real numbers occur in a wide variety of mathematical settings.

30 absolute value: mutlak değer In mathematics, the absolute value or modulus x of a real number x is the non-negative value of x without regard to its sign. Namely, x = x for a positive x, x = x for a negative x (in which case x is positive), and 0 = 0. For example, the absolute value of 3 is 3, and the absolute value of -3 is also 3. The absolute value of a number may be thought of as its distance from zero. Generalisations of the absolute value for real numbers occur in a wide variety of mathematical settings. For example, an absolute value is also defined for the complex numbers, the quaternions, ordered rings, fields and vector spaces.

31 absolute value: mutlak değer In mathematics, the absolute value or modulus x of a real number x is the non-negative value of x without regard to its sign. Namely, x = x for a positive x, x = x for a negative x (in which case x is positive), and 0 = 0. For example, the absolute value of 3 is 3, and the absolute value of -3 is also 3. The absolute value of a number may be thought of as its distance from zero. Generalisations of the absolute value for real numbers occur in a wide variety of mathematical settings. For example, an absolute value is also defined for the complex numbers, the quaternions, ordered rings, fields and vector spaces. The absolute value is closely related to the notions of magnitude, distance, and norm in various mathematical and physical contexts.

32 absolute value: mutlak değer In mathematics, the absolute value or modulus x of a real number x is the non-negative value of x without regard to its sign. Namely, x = x for a positive x, x = x for a negative x (in which case x is positive), and 0 = 0. For example, the absolute value of 3 is 3, and the absolute value of -3 is also 3. The absolute value of a number may be thought of as its distance from zero. Generalisations of the absolute value for real numbers occur in a wide variety of mathematical settings. For example, an absolute value is also defined for the complex numbers, the quaternions, ordered rings, fields and vector spaces. The absolute value is closely related to the notions of magnitude, distance, and norm in various mathematical and physical contexts.

33 algebraic numbers: Cebirsel sayılar An algebraic number is any complex number that is a root of a non-zero polynomial in one variable with rational coefficients (or equivalently by clearing denominators with integer coefficients).

34 algebraic numbers: Cebirsel sayılar An algebraic number is any complex number that is a root of a non-zero polynomial in one variable with rational coefficients (or equivalently by clearing denominators with integer coefficients). All integers and rational numbers are algebraic, as are all roots of integers. The same is not true for all real and complex numbers because of transcendental numbers such as π and e.

35 algebraic numbers: Cebirsel sayılar An algebraic number is any complex number that is a root of a non-zero polynomial in one variable with rational coefficients (or equivalently by clearing denominators with integer coefficients). All integers and rational numbers are algebraic, as are all roots of integers. The same is not true for all real and complex numbers because of transcendental numbers such as π and e. Almost all real and complex numbers are transcendental

36 algebraic numbers: Cebirsel sayılar An algebraic number is any complex number that is a root of a non-zero polynomial in one variable with rational coefficients (or equivalently by clearing denominators with integer coefficients). All integers and rational numbers are algebraic, as are all roots of integers. The same is not true for all real and complex numbers because of transcendental numbers such as π and e. Almost all real and complex numbers are transcendental Examples The rational numbers, expressed as the quotient of two integers a and b, b not equal to zero, satisfy the above definition because x = a is the root b of bx a.

37 algebraic numbers: Cebirsel sayılar An algebraic number is any complex number that is a root of a non-zero polynomial in one variable with rational coefficients (or equivalently by clearing denominators with integer coefficients). All integers and rational numbers are algebraic, as are all roots of integers. The same is not true for all real and complex numbers because of transcendental numbers such as π and e. Almost all real and complex numbers are transcendental Examples The rational numbers, expressed as the quotient of two integers a and b, b not equal to zero, satisfy the above definition because x = a is the root b of bx a. The quadratic surds (irrational roots of a quadratic polynomial ax 2 + bx + c with integer coefficients a, b, and c) are algebraic numbers.

38 algebraic numbers: Cebirsel sayılar An algebraic number is any complex number that is a root of a non-zero polynomial in one variable with rational coefficients (or equivalently by clearing denominators with integer coefficients). All integers and rational numbers are algebraic, as are all roots of integers. The same is not true for all real and complex numbers because of transcendental numbers such as π and e. Almost all real and complex numbers are transcendental Examples The rational numbers, expressed as the quotient of two integers a and b, b not equal to zero, satisfy the above definition because x = a is the root b of bx a. The quadratic surds (irrational roots of a quadratic polynomial ax 2 + bx + c with integer coefficients a, b, and c) are algebraic numbers. If the quadratic polynomial is monic (a = 1) then the roots are quadratic integers.

39 algebraic numbers: Cebirsel sayılar An algebraic number is any complex number that is a root of a non-zero polynomial in one variable with rational coefficients (or equivalently by clearing denominators with integer coefficients). All integers and rational numbers are algebraic, as are all roots of integers. The same is not true for all real and complex numbers because of transcendental numbers such as π and e. Almost all real and complex numbers are transcendental Examples The rational numbers, expressed as the quotient of two integers a and b, b not equal to zero, satisfy the above definition because x = a is the root b of bx a. The quadratic surds (irrational roots of a quadratic polynomial ax 2 + bx + c with integer coefficients a, b, and c) are algebraic numbers. If the quadratic polynomial is monic (a = 1) then the roots are quadratic integers. adresinden devam

40 C center: merkez closed: kapalı closed set: kapalı küme coefficient: katsayı compact: yoğun, tıkız compact set: yoğun küme, tıkız küme complex: karmaşık complex functions: karmaşık fonksiyonlar complex numbers: karmaşık sayılar conjugate: eşlenik continuous: sürekli converge: yakınsamak convergent: yakınsak cosecant: kosekant cosine: kosinüs cosine hiperbolik: hiperbolik kosinüs cotangent: kotanjant cross product: çapraz çarpım (vektörel Çarpım) cubic equation: üçüncü dereceden denklem cyclic: devirsel cyclic group: devirsel grup

41 Complex number A complex number is a number that can be expressed in the form a+bi, where a and b are real numbers and i is the imaginary unit, that satisfies the equation i 2 = 1. In this expression, a is the real part and b is the imaginary part of the complex number.

42 Complex number A complex number is a number that can be expressed in the form a+bi, where a and b are real numbers and i is the imaginary unit, that satisfies the equation i 2 = 1. In this expression, a is the real part and b is the imaginary part of the complex number. Complex numbers extend the concept of the one-dimensional number line to the two-dimensional complex plane by using the horizontal axis for the real part and the vertical axis for the imaginary part.

43 Complex number A complex number is a number that can be expressed in the form a+bi, where a and b are real numbers and i is the imaginary unit, that satisfies the equation i 2 = 1. In this expression, a is the real part and b is the imaginary part of the complex number. Complex numbers extend the concept of the one-dimensional number line to the two-dimensional complex plane by using the horizontal axis for the real part and the vertical axis for the imaginary part.

44 Complex number A complex number is a number that can be expressed in the form a+bi, where a and b are real numbers and i is the imaginary unit, that satisfies the equation i 2 = 1. In this expression, a is the real part and b is the imaginary part of the complex number. Complex numbers extend the concept of the one-dimensional number line to the two-dimensional complex plane by using the horizontal axis for the real part and the vertical axis for the imaginary part.

45 Complex number A complex number is a number that can be expressed in the form a+bi, where a and b are real numbers and i is the imaginary unit, that satisfies the equation i 2 = 1. In this expression, a is the real part and b is the imaginary part of the complex number. Complex numbers extend the concept of the one-dimensional number line to the two-dimensional complex plane by using the horizontal axis for the real part and the vertical axis for the imaginary part. The complex number a+bi can be identified with the point (a,b) in the complex plane.

46 Complex number A complex number is a number that can be expressed in the form a+bi, where a and b are real numbers and i is the imaginary unit, that satisfies the equation i 2 = 1. In this expression, a is the real part and b is the imaginary part of the complex number. Complex numbers extend the concept of the one-dimensional number line to the two-dimensional complex plane by using the horizontal axis for the real part and the vertical axis for the imaginary part. The complex number a+bi can be identified with the point (a,b) in the complex plane. A complex number whose real part is zero is said to be purely imaginary, whereas a complex number whose imaginary part is zero is a real number.

47 Complex number A complex number is a number that can be expressed in the form a+bi, where a and b are real numbers and i is the imaginary unit, that satisfies the equation i 2 = 1. In this expression, a is the real part and b is the imaginary part of the complex number. Complex numbers extend the concept of the one-dimensional number line to the two-dimensional complex plane by using the horizontal axis for the real part and the vertical axis for the imaginary part. The complex number a+bi can be identified with the point (a,b) in the complex plane. A complex number whose real part is zero is said to be purely imaginary, whereas a complex number whose imaginary part is zero is a real number. b z a+bi a

48 Complex number A complex number is a number that can be expressed in the form a+bi, where a and b are real numbers and i is the imaginary unit, that satisfies the equation i 2 = 1. In this expression, a is the real part and b is the imaginary part of the complex number. Complex numbers extend the concept of the one-dimensional number line to the two-dimensional complex plane by using the horizontal axis for the real part and the vertical axis for the imaginary part. The complex number a+bi can be identified with the point (a,b) in the complex plane. A complex number whose real part is zero is said to be purely imaginary, whereas a complex number whose imaginary part is zero is a real number. b a+bi In this way, the complex numbers contain the ordinary real numbers while extending them in order to solve problems that cannot be solved with real numbers alone. z a

49 Complex number A complex number is a number that can be expressed in the form a+bi, where a and b are real numbers and i is the imaginary unit, that satisfies the equation i 2 = 1. In this expression, a is the real part and b is the imaginary part of the complex number. Complex numbers extend the concept of the one-dimensional number line to the two-dimensional complex plane by using the horizontal axis for the real part and the vertical axis for the imaginary part. The complex number a+bi can be identified with the point (a,b) in the complex plane. A complex number whose real part is zero is said to be purely imaginary, whereas a complex number whose imaginary part is zero is a real number. b a+bi In this way, the complex numbers contain the ordinary real numbers while extending them in order to solve problems that cannot be solved with real numbers alone. As well as their use within mathematics, complex numbers have practical applications in many fields, including physics, chemistry, biology, economics, electrical engineering, and statistics. devam edelim z a

50 E-F empty (set): boş (küme) enumarable: sayılabilir enumarate: numaralamak equal: eşit equation: denklem equilateral: eş kenar equipotent: eş değer evaluation: hesaplama, değerlendirme even number: cift sayi examination: sınav exponential numbers: üstel sayılar exponential function: üstel fonksiyon existence: var olma [Cebir] F factorial: faktöriyel field: cisim fourier series: fourier serisi fourier transform: fourier dönüşümü free group: serbest grup function: fonksiyon fuzzy: bulanık fuzzy logic: bulanık mantık

51 G-H geodesic: en kısa yol gradient: dönüşüm, yönlü türev graph: çizge, grafik gravity: yerçekimi group: grup half-plane: yarı düzlem harmonic function: harmonik fonksiyon Helix: Helis, sarmal heptagon: yedigen hexagon: altıgen hold: geçerli olmak homomorphism: benzerbiçimlilik, benzeryapı göndermesi horizontal: yatay hyperbola: hiperbol hypothesis: hipotez

52 I-J idempotent: eşkuvvetli identity element: birim eleman identity matrix: birim matris induction: tümevarım infinite series: sonsuz seri integer(s): tamsayı(lar) interval: aralık inverse: ters inverse fourier transform: ters fourier dönüşümü inverse function: ters fonksiyon irrational: irrasyonel irreducible: indirgenemez isomorphic: eşbiçimli isomorphism: jacobian: türev matrisi [Analiz] joint: birleşik [İstatistik] journal: dergi Juxtaposition: Yanyana koyma, [Cebir]

53 K-L kite: deltoit [Geometri] knot: düğüm [Geometri] known: bilinen laplace equation: laplas denklemi laplace transform: laplas dönüşümü linear: doğrusal linear equation: doğrusal denklem linear function: doğrusal fonksiyon linear transformation: doğrusal dönüşüm local: yerel logarithm: logaritma logic: mantık

54 M-N magnitude: büyüklük manifold: çokkatmanlı mapping: dönüşüm matrix: matris mean: ortalama Mean value theorem: Ortalama Değer Teoremi measurable: ölçülebilir midpoint: orta nokta miscalculate: yanlış hesaplamak monic: birebir multipication: çarpma mutually orthogonal: karşılıklı dik natural logarithm: doğal logaritma neighbourhood: komşuluk nilpotent: sıfırkuvvetli nilpotent matrix: sıfırkuvvetli matris nonagon: dokuzgen nonsingular: tekil olmayan nonzero: sıfırdışıya da "sıfır harici" not differentiable: türevsiz

55 O-P octagon: sekizgen octahedron: sekizyüzlü octal system: sekizlik sayı sistemi open: açık open interval: açık aralık open problem: açık soru open set: açık küme operation: işlem ordinary differential equations: adi türevsel denklemler parabola: parabol partial differentiation: kısmi türev partial differential equations: kısmi türevsel denklemler pentagon: beşgen permutation: permütasyon permutation group: permütasyon grubu polygon: çokgen polyhedron: çokyüzlü prime number: asal sayı proof: ispat proof by induction: tümevarımla ispat

56 Q-R quadrangle: dörtgen quadrilateral: dörtgen,dört kenarlı quantity: miktar quarter: çeyrek quadratic equation: ikinci dereceden denklem quartic equation: dördüncü, dereceden denklem quasi: sözde, nerdeyse, sanki quasilinear: yarı-lineer question: soru quintic: beşinci, beşinci dereceden quotient: bölüm [Cebir] quotient group: bölüm grubu [Cebir] radial: ışınsal radius: yarıçap random variable: rastgele değişken, rastlantı değişkeni [Olasılık] range: değer kümesi rank: mertebe rational number: rasyonel sayı real: gerçel real functions: gerçel fonksiyonlar real numbers: gerçel sayılar reducible: indirgenebilir relatively prime: aralarında asal rectangle: dikdörtgen region: bölge right angle: dik açı [Geometri] ring: halka root: çözüm ya da kök

57 S-T secant: sekant series: seri set: küme sine: sinüs singular: tekil slope: eğim space: uzay square: kare squareroot: karekök subgroup: altgrup subset: altküme subspace: altuzay such that: öyle ki tangent: tanjant tetrahedron: dörtyüzlü theorem: teorem theory: kuram topology: topoloji transcendental: aşkın transcendental number: aşkın sayı transformation: dönüşüm transpose: devrik triangle: üçgen

58 U-Z unbounded: sınırsız undefined: tanımsız valuation: değer, değerlendirme variable: değişen, değişebilen vector: vektör vector space: vektör uzayı vertex (vertice) : köşe, köşenokta - Tepe vertical: dik, dikey volume: hacim wave: dalga wave equation: dalga denklemi wavelength: dalgaboyu whole number: tam sayı [Cebir] winding number: dolanım sayısı [Analiz] X- Y bu harflerle başalayan kelime bulunmamaktadır x axis: x ekseni y axis: y ekseni Z zero divisor: sıfır bölen [Cebir] Kaynaklar: * EkşiSözlük * Hayatimdegisti.com * Telkinli subliminal Kişisel Gelişim Cd leri * TMD:ingilizce turkce matematik terimleri sozlugu

ADNAN MENDERES ÜNİVERSİTESİ FEN BİLİMLERİ ENSTİTÜSÜ MATEMATİK ANABİLİM DALI MATEMATİK PROGRAMI DERS LİSTESİ

ADNAN MENDERES ÜNİVERSİTESİ FEN BİLİMLERİ ENSTİTÜSÜ MATEMATİK ANABİLİM DALI MATEMATİK PROGRAMI DERS LİSTESİ Ders List ADNAN MENDERES ÜNİVERSİTESİ FEN BİLİMLERİ ENSTİTÜSÜ MATEMATİK ANABİLİM DALI MATEMATİK PROGRAMI DERS LİSTESİ 17.11.2016 Yüksek Lisans Dersleri Kod Ders Adı Ders Adı (EN) T U L K AKTS MTK501 Reel

Detaylı

MATEMATİK BÖLÜMÜ BÖLÜM KODU:3201

MATEMATİK BÖLÜMÜ BÖLÜM KODU:3201 BÖLÜM KODU:01 011-01 01.Yarıyıl Dersleri 0.Yarıyıl Dersleri MTK 101 Analiz I Analysis I 4 1 5 6 MTK 10 Analiz II Analysis II 4 1 5 6 MTK 11 Lineer Cebir I Linear Algebra I 1 4 MTK 1 Lineer Cebir II Linear

Detaylı

İÇİNDEKİLER ÖNSÖZ Bölüm 1 SAYILAR 11 Bölüm 2 KÜMELER 31 Bölüm 3 FONKSİYONLAR

İÇİNDEKİLER ÖNSÖZ Bölüm 1 SAYILAR 11 Bölüm 2 KÜMELER 31 Bölüm 3 FONKSİYONLAR İÇİNDEKİLER ÖNSÖZ III Bölüm 1 SAYILAR 11 1.1. Sayı Kümeleri 12 1.1.1.Doğal Sayılar Kümesi 12 1.1.2.Tam Sayılar Kümesi 13 1.1.3.Rasyonel Sayılar Kümesi 14 1.1.4. İrrasyonel Sayılar Kümesi 16 1.1.5. Gerçel

Detaylı

FEN FAKÜLTESİ MATEMATİK BÖLÜMÜ YAZ OKULU DERS İÇERİGİ. Bölümü Dersin Kodu ve Adı T P K AKTS

FEN FAKÜLTESİ MATEMATİK BÖLÜMÜ YAZ OKULU DERS İÇERİGİ. Bölümü Dersin Kodu ve Adı T P K AKTS Bir Dönemde Okutulan Ders Saati MAT101 Genel I (Mühendislik Fakültesi Bütün Bölümler, Fen Fakültesi Kimya ve Astronomi Bölümleri) 1 Kümeler, reel sayılar, bir denklem veya eşitsizliğin grafiği 2 Fonksiyonlar,

Detaylı

Fen Edebiyat Fakültesi Matematik Bölümü Bölüm Kodu: 3201

Fen Edebiyat Fakültesi Matematik Bölümü Bölüm Kodu: 3201 Fen Edebiyat Fakültesi 2016-2017 Matematik Bölümü Bölüm Kodu: 3201 01. Yarıyıl Dersleri 02. Yarıyıl Dersleri MTK 101 Analiz I Analysis I 4 1 5 6 MTK 102 Analiz II Analysis II 4 1 5 6 MTK 121 Lineer Cebir

Detaylı

Asst. Prof. Dr. Tahsin ONER Ege University

Asst. Prof. Dr. Tahsin ONER Ege University Abelian group: de i meli grup absolute convergence of a series: serinin mutlak yak nsakl absolute error: mutlak hata absolutlely continuous function: mutlak sürekli fonksiyon affine coordinate system:

Detaylı

İÇİNDEKİLER. Bölüm 2 CEBİR 43

İÇİNDEKİLER. Bölüm 2 CEBİR 43 İÇİNDEKİLER ÖNSÖZ III Bölüm 1 SAYILAR 13 1.1 Doğal Sayılar 15 1.1.1. Tek ve Çift Sayılar 15 1.1.2. Asal Sayılar 15 1.1.3 Doğal Sayıların Özellikleri 15 1.1.4 Doğal Sayılarda Özel Toplamlar 16 1.1.5. Faktöriyel

Detaylı

DOKUZ EYLÜL ÜNİVERSİTESİ FEN BİLİMLERİ ENSTİTÜSÜ MÜDÜRLÜĞÜ DERS/MODÜL/BLOK TANITIM FORMU. Dersin Kodu: MAT 5001

DOKUZ EYLÜL ÜNİVERSİTESİ FEN BİLİMLERİ ENSTİTÜSÜ MÜDÜRLÜĞÜ DERS/MODÜL/BLOK TANITIM FORMU. Dersin Kodu: MAT 5001 Dersi Veren Birim: Fen Bilimleri Enstitüsü Dersin Türkçe Adı: Uygulamalı Matematik Dersin Orjinal Adı: Applied Mathematics Dersin Düzeyi:(Ön lisans, Lisans, Yüksek Lisans, Doktora) Lisansüstü Dersin Kodu:

Detaylı

YGS MATEMATİK - CEBİR 01 TEMEL SAYI KAVRAMLARI VE UYGULAMALARI 02 TAMSAYILARDA BÖLME 03 BÖLÜNEBİLME KURALLARI 04 ASAL SAYILAR 05 OBEB VE OKEK 06

YGS MATEMATİK - CEBİR 01 TEMEL SAYI KAVRAMLARI VE UYGULAMALARI 02 TAMSAYILARDA BÖLME 03 BÖLÜNEBİLME KURALLARI 04 ASAL SAYILAR 05 OBEB VE OKEK 06 1 YGS MATEMATİK - CEBİR 01 TEMEL SAYI KAVRAMLARI VE UYGULAMALARI 02 TAMSAYILARDA BÖLME 03 BÖLÜNEBİLME KURALLARI 04 ASAL SAYILAR 05 OBEB VE OKEK 06 RASYONEL SAYILAR KÜMESİ VE ÖZELLİKLERİ 07 BASİT EŞİTSİZLİKLER

Detaylı

12.SINIF A VE B GRUBU MATEMATİK-GEOMETRİ DERSİ KURS KONULARI VE TESTLERİ

12.SINIF A VE B GRUBU MATEMATİK-GEOMETRİ DERSİ KURS KONULARI VE TESTLERİ .SINIF A VE B GRUBU MATEMATİK-GEOMETRİ DERSİ KURS KONULARI VE TESTLERİ A-TEST SAYILAR- TEMEL KAVRAMLAR A-TEST SAYILAR- POLİNOMLAR B-TEST POLİNOMLAR- PARALEL DOĞRULARDA VE ÜÇGENDE AÇILAR A- B TEST PARALEL

Detaylı

Matematik Mühendisliği - Mesleki İngilizce

Matematik Mühendisliği - Mesleki İngilizce Matematik Mühendisliği - Mesleki İngilizce Tanım - Definition Tanım nasıl verilmelidir? Tanım tanımlanan ismi veya sıfatı yeterince açıklamalı, gereğinden fazla detaya girmemeli ve açık olmalıdır. Bir

Detaylı

Ç NDEK LER. Bölüm 4: Üslü Say lar...44 Üslü fadeler...44 Al t rmalar...47 Test Sorular...49

Ç NDEK LER. Bölüm 4: Üslü Say lar...44 Üslü fadeler...44 Al t rmalar...47 Test Sorular...49 Ç NDEK LER Bölüm1: Say Sistemleri...1 Say Sistemi...2 Desimal (Onluk) Say Sistemi...2 Say Basamaklar ve Taban...4 Binary ( kilik) Say Sistemi...4 Oktal (Sekizlik) Say Sistemi...7 Heksadesimal (Onalt l

Detaylı

DOKUZ EYLÜL ÜNİVERSİTESİ MÜHENDİSLİK FAKÜLTESİ DEKANLIĞI DERS/MODÜL/BLOK TANITIM FORMU. Dersin Orjinal Adı: CALCULUS II. Dersin Kodu: MAT 1002

DOKUZ EYLÜL ÜNİVERSİTESİ MÜHENDİSLİK FAKÜLTESİ DEKANLIĞI DERS/MODÜL/BLOK TANITIM FORMU. Dersin Orjinal Adı: CALCULUS II. Dersin Kodu: MAT 1002 Dersi Veren Birim: Mühendislik Fakültesi Dersin Türkçe Adı: MATEMATİK II Dersin Orjinal Adı: CALCULUS II Dersin Düzeyi:(Ön lisans, Lisans, Yüksek Lisans, Doktora) Lisans Dersin Kodu: MAT 100 Dersin Öğretim

Detaylı

Do not open the exam until you are told that you may begin.

Do not open the exam until you are told that you may begin. OKAN ÜNİVERSİTESİ MÜHENDİSLİK-MİMARLIK FAKÜLTESİ MÜHENDİSLİK TEMEL BİLİMLERİ BÖLÜMÜ 2015.11.10 MAT461 Fonksiyonel Analiz I Arasınav N. Course Adi: Soyadi: Öğrenc i No: İmza: Ö R N E K T İ R S A M P L E

Detaylı

DOKUZ EYLÜL ÜNİVERSİTESİ MÜHENDİSLİK FAKÜLTESİ DEKANLIĞI DERS/MODÜL/BLOK TANITIM FORMU. Dersin Orjinal Adı: CALCULUS I. Dersin Kodu: MAT 1001

DOKUZ EYLÜL ÜNİVERSİTESİ MÜHENDİSLİK FAKÜLTESİ DEKANLIĞI DERS/MODÜL/BLOK TANITIM FORMU. Dersin Orjinal Adı: CALCULUS I. Dersin Kodu: MAT 1001 Dersi Veren Birim: Mühendislik Fakültesi Dersin Türkçe Adı: MATEMATİK I Dersin Orjinal Adı: CALCULUS I Dersin Düzeyi:(Ön lisans, Lisans, Yüksek Lisans, Doktora) Lisans Dersin Kodu: MAT 1001 Dersin Öğretim

Detaylı

WEEK 11 CME323 NUMERIC ANALYSIS. Lect. Yasin ORTAKCI.

WEEK 11 CME323 NUMERIC ANALYSIS. Lect. Yasin ORTAKCI. WEEK 11 CME323 NUMERIC ANALYSIS Lect. Yasin ORTAKCI yasinortakci@karabuk.edu.tr 2 INTERPOLATION Introduction A census of the population of the United States is taken every 10 years. The following table

Detaylı

EGE ÜNİVERSİTESİ FEN FAKÜLTESİ MATEMATİK BÖLÜMÜ 2014-2015 ÖĞRETİM YILI BAHAR YARIYILI BÜTÜNLEME PROGRAMI

EGE ÜNİVERSİTESİ FEN FAKÜLTESİ MATEMATİK BÖLÜMÜ 2014-2015 ÖĞRETİM YILI BAHAR YARIYILI BÜTÜNLEME PROGRAMI II. YARIYIL Soyut Matematik II Mat. 1. Grup Prof.Dr.A.FIRAT 22.06.2015 15:00-16:30 C 012, C 013 Mathematics II Mat. 1. Grup Prof.Dr.İ.ÇANAK 23.06.2015 15:00-16:30 C 012, C 013 Bilgisayar (A Grubu) Mat.

Detaylı

EGE ÜNİVERSİTESİ FEN FAKÜLTESİ MATEMATİK BÖLÜMÜ 2014-2015 ÖĞRETİM YILI BAHAR YARIYILI FİNAL PROGRAMI

EGE ÜNİVERSİTESİ FEN FAKÜLTESİ MATEMATİK BÖLÜMÜ 2014-2015 ÖĞRETİM YILI BAHAR YARIYILI FİNAL PROGRAMI II. YARIYIL Soyut Matematik II Mat. 1. Grup Prof.Dr.A.FIRAT 01.06.2015 08:30-10:00 C 012, C 013, C 118, C 119 Mathematics II Mat. 1. Grup Prof.Dr.İ.ÇANAK 10.06.2015 15:00-16:30 C 117, C 118, C 119, C 013

Detaylı

MATEMATİK ÖĞRETMENLİK ALAN BİLGİSİ - DENEME SINAVI DENEME. Diğer sayfaya geçiniz.

MATEMATİK ÖĞRETMENLİK ALAN BİLGİSİ - DENEME SINAVI DENEME. Diğer sayfaya geçiniz. MATEMATİK. DENEME ÖĞRETMENLİK ALAN BİLGİSİ - DENEME SINAVI. f : X tanımlı y = f() fonksiyonu için lim f ( ) = L ise aşağıdaki önermelerden kaç tanesi kesinlikle doğrudur? 0 I. X dir. 0 II. f() fonksiyonu

Detaylı

PERGEL YAYINLARI LYS 1 DENEME-6 KONU ANALİZİ SORU NO LYS 1 MATEMATİK TESTİ KAZANIM NO KAZANIMLAR

PERGEL YAYINLARI LYS 1 DENEME-6 KONU ANALİZİ SORU NO LYS 1 MATEMATİK TESTİ KAZANIM NO KAZANIMLAR 2013-2014 PERGEL YAYINLARI LYS 1 DENEME-6 KONU ANALİZİ SORU NO LYS 1 MATEMATİK TESTİ A B KAZANIM NO KAZANIMLAR 1 1 / 31 12 32173 Üslü İfadeler 2 13 42016 Rasyonel ifade kavramını örneklerle açıklar ve

Detaylı

Help Turkish -> English

Help Turkish -> English Help Turkish -> English Günümüzde matematik makalelerinin çok önemli bir kısmı İngilizce yazılıyor. Türkçe düşünmeye alışmış olanlarımız için bu pek de kolay olmayabilir. Bir yazıda elbette İngilizce öğretmek

Detaylı

WEEK 4 BLM323 NUMERIC ANALYSIS. Okt. Yasin ORTAKCI.

WEEK 4 BLM323 NUMERIC ANALYSIS. Okt. Yasin ORTAKCI. WEEK 4 BLM33 NUMERIC ANALYSIS Okt. Yasin ORTAKCI yasinortakci@karabuk.edu.tr Karabük Üniversitesi Uzaktan Eğitim Uygulama ve Araştırma Merkezi BLM33 NONLINEAR EQUATION SYSTEM Two or more degree polinomial

Detaylı

MATEMATİK VE FEN BİLİMLERİ EĞTİMİ ANABİLİM DALI MATEMATİK EĞİTİMİ BİLİM DALI TEZLİ YÜKSEK LİSANS PROGRAMI

MATEMATİK VE FEN BİLİMLERİ EĞTİMİ ANABİLİM DALI MATEMATİK EĞİTİMİ BİLİM DALI TEZLİ YÜKSEK LİSANS PROGRAMI I.YARIYIL MATEMATİK VE FEN BİLİMLERİ EĞTİMİ ANABİLİM DALI MATEMATİK EĞİTİMİ BİLİM DALI TEZLİ YÜKSEK LİSANS PROGRAMI 3715055832012 Z Uzmanlık Alan Dersi 3715055702017 Z Bilimsel Araştırma Yöntemleri ve

Detaylı

MATLAB a GİRİŞ. Doç. Dr. Mehmet İTİK. Karadeniz Teknik Üniversitesi Makine Mühendisliği Bölümü

MATLAB a GİRİŞ. Doç. Dr. Mehmet İTİK. Karadeniz Teknik Üniversitesi Makine Mühendisliği Bölümü MATLAB a GİRİŞ Doç. Dr. Mehmet İTİK Karadeniz Teknik Üniversitesi Makine Mühendisliği Bölümü İçerik: MATLAB nedir? MATLAB arayüzü ve Bileşenleri (Toolbox) Değişkenler, Matris ve Vektörler Aritmetik işlemler

Detaylı

EGE ÜNİVERSİTESİ FEN FAKÜLTESİ MATEMATİK BÖLÜMÜ İ.Ö. 2014-2015 ÖĞRETİM YILI BAHAR YARIYILI BÜTÜNLEME PROGRAMI

EGE ÜNİVERSİTESİ FEN FAKÜLTESİ MATEMATİK BÖLÜMÜ İ.Ö. 2014-2015 ÖĞRETİM YILI BAHAR YARIYILI BÜTÜNLEME PROGRAMI II. YARIYIL Soyut Matematik II Mat. 1. Grup Prof.Dr.A.FIRAT 22.06.2015 17:00-18:30 C 012, C 013 Scientific English II Mat. 1. Grup Yrd.Doç.Dr.N.BAŞ 23.06.2015 17:00-18:30 C 012, C 013 Analytic Geometry

Detaylı

Dersi Alan Dersi Veren Dersin Optik Kod Dersin Adı Saat Öğr. Grubu Öğretim Üyesi Yeri

Dersi Alan Dersi Veren Dersin Optik Kod Dersin Adı Saat Öğr. Grubu Öğretim Üyesi Yeri T. C. E. Ü. FEN FAKÜLTESİ MATEMATİK BÖLÜMÜ 2015-2016 Öğretim Yılı Güz Dönemi Haftalık Ders Programı İkinci Öğretim A. Fakülte İçinde "BÖLÜMÜMÜZ" Öğrencilerine Verdiğimiz Dersler I. YARIYIL 1104001062003

Detaylı

Tez adı: Genelleştirilmiş büzülme dönüşümleri için bazı sabit nokta teoremleri (2016) Tez Danışmanı:(ARAP DURAN TÜRKOĞLU)

Tez adı: Genelleştirilmiş büzülme dönüşümleri için bazı sabit nokta teoremleri (2016) Tez Danışmanı:(ARAP DURAN TÜRKOĞLU) HÜSEYİN IŞIK YARDIMCI DOÇENT E-Posta Adresi : h.isik@alparslan.edu.tr Telefon (İş) Telefon (Cep) Faks Adres : : : : 3122021084-5071865605 MUŞ ALPARSLAN ÜNİVERSİTESİ FEN EDEBİYAT FAKÜLTESİ Öğrenim Durumu

Detaylı

BÖLÜM I MATEMATİK NEDİR? 13 1.1. Matematik Nedir? 14

BÖLÜM I MATEMATİK NEDİR? 13 1.1. Matematik Nedir? 14 İÇİNDEKİLER Önsöz. V BÖLÜM I MATEMATİK NEDİR? 13 1.1. Matematik Nedir? 14 BÖLÜM II KÜMELER 17 2.1.Küme Tanımı ve Özellikleri 18 2.2 Kümelerin Gösterimi 19 2.2.1 Venn Şeması Yöntemi 19 2.2.2 Liste Yöntemi

Detaylı

MM103 E COMPUTER AIDED ENGINEERING DRAWING I

MM103 E COMPUTER AIDED ENGINEERING DRAWING I MM103 E COMPUTER AIDED ENGINEERING DRAWING I ORTHOGRAPHIC (MULTIVIEW) PROJECTION (EŞLENİK DİK İZDÜŞÜM) Weeks: 3-6 ORTHOGRAPHIC (MULTIVIEW) PROJECTION (EŞLENİK DİK İZDÜŞÜM) Projection: A view of an object

Detaylı

EGE ÜNİVERSİTESİ FEN FAKÜLTESİ MATEMATİK BÖLÜMÜ İ.Ö. 2014-2015 ÖĞRETİM YILI BAHAR YARIYILI ARASINAV PROGRAMI

EGE ÜNİVERSİTESİ FEN FAKÜLTESİ MATEMATİK BÖLÜMÜ İ.Ö. 2014-2015 ÖĞRETİM YILI BAHAR YARIYILI ARASINAV PROGRAMI II. YARIYIL Soyut Matematik II Mat. 1. Grup Prof.Dr.A.FIRAT 06.04.2015 17:00-18:30 A 003, A 009, A 004 Scientific English II Mat. 1. Grup Yrd.Doç.Dr.N.BAŞ 10.04.2015 20:10-21:40 C 013, C 015, C 012 Analytic

Detaylı

Yarışma Sınavı A ) 60 B ) 80 C ) 90 D ) 110 E ) 120. A ) 4(x + 2) B ) 2(x + 4) C ) 2 + ( x + 4) D ) 2 x + 4 E ) x + 4

Yarışma Sınavı A ) 60 B ) 80 C ) 90 D ) 110 E ) 120. A ) 4(x + 2) B ) 2(x + 4) C ) 2 + ( x + 4) D ) 2 x + 4 E ) x + 4 1 4 The price of a book is first raised by 20 TL, and then by another 30 TL. In both cases, the rate of increment is the same. What is the final price of the book? 60 80 90 110 120 2 3 5 Tim ate four more

Detaylı

Genel Matematik (MATH 103) Ders Detayları

Genel Matematik (MATH 103) Ders Detayları Genel Matematik (MATH 103) Ders Detayları Ders Adı Ders Kodu Dönemi Ders Saati Uygulama Saati Laboratuar Saati Kredi AKTS Genel Matematik MATH 103 Güz 3 2 0 4 6 Ön Koşul Ders(ler)i - Dersin Dili Dersin

Detaylı

Lisans. Cebirsel Yapı

Lisans. Cebirsel Yapı Lisans Ayrık Matematik Cebirsel Yapılar H. Turgut Uyar Ayşegül Gençata Yayımlı Emre Harmancı 2001-2012 You are free: to Share to copy, distribute and transmit the work to Remix to adapt the work c 2001-2012

Detaylı

Genel Matematik (MATH 103) Ders Detayları

Genel Matematik (MATH 103) Ders Detayları Genel Matematik (MATH 103) Ders Detayları Ders Adı Ders Kodu Dönemi Ders Saati Uygulama Saati Laboratuar Saati Kredi AKTS Genel Matematik MATH 103 Güz 3 2 0 4 6 Ön Koşul Ders(ler)i - Dersin Dili Dersin

Detaylı

İÇİNDEKİLER ÖNSÖZ Bölüm 1 KÜMELER Bölüm 2 SAYILAR

İÇİNDEKİLER ÖNSÖZ Bölüm 1 KÜMELER Bölüm 2 SAYILAR İÇİNDEKİLER ÖNSÖZ III Bölüm 1 KÜMELER 11 1.1. Küme 12 1.2. Kümelerin Gösterimi 13 1.3. Boş Küme 13 1.4. Denk Küme 13 1.5. Eşit Kümeler 13 1.6. Alt Küme 13 1.7. Alt Küme Sayısı 14 1.8. Öz Alt Küme 16 1.9.

Detaylı

ÖZGEÇMİŞ. 1. Adı Soyadı: Bahaddin SİNSOYSAL 2. Doğum Tarihi: Ünvanı: Doç. Dr. 4. Öğrenim Durumu:

ÖZGEÇMİŞ. 1. Adı Soyadı: Bahaddin SİNSOYSAL 2. Doğum Tarihi: Ünvanı: Doç. Dr. 4. Öğrenim Durumu: 1. Adı Soyadı: Bahaddin SİNSOYSAL 2. Doğum Tarihi: 02.0.1969. Ünvanı: Doç. Dr.. Öğrenim Durumu: ÖZGEÇMİŞ Derece Alan Üniversite Yıl Lisans Matematik Karadeniz Teknik Üniversitesi 1991 Y. Lisans Matematik

Detaylı

T. C. E. Ü. FEN FAKÜLTESİ MATEMATİK BÖLÜMÜ. 2015-2016 Öğretim Yılı Güz Dönemi Haftalık Ders Programı

T. C. E. Ü. FEN FAKÜLTESİ MATEMATİK BÖLÜMÜ. 2015-2016 Öğretim Yılı Güz Dönemi Haftalık Ders Programı T. C. E. Ü. FEN FAKÜLTESİ MATEMATİK BÖLÜMÜ 2015-2016 Öğretim Yılı Güz Dönemi Haftalık Ders Programı A. Fakülte İçinde "BÖLÜMÜMÜZ" Öğrencilerine Verdiğimiz Dersler I. YARIYIL 405001072003 Soyut Matematik

Detaylı

T. C. E. Ü. FEN FAKÜLTESİ MATEMATİK BÖLÜMÜ. 2014-2015 Öğretim Yılı Bahar Dönemi Haftalık Ders Programı İkinci Öğretim

T. C. E. Ü. FEN FAKÜLTESİ MATEMATİK BÖLÜMÜ. 2014-2015 Öğretim Yılı Bahar Dönemi Haftalık Ders Programı İkinci Öğretim E. Ü. FEN FAKÜLTESİ MATEMATİK BÖLÜMÜ 2014-2015 Öğretim Yılı Bahar Dönemi Haftalık Ders Programı İkinci Öğretim A. Fakülte İçinde "BÖLÜMÜMÜZ" Öğrencilerine Verdiğimiz Dersler 1104001062003 Soyut Matematik

Detaylı

Kişisel Bilgiler. Akademik Durum

Kişisel Bilgiler. Akademik Durum ÖZGEC. MİŞ Kişisel Bilgiler Adı Soyadı : Emin ÖZC. AĞ Doğumyeri : Mersin Doğum Tarihi : 22 Eylül, 1961 Uyruğu : T.C. Medeni Hali : Evli Adress : Hacettepe Üniversitesi, Matematik Bölümü, Beytepe-Ankara

Detaylı

www.usmatik.com MATEMATİK PROGRAMI YGS-LYS Matematik Çalışma Programı

www.usmatik.com MATEMATİK PROGRAMI YGS-LYS Matematik Çalışma Programı www.usmatik.com MATEMATİK PROGRAMI YGS-LYS Matematik Çalışma Programı Ertuğrul US 01.09.2014 MATEMATİK PROGRAMIM Program 6 aylık (24 haftalık) bir programdır. Konuların veriliş sırasına uyularak çalışılması

Detaylı

Çözüm: Z 3 = 27 = 27CiS( +2k ) Z k =3CiS ( ) 3 3 k = 0 için z 0 = 2 k=1 için z 1 = 3

Çözüm: Z 3 = 27 = 27CiS( +2k ) Z k =3CiS ( ) 3 3 k = 0 için z 0 = 2 k=1 için z 1 = 3 p ve q iki önerme olsun p q q p dir. p: = 3 ve q: y< 8 alınırsa I ve III ün denk olduğu görülür. Yanıt B Z 3 = 7 = 7CiS( +k ) k Z k =3CiS ( ) 3 3 k = 0 için z 0 = k=1 için z 1 = 3 k = için z = Yanıt A

Detaylı

ÖZGEÇMİŞ. 1. Adı Soyadı: Bahaddin SİNSOYSAL 2. Doğum Tarihi: 02.03.1969 3. Ünvanı: Doç. Dr. 4. Öğrenim Durumu:

ÖZGEÇMİŞ. 1. Adı Soyadı: Bahaddin SİNSOYSAL 2. Doğum Tarihi: 02.03.1969 3. Ünvanı: Doç. Dr. 4. Öğrenim Durumu: 1. Adı Soyadı: Bahaddin SİNSOYSAL 2. Doğum Tarihi: 02.0.1969. Ünvanı: Doç. Dr.. Öğrenim Durumu: ÖZGEÇMİŞ Derece Alan Üniversite Yıl Lisans Matematik Karadeniz Teknik Üniversitesi 1991 Y. Lisans Matematik

Detaylı

#include <stdio.h> int main(void) { float sayi; float * p; p = &sayi; printf("deger girin:"); scanf("%f", p); printf("girilen deger:%f\n", *p);

#include <stdio.h> int main(void) { float sayi; float * p; p = &sayi; printf(deger girin:); scanf(%f, p); printf(girilen deger:%f\n, *p); Ege University Electrical and Electronics Engineering Introduction to Computer Programming Laboratory Lab 11 - Pointers 1) Pointer syntax. Declare a variable and a pointer with same data type. Assign variable

Detaylı

Do not open the exam until you are told that you may begin.

Do not open the exam until you are told that you may begin. ÖRNEKTİR ÖRNEKTİR ÖRNEKTİR ÖRNEKTİR ÖRNEKTİR OKAN ÜNİVERSİTESİ FEN EDEBİYAT FAKÜLTESİ MATEMATİK BÖLÜMÜ 03.11.2011 MAT 461 Fonksiyonel Analiz I Ara Sınav N. Course ADI SOYADI ÖĞRENCİ NO İMZA Do not open

Detaylı

Unlike analytical solutions, numerical methods have an error range. In addition to this

Unlike analytical solutions, numerical methods have an error range. In addition to this ERROR Unlike analytical solutions, numerical methods have an error range. In addition to this input data may have errors. There are 5 basis source of error: The Source of Error 1. Measuring Errors Data

Detaylı

Öğretim Yılı Güz Dönemi Final Sınav Programı

Öğretim Yılı Güz Dönemi Final Sınav Programı 2016-2017 Öğretim Yılı Güz Dönemi Final Sınav Programı A. Fakülte İçinde "BÖLÜMÜMÜZ" Öğrencilerine Verdiğimiz Dersler I. YARIYIL I. HAFTA (09.01.2017-13.01.2017) Dersin Adı Dersi Alan Öğrenci Grubu Dersi

Detaylı

Karmaşık Fonksiyonlar ve Uygulamaları (MATH274) Ders Detayları

Karmaşık Fonksiyonlar ve Uygulamaları (MATH274) Ders Detayları Karmaşık Fonksiyonlar ve Uygulamaları (MATH274) Ders Detayları Ders Adı Ders Kodu Dönemi Ders Saati Uygulama Saati Laboratuar Kredi AKTS Saati Karmaşık Fonksiyonlar ve Uygulamaları MATH274 Bahar 3 0 0

Detaylı

2014 - LYS TESTLERİNE YÖNELİK ALAN STRATEJİLERİ

2014 - LYS TESTLERİNE YÖNELİK ALAN STRATEJİLERİ 2014 - LYS TESTLERİNE YÖNELİK ALAN STRATEJİLERİ YGS sonrası adayları puan getirisinin daha çok olan LYS ler bekliyor. Kalan süre içinde adayların girecekleri testlere kaynaklık eden derslere sabırla çalışmaları

Detaylı

DERS BİLGİ FORMU DERS BİLGİLERİ. Türü Zorunlu/ Seçmeli DERS PLANI

DERS BİLGİ FORMU DERS BİLGİLERİ. Türü Zorunlu/ Seçmeli DERS PLANI EK-1 DERS BİLGİ FORMU ENSTİTÜ/FAKÜLTE/YÜKSEKOKUL ve PROGRAM: DERS BİLGİLERİ Adı Kodu Dili Türü Zorunlu/ Seçmeli Yarıyılı T+U Saati Kredisi AKTS Matematik I MM101 Türkçe Zorunlu 1 Ön Koşul Dersleri - Ders

Detaylı

Dersin Kodu Dersin Adı Dersin Türü Yıl Yarıyıl AKTS. 507001112001 MATEMATİK II Zorunlu 1 2 5

Dersin Kodu Dersin Adı Dersin Türü Yıl Yarıyıl AKTS. 507001112001 MATEMATİK II Zorunlu 1 2 5 Ders Öğretim Planı Dersin Kodu Dersin Adı Dersin Türü Yıl Yarıyıl AKTS 507001112001 MATEMATİK II Zorunlu 1 2 5 Dersin Seviyesi Lisans Dersin Amacı Matematik bilgisini mühendislik problemlerini çözmede

Detaylı

ÖZGEÇMİŞ VE ESERLER LİSTESİ ÖZGEÇMİŞ

ÖZGEÇMİŞ VE ESERLER LİSTESİ ÖZGEÇMİŞ ÖZGEÇMİŞ VE ESERLER LİSTESİ ÖZGEÇMİŞ Adı Soyadı: Ayten Koç Öğrenim Durumu: Derece Bölüm/Program Üniversite Yıl Lisans Matematik Yıldız Teknik Üniversitesi 1988-1992 Y. Lisans Matematik Yıldız Teknik Üniversitesi

Detaylı

MATEMATİK TESTİ LYS YE DOĞRU. 1. Bu testte Matematik ile ilgili 50 soru vardır.

MATEMATİK TESTİ LYS YE DOĞRU. 1. Bu testte Matematik ile ilgili 50 soru vardır. MTMTİK TSTİ LYS-. u testte Matematik ile ilgili 0 soru vardır.. evaplarınızı, cevap kâğıdının Matematik Testi için ayrılan kısmına işaretleyiniz.. u testteki süreniz 7 dakikadır.. a, b, c birer reel sayı

Detaylı

18.034 İleri Diferansiyel Denklemler

18.034 İleri Diferansiyel Denklemler MIT AçıkDersSistemi http://ocw.mit.edu 18.034 İleri Diferansiyel Denklemler 2009 Bahar Bu bilgilere atıfta bulunmak veya kullanım koşulları hakkında bilgi için http://ocw.mit.edu/terms web sitesini ziyaret

Detaylı

tipleri. alacak. b)eğer Ferit (x 1)(x 2)= 0 r(x): x<0 8) Tanim ve x+y=z dir. 7)Q(x,y,z) : olmak üzeree Graf dir

tipleri. alacak. b)eğer Ferit (x 1)(x 2)= 0 r(x): x<0 8) Tanim ve x+y=z dir. 7)Q(x,y,z) : olmak üzeree Graf dir Soyut Yapiar: Ornek Soru tipleri. 1) a)aşağidaki cümlelerin değillerini yazin. Tolga ödevlerini yaparsaa ve Tayfun piyano çalişirsa ikisi beraber tatile gitmeye hak kazanacaklar. b)eğer Ferit liner cebirden

Detaylı

EGE ÜNİVERSİTESİ FEN FAKÜLTESİ MATEMATİK BÖLÜMÜ İ.Ö ÖĞRETİM YILI BAHAR YARIYILI ARASINAV PROGRAMI

EGE ÜNİVERSİTESİ FEN FAKÜLTESİ MATEMATİK BÖLÜMÜ İ.Ö ÖĞRETİM YILI BAHAR YARIYILI ARASINAV PROGRAMI II. YARIYIL Soyut Matematik II Mat. 1. Grup Prof.Dr.A.FIRAT 11.04.2016 17:00-18:30 C 015 A 009 A 007 Scientific English II Mat. 1. Grup Doç.Dr.Ç. DEMİR 14.04.2016 17:00-18:30 C 015 C 013 Analytic Geometry

Detaylı

Prof.Dr. ÜNAL ERKAN MUMCUOĞLU. merkan@metu.edu.tr

Prof.Dr. ÜNAL ERKAN MUMCUOĞLU. merkan@metu.edu.tr Ders Bilgisi Ders Kodu 9060528 Ders Bölüm 1 Ders Başlığı BİLİŞİM SİSTEMLERİ İÇİN MATEMATİĞİN TEMELLERİ Ders Kredisi 3 ECTS 8.0 Katalog Tanımı Ön koşullar Ders saati Bu dersin amacı altyapısı teknik olmayan

Detaylı

1. BÖLÜM Polinomlar BÖLÜM II. Dereceden Denklemler BÖLÜM II. Dereceden Eşitsizlikler BÖLÜM Parabol

1. BÖLÜM Polinomlar BÖLÜM II. Dereceden Denklemler BÖLÜM II. Dereceden Eşitsizlikler BÖLÜM Parabol ORGANİZASYON ŞEMASI . BÖLÜM Polinomlar... 7. BÖLÜM II. Dereceden Denklemler.... BÖLÜM II. Dereceden Eşitsizlikler... 9. BÖLÜM Parabol... 5 5. BÖLÜM Trigonometri... 69 6. BÖLÜM Karmaşık Sayılar... 09 7.

Detaylı

Yard. Doç. Dr. İrfan DELİ. Matematik

Yard. Doç. Dr. İrfan DELİ. Matematik Unvanı Yard. Doç. Dr. Adı Soyadı İrfan DELİ Doğum Yeri ve Tarihi: Çivril/Denizli -- 06.04.1986 Bölüm: E-Posta Matematik irfandeli20@gmail.com, irfandeli@kilis.edu.tr AKADEMİK GELİŞİM ÜNİVERSİTE YIL Lisans

Detaylı

T.C. Ölçme, Seçme ve Yerleştirme Merkezi

T.C. Ölçme, Seçme ve Yerleştirme Merkezi T.C. Ölçme, Seçme ve Yerleştirme Merkezi LİSANS YERLEŞTİRME SINAVI-1 MATEMATİK TESTİ 11 HAZİRAN 2017 PAZAR Bu testlerin her hakkı saklıdır. Hangi amaçla olursa olsun, testlerin tamamının veya bir kısmının

Detaylı

T.C. Ölçme, Seçme ve Yerleştirme Merkezi

T.C. Ölçme, Seçme ve Yerleştirme Merkezi T.C. Ölçme, Seçme ve Yerleştirme Merkezi LİSANS YERLEŞTİRME SINAVI-1 MATEMATİK TESTİ 11 HAZİRAN 2017 PAZAR Bu testlerin her hakkı saklıdır. Hangi amaçla olursa olsun, testlerin tamamının veya bir kısmının

Detaylı

Karmaşık Sayılar Karmaşık Sayı Yaratma

Karmaşık Sayılar Karmaşık Sayı Yaratma 10 Karmaşık Sayılar Matematik derslerinden bilindiği gibi a ile b iki gerçel (real) sayı ve i = 1 olmak üzere z= a +bi sayısı karmaşık (complex) bir sayıdır. (Bazı yerde i yerine j yazılır.) i sayısı sanal

Detaylı

Kompleks Analiz (MATH 346) Ders Detayları

Kompleks Analiz (MATH 346) Ders Detayları Kompleks Analiz (MATH 346) Ders Detayları Ders Adı Ders Kodu Dönemi Ders Saati Uygulama Saati Laboratuar Saati Kredi AKTS Kompleks Analiz MATH 346 Güz 4 0 0 4 7 Ön Koşul Ders(ler)i Math 251 Dersin Dili

Detaylı

Üye : Yrd. Doç. Dr. Erdal ÖZYURT Adnan Menderes Üni. Üye : Yrd. Doç. Dr. Fatih KOYUNCU Muğla Üni.

Üye : Yrd. Doç. Dr. Erdal ÖZYURT Adnan Menderes Üni. Üye : Yrd. Doç. Dr. Fatih KOYUNCU Muğla Üni. iii T.C. ADNAN MENDERES ÜNİVERSİTESİ FEN BİLİMLERİ ENSTİTÜSÜ MÜDÜRLÜĞÜNE AYDIN Matematik Anabilim Dalı Yüksek Lisans Programı öğrencisi Koray KARATAŞ tarafından hazırlanan Genel Lineer Grupların Sylow

Detaylı

MAT201E DIFERENTIAL EQUATIONS. Learning Outcomes

MAT201E DIFERENTIAL EQUATIONS. Learning Outcomes MAT201E DIFERENTIAL EQUATIONS Learning Outcomes DEPARTMENT of MATHEMATICS Mat103-Mat103E-Mat101-Mat101E(Mathematics 1) Mat 201-Mat201E (Differential Equations) Mat104-Mat102-Mat102E(Mathematics 2) Mat261

Detaylı

EK-3 ÖZGEÇMİŞ. Derece Alan Üniversite Yıl

EK-3 ÖZGEÇMİŞ. Derece Alan Üniversite Yıl EK-3 ÖZGEÇMİŞ 1. Adı Soyadı : Mahir HASANSOY 2. Doğum Tarihi : 1.07.1961 3. Unvanı : Profesör 4. Öğrenim Durumu : Doktora 5. Çalıştığı Kurum : Doğuş Üniversitesi Derece Alan Üniversite Yıl Lisans Matematik

Detaylı

EĞİTİM-ÖĞRETİM YILI 12. SINIF İLERİ DÜZEL MATEMATİK DERSİ DESTEKLEME VE YETİŞTİRME KURSU KAZANIMLARI VE TESTLERİ

EĞİTİM-ÖĞRETİM YILI 12. SINIF İLERİ DÜZEL MATEMATİK DERSİ DESTEKLEME VE YETİŞTİRME KURSU KAZANIMLARI VE TESTLERİ KASIM EKİM 2017-2018 EĞİTİM-ÖĞRETİM YILI 12. SINIF İLERİ DÜZEL MATEMATİK DERSİ DESTEKLEME VE YETİŞTİRME KURSU KAZANIMLARI VE TESTLERİ 1 4 TÜREV 12.1.1.1. Bir fonksiyonun bir noktadaki limiti, soldan limiti

Detaylı

ÖZGEÇMİŞ. Derece Bölüm/Program Üniversite Yıl

ÖZGEÇMİŞ. Derece Bölüm/Program Üniversite Yıl ÖZGEÇMİŞ Adı Soyadı: Fatih Koyuncu Doğum Tarihi: 10 Haziran 1971 Akademik Ünvanı : Y. Doç. Dr. Çalışma Alanları: Cebir, Cebirsel Sayı Teorisi, Cebirsel Geometri, Kodlama Teorisi, Kriptoloji, Cebirsel Topoloji.

Detaylı

T. C. E. Ü. FEN FAKÜLTESİ MATEMATİK BÖLÜMÜ Öğretim Yılı Bahar Dönemi Haftalık Ders Programı İkinci Öğretim

T. C. E. Ü. FEN FAKÜLTESİ MATEMATİK BÖLÜMÜ Öğretim Yılı Bahar Dönemi Haftalık Ders Programı İkinci Öğretim 2013-2014 Öğretim Yılı Bahar Dönemi Haftalık Ders Programı İkinci Öğretim A. Fakülte İçinde "BÖLÜMÜMÜZ" Öğrencilerine Verdiğimiz Dersler II. YARIYIL Optik Kod Ders Adı Saat Öğrenci Grubu Dersi Veren Öğretim

Detaylı

25. f: R { 4} R 28. ( ) 3 2 ( ) 26. a ve b reel sayılar olmak üzere, 27. ( ) eğrisinin dönüm noktasının ordinatı 10 olduğuna göre, m kaçtır?

25. f: R { 4} R 28. ( ) 3 2 ( ) 26. a ve b reel sayılar olmak üzere, 27. ( ) eğrisinin dönüm noktasının ordinatı 10 olduğuna göre, m kaçtır? . f: R { 4} R, > ise ( ) 4 f =, ise 6 8. ( ) f = 6 + m + 4 eğrisinin dönüm noktasının ordinatı olduğuna göre, m kaçtır? ) 7 ) 8 ) 9 ) E) fonksiyonu aşağıdaki değerlerinin hangisinde süreksizdir? ) ) )

Detaylı

DEĞİRMENBAŞI MIDDLE SCHOOL TEACHING YEAR 7th. GRADE YEARLY PLAN

DEĞİRMENBAŞI MIDDLE SCHOOL TEACHING YEAR 7th. GRADE YEARLY PLAN UNIT SEPTEMBER ( DEĞİRMENBAŞI MIDDLE SCHOOL 06-07 TEACHING YEAR 7th. GRADE YEARLY PLAN Tam Sayılarla Çarpma ve Bölme İşlemleri (subtraction and division with the integres) Tam Sayılarla Çarpma ve Bölme

Detaylı

11. SINIF MATEMATİK DERSİ İLERİ DÜZEY ÖĞRETİM PROGRAMI

11. SINIF MATEMATİK DERSİ İLERİ DÜZEY ÖĞRETİM PROGRAMI 11. SINIF MATEMATİK DERSİ İLERİ DÜZEY ÖĞRETİM PROGRAMI Programın öğrencilerde geliştirmeyi hedeflediği becerilerle 11. sınıf matematik öğretim programı ilişkisi Modelleme/Problem çözme Matematiksel Süreç

Detaylı

6 2. Bir fonksiyonun bir noktadaki sürekliliği kavramını açıklar. Süreklilik

6 2. Bir fonksiyonun bir noktadaki sürekliliği kavramını açıklar. Süreklilik AKSARAY KANUNİ ANADOLU İMAM HATİP LİSESİ 201-2017 EĞİTİM ÖĞRETİM YILI MATEMATİK DERSİ 12.SINIFLAR İLERİ DÜZEY ÜNİTELENDİRİLMİŞ YILLIK PLANI AY: TÜREV (70) LİMİT VE SÜREKLİLİK (14) 1. Bir fonksiyonun bir

Detaylı

MIT Açık Ders Malzemeleri Bu materyallerden alıntı yapmak veya Kullanım Koşulları hakkında bilgi almak için

MIT Açık Ders Malzemeleri  Bu materyallerden alıntı yapmak veya Kullanım Koşulları hakkında bilgi almak için MIT Açık Ders Malzemeleri http://ocm.mit.edu Bu materyallerden alıntı yapmak veya Kullanım Koşulları hakkında bilgi almak için http://ocm.mit.edu/terms veya http://tuba.açık ders.org.tr adresini ziyaret

Detaylı

T.C. MİLLİ EĞİTİM BAKANLIĞI ÖZEL ÇORUM ADA ÖZEL ÖĞRETİM KURSU MATEMATİK V BİLİM GRUBU ÇERÇEVE PROGRAMI

T.C. MİLLİ EĞİTİM BAKANLIĞI ÖZEL ÇORUM ADA ÖZEL ÖĞRETİM KURSU MATEMATİK V BİLİM GRUBU ÇERÇEVE PROGRAMI T.C. MİLLİ EĞİTİM BAKANLIĞI ÖZEL ÇORUM ADA ÖZEL ÖĞRETİM KURSU MATEMATİK V BİLİM GRUBU ÇERÇEVE PROGRAMI 1 1. KURUMUN ADI : Özel Çorum Ada Özel Öğretim Kursu 2. KURUMUN ADRESİ : Yavruturna mah. Kavukçu sok.

Detaylı

ÖZEL ÖĞRETİM KURSU MATEMATİK-V ÇERÇEVE PROGRAMI. 3. KURUCUNUN ADI :ARTI ÖZEL EĞİTİM ÖĞRETİM Danışmanlık Turizm Hizmetleri Ticaret İth. İhr. Ltd. Şti.

ÖZEL ÖĞRETİM KURSU MATEMATİK-V ÇERÇEVE PROGRAMI. 3. KURUCUNUN ADI :ARTI ÖZEL EĞİTİM ÖĞRETİM Danışmanlık Turizm Hizmetleri Ticaret İth. İhr. Ltd. Şti. ÖZEL ÖĞRETİM KURSU MATEMATİK-V ÇERÇEVE PROGRAMI 1. KURUMUN ADI : Tercih Özel Öğretim Kursu 2. KURUMUN ADRESİ : Kesikkapı Mah. Atatürk Cad. No 79 Fethiye /MUĞLA 3. KURUCUNUN ADI :ARTI ÖZEL EĞİTİM ÖĞRETİM

Detaylı

DERS BİLGİ FORMU DERS BİLGİLERİ. Türü Zorunlu/ Seçmeli DERS PLANI. Hafta Ön Hazırlık Konular/Uygulamalar Metot

DERS BİLGİ FORMU DERS BİLGİLERİ. Türü Zorunlu/ Seçmeli DERS PLANI. Hafta Ön Hazırlık Konular/Uygulamalar Metot EK- DERS BİLGİ FORMU ENSTİTÜ/FAKÜLTE/YÜKSEKOKUL ve PROGRAM: DERS BİLGİLERİ Adı Kodu Dili Türü Zorunlu/ Seçmeli Yarıyılı T+U Saati Kredisi AKTS Lineer Cebir MM08 Türkçe Zorunlu 2 2 2 2 Ön Koşul Dersleri

Detaylı

EGE ÜNİVERSİTESİ FEN FAKÜLTESİ MATEMATİK BÖLÜMÜ ÖĞRETİM YILI BAHAR YARIYILI ARASINAV PROGRAMI

EGE ÜNİVERSİTESİ FEN FAKÜLTESİ MATEMATİK BÖLÜMÜ ÖĞRETİM YILI BAHAR YARIYILI ARASINAV PROGRAMI II. YARIYIL Soyut Matematik II Mat. 1. Grup Prof.Dr.A.FIRAT 11.04.2016 08:30-10:00 C 012 C 013 C 119 Mathematics II Mat. 1. Grup Prof.Dr.İ.ÇANAK 20.04.2016 08:30-10:00 C 012 C 013 A 003 Bilgisayar Mat.

Detaylı

1. GİRİŞ Kılavuzun amacı. Bu bölümde;

1. GİRİŞ Kılavuzun amacı. Bu bölümde; 1. GİRİŞ Bu bölümde; Kılavuzun amacı EViews Yardım EViews Temelleri ve Nesneleri EViews ta Matematiksel İfadeler EViews Ana Ekranındaki Alanlar 1.1. Kılavuzun amacı Ekonometri A. H. Studenmund tarafından

Detaylı

1. KURUMUN ADI : Özel Osmaniye Artı Bilim Temel Lisesi. 3. KURUCUNUN ADI : Sinerji Eğitimcilik San. Tic. Ltd. Şti./Celal DEMİR

1. KURUMUN ADI : Özel Osmaniye Artı Bilim Temel Lisesi. 3. KURUCUNUN ADI : Sinerji Eğitimcilik San. Tic. Ltd. Şti./Celal DEMİR 1. KURUMUN ADI : Özel Osmaniye Artı Bilim Temel Lisesi 2. KURUMUN ADRESİ : Cumhuriyet Mah. Akyar Cad. No:87/B 3. KURUCUNUN ADI : Sinerji Eğitimcilik San. Tic. Ltd. Şti./Celal DEMİR 4. PROGRAMIN ADI : MATEMATİK

Detaylı

YÜKSEKÖĞRETİM KURULU PROFESÖR : SİNOP ÜNİVERSİTESİ/FEN-EDEBİYAT FAKÜLTESİ/MATEMATİK BÖLÜMÜ/MATEMATİK BÖLÜMÜ 57000/SİNOP

YÜKSEKÖĞRETİM KURULU PROFESÖR : SİNOP ÜNİVERSİTESİ/FEN-EDEBİYAT FAKÜLTESİ/MATEMATİK BÖLÜMÜ/MATEMATİK BÖLÜMÜ 57000/SİNOP KAMİL DEMİRCİ ÖZGEÇMİŞ YÜKSEKÖĞRETİM KURULU PROFESÖR 24.11.2014 Adres : SİNOP ÜNİVERSİTESİ/FEN-EDEBİYAT FAKÜLTESİ/MATEMATİK BÖLÜMÜ/MATEMATİK BÖLÜMÜ 57000/SİNOP Telefon : 0368271551-4001 E-posta : kamild@sinop.edu.tr

Detaylı

PENDİK ANADOLU İMAM HATİP LİSESİ EĞİTİM VE ÖĞRETİM YILI 10.SINIF MATEMATİK DERSİ YILLIK PLANI

PENDİK ANADOLU İMAM HATİP LİSESİ EĞİTİM VE ÖĞRETİM YILI 10.SINIF MATEMATİK DERSİ YILLIK PLANI PENDİK ANADOLU İMAM HATİP LİSESİ 0-0 EĞİTİM VE ÖĞRETİM YILI 0.SINIF MATEMATİK DERSİ YILLIK PLANI EYLÜL EKİM. Gerçek katsayılı ve tek değişkenli polinomu kavram olarak örneklerle açıklar, polinomun derecesini,

Detaylı

A Y I K BOYA SOBA SOBA =? RORO MAYO MAS A A YÖS / TÖBT

A Y I K BOYA SOBA SOBA =? RORO MAYO MAS A A YÖS / TÖBT 00 - YÖS / TÖBT. ve. sorularda, I. gruptaki sözcüklerin harfleri birer rakamla gösterilerek II. gruptaki sayılar elde edilmiştir. Soru işaretiyle belirtilen sözcüğün hangi sayıyla gösterildiğini bulunuz.

Detaylı

2013 2014 EĞİTİM ÖĞRETİM YILI 8. SINIF MATEMATİK DERSİ KONULARININ ÇALIŞMA TAKVİMİNE GÖRE DAĞILIM ÇİZELGESİ ALT ÖĞRENME. Örüntü ve Süslemeler

2013 2014 EĞİTİM ÖĞRETİM YILI 8. SINIF MATEMATİK DERSİ KONULARININ ÇALIŞMA TAKVİMİNE GÖRE DAĞILIM ÇİZELGESİ ALT ÖĞRENME. Örüntü ve Süslemeler 2013 2014 EĞİTİM ÖĞRETİM YILI 8. SINIF MATEMATİK DERSİ KONULARININ ÇALIŞMA TAKVİMİNE GÖRE DAĞILIM ÇİZELGESİ SÜRE ÖĞRENME Ay Hafta D.Saati ALANI EYLÜL 2 Geometri 2 3 Geometri 2 Geometri 2 Olasılıkve ALT

Detaylı

DERS BİLGİ FORMU. Zorunlu Ders X. Haftalık Ders Saati Okul Eğitimi Süresi

DERS BİLGİ FORMU. Zorunlu Ders X. Haftalık Ders Saati Okul Eğitimi Süresi DERSİN ADI MATEMATİK 1 BÖLÜM PROGRAM DÖNEMİ DERSİN DİLİ DERS KATEGORİSİ ÖN ŞARTLAR SÜRE VE DAĞILIMI KREDİ DERSİN AMACI ÖĞRENME ÇIKTILARI VE YETERLİKLER DERSİN İÇERİĞİ VE DAĞILIMI (MODÜLLER VE HAFTALARA

Detaylı

Diferansiyel Denklemler (MATH 276) Ders Detayları

Diferansiyel Denklemler (MATH 276) Ders Detayları Diferansiyel Denklemler (MATH 276) Ders Detayları Ders Adı Diferansiyel Denklemler Ders Kodu MATH 276 Dönemi Ders Uygulama Laboratuar Kredi AKTS Saati Saati Saati Bahar 4 0 0 4 6 Ön Koşul Ders(ler)i Math

Detaylı

Ege Üniversitesi Elektrik Elektronik Mühendisliği Bölümü Kontrol Sistemleri II Dersi Grup Adı: Sıvı Seviye Kontrol Deneyi.../..

Ege Üniversitesi Elektrik Elektronik Mühendisliği Bölümü Kontrol Sistemleri II Dersi Grup Adı: Sıvı Seviye Kontrol Deneyi.../.. Ege Üniversitesi Elektrik Elektronik Mühendisliği Bölümü Kontrol Sistemleri II Dersi Grup Adı: Sıvı Seviye Kontrol Deneyi.../../2015 KP Pompa akış sabiti 3.3 cm3/s/v DO1 Çıkış-1 in ağız çapı 0.635 cm DO2

Detaylı

AFYON KOCATEPE ÜNİVERSİTESİ FEN BİLİMLERİ ENSTİTÜSÜ MATEMATİK ANABİLİM DALI BAŞKANLIĞI YÜKSEK LİSANS PROGRAMI

AFYON KOCATEPE ÜNİVERSİTESİ FEN BİLİMLERİ ENSTİTÜSÜ MATEMATİK ANABİLİM DALI BAŞKANLIĞI YÜKSEK LİSANS PROGRAMI YÜKSEK LİSANS PROGRAMI BİRİNCİ YIL BİRİNCİ YARIYIL MAT-5501 UZMANLIK ALAN DERSİ Z 8 0 8 0 9 MAT-5601 TEZ HAZIRLIK ÇALIŞMASI Z 0 1 1 0 1 20 1 21 12 30 İKİNCİ YARIYIL MAT-5502 UZMANLIK ALAN DERSİ Z 8 0 8

Detaylı

ÖZGEÇMİŞ. Çalışma Alanları: Cebir ve sayılar teorisi, cebirsel sayı teorisi, cebirsel geometri, cebirsel kodlama teorisi.

ÖZGEÇMİŞ. Çalışma Alanları: Cebir ve sayılar teorisi, cebirsel sayı teorisi, cebirsel geometri, cebirsel kodlama teorisi. ÖZGEÇMİŞ Adı Soyadı: Fatih Koyuncu Doğum Tarihi: 10 Haziran 1971 Ünvanı : Doç. Dr. Çalışma Alanları: Cebir ve sayılar teorisi, cebirsel sayı teorisi, cebirsel geometri, cebirsel kodlama teorisi. 1. Öğrenim

Detaylı

Kısmi Diferansiyel Denklemler (MATH378) Ders Detayları

Kısmi Diferansiyel Denklemler (MATH378) Ders Detayları Kısmi Diferansiyel Denklemler (MATH378) Ders Detayları Ders Adı Ders Kodu Dönemi Ders Saati Uygulama Saati Laboratuar Kredi AKTS Saati Kısmi Diferansiyel Denklemler MATH378 Bahar 3 0 0 3 6 Ön Koşul Ders(ler)i

Detaylı

Lineer Dönüşümler ÜNİTE. Amaçlar. İçindekiler. Yazar Öğr. Grv.Dr. Nevin ORHUN

Lineer Dönüşümler ÜNİTE. Amaçlar. İçindekiler. Yazar Öğr. Grv.Dr. Nevin ORHUN Lineer Dönüşümler Yazar Öğr. Grv.Dr. Nevin ORHUN ÜNİTE 7 Amaçlar Bu üniteyi çalıştıktan sonra; Vektör uzayları arasında tanımlanan belli fonksiyonları tanıyacak, özelliklerini öğrenecek, Bir dönüşümün,

Detaylı

T. C. E. Ü. FEN FAKÜLTESİ MATEMATİK BÖLÜMÜ. 2013-2014 Öğretim Yılı Güz Dönemi Haftalık Ders Programı

T. C. E. Ü. FEN FAKÜLTESİ MATEMATİK BÖLÜMÜ. 2013-2014 Öğretim Yılı Güz Dönemi Haftalık Ders Programı A. Fakülte İçinde "BÖLÜMÜMÜZ" Öğrencilerine Verdiğimiz Dersler I. YARIYIL 405001072003 Soyut Matematik I 08.00-12.00 Mat. 1.gr. Prof.Dr.A.FIRAT A 003 405001072003 Soyut Matematik I 08.00-12.00 Mat. 2.gr.

Detaylı

Ç NDEK LER II. C LT KONULAR Sayfa Öz De er Öz Vektör.. 2. Lineer Cebir ve Sistem Analizi...

Ç NDEK LER II. C LT KONULAR Sayfa Öz De er Öz Vektör.. 2. Lineer Cebir ve Sistem Analizi... ÇNDEKLER II. CLT KONULAR 1. Öz Deer Öz Vektör.. 1 Kare Matrisin Öz Deeri ve Öz Vektörleri... 21 Matrisin Karakteristik Denklemi : Cayley Hamilton Teoremi.. 26 Öz Deer - Öz Vektör ve Lineer Transformasyon

Detaylı

Prof. Dr. Mahmut Koçak.

Prof. Dr. Mahmut Koçak. i Prof. Dr. Mahmut Koçak http://fef.ogu.edu.tr/mkocak/ ii Bu kitabın basım, yayım ve satış hakları Kitabın yazarına aittir. Bütün hakları saklıdır. Kitabın tümü ya da bölümü/bölümleri yazarın yazılı izni

Detaylı

BÜLENT ECEVİT ÜNivERSİTESİ FEN EDEBİYAT FAKÜLTE st YÖNETİM KURULU KARARLAR!

BÜLENT ECEVİT ÜNivERSİTESİ FEN EDEBİYAT FAKÜLTE st YÖNETİM KURULU KARARLAR! BÜLENT ECEVİT ÜNivERSİTESİ FEN EDEBİYAT FAKÜLTE st YÖNETİM KURULU KARARLAR! Tarih: 03.03.2014 Sayı : 2014-11 Toplantıva Katılanlar Toplantıya Katılmayanlar Prof.Dr. Kemal BÜYÜKGÜZEL Prof.Dr. Baki HAZER

Detaylı

Polinomlar, Temel Kavramlar, Polinomlar Kümesinde Toplama, Çıkarma, Çarpma TEST D 9. E 10. C 11. B 14. D 16. D 12. C 12. A 13. B 14.

Polinomlar, Temel Kavramlar, Polinomlar Kümesinde Toplama, Çıkarma, Çarpma TEST D 9. E 10. C 11. B 14. D 16. D 12. C 12. A 13. B 14. 1. Ünite: Polinomlar Polinomlar, Temel Kavramlar, Polinomlar Kümesinde Toplama, Çıkarma, Çarpma 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 Polinomlarda Bölme, Bölüm ve Kalan Bulma 1 1 1 1 1 1 1 1 1

Detaylı

Yrd.Doç.Dr. YILMAZ ERDEM

Yrd.Doç.Dr. YILMAZ ERDEM Yrd.Doç.Dr. YILMAZ ERDEM Ekonomi Ve Finans Bölümü Eğitim Bilgileri 1996-2000 Lisans Dokuz Eylül Üniversitesi Buca Eğitim Fakültesi Matematik Ve Fen Bilimleri Eğitimi Bölümü Matematik Öğretmenliği Pr. 2001-2005

Detaylı

EĞİTİM - ÖĞRETİM YILI 10. SINIF MATEMATİK DERSİ DESTEKLEME VE YETİŞTİRME KURSU KAZANIMLARI VE TESTLERİ

EĞİTİM - ÖĞRETİM YILI 10. SINIF MATEMATİK DERSİ DESTEKLEME VE YETİŞTİRME KURSU KAZANIMLARI VE TESTLERİ EKİM 07-08 EĞİTİM - ÖĞRETİM YILI 0. SINIF MATEMATİK DERSİ 0... Olayların gerçekleşme sayısını toplama ve çarpma prensiplerini kullanarak hesaplar. 0... Sınırsız sayıda tekrarlayan nesnelerin dizilişlerini

Detaylı

M-Dosyaları. Editor: Kodların yazıldığı kısımdır. Uzantısı.m olan dosyalarla çalışır.

M-Dosyaları. Editor: Kodların yazıldığı kısımdır. Uzantısı.m olan dosyalarla çalışır. M-Dosyaları Editor: Kodların yazıldığı kısımdır. Uzantısı.m olan dosyalarla çalışır. 1 M-Dosyasının Kullanımı İki çeşit M-dosyası vardır Scripts, Düz metin dosyalarıdır. Giriş ve çıkış argümanları içermeyen

Detaylı

8. HAFTA BLM323 SAYISAL ANALİZ. Okt. Yasin ORTAKCI.

8. HAFTA BLM323 SAYISAL ANALİZ. Okt. Yasin ORTAKCI. 8. HAFTA BLM323 SAYISAL ANALİZ Okt. Yasin ORTAKCI yasinortakci@karabuk.edu.tr Karabük Üniversitesi Uzaktan Eğitim Uygulama ve Araştırma Merkezi 2 MATRİSLER Matris veya dizey, dikdörtgen bir sayılar tablosu

Detaylı

Bölüm 2 Matematik Dili

Bölüm 2 Matematik Dili Bölüm 2 Matematik Dili Kümeler p Küme(Set) = ayrık nesnelerden oluşmuş topluluğa küme denir p Kümenin elemanları element olarak adlandırılır p Kümeler nasıl gösterilir Liste şeklinde p Örnek: A = {,3,5,7}

Detaylı