Kozmik X-ışın Astronomisi

Ebat: px
Şu sayfadan göstermeyi başlat:

Download "Kozmik X-ışın Astronomisi"

Transkript

1 Kozmik X-ışın Astronomisi D. J Adams Çeviri: Nuray Çakıroğlu

2 . Gözlemsel Metotlar.1. Giriş X-ışın astronomisindeki tüm gözlemler Dünya atmosferinin üzerinden yapılmaktadır kev enerji aralığındaki gözlemler, atmosferik gazların güçlü soğurmasından dolayı 10 km den büyük yüksekliklerde yapılmalıdır. Bu durum için, çizdiği rotayı dört beş dakika koruyabilen, 10 km yüksekliğine çıkabilen ya ses roketi veya 500 km lik yörüngeyi birkaç yıl için koruyabilen Yer uyduları kullanılmalıdır. Daha yüksek uydu yörüngeleri x-ışın astronomisinde tercih edilmez çünkü Dünya nın radyasyon kuşağındaki yüklü parçacıklar x- ışın detektörlerinin arka plan sinyallerini arttırmaktadır. Radyasyon kuşakları yüksek jeomanyetik enlemlerde azaldığı için, x-ışın astronomisi uyduları için ekvator yörüngeleri tercih edilir ve ses roketleri de Dünya nın kutuplarından uzak yerlerden fırlatılır. Bu kitaptaki 0.-0 kev enerji aralığındaki veriler roket ve uydu platformlarından elde edilmiştir. Genelde orantılı-sayaç detektörler kullanılmıştır kev enerji aralığındaki x-ışın gözlemleri, 35 km yükseklikte balon platformlarından yapılmıştır. Yüksek enerjili x-ışınları atmosfer tarafından daha az soğurulduğu için daha düşük rakımlarda bunlarla çalışmak mümkündür kev aralığındaki çalışmalar için uydular da kullanılmaktadır. Her iki durumda detektör olarak skintilasyon(kıvılcım) sayaçları kullanılmaktadır.. Enstrüman Profili 0.-0 kev Şu ana kadar en çok kullanılan alet kolimatör arkasına yerleştirilen orantılı-sayaç detektörleridir. Bu düzenek kolimatör aksisi doğrultusundan gelen x-ışınlarına karşı hassasiyet gösterir. Bu x-ışın teleskopu astronomum ilgilendiği bölgeyi tarar. X-ışın kaynağı görüş açısına geldiği zaman, detektör artan bir tepki kaydeder. Yerleşik elektronik devrelerle bu tepki yorumlandıktan sonra, uydunun yön bilgisi ile birlikte radyo telemetri aracılığı ile yere aktarılır. Teleskopun yönelimi uydunun hareketinden belirlenir. Bu hareket aracın dönmesi veya eksen sapması ile veya Uhuru uydusunda olduğu gibi durağan bir eksen etrafında basit dönme ile sağlanır, daha karmaşık uzay araçlarında istenilen bölgeyi taramak için programlanmış teleskoplar mevcuttur. Teleskopun yönelimi, uzay aracına monte edilmiş sensörler tarafından izlenir. Bu sensörler Dünya ufku, Dünya nın manyetik alanı, Güneş ve Ay gibi yönsel özellikleri tespit eder. Jiroskoplar da bazen kullanılır. Teleskopun yönelim geçmişini, radyo telemetri ile Dünya ya iletilen boylam sensörler sinyallerinden oluşturmak genelde bilgisayarların işidir.

3 Şekil.1. Tipik astronomik x-ışın algılama sisteminin görüntüsü. Bu teknik optik astronomun standartlarına göre kaba kalır. Pozisyon çözünürlüğü genelde dakika ark açı cinsinden ölçülmektedir, bu basit optik teleskoplara göre binlerce kere daha zayıf bir ölçümdür. X-ışın astronomu, şimdiye kadar, gökyüzünün belirli bir bölgesinin fotoğrafını almaktansa, her bir astronomik objeyi taramak zorunda kalmıştır. Bundan dolayı, x-ray astronomu taradığı her objeyle ilgili tayfsal bilgiler edinir. Modülasyon kolimatörü kullanılarak pozisyon çözünürlüğünü arttırmak için özel teknikler geliştirilmiştir. Tutulum çemberine yakın olan x-ışın objeleri için, Ay ın tutulmasına denk getirildiğinde, çok kesin pozisyon çözünürlüğü elde edilir. Gelecekteki x-ışın teleskopları, odaklanan optikler ve görüntü detektörleri kullanacağını düşünüyoruz. Böyle bir sistemi taşıyan ilk uydu, Kasım

4 1978 de fırlatılan HEAO-B dir. Bu türdeki yüksek açısal çözünürlüklü ve görüntü alma kapasiteli, odaklı teleskopların x-ışın astronomisinde gelişmelere neden olacağı benzer..3 Orantılı - Sayaç Detektörleri Orantılı - Sayaç Detektörleri genelde 0.-5 kev aralığında işlev gören teleskoplarda kullanır. Detektörler elektriği ileten kaplardan oluşup, bunların pencereleri ince bir yaprak metalden veya plastikten yapılmıştır. Bunların %90 ı ksenon, argon veya neon gibi soy gaz karışımı ve %10 u da metan veya karbon dioksit gibi poliatomik söndürücü gaz içerir, toplam gaz basıncı atmosferik basınç kadardır. Detektör kaplarının uçlarındaki yalıtkanlar μm çapında anot teli ile desteklenmiştir. Anot telinin potansiyeli +000V ta tutulmaktadır ve düşük gürültülü elektronik amplifikatöre bağlanmıştır. Bu şekilde birkaç detektör bir araya getirilip 1000 cm ye kadar toplam hassasiyet alanı elde edilebilir. Detektör kabı, gazı, uzayın vakum ortamında tutabilecek kadar sağlam kapatılmış olmalıdır. Detektörün çalışma şekline gelince, x-ışın fotonu detektörün penceresinden girer ve fotoelektrik olarak soy gaz tarafından soğurulur. Sonuçta oluşan foto-elektronun enerjisi gelen x-ışın fotonunun enerjisiyle aynıdır. Bu foto-elektron daha fazla atomu iyonize ederek giderek enerjisini kaybeder. Bunun sonucu oluşan serbest elektronlar anot tarafından çekilir ve tele doğru yaklaştıkça güçlü elektrik alana maruz kalarak, daha fazla gaz atomunu iyonize edebilecek enerjiye sahip olacak kadar ivme kazanırlar. Bundan dolayı anoda ulaşan elektronlarda çoğalma (veya amplifikasyon) meydana gelir. Elektronlar tele ulaştığında amplifikatör tarafından elektrik atma olarak algılanan yükler bırakırlar. Pozitif iyonlar bir süre sonra detektörün katoduna karşı daha yavaş sürüklenirler. Bu yük hareketinin de anot üzerindeki sinyalde katkısı vardır. Doymuş gazın işlevi artı yüklü iyonlar katoda ulaştıklarında gazdaki bundan sonraki iyonizasyonu önlemektir. Orantılı - Sayaç Detektöründeki elektrik sinyali genelde amplifikatör tarafından 0.5x10-6 s lik bir atma olarak şekillendirilir. Orantılı - Sayaç Detektörünün tepkisi ayrı atmalardan oluştuğu için, her bir x- ışını için tespit edilen atmalara sayım oranı denir. Sonuçtaki atmanın büyüklüğü, baştaki x-ışın tarafından üretilen foto-elektron veya fotoelektronların enerjisi ile orantılıdır. Foto-elektron tarafından üretilen iyon çiftlerinin sayısı da foto-elektronların enerjisine orantılı olur (bir iyon çifti oluşturmak için 30 ev kullanılır). Gaz amplifikasyon süreci lineerdir ve toplam kazanç detektör geometrisinin, gaz basıncını ve içeriğinin ve anot voltajının bir fonksiyonu olup aralığındadır. Aynı enerjideki başlangıç foto-elektronlar tarafından üretilen atma genliğinde biraz saçılma olabilir. Sonuç olarak başlangıç foto-elektronun enerjisi gelen x-ışınınkine eşit olduğunda, atma çıktısı x-ışın enerjisine (biraz saçılmayla) orantılı olur. Orantılı - Sayaç Detektörünün çözünürlüğü 6 kev enerjide %16 civarındadır. Bu yüzde enerji çözünürlüğü, daha düşük enerjilerde daha kötüdür ve (enerji) -1/ ile değişmektedir. Maalesef atmanın yüksek çıktısı ve gelen x-ışın enerjisi arasındaki ilişki arasına bir karışıklık daha girer. X-ışını soy gazın ilk atomunu iyonize ettiğinde bu atomun en içteki elektronunu çıkarma eğiliminde olabilir. Bu foto-elektronun enerjisi, gelen x-ışın enerjisinden elektronun atoma bağlı enerjisi çıkarıldığında bulunur. Atom hemen elektron kabuğunu ayarlamak için bir veya birden fazla ikincil x-ışın fotonu yayar. Eğer ikincil foton sayaçtan kurtulursa, enerjisi kaydedilmemiş olacaktır. Bunun sonucu olarak Orantılı - Sayaç Detektörü tek enerjili gelen x-ışınına çift tepeli atma tepkisi verir. Gaz argon olduğunda kurtulan fotonun enerjisi 3 kev civarıdır.

5 Şekil.. (a) Orantılı sayaç detektörünün çalışma şekli. (b) Tipik Argon dolumlu detektörün algılama etkinliği. 3 KeV civarı Argonun K-kenarıdır. Orantılı - Sayaç Detektörün kuantum etkinliği %80 lere ulaşabilir. Düşük enerjilerde pencerenin x-ışınlarını soğurmasıyla, yüksek enerjilerde ise gazın x-ışınlarına geçirgenliği ile sınırlıdır. Bundan dolayı düşük enerjili x-ışınları pencereyi geçemez, yüksek enerjili x-ışınları da gaz tarafından soğurulmadan geçebilir. Pencere materyali olarak genelde birkaç mikrometre kalınlığında, 0, kev e kadar geçirgenliği olan plastik kullanılır μm kalınlığında Berilyum metal plaka kev a kadar geçirgendir. Sadece metal pencereler, uydu teleskoplarında ömürleri bir yılı aşarak gazı sıkı bir şekilde gazı detektörler içersinde zapt edebilir. Genelde atmosferik basınçta 50mm derinliğinde argon/co ve ksenon/ CO gaz karışımları kullanılır.

6 Orantılı - Sayaç Detektörü sadece x-ışınlarına tepki vermez, aynı zamanda detektörden geçen yüklü parçacıklara ve gama ışınlarına da tepki verir. Dünya atmosferinin dışında detektör, kozmik ışın parçacıkları ve gama ışın akına maruz kalır, bundan dolayı her zaman istenmeyen kaynaklardan arka plan sayımı oluşur. Aşağıdaki ölçümler bu istenmeyen arka planı minimuma indirmek için yapılır: (1) x-ışın enerjilerinin kabul edilir aralıklarının üzerinde veya altındaki atmalar radyo telemetri ile yere iletilmeden önce elektronik olarak geri çevrilir. () Siper amaçlı detektörler kullanılır. Bunlar x-ışın detektörlerin etrafına yerleştirilen ek detektörlerdir. İçeri alınan yüklü parçacık hem x-ışın detektöründe hem de siper detektörlerin birinde veya birkaçında tepki oluşturur, fakat x ışını siper detektörü etkilemez. Aynı tepki hem x-ışın detektöründe hem de siper detektörde görüldüğünde bu sinyal göz ardı edilir. (3) Artış zamanı ayırt etme kullanılır. Elektrik devreler x-ışın orantılı detektördeki olayların arış zamanını ayırt eder. Gama ışınları ve kozmik ışınlarının arka plan sayımlarının x- ışınlarından daha uzun artış zamanı var, bunlar tespit edilip devreden uzaklaştırılır. Tüm bu sistemler günümüz x-ışın astronomisinde yaygın olarak kullanılır ve kozmik ışımadan dolayı 0.01 sayım cm - s -1 arka plan sayım oranı verir. Sistemin izotropik astronomik x-ışın arka planına tepkisini azaltmak için detektörün görüş alanı sınırlandırılarak minimum hale getirilir. Özet olarak Orantılı - Sayaç Detektörlerinin x-ışın tespitindeki etkinliği yüksektir, yüksek zaman çözünürlükleri, makul enerji çözünürlükleri vardır ve arka plan oranları kabul edilir seviyelere kadar azaltılabilir. Birkaç yüz santimetre karelik hassas alan oluşturacak ve -0 kev enerji aralığına hassasiyet gösterecek şekilde üretilebilirler, ultra ince pencere kullanımı ile alt enerji limitleri 0. kev a kadar düşürülebilir. Bundan dolayı x-ışın astronomisinin günümüze kadar dayanak noktası olmuşlardır..4 Kolimatörler Kolimatör detektör penceresinin önüne konan bir dizi paralel metal plakadan oluşur. Kolimatör aynı zamanda, detektör, uzayın vakum ortamındayken, detektörün gaz basıncına karşı pencereyi destekler. Kolimatör ekseni doğrultusunda gelen tüm x-ışınları iletir ve kolimatör eksenine uzak gelen tüm ışımayı durdurur. Kolimatörün tepkisi üçgen şeklindedir. Paralel bir x-ışınının kolimatör üzerine geldiğini düşünelim. Kolimatör döndükçe (x eksenini görmek için Şekil.3 (a) ya bakınız) radyasyon ışınının iletimi üçgen şekilde değişecektir. Benzer bir şekilde kolimatör y ekseni etrafında dönüyor olsaydı.3 (c) deki iletim şekli oluşacaktı. Kolimatörün tepki genişliği her bir üçgen için açısal yarı maksimumdaki tam genişlik (FWHM) olarak belirtilir. Şekil.3(a) da gösterilen d, l ve w ölçülerini kullanarak, x eksenindeki FWHM tan 1 w / d w/ d rad Ve y eksenindeki FWHM tan 1 l / d l / d rad

7 Şekil.3. Kolimatör iletim özellikleri olacaktır. İletilme toplam x FWHM toplam açısı için sıfırdan farklıdır. Kolimatörün FWHM sini 0.5 o den küçük yapmak zordur..5 X-ışın Kaynağının Konumunu ve Gücünü Belirlemek X-ışın teleskopunu taşıyan uzay aracının dönmesi, kolimatör ekseninin gökyüzünde belirli bir yönü taramasını sağlar. Kendi etrafında dönen uydularda, kolimatör ekseni dönme eksenine diktir, görüntülenen bölge de gök kürede büyük bir daire şeklindedir. Kolimatör iletim şekline bağlı olarak, her an için gökyüzünün sonlu bir açısı görüntülenecektir. Kolimatörün görüş açısında duran x-ışın kaynağı, genişliği FWHM ile tanımlanan üçgensel sayım tepkisi verecektir, bu tepkinin yüksekliği yıldızın gücü ile doğru orantılı olacaktır. Kolimatörün görüş açısında yer alan aynı güçteki başka bir x-ışın kaynağı, kolimatör eksenin üzerinde veya

8 altında yer alıyorsa yine aynı genişlikte tepki verecektir, fakat daha düşük yükseklikte olacaktır. Üçgenin tepesindeki kolimatör ekseninin yönelimi, θ, x-ışın yıldızının tek boyutlu pozisyonunu belirleyecektir. Şekil.4. (a) Noktasal kaynak taranırken kolime edilen x-ışın detektörünün tepkisi. (b) İki farklı tarama sonucu x-ışın kaynağın pozisyonu.

9 Eğer x-ışın kaynağı yıldız benzeri değil de geniş bulutsu şeklindeyse, bulutsunun genişliği kolimatörün FWHM sine yakın veya daha büyük ise daha geniş bir tepki verecektir. ( birçok x-ışın kaynağının yıldız benzeri olarak yorumlanması, sadece üçgensel tepki analizinden değil de, kaynağın şiddet değişimlerinden de ortaya çıkar) Bu bahsettiğimiz gereçlerle x-ışın kaynağını iki boyutlu konumunu belirlemek için, kaynağı en azından iki defa gözlemlemek gerekir. İdeal ikinci tarama kolimatör ekseninin birinci gözlemdeki kolimatör ekseniyle 90 o kesiştiği durumunda yapılır. Açılı kolimatörlerdeki daha özenilmiş düzenlemeler, ikinci tarama ihtiyacını ortadan kaldırabilir. Yukarıda anlatılan X-ışın kaynaklarının gözlemleri, üçgeni, gözlenen verilere oturtmakla, konumunu ve yüksekliğini ölçmekle sağlanır. Yükseklik ve konum kaynağın gücüne bağlı olarak bazı yapısal hatalarla belirlenir. X-ışın fotonlarının ve arka plan olayların detektöre ulaştığı bir durumda, ideal üçgensel tepkinin, rastgele bir şekilde biçimi bozulmuş olacaktır. Birim saniyede arka plan sayım oranı b, s de kaynaktan gelen üçgenin tepe noktasındaki ortalama sayım oranı olsun. Kaynağın üçgenin yarı maksimum noktalarının sayımı için t kadar zaman geçmesi gerekir. Toplam biriken kaynak sayımı: st ( s b) t S S B olacaktır. S ve B, t zamanında, sırasıyla kaynaktan ve arka plandan gelen ortalama sayımladır. S B fotonların ve arka plan olayların rastgele gelişinden kaynaklanan standart sapmadır. Dolayısıyla s nin ölçülebileceği kesirsel hata S / S B olacaktır, bu da daha düşük arka planlı ve güçlü kaynaklar için daha iyi bir sonuç verecektir. Aynı zamanda üçgen merkezinin konum hatasının FWHM S / S B olduğu gösterilebilir. Bu şekilde ölçülen kaynak gücünün detektör etkinliği ve de kaynakla kolimatör ekseni arasındaki açı için düzeltilmesi gerekir..6 X-ışın kaynağın tayfının belirlenmesi X-ışın kaynağı Orantılı - Sayaç Detektörü ile gözlendiğinde, her bir gelen fotonun enerjisi elektrik atma yüksekliğine dönüştürülür. Bundan dolayı, kaynağının x-ışın tayfını ölçmek için elektrik atma yüksekliklerinin dağılımının (atma yüksekliği tayfı) araştırılması gerekir. Bazı sistemlerde atmalar uydunun yerleşik yükseklik kanallarında analiz edilip ondan sonra elde edilen tayf (her kanaldan elde edilen sayım olarak) yere iletilir. Başka sistemlerde ise, her bir x-ışın atması yükseklik bilgisi korunarak yere iletilir ve atmanın yükseklik analizleri yerde yapılır. Kaynak gözlemlerinden atma yüksekliği tayfı elde edildiğinde ilk önce arka plan sayımlarından kaynaklanan kirliliğin giderilmesi gerekir. Gökyüzünün boş alanından detektörün maruz kaldığı atma yüksekliği tayfı, kaynaktan gelen atma yüksekliği tayfından çıkartılır. Daha sonra elde edilen atma yüksekliği tayfının, kaynağın x-ışın tayfına dönüştürülmesi gerekir. Başlangıç olarak her bir atma yüksekliği kanalına x-ışın enerjisi 55 tahsis edilir. Bu genellikle uydu içinde bulunan Fe (5.9keV) gibi monokromatik kalibrasyon kaynağı yardımı ile yapılır. Prensipte x-ışın fotonu tayfı elde etmek için bu enerjideki ilgili detektör verimliliğine göre toplanan sayım oranını bölmek gerekir. Pratikte bu yetersiz bir işlemdir çünkü detektörün çözünürlük ve sızan tepe özelliklerini dikkate almaz. Bu zorlukları aşmak için problemi tersine çeviriyoruz. Öncelikle x-ışın tayfına benzer bir tayf varsayıyoruz ve belirli detektörün tepki vereceği atma yükseklikleri tayfını hesaplarız. Hesaplanan atma yükseklik tayfı ile gözlenen tayf karşılaştırılır. Bu işlem varsayılan farklı x-ışın tayfalarıyla, hesaplanan değerler, gözlenen değerlerle eşit olana kadar tekrar edilir. Bu hesaplamalar uzun

10 olsa da, dijital elektronik bilgisayarlar tarafından kolayca başarılır. Bu metot ilk defa Gorenstein (1968) tarafından yayınlandı ve yaygın olarak kullanıldı. Bu karşılaştırma sürecinde kullanılan x-ışın tayf formları genelde termal frenleme artı salınım çizgileri gibi sürekli tayflar, düşük enerjilerdeki kesilme ile beraber kara cisim ve güç kanunu tipleridir. Bu seçimlerin sebebi bölüm 3 te açıklanacaktır. Ölçülen kaynak tayfının doğruluğu sinyal/gürültü faktörüne S / S B bağlıdır. S kaynaktan toplanan toplam sayım ve B aynı zaman içinde arka plandan toplanan sayımlardır. Tayfı belirlemedeki hatalar, sıcaklıktaki belirsizlik veya tayfsal indeks ve x-ışın tayfında düşük enerjilerde kesilme olarak meydana gelir. Çok zayıf bir şekilde gözlenen kaynaklara belirli modeli (termal frenleme, kara cisim veya güç kanunu) tayin etmek imkânsızdır. Güneş dışında, tayfsal çizgilerin x-ışın astronomları tarafından saptanması fazla gelişmemiştir. Orantısal sayaçlarla gözlenen Sco X-1 ve Cyg X-3 gibi bazı x-ışın kaynaklarında 6.5 kev civarında demir çizgileri görülmüştür. Bunlar düzgün atma yüksekliği tayfında küçük çıkıntılar olarak görünür, genişlikleri de kullanılan oransal sayaç detektörünün limitli çözünürlüğünü yansıtır. Geniş çizgilerin arayışı Bragg kristal tayfölçerlerle yapılmıştır fakat çok sınırlı başarılar elde edilmiştir. Bragg kristal tayfölçerlerde, kaynaktan gelen x-ışını detektöre ulaşmadan önce kristal madde tarafından kırılır. Sadece Bragg koşulunu sağlayan dalga boyları d sinβ = nλ (n = 1,,3.., d kristal ızgarası aralığı ve β Bragg açısı) detektöre düşürülür, geri kalanı kristal tarafından soğurulur. Bu düzeneklerle %1 dalga boyu (veya enerji) çözünürlüğü elde edilebilir, fakat bu yetersizdir ve sadece çok güçlü gök cisim kaynaklarında kullanılır..7 Farklı Türdeki Detektörler Sintilasyon sayaç detektörleri 10 kev tan büyük enerjilerdeki x-ışın kaynaklarında kullanılırlar. Sodyum iyodür veya talyum katkılı sezyum iyodürden yapılmış ince (6mm kalınlığında) bir kristalden oluşur, foto-katlandırıcı tüpün yüzü ile optik olarak eşleştirilmiştir. X-ışın fotonu kristal içine girdiğinde, orantılı sayaçlardaki gazlar gibi fotoelektrik olarak soğurulur. Foto-elektron kristaldeki daha fazla atomu iyonize eder ve iyonizasyon enerjisinin bir kısmı görünür ışıkta flaşa veya foto-katlandırıcının algılayabileceği ışık titremesine (sintilasyona) dönüştürülür. Foto-katlandırıcıdaki elektrik atma, gelen ışının enerjisi ile orantılıdır. Orantılı sayaçlar gibi sintilasyon detektörleri de tayfsal bilgi içerir. Sintilasyon detektörleri, orantılı detektörlere göre daha yüksek enerjilerde işlev görür çünkü yüksek atom numaralı maddeden yapılmış yoğun bir kristal içerirler. Bu kristal nüfuz edici x- radyasyonunu, gazdan daha etkili bir şekilde durdurur. Sintilasyon detektörleri, kalın (100mm) detektör kristalleri kullanıldığında 1MeV büyük foton enerjilerine hassas olabilecek şekilde yapılabilir, fakat böyle kalın kristalli detektörlerin ince kristal türlerine göre 30 kev civarında zayıf enerji çözünürlükleri olur. Sintilasyon detektörleri kozmik ışın parçacıklarına da tepki verir, bu nedenle arka plan sayımları için koruyucu detektörlerle beraber kullanılır. Kanal yükselticisi 3 kev altındaki x-ışınları için limitli uygulamaları olan bir araçtır. Bu bir vakum cihazıdır ve uzay ortamında pencereye ihtiyaç duymadan işlev görür. X-ışını, elektronları yayan özel olarak kaplanmış foto yayınlayıcı yüzey üzerine düşer. Bu elektronlar dirençli tüp içindeki elektrik alanı tarafından ivmelendirilerek ikincil bir emisyonla yükseltilirler. Tüpün sonunda toplanan sinyaller amplifikatörü besler. Orantılı sayaçlarda

11 bulunan enerji çözünürlüğü kanal yükselticilerinde bulunmaz, bundan dolayı tayfsal bilgi edinmek için x-ışın demetine konulan filtrelerle beraber kullanılmaları gerekir. Kanal matrisi tek ünite şeklinde üretilmiş, kanal yöneticilerinden oluşan iki boyutlu bir dizidir. Bunların x- ışın sistemlerinin görüntülenmesinde uygulamaları mevcuttur. Pozisyon hassasiyetli orantısal sayaç detektörleri, görüntü alan x-ışın detektörleri için gelecek vaat eder. Bu detektörler dirençli anot teli veya birçok paralel anot teli içeren normal bir orantısal sayaçtan oluşur. Bu dirençli anot teli ile x-ışınının tel üzerindeki geliş pozisyonu, telin her iki ucundaki sinyaller karşılaştırılarak bulunur. Çok telli detektörlerde, tellere dik olarak gelen x-ışının geliş pozisyonu, değişik tellerdeki sinyaller karşılaştırılarak bulunur..8 Modülasyon Kolimatörleri Modülasyon kolimatörleri iki veya daha fazla düzlemsel paralel ızgara şeklinde tellerden oluşur. Teller biri birinden bir tel uzaklığında yerleştirilmiş olup, tungsten gibi x-ışınlarına yüksek derecede donuk olan yüksek atom numaralı maddelerden yapılmışlardır. Kolimatör şu şekilde işlev görür. Ön ızgaranın x-ışın demeti tarafından aydınlatıldığını düşünün, ön taraftaki ızgara bir sonraki ızgara üzerine bir seri gölge düşürecektir. Eğer gölgeler teller arasındaki bölgeye düşecek olursa, detektöre x-ışın radyasyonu ulaşmayacaktır. Eğer gölgeler bir sonraki ızgara tellerinin üzerine düşerse detektör ön ızgaraya düşen radyasyonun yarısını alır. Modülasyon kolimatörü kaynağı tararken, detektör sinyali frekansı periyodik olarak modüle eder. Frekans, tarama oranına, tellerin p eğimine ve ızgaralar arasındaki uzaklığa s bağlıdır. Modğlasyon şablonunun maksimumu ve sonraki minimumu arasındaki taranan açılar ½* θ kadardır. tan θ = p/s olur. Küçük açı çözünürlüklerde θ, modülasyon kolimatörü üretmek, aynı çözünürlükte konvansiyonel kolimatör üretmekten daha kolaydır. Şekil.5. Modülasyon kolimatörün işlem şekli

12 Tek bir modülasyon kolimatörünün sınırlı kullanımı vardır, çünkü ölçülen kaynağın pozisyonu ile ilgili belirsizlik söz konusudur. Gerçek anlamda sadece kaynağın büyüklüğünü belirlemek için kullanılır. Kaynağın uzantısının θ ya oranına bağlı olarak, yıldız benzeri kaynaklar %100 modülasyon derinliği, daha geniş bir kaynak ise daha küçük modülasyon derinliği verecektir. Bu anlamda tarayıcı modülasyon kolimatörler, radyo astronomları tarafından kullanılan interfometreler gibi davranır. Modülasyon kolimatörlerin değişik uyarlamaları kaynağın konumunu belirlemede çok kullanışlı hale gelmesine neden olmuştur. İlk uyarlama olan vernier tekniğini Sco X-1 konumunu ölçmede kullanılmıştır (Gursky et al 1966). Birbirinden çok az farklı θ değerine sahip iki modülasyon kolimatör sistemi aynı roketle fırlatılarak kaynak taranmıştır. Çıkışların göreli fazlarından kaynak pozisyonu ile ilgili birçok belirsizliğin elenmesi sağlanmıştır. Pozisyonu iki boyutlu ölçebilmek için, aracı döndürüp taramayı tekrar etmek gerekirdi. Değişen aralıklı modülasyon kolimatörlerinde (Adams et al 197) cihaz yıldıza göre sabit durur ve ızgaralar arasındaki uzaklık değişir ki modülasyon frekansı kaynağın konumuna göre değişisin. Cihaz birden fazla kaynağı aynı anda bulabilir, fakat iki boyutlu konum tespiti için döndürülmeli ve ızgara taraması tekrarlanmalıdır. Dönen modülasyon kolimatörü (RMC) bu iş için en uygun olanıdır (Schnopper et al 1968, 1970). Tek bir sabit aralıklı modülasyon kolimatörü, eksen olarak gökyüzünün sabit bir pozisyonuna yönlendirilip daha sonra ekseni etrafında döndürülür. Görüş alanındaki her noktasal kaynak karmaşık bir modülasyon şekli üretir, iki boyutlu bir harita çıkarmak için büyük bilgisayarlarla gelen verileri analiz etmek mümkündür. Bu teknik SAS-3 gibi dönmesi sabitleştirilmiş uydular için uygundur. Bu tekniklerden hiç biri geniş kaynakların haritalanması için uygun değildir. Modülasyon kolimatörlerinin en belirgin avantajı normal kolimatörlere göre x-ışın kaynağının konumunu çok yüksek bir kesinlikte tespit edebilme yeteneğidir. Bu özellik optik veya kızıl ötesi bölgesinde eşi bulunan x-ışın kaynaklarını belirlemede büyük önem taşır. Geleneksel yüksek çözünürlüklü kolimatörlere göre hassasiyet avantajı vardır, çünkü modülasyon kolimatörle gökyüzünün büyük bir bölgesi taranırken yüksek çözünürlükte çalışılsa bile kaynak exposure hala büyüktür. Sco X-1 gibi galaktik şişiminde bulunan parlak kaynaklar modülasyon kolimatörleri kullanılarak yerleri tespit edilmiştir..9. Odaklama Sistemleri X-ışınlarını cilalı metal yüzeyden gelen ışınların kırılmasını kullanarak odaklayabiliriz. Madenin soğurma özelliğinden dolayı lensler ve normal aynalar x-ışın dalgaboylarında kullanışsızdır. Bu nedenle temel x-ışın optik bileşeni paraboloit gelen ışın reflektöründen oluşur. Bu reflektör küçük x-ışın enerjilerinde daha etkilidir ve bu cihazlar sadece 3 veya 4 kev enerjilerin altındaki enerjilerde kullanılırlar. Gelen ışın toplayıcısı, gelen x-radyasyonunu küçük bir detektöre odaklamak için kullanılan bir cihazdır. Genelde odaklama tek boyutta yapılır. Odaklama özellikleri zayıftır, fakat geleneksel kolimatörlerle gere daha küçük detektörlerin kullanımı arka plan kozmik ışınlarının azaltma avantajı vardır.

13 Şekil.6. Gelen ışın yansıtıcı teleskopun kesiti Odaklı x-ışın teleskopu yüksek kaliteli görüntü almak için iki yansıtıcı yüzey kullanır, birinci yüzey paraboloit ikinci yüzey hiperboloit. Fotoğraf filminin kayıt edebileceği kadar büyük akısı olduğu için, günümüzde bu tür odaklı teleskoplarla en çok Güneş in görüntüsü alınmıştır. X-ışın reflektörü ve hassas görüntülü orantısal sayım detektörlerin birleşimi gözlemsel x-ışın astronomisinde büyük gelecek vaat eder de fırlatılan HEAO-B bu türde cihazları taşıyan ilk uydudur ve sonuçları da merakla beklenmektedir. X-ışın odaklı teleskopun detaylı optikleri Giacconi et al (1969) da verilmiştir.10. X-ışın Uyduları Çok az sayıda uydu bu monograftaki birçok gözlemi yürütmektedir. Uhuru ABD nin 1970 te fırlattığı ilk uydudur. Uydunun dönüşüne göre tarama yapan basit kolime edilmiş orantısal sayaç detektörleri taşıyordu. Dönme eksen yönünün değiştirilebilir olması tüm gökyüzünü taramasına izin veriyordu. Ariel V İngilizlerin gönderdiği buna benzer bir uydu, Uhuru daki donanıma ek olarak birçok donanım içermekteydi. OSO-7 ve ANS da benzer uydulardır. SAS-3 dönen modülasyon kolimatörü içeriyordu ve bu sayede birçok x-ışın kaynağının konumunu tespit etti. HEAO-A en son fırlatılan en büyük uydudur. OAO-C olarak da anılan Copernicus, bilindik kaynakların daha detaylı çalışmasını yürüten küçük odaklayıcı kolimatör taşımaktaydı. HEAO-B (1978) tam odaklayıcı teleskop taşıyor ve x-ışın kaynakları çalışmalarında birçok gelişmelere neden olacağı benzer. Optik teleskop kalitesinde görüntü alma kapasitesi vardır. Bu görüntü alma özelliği şimdiye kadar elde edilmemiş hassasiyette görüntüler sağlayacaktır. HEAO-B ile yapılan gözlemler daha sönük ekstra galaktik kaynakları daha iyi anlamamızı sağlayacaktır.

14 3. X- Işın Astronomisinde Teorik Argümanlar 3.1 Giriş Bu bölümde, X-ışın astronomisinde gözlemleri yorumlamak için kullanılan argümanları tartışacağız. Yığılmalı çift yıldız modeli Bölüm 4 te anlatılacağı gibi, bu model geniş kitleler tarafından kabul edildiği için bu bölümde de dahil edilmiştir. 3. Kaynak Değişkenliği Süpernova kalıntılarının dışındaki, Galktik X- ışın kaynaklarının ortak özelliği, x-ışın parlaklıklarının saat, dakika, hatta bazen saniye bazında değişmesidir. Cygnus X-1 in parlaklığı milisaniyelerle değiştiği görülmüştür. Radyo galaksisi Centaurus A gibi bir ekstra galaktik kaynağın bile parlaklık şiddeti uzayda hafta bazında değişir. Bu şiddet değişimleri, x-ışını yayan bölgenin şeklini belirlemede şu şekilde kullanılır. Kaynak bölgenin R yarıçaplı küresel bir bölgeden oluştuğunu varsayalım, şöyle ki birim hacimdeki x- ışın parlaklığı sabittir. Merkezdeki %1 lik hacmin şiddeti belirli bir sebepten dolayı parlaklıktaki düşmeye sebep olsun. Çoğunlukta salınım yapan hacmin ardından parlaklığının azalması takip etse de, gözlemci gereçlerde parlaklıkta herhangi bir değişim gözlenmez. Parlaklıktaki değişim kaynağın geri kalan bölgelerine bir şekilde iletilmesi gerekir. Hiçbir sinyal ışık hızından daha hızlı seyahat etmeyeceği için, merkezdeki trendin dış katmanlara yayılması için, en azından t=r/c kadar bir zaman alacaktır. Tüm hacimdeki katkıların toplamı olan gözlenen sinyal, zamanla t kadar azalma gösterecektir. Bundan dolayı x-ışın kaynağı yoğunluğundaki dalgalanmalar (%0 civarı veya fazla), t zaman ölçeğinde gerçekleşir ve bunu takiben salınım yapan bölgenin yarıçapı R=ct yi aşmaz. 1 saniye ölçeğinde oynama yapan X-ışın kaynaklarının yarıçapları R=cx1 =3x10 10 x1cm =3x10 5 km den küçük olmalıdır. Güneşin yarıçapı 7x10 5 km. Bir saat ölçeğindeki oynamalar cm den küçük yarıçapı belirtir ve çoğu galaktik kaynak bu çizelgede değişkenlik gösterir. Civardaki bir x-ışın kaynağının 500pc = 1,5x10 1 cm uzaklıkta olabilir ve dolayısıyla 1 saat arayla değişen kaynağın açısal çapı x10 14 /(1,5x10 1 ) radyanı aşamaz ve 1 açı saniyeden az olamaz. Değişkenliklerine dayanarak birçok galaktik x-ışın kaynakları yıldız benzeri olarak sınıflandırılır. 3.3 X ışın salınım mekanizması ve kaynak tayfı Yoğun x-ışın yayılımını açıklamak için farklı mekanizmalar bulunur: i) birkaç milyon Kelvin sıcaklığındaki cisimlerden gelen termal ışıma, ii) manyetik alan etkisinde hareket eden yüksek enerjili kozmik elektronlardan kaynaklanan sinkrotron ışıma, iii) düz veya mikrodalga fotonları ile çarpışan kozmik ışınların ters Compton saçılması. Termal ışıma optik olarak ince gazlardan ısısal frenleme mekanizması veya optik olarak kalın gazlardan kara cisim ışıması şeklini alabilir. Bu iki mekanizmalardan biriyle x-ışın tayfını yorumlamak genel bir uygulamadır. Gözlenen tayf aşağıdaki özellikleri gösterir: (1) düşük enerjilerde oldukça keskin kesilme ve () bu süreç x-ışın enerjisinin E artışı ile ya E nin katları olarak veya exponansiyel olarak azalır.

15 Şekil 3.1. Standart x-ışın tayfı Düşük enerjilerdeki kesilme, genelde görüş alanındaki soğuk materyal tarafında soğurma olarak yorumlanır. E nin katları olarak azalan sürekliliği, güç kanunu enerji tayfına sahip elektronlar tarafından, sinkrotron veya zıt Compton etkisi tarafından üretildiği şeklinde yorumlanır. E nin eksponansiyel olarak düştüğü süreç, termal süreç tarafından üretildiği şekilde yorumlanır. Tayf düşük enerjilerde düz ise termal frenleme ışınımı vardır, kara cisim ışımasında ise belirgin bir tepe görülür. Bunlar doğruluk payı olan genelde kabataslak yorumlardır, fakat okuyucu aşağıdaki karışıklık meydana getirebilecek durumlardan haberdar olmalıdır.

16 a) Belli sıcaklık aralığında ve limitli enerji aralığında güç kanunu tayfı üretebilen termal frenleme modeli kurulabilir. b) Güç kanunu kullanmadan, kabaca eksponansiyel x-ışın tayfı oluşturan sinkrotron veya ters Compton modeli kurulabilir. c) Aradaki soğuk madde tarafından soğurulan ve düşük enerjilerde kesilme gösteren kara cisim tayfı ile termal frenleme tayfını ayırt etmek zordur, fakat tayfsal soğurma çizgilerinden termal frenlemeyi ayırt etmek mümkündür: Şu anki kozmik x- ışın kaynağının anladığımız kadarki doğasından, termal frenleme mekanizması, sinkrotron ve ters Compton mekanizmasından daha yaygındır, bundan dolayı termal mekanizma ve kara cisim öncelikle incelenecektir. 3.4 Termal Frenleme (Serbest Serbest ) Işınımı 10 7 K den sıcak gazlar, optik olarak ince olduklarında termal frenleme ile x- ışını yayar. (Optik olarak ince demek, gaz, ışımayı soğuracak kadar kalın ve yoğun değil, dolayısıyla gözlenen x-ışın tayfı, üretildiği andakiyle aynı.) Sıcak gaz üç şekilde yayılır- termal frenleme, bağlı-bağlı ve serbest bağlı emisyonu. Son iki süreçte atomların en azından bazı elektronlarının yörüngede bağlı kalmalarını gerektirir. Normal astrofiziksel element bolluğundaki gaz plazmalar (çoğunlukta hidrojen ve helyum ve atom ağırlı arttıkça bolluğu azalan ağır elementler) 10 7 K üzerindeki sıcaklıklarda nerdeyse tamamen iyonlaşmış durumdadır. Bundan dolayı dikkate alınması gereken temel emisyon termal frenlemedir. Termal frenleme (serbest-serbest ışınım), elektronların, plazma içindeki pozitif iyonların (çekirdek) Coulomb çekim alanından geçerken ışıma yapmaları sürecidir. Her birim hacim gazın yaydığı ışımanın tayfı ve yoğunluğu: B h g exp( ) kt 1 T n e, ( ısısal temelli mekanizmanın en temelinde yatan formül) B v şiddet erg -3 s -1 Hz -1 sr -1 biriminde; g Gaunt faktörü: birim değerinde ve yavaş değişen nin bir fonksiyonu, h CGS biriminde Planck sabiti, k CGS biriminde Boltzmann sabiti, T Kelvin cinsinden sıcaklık ve n e elektron yoğunluğu, birimi cm -3. Işınım yayan bölgenin hacmi V ve açığa çıkan toplam enerji L v 39 h g exp( ) ne dv erg s -1 Hz -1 kt T n e dv emisyon ölçüsü olarak bilinir. Tüm tayf üzerinden integral aldığımızda toplam parlaklık bağıntısını elde ediyoruz L g T ne dv erg s -1 h, kt den büyük olduğunda termal frenleme, foton enerjileri ile eksponansiyel olarak azalan bir tayf verir, h kt den küçük olduğunda sabit kalır. Kara cisim tayfı yüksek enerjilerde buna benzer davranır, fakat kanunu takiben kt den küçük enerjilerde kesilme

17 meydana gelir. X-ışın astronomunun h kt nin, T=1.x10 7 K de h 1keV a karşılık geldiğini hatırlamasında yarar vardır. Düşük enerjilerde termal frenleme tayfında kesilmeye neden olan iki olası faktör bulunur. Birincisi x-kaynağının görüş açımız doğrultusunda soğuk madde tarafından soğurulmasıdır. Bu etki Galaktik düzlemde 5kpc veya fazla uzakta olan kaynaklarda oldukça belirgindir, bu durum bölüm 3.10 da detaylı bir şekilde tartışılacaktır. İkincisi emisyon yapan plazmanın kendisindeki serbest-serbest soğurmadır. Bunun meydana geldiği foton frekansı, elektron yoğunluğuna ve emisyon yapan plazmanın hacmine bağlıdır, genelde bu tayfta x-ışın bölümünün altında yer alır. Sco X-1 in tayfın kızıl ötesi bölgesindeki serbest-serbest soğurması gözlemi, bu kaynaktaki elektron yoğunluğunu elde etmek için kullanılmıştır. Sıcak gazlar için termal frenlemenin temel emisyon mekanizması olduğu varsayımı, sıcaklıkları 0-00x10 6 K arasında, birçok (zor belirlenen) Galaktik x-ışın kaynağının tayfını açıklamak için çok uygundur. Sıcak gaz x-ışın modelleri kurduğumuzda, iki tane ek faktör göz önünde bulundurulmalıdır. Birincisi, her bir gerçekçi sıcak gaz kütlesinin içinde sıcaklık gradiyenti içerir, şöyle ki sonuçtaki x-ışın tayfı farklı sıcaklıklarla nitelendirilen termal frenleme tayfından kaynaklanacaktır. (tek sıcaklıkta bu tayfı temsil edemiyoruz, farklı sıcaklıklarda toplam eklenir,,3 farklı sıcaklık kullanılabilir). İkinci olarak x-ışın sıcaklıklarında kozmik plazmanın tamamen iyonlaştığını söylemek doğru değildir K de bile demir bir veya iki bağlı elektron tutar. Sonuç olarak Fe XXV (5 kere iyonize olmuş) ve Fe XXVI termal frenleme tayfın üzerine biner. Bu çizgiler genişlemiş olmasına rağmen Sco X-1 ve Cyg X-3 kaynaklarında gözlenmiştir K de bazı diğer elementler tam olarak iyonlaşmamıştır, 10 6 K de ise sıcak gazın kozmik bileşimi çizgi ışıma(bir sürü çizgi görülür) ile belirginleşir. (Güneş koronası bunun için bir örnektir, Culhane 1977). Vela X ve Cygnus Loop gibi eski süpernova kalıntıları, birkaç milyon derecede optik olarak ince x-ışın yayınlayıcıları oldukları inanılarak, tayflarının basit eksponansiyel kanundan belirgin bir şekilde sapması beklenir. Böyle bir plazmadan beklenen detaylı hesaplamalar Tucker ve Korean 1971 tarafından yayınlanmıştır. Şekil 3.. Termal frenleme mekanizması Termal frenleme radyasyonun temel fiziği şu şekilde açıklanır. (Örneğe bak, Rose 1973) Sıcak gaz ana atomdan ayrılmış elektronlar içerir. Böyle bir elektronun göreli olmayan bir hızla hareket ettiğini düşünün. Tek yüklü çekirdeğe şekilde gösterildiği gibi b (uzaklık) çarpma parametresiyle yaklaştığını varsayın. Elektron ile pozitif iyon arasındaki elektrostatik çekim, elektronun parabolik yörüngede hareket etmesine sebep olur. Elektron kabaca

18 a ( K1e ) / b, şeklinde ivmelenir, e elektron yükü ve K 1 sabittir, tahmini süre t = b/v. İyon elektrondan çok daha kütleli olduğu için, ivmesi ihmal edilebilir. Bundan dolayı elektronun t sürede bir atma radyasyon yaydığı düşünülür. Böyle bir atmanın Fourier analizleri 1 v. t b foton frekansında belirgin bileşeni olduğunu gösterir. Klasik elektromanyetik teoriye göre, ivmelenmiş elektronun elektromanyetik radyasyonu yayma oranı, ivmenin karesiyle orantılıdır. de K a. dt a yı yerine koyduğumuzda ve K 3 sabit terimini dediğimizde de 4 buluruz. dt K 3 / b Çarpışan bir elektron tarafından yayınlanan enerji miktarı de E dt K b K3. v b. t b Plazmanın tüm radyasyonu, hız aralığı v, çarpma parametre aralığı b olan, birçok elektron etkisinin toplamı olacaktır. Adım adım ilerlediğimizde, ilk önce çarpma parametrelerinin etkisini göz önüne aldığımızda, tüm elektronların aynı hıza sahip olduğunu düşünelim. Bir elektronun protonla b den b+db aralığında çarpışma parametresiyle 1 saniyede çarpışma olasılığı Pdb, çarpma halkasının alanı bdb ye, proton yoğunluğu (elektron yoğunluğu n e ile aynı olacaktır) ve elektron hızına bağlıdır v: Pdb bdbn v olacaktır. e Saniyedeki çarpışma sayısı, Ndb, b ve b+db aralığındaki çarpışma parametresi, elektron yoğunluğuna n e ye bağlı olacaktır. Öyleyse Ndb = πb db n e v. Birim hacimden birim saniyede ile d frekans aralığında bu çarpışmalardan yayınlanan enerji miktarı: K3 K3 n e db I vd ENdb bdbn v. 3 e b v b Frekans aralığı d, çarpışma parametresi db ile yukarıdaki bağıntı kurulduğunda

19 v. b vdb Diferansiyelini aldığımızda d. b I ifadesinde db yi yerine koyduğumuzda K 4ne d I d, Burada K 4 tüm sabit terimleri toplar. ( K 4 = K 3.4π ) v Bu denklem plazma tarafından yayılan, aynı hızdaki elektronları içeren I tayfı düz olacaktır. Açık olarak bu tayf sonsuz yükseklikteki foton frekanslarını aşamaz; tayfta kesilme foton enerjisinin toplam kinetik enerjiye eşit olduğu durumda meydana gelir. 1 h, m v 0 Burada h Planck sabiti, m 0 elektron kütlesi. X-ışın sıcaklıklarında plazma içinde bile elektronlar göreli olmayan hızlarda hareket eder. Hesaplamaları tamamlamak için, plazma içindeki elektronların dağılımını göz önüne almak gerekir, T sıcaklığında termal dengede olduklarını düşünürsek. Maxwell-Boltzmann hız dağılımına göre, bir kesim elektronların bileşenleri aşağıdaki aralıklarda olduğunda v x den v x +dv x v y den v y +dv y v z den v z +dv z 3 m0 f ( v) d v ( ) kt 3/ m0v exp( kt ) d 3 v şeklinde verilmiştir. Burada 3 v v v v ve d v dv dv dv. x y z x y z vd 3 v hız aralığındaki elektronlar gözlenen tayfa m0v 3 K 4ne için I d f ( v) d v d h v kadar katkıda bulunur. Toplam gözlenen tayf, tüm elektronların hız dağılımı üzerinden integral alındığında elde edilir. I d K n 4 e h / m0 f ( v) 3 m0 3/ 1 m0v 3 d vd K 4ne d ( ) exp( ) d v. v kt v kt h / m0

20 : v : hıı frekans Küresel koordinatlarda integrali tekrar yazdığımızda 3 d v v dvd sind. Öyleyse m0v h d sind vexp ( ) dv sabit T exp ( ). kt kt 0 0 h / m0 Termal frenlemeden beklenen tayf şu şekli alır: I d K n 5 e 1 1/ T h exp ( ). kt Daha detaylı termal frenleme denklemi: 1 h I d K5g( v) ne exp ( ), 1/ T kt g(v) v ye bağlı olarak yavaş değişen birim değerinde kuantum mekanik faktörüdür. 3.5 Kara Cisim Işıması Yayınlama mekanizması ne olursa olsun, optik olarak kalın bir cisim kara cisim tayfı oluşturacaktır. Bunun sebebi optik olarak kalın cisim, soğurma kadar emisyondan da etkilenir. Bundan dolayı termal frenleme kaynağı kendi radyasyonunu soğuracak kadar kalın olduğunda tayfı kara cisim olarak görünür. Sıcak nötron yıldızının da kara cisim tayfı vardır. Kara cisim ışımasının tayfsal formu sadece sıcaklığa, T, bağlıdır. Planck yasası tüm tayfsal detayları verir: B c 3 h exp( h / kt) 1 B : birim alandaki, birim zamanda ve birim bant genişliği frekansındaki enerji, h: Planck sabiti, yayınlanan foton frekansı, c ışık hızı ve k Boltzmann sabitidir. Planck formülü kullanışsızdır, fakat bundan uygulanması daha kolay aşağıdaki bağıntılar elde edilir. Tepenin oluştuğu foton frekansı T( Hz) olarak verilmiştir. Birim alandan birim saniyede yayılan toplam enerji 4 B T olarak verilmiştir. Burada Boltzmann sabitidir.

AKDENİZ ÜNİVERSİTESİ. Anten Parametrelerinin Temelleri. Samet YALÇIN

AKDENİZ ÜNİVERSİTESİ. Anten Parametrelerinin Temelleri. Samet YALÇIN AKDENİZ ÜNİVERSİTESİ Anten Parametrelerinin Temelleri Samet YALÇIN Anten Parametrelerinin Temelleri GİRİŞ: Bir antenin parametrelerini tanımlayabilmek için anten parametreleri gereklidir. Anten performansından

Detaylı

GÜNEŞİN ELEKTROMANYETİK SPEKTRUMU

GÜNEŞİN ELEKTROMANYETİK SPEKTRUMU GÜNEŞİN ELEKTROMANYETİK SPEKTRUMU Güneş ışınımı değişik dalga boylarında yayılır. Yayılan bu dalga boylarının sıralı görünümü de güneş spektrumu olarak isimlendirilir. Tam olarak ifade edilecek olursa;

Detaylı

BÖLÜM 4: MADDESEL NOKTANIN KİNETİĞİ: İMPULS ve MOMENTUM

BÖLÜM 4: MADDESEL NOKTANIN KİNETİĞİ: İMPULS ve MOMENTUM BÖLÜM 4: MADDESEL NOKTANIN KİNETİĞİ: İMPULS ve MOMENTUM 4.1. Giriş Bir önceki bölümde, hareket denklemi F = ma nın, maddesel noktanın yer değiştirmesine göre integrasyonu ile elde edilen iş ve enerji denklemlerini

Detaylı

KUTUP IŞINIMI AURORA. www.astrofotograf.com

KUTUP IŞINIMI AURORA. www.astrofotograf.com KUTUP IŞINIMI AURORA www.astrofotograf.com Kutup ışıkları, ya da aurora, genellikle kutup bölgelerinde görülen bir gece ışımasıdır. Aurora, gökyüzündeki doğal ışık görüntüleridir. Genelde gece görülen

Detaylı

GÖKYÜZÜ GÖZLEM TEKNİKLERİ EMRAH KALEMCİ

GÖKYÜZÜ GÖZLEM TEKNİKLERİ EMRAH KALEMCİ GÖKYÜZÜ GÖZLEM TEKNİKLERİ EMRAH KALEMCİ SABANCI ÜNİVERSİTESİ Giriş Uzaydaki cisimleri nasıl algılarız Elektromanyetik tayf ve atmosfer Yer gözlemleri Gözle görünür (optik) bölge Radyo bölgesi Uzay gözlemleri

Detaylı

OPTİK Işık Nedir? Işık Kaynakları Işık Nasıl Yayılır? Tam Gölge - Yarı Gölge güneş tutulması

OPTİK Işık Nedir? Işık Kaynakları Işık Nasıl Yayılır? Tam Gölge - Yarı Gölge güneş tutulması OPTİK Işık Nedir? Işığı yaptığı davranışlarla tanırız. Işık saydam ortamlarda yayılır. Işık foton denilen taneciklerden oluşur. Fotonların belirli bir dalga boyu vardır. Bazı fiziksel olaylarda tanecik,

Detaylı

Fotovoltaik Teknoloji

Fotovoltaik Teknoloji Fotovoltaik Teknoloji Bölüm 3: Güneş Enerjisi Güneşin Yapısı Güneş Işınımı Güneş Spektrumu Toplam Güneş Işınımı Güneş Işınımının Ölçülmesi Dr. Osman Turan Makine ve İmalat Mühendisliği Bilecik Şeyh Edebali

Detaylı

Harici Fotoelektrik etki ve Planck sabiti deney seti

Harici Fotoelektrik etki ve Planck sabiti deney seti Deneyin Temeli Harici Fotoelektrik etki ve Planck sabiti deney seti Fotoelektrik etki modern fiziğin gelişimindeki anahtar deneylerden birisidir. Filaman lambadan çıkan beyaz ışık ızgaralı spektrometre

Detaylı

YILDIZLARIN HAREKETLERİ

YILDIZLARIN HAREKETLERİ Öz Hareket Gezegenlerden ayırdetmek için sabit olarak isimlendirdiğimiz yıldızlar da gerçekte hareketlidirler. Bu, çeşitli yollarla anlaşılır. Bir yıldızın ve sı iki veya üç farklı tarihte çok dikkatle

Detaylı

Fizik 101-Fizik I 2013-2014. Dönme Hareketinin Dinamiği

Fizik 101-Fizik I 2013-2014. Dönme Hareketinin Dinamiği -Fizik I 2013-2014 Dönme Hareketinin Dinamiği Nurdan Demirci Sankır Ofis: 364, Tel: 2924332 İçerik Vektörel Çarpım ve Tork Katı Cismin Yuvarlanma Hareketi Bir Parçacığın Açısal Momentumu Dönen Katı Cismin

Detaylı

Kadri Yakut 08.03.2012

Kadri Yakut 08.03.2012 Kadri Yakut 08.03.2012 TEŞEKKÜR Lisans Kara Delikler Eser İş (2009-2010) Büyük Kütleli Kara Delikler Birses Debir (2010-2011) Astrofiziksel Kara Deliklerin Kütlelerinin Belirlenmesi Orhan Erece (2010-2011)

Detaylı

2- Bileşim 3- Güneş İç Yapısı a) Çekirdek

2- Bileşim 3- Güneş İç Yapısı a) Çekirdek GÜNEŞ 1- Büyüklük Güneş, güneş sisteminin en uzak ve en büyük yıldızıdır. Dünya ya uzaklığı yaklaşık 150 milyon kilometre, çapı ise 1.392.000 kilometredir. Bu çap, Yeryüzünün 109 katı, Jüpiter in de 10

Detaylı

Beyaz cüceler Nötron yıldızları. Emrah Kalemci Sabancı Üniversitesi

Beyaz cüceler Nötron yıldızları. Emrah Kalemci Sabancı Üniversitesi Beyaz cüceler Nötron yıldızları Kara delikler Emrah Kalemci Sabancı Üniversitesi Giriş Küçük yıldızların evrimlerinin sonu: Beyaz Cüce Büyük yıldızların evrimlerinin sonu Süpernova patlamaları Nötron yıldızları

Detaylı

Kuantum Fiziğinin Gelişimi (Quantum Physics) 1900 den 1930 a

Kuantum Fiziğinin Gelişimi (Quantum Physics) 1900 den 1930 a Kuantum Fiziğinin Gelişimi (Quantum Physics) 1900 den 1930 a Kuantum Mekaniği Düşüncesinin Gelişimi Dalga Mekaniği Olarak da Adlandırılır Atom, Molekül ve Çekirdeği Açıklamada Oldukça Başarılıdır Kuantum

Detaylı

İSG 514 RADYASYON GÜVENLİĞİ

İSG 514 RADYASYON GÜVENLİĞİ İSG 514 RADYASYON GÜVENLİĞİ İŞ SAĞLIĞI VE GÜVENLİĞİ TEZSİZ YÜKSEK LİSANS PROGRAMI Ders koordinatörü: Yrd. Doç. Dr. Mustafa GÜNGÖRMÜŞ mgungormus@turgutozal.edu.tr http://www.turgutozal.edu.tr/mgungormus/

Detaylı

Kütlesel çekim kuvveti nedeniyle cisimler bir araya gelme eğilimi gösterirler, birbirlerine

Kütlesel çekim kuvveti nedeniyle cisimler bir araya gelme eğilimi gösterirler, birbirlerine Türkçe Özet Doğayı araştırmamız çevremizde gördüklerimizle başlar. Onların yapı taşlarını merak ederiz ve biyoloji ile kimyada olduğu gibi mümkün olduğunca küçük ölçeklere inmeye çalışırız. Ancak bu araştırmanın

Detaylı

KARABÜK ÜNİVERSİTESİ Öğretim Üyesi: Doç.Dr. Tamila ANUTGAN 1

KARABÜK ÜNİVERSİTESİ Öğretim Üyesi: Doç.Dr. Tamila ANUTGAN 1 KARABÜK ÜNİVERSİTESİ Öğretim Üyesi: Doç.Dr. Tamila ANUTGAN 1 Elektriksel olaylarla ilgili buraya kadar yaptığımız, tartışmalarımız, durgun yüklerle veya elektrostatikle sınırlı kalmıştır. Şimdi, elektrik

Detaylı

H a t ı r l a t m a : Şimdiye dek bilmeniz gerekenler: 1. Maxwell denklemleri, elektromanyetik dalgalar ve ışık

H a t ı r l a t m a : Şimdiye dek bilmeniz gerekenler: 1. Maxwell denklemleri, elektromanyetik dalgalar ve ışık H a t ı r l a t m a : Şimdiye dek bilmeniz gerekenler: 1. Maxwell denklemleri, elektromanyetik dalgalar ve ışık 2. Ahenk ve ahenk fonksiyonu, kontrast, görünebilirlik 3. Girişim 4. Kırınım 5. Lazer, çalışma

Detaylı

A B = A. = P q c A( X(t))

A B = A. = P q c A( X(t)) Ders 19 Metindeki ilgili bölümler 2.6 Elektromanyetik bir alanda yüklü parçacık Şimdi, kuantum mekaniğinin son derece önemli başka bir örneğine geçiyoruz. Verilen bir elektromanyetik alanda hareket eden

Detaylı

Massachusetts Teknoloji Enstitüsü-Fizik Bölümü

Massachusetts Teknoloji Enstitüsü-Fizik Bölümü Massachusetts Teknoloji Enstitüsü-Fizik Bölümü Fizik 8.01 Ödev # 8 Güz, 1999 ÇÖZÜMLER Dru Renner dru@mit.edu 14 Kasım 1999 Saat: 18.20 Problem 8.1 Bir sonraki hareket bir odağının merkezinde gezegenin

Detaylı

BÖLÜM I GİRİŞ (1.1) y(t) veya y(x) T veya λ. a t veya x. Şekil 1.1 Dalga. a genlik, T peryod (veya λ dalga boyu)

BÖLÜM I GİRİŞ (1.1) y(t) veya y(x) T veya λ. a t veya x. Şekil 1.1 Dalga. a genlik, T peryod (veya λ dalga boyu) BÖLÜM I GİRİŞ 1.1 Sinyal Bir sistemin durum ve davranış bilgilerini taşıyan, bir veya daha fazla değişken ile tanımlanan bir fonksiyon olup veri işlemde dalga olarak adlandırılır. Bir dalga, genliği, dalga

Detaylı

8.04 Kuantum Fiziği Ders VI

8.04 Kuantum Fiziği Ders VI Fotoelektrik Etki 1888 de gözlemlendi; izahı, Einstein 1905. Negatif yüklü metal bir levha ışıkla aydınlatıldığında yükünü yavaş yavaş kaybederken, pozitif bir yük geriye kalır. Şekil I: Fotoelektrik etki.

Detaylı

Termal Genleşme İdeal Gazlar Isı Termodinamiğin 1. Yasası Entropi ve Termodinamiğin 2. Yasası

Termal Genleşme İdeal Gazlar Isı Termodinamiğin 1. Yasası Entropi ve Termodinamiğin 2. Yasası Termal Genleşme İdeal Gazlar Isı Termodinamiğin 1. Yasası Entropi ve Termodinamiğin 2. Yasası Sıcaklık, bir gaz molekülünün kütle merkezi hareketinin ortalama kinetic enerjisinin bir ölçüsüdür. Sıcaklık,

Detaylı

BÖLÜM 2. FOTOVOLTAİK GÜNEŞ ENERJİ SİSTEMLERİ (PV)

BÖLÜM 2. FOTOVOLTAİK GÜNEŞ ENERJİ SİSTEMLERİ (PV) BÖLÜM 2. FOTOOLTAİK GÜNEŞ ENERJİ SİSTEMLERİ (P) Fotovoltaik Etki: Fotovoltaik etki birbirinden farklı iki malzemenin ortak temas bölgesinin (common junction) foton radyasyonu ile aydınlatılması durumunda

Detaylı

BİLECİK ŞEYH EDEBALİ ÜNİVERSİTESİ MÜHENDİSLİK FAKÜLTESİ MAKİNE VE İMALAT MÜHENDİSLİĞİ BÖLÜMÜ

BİLECİK ŞEYH EDEBALİ ÜNİVERSİTESİ MÜHENDİSLİK FAKÜLTESİ MAKİNE VE İMALAT MÜHENDİSLİĞİ BÖLÜMÜ BİLECİK ŞEYH EDEBALİ ÜNİVERSİTESİ MÜHENDİSLİK FAKÜLTESİ MAKİNE VE İMALAT MÜHENDİSLİĞİ BÖLÜMÜ MÜHENDİSLİKTE DENEYSEL METOTLAR II DOĞRUSAL ISI İLETİMİ DENEYİ 1.Deneyin Adı: Doğrusal ısı iletimi deneyi..

Detaylı

X-IŞINLARI FLORESAN ve OPTİK EMİSYON SPEKTROSKOPİSİ

X-IŞINLARI FLORESAN ve OPTİK EMİSYON SPEKTROSKOPİSİ X-IŞINLARI FLORESAN ve OPTİK EMİSYON SPEKTROSKOPİSİ 1. EMİSYON (YAYINMA) SPEKTRUMU ve SPEKTROMETRELER Onyedinci yüzyılda Newton un güneş ışığının değişik renkteki bileşenlerden oluştuğunu ve bunların bir

Detaylı

Dalton atom modelinde henüz keşfedilmedikleri için atomun temel tanecikleri olan proton nötron ve elektrondan bahsedilmez.

Dalton atom modelinde henüz keşfedilmedikleri için atomun temel tanecikleri olan proton nötron ve elektrondan bahsedilmez. MODERN ATOM TEORİSİ ÖNCESİ KEŞİFLER Dalton Atom Modeli - Elementler atom adı verilen çok küçük ve bölünemeyen taneciklerden oluşurlar. - Atomlar içi dolu küreler şeklindedir. - Bir elementin bütün atomları

Detaylı

Yıldızların uzaklıkları ve parlaklıkları

Yıldızların uzaklıkları ve parlaklıkları Yıldızların uzaklıkları ve parlaklıkları Güneş in İç Yapısı Güneş enerjisinin üretildiği bölge, çekirdek tepkimelerini yer aldığı özek bölgesidir. Bu enerji dış katmanlara taşınmakta oradan da uzaya yayılmaktadır.

Detaylı

YILDIZLARIN UZAKLIKLARININ BELĐRLENMESĐ

YILDIZLARIN UZAKLIKLARININ BELĐRLENMESĐ YILDIZLARIN UZAKLIKLARININ BELĐRLENMESĐ 1. TRĐGONOMETRĐK PARALAKS Bir araba ile yolda giderken size yakın olan nesnelerin yanından, uzaktakilere nazaran daha hızlı geçtiğiniz hissine kapılırsınız. Örneğin,

Detaylı

X-Işınları. Gelen X-ışınları. Geçen X-ışınları. Numan Akdoğan. akdogan@gyte.edu.tr

X-Işınları. Gelen X-ışınları. Geçen X-ışınları. Numan Akdoğan. akdogan@gyte.edu.tr X-Işınları 3. Ders: X-ışınlarının maddeyle etkileşmesi Gelen X-ışınları Saçılan X-ışınları (Esnek/Esnek olmayan) Soğurma (Fotoelektronlar)/ Fluorescence ışınları Geçen X-ışınları Numan Akdoğan akdogan@gyte.edu.tr

Detaylı

RÖNTGEN FİZİĞİ X-Işını oluşumu. Doç. Dr. Zafer KOÇ Başkent Üniversitesi Tıp Fak

RÖNTGEN FİZİĞİ X-Işını oluşumu. Doç. Dr. Zafer KOÇ Başkent Üniversitesi Tıp Fak RÖNTGEN FİZİĞİ X-Işını oluşumu Doç. Dr. Zafer KOÇ Başkent Üniversitesi Tıp Fak X-IŞINI TÜPÜ X-IŞINI TÜPÜ PARÇALARI 1. Metal korunak (hausing) 2. Havası alınmış cam veya metal tüp 3. Katot 4. Anot X-ışın

Detaylı

Ahenk (Koherans, uyum)

Ahenk (Koherans, uyum) Girişim Girişim Ahenk (Koherans, uyum Ahenk (Koherans, uyum Ahenk (Koherans, uyum http://en.wikipedia.org/wiki/coherence_(physics#ntroduction Ahenk (Koherans, uyum Girişim İki ve/veya daha fazla dalganın

Detaylı

Bugün için Okuma: Bölüm 1.5 (3. Baskıda 1.3), Bölüm 1.6 (3. Baskıda 1.4 )

Bugün için Okuma: Bölüm 1.5 (3. Baskıda 1.3), Bölüm 1.6 (3. Baskıda 1.4 ) 5.111 Ders Özeti #4 Bugün için Okuma: Bölüm 1.5 (3. Baskıda 1.3), Bölüm 1.6 (3. Baskıda 1.4 ) Ders #5 için Okuma: Bölüm 1.3 (3. Baskıda 1.6 ) Atomik Spektrumlar, Bölüm 1.7 de eģitlik 9b ye kadar (3. Baskıda

Detaylı

İstatistiksel Mekanik I

İstatistiksel Mekanik I MIT Açık Ders Malzemeleri http://ocw.mit.edu 8.333 İstatistiksel Mekanik I: Parçacıkların İstatistiksel Mekaniği 2007 Güz Bu materyallerden alıntı yapmak veya Kullanım Şartları hakkında bilgi almak için

Detaylı

11.1 11.2. Tanım Akışkanların Statiği (Hidrostatik) Örnekler Kaldırma Kuvveti. 11.3 Örnek Eylemsizlik Momenti. 11.4 Eylemsizlik Yarıçapı

11.1 11.2. Tanım Akışkanların Statiği (Hidrostatik) Örnekler Kaldırma Kuvveti. 11.3 Örnek Eylemsizlik Momenti. 11.4 Eylemsizlik Yarıçapı 11.1 11. Tanım Akışkanların Statiği (Hidrostatik) Örnekler Kaldırma Kuvveti 11.3 Örnek Eylemsizlik Momenti 11.4 Eylemsizlik Yarıçapı 11.5 Eksen Takımının Değiştirilmesi 11.6 Asal Eylemsizlik Momentleri

Detaylı

BÖLÜM 1: MADDESEL NOKTANIN KİNEMATİĞİ

BÖLÜM 1: MADDESEL NOKTANIN KİNEMATİĞİ BÖLÜM 1: MADDESEL NOKTANIN KİNEMATİĞİ 1.1. Giriş Kinematik, daha öncede vurgulandığı üzere, harekete sebep olan veya hareketin bir sonucu olarak ortaya çıkan kuvvetleri dikkate almadan cisimlerin hareketini

Detaylı

Newton un ikinci yasası: Bir cisim ivmesi cisim üzerine etki eden toplam kuvvet ile doğru orantılı cismin kütlesi ile ters orantılıdır.

Newton un ikinci yasası: Bir cisim ivmesi cisim üzerine etki eden toplam kuvvet ile doğru orantılı cismin kütlesi ile ters orantılıdır. Bölüm 5: Hareket Yasaları(Özet) Önceki bölümde hareketin temel kavramları olan yerdeğiştirme, hız ve ivme tanımlanmıştır. Bu bölümde ise hareketli cisimlerin farklı hareketlerine sebep olan etkilerin hareketi

Detaylı

GPS Nedir? Nasıl Çalışır?

GPS Nedir? Nasıl Çalışır? GPS Nedir? Nasıl Çalışır? Atalarımız kaybolmamak için çok ekstrem ölçümler kullanmak zorunda kalmışlardır. Anıtlar dikerek yerler işaretlenmiş, zahmetli haritalar çizilmiş ve gökyüzündeki yıldızların yerlerine

Detaylı

Kasetin arka yüzeyi filmin yerleştirildiği kapaktır. Bu kapakların farklı farklı kapanma mekanizmaları vardır. Bu taraf ön yüzeyin tersine atom

Kasetin arka yüzeyi filmin yerleştirildiği kapaktır. Bu kapakların farklı farklı kapanma mekanizmaları vardır. Bu taraf ön yüzeyin tersine atom KASET Röntgen filmi kasetleri; radyografi işlemi sırasında filmin ışık almasını önleyen ve ranforsatör-film temasını sağlayan metal kutulardır. Özel kilitli kapakları vardır. Kasetin röntgen tüpüne bakan

Detaylı

1. Giriş 2. Yayınma Mekanizmaları 3. Kararlı Karasız Yayınma 4. Yayınmayı etkileyen faktörler 5. Yarı iletkenlerde yayınma 6. Diğer yayınma yolları

1. Giriş 2. Yayınma Mekanizmaları 3. Kararlı Karasız Yayınma 4. Yayınmayı etkileyen faktörler 5. Yarı iletkenlerde yayınma 6. Diğer yayınma yolları 1. Giriş 2. Yayınma Mekanizmaları 3. Kararlı Karasız Yayınma 4. Yayınmayı etkileyen faktörler 5. Yarı iletkenlerde yayınma 6. Diğer yayınma yolları Sol üstte yüzey seftleştirme işlemi uygulanmış bir çelik

Detaylı

ÜNİTE 7 : GÜNEŞ SİSTEMİ VE ÖTESİ UZAY BİLMECESİ

ÜNİTE 7 : GÜNEŞ SİSTEMİ VE ÖTESİ UZAY BİLMECESİ ÖĞRENME ALANI : DÜNYA VE EVREN ÜNİTE 7 : GÜNEŞ SİSTEMİ VE ÖTESİ UZAY BİLMECESİ A GÖK CİSİMLERİNİ TANIYALIM (5 SAAT) 1 Uzay ve Evren 2 Gök Cismi 3 Yıldızlar 4 Güneş 5 Takım Yıldızlar 6 Kuyruklu Yıldızlar

Detaylı

G = mg bağıntısı ile bulunur.

G = mg bağıntısı ile bulunur. ATIŞLAR Havada serbest bırakılan cisimlerin aşağı doğru düşmesi etrafımızda her zaman gördüğümüz bir olaydır. Bu düşme hareketleri, cisimleri yerin merkezine doğru çeken bir kuvvetin varlığını gösterir.

Detaylı

DENEY 1 - SABİT HIZLA DÜZGÜN DOĞRUSAL HAREKET

DENEY 1 - SABİT HIZLA DÜZGÜN DOĞRUSAL HAREKET AMAÇ: DENEY 1 - SABİT HIZLA DÜZGÜN DOĞRUSAL HAREKET Bir nesnenin sabit hızda, net kuvvetin etkisi altında olmadan, düzgün bir hat üzerinde hareket etmesini doğrulamak ve bu hızı hesaplamaktır. GENEL BİLGİLER:

Detaylı

Dielektrik malzeme DİELEKTRİK ÖZELLİKLER. Elektriksel Kutuplaşma. Dielektrik malzemeler. Kutuplaşma Türleri 15.4.2015. Elektronik kutuplaşma

Dielektrik malzeme DİELEKTRİK ÖZELLİKLER. Elektriksel Kutuplaşma. Dielektrik malzemeler. Kutuplaşma Türleri 15.4.2015. Elektronik kutuplaşma Dielektrik malzeme DİELEKTRİK ÖZELLİKLER Dielektrik malzemeler; serbest elektron yoktur, yalıtkan malzemelerdir, uygulanan elektriksel alandan etkilenebilirler. 1 2 Dielektrik malzemeler Elektriksel alan

Detaylı

Alternatif Akım Devre Analizi

Alternatif Akım Devre Analizi Alternatif Akım Devre Analizi Öğr.Gör. Emre ÖZER Alternatif Akımın Tanımı Zamaniçerisindeyönüveşiddeti belli bir düzen içerisinde (periyodik) değişen akıma alternatif akımdenir. En bilinen alternatif akım

Detaylı

Dönme. M. Ali Alpar. Galileo Öğretmen Eğitimi Programı. Sabancı Üniversitesi 14-16.08.2009 Nesin Matematik Köyü Şirince 17.21.08.

Dönme. M. Ali Alpar. Galileo Öğretmen Eğitimi Programı. Sabancı Üniversitesi 14-16.08.2009 Nesin Matematik Köyü Şirince 17.21.08. Dönme Galileo Öğretmen Eğitimi Programı Sabancı Üniversitesi 14-16.08.2009 Nesin Matematik Köyü Şirince 17.21.08.2009 M. Ali Alpar Cisimler neden dönerler? Öğrencinin sorusu: Madem ki herhangi iki cisim

Detaylı

20.03.2012. İlk elektronik mikroskobu Almanya da 1931 yılında Max Knoll ve Ernst Ruska tarafından icat edilmiştir.

20.03.2012. İlk elektronik mikroskobu Almanya da 1931 yılında Max Knoll ve Ernst Ruska tarafından icat edilmiştir. SERKAN TURHAN 06102040 ABDURRAHMAN ÖZCAN 06102038 1878 Abbe Işık şiddetinin sınırını buldu. 1923 De Broglie elektronların dalga davranışına sahip olduğunu gösterdi. 1926 Busch elektronların magnetik alanda

Detaylı

J.J. Thomson (Ġngiliz fizikçi, 1856-1940), 1897 de elektronu keģfetti ve kütle/yük oranını belirledi. 1906 da Nobel Ödülü nü kazandı.

J.J. Thomson (Ġngiliz fizikçi, 1856-1940), 1897 de elektronu keģfetti ve kütle/yük oranını belirledi. 1906 da Nobel Ödülü nü kazandı. 1 5.111 Ders Özeti #2 Bugün için okuma: A.2-A.3 (s F10-F13), B.1-B.2 (s. F15-F18), ve Bölüm 1.1. Ders 3 için okuma: Bölüm 1.2 (3. Baskıda 1.1) Elektromanyetik IĢımanın Özellikleri, Bölüm 1.4 (3. Baskıda

Detaylı

Endüstriyel Sensörler ve Uygulama Alanları Kalite kontrol amaçlı ölçme sistemleri, üretim ve montaj hatlarında imalat sürecinin en önemli aşamalarındandır. Günümüz teknolojisi mükemmelliği ve üretimdeki

Detaylı

OTOMATİK KONTROL SİSTEMLERİ. DİNAMİK SİSTEMLERİN MODELLENMESİ ve ANALİZİ

OTOMATİK KONTROL SİSTEMLERİ. DİNAMİK SİSTEMLERİN MODELLENMESİ ve ANALİZİ OTOMATİK KONTROL SİSTEMLERİ DİNAMİK SİSTEMLERİN MODELLENMESİ ve ANALİZİ 1) İdeal Sönümleme Elemanı : a) Öteleme Sönümleyici : Mekanik Elemanların Matematiksel Modeli Basit mekanik elemanlar, öteleme hareketinde;

Detaylı

ISI TRANSFER MEKANİZMALARI

ISI TRANSFER MEKANİZMALARI ISI TRANSFER MEKANİZMALARI ISI; sıcaklık farkından dolayı sistemden diğerine transfer olan bir enerji türüdür. Termodinamik bir sistemin hal değiştirirken geçen ısı transfer miktarıyla ilgilenir. Isı transferi

Detaylı

MIT 8.02, Bahar 2002 Ödev # 2 Çözümler

MIT 8.02, Bahar 2002 Ödev # 2 Çözümler Adam S. Bolton bolton@mit.edu MIT 8.02, Bahar 2002 Ödev # 2 Çözümler 22 Şubat 2002 Problem 2.1 İçi boş bir metalik küre içerisindeki bir noktasal yükün elektrik alanı - Gauss Yasası İş Başında Bu problemi

Detaylı

Girişim; iki veya daha fazla dalganın üst üste binerek, yeni bir dalga şeklinde sonuç

Girişim; iki veya daha fazla dalganın üst üste binerek, yeni bir dalga şeklinde sonuç GİRİŞİM Girişim olayının temelini üst üste binme (süperpozisyon) ilkesi oluşturur. Bir sistemdeki iki farklı olay, birbirini etkilemeden ayrı ayrı ele alınarak incelenebiliyorsa bu iki olay üst üste bindirilebilinir

Detaylı

Manyetik Alan. Manyetik Akı. Manyetik Akı Yoğunluğu. Ferromanyetik Malzemeler. B-H eğrileri (Hysteresis)

Manyetik Alan. Manyetik Akı. Manyetik Akı Yoğunluğu. Ferromanyetik Malzemeler. B-H eğrileri (Hysteresis) Manyetik Alan Manyetik Akı Manyetik Akı Yoğunluğu Ferromanyetik Malzemeler B-H eğrileri (Hysteresis) Kaynak: SERWAY Bölüm 29 http://mmfdergi.ogu.edu.tr/mmfdrg/2006-1/3.pdf Manyetik Alan Manyetik Alan

Detaylı

Elektrostatik Elektrik Alan Elektrik Akı Kondansatör. Kaynak : Serway-Beichner Bölüm 23, 24, 26

Elektrostatik Elektrik Alan Elektrik Akı Kondansatör. Kaynak : Serway-Beichner Bölüm 23, 24, 26 Elektrostatik Elektrik Alan Elektrik Akı Kondansatör Kaynak : Serway-Beichner Bölüm 23, 24, 26 İndüksiyon Nötr Maddenin indüksiyon yoluyla yüklenmesi (Bir yük türünün diğer yük türüne göre daha fazla olması)

Detaylı

5 kilolitre=..lt. 100 desilitre=.dekalitre. 150 gram=..dag. 1. 250 g= mg. 0,2 ton =..gram. 20 dam =.m. 2 km =.cm. 3,5 h = dakika. 20 m 3 =.

5 kilolitre=..lt. 100 desilitre=.dekalitre. 150 gram=..dag. 1. 250 g= mg. 0,2 ton =..gram. 20 dam =.m. 2 km =.cm. 3,5 h = dakika. 20 m 3 =. 2014 2015 Ödevin Veriliş Tarihi: 12.06.2015 Ödevin Teslim Tarihi: 21.09.2015 MEV KOLEJİ ÖZEL ANKARA OKULLARI 1. Aşağıda verilen boşluklarara ifadeler doğru ise (D), yanlış ise (Y) yazınız. A. Fiziğin ışıkla

Detaylı

Karabük Üniversitesi, Mühendislik Fakültesi...www.IbrahimCayiroglu.com. STATİK (2. Hafta)

Karabük Üniversitesi, Mühendislik Fakültesi...www.IbrahimCayiroglu.com. STATİK (2. Hafta) AĞIRLIK MERKEZİ STATİK (2. Hafta) Ağırlık merkezi: Bir cismi oluşturan herbir parçaya etki eden yerçeki kuvvetlerinin bileşkesinin cismin üzerinden geçtiği noktaya Ağırlık Merkezi denir. Şekil. Ağırlık

Detaylı

Alternatif Akım; Zaman içerisinde yönü ve şiddeti belli bir düzen içerisinde değişen akıma alternatif akım denir.

Alternatif Akım; Zaman içerisinde yönü ve şiddeti belli bir düzen içerisinde değişen akıma alternatif akım denir. ALTERNATiF AKIM Alternatif Akım; Zaman içerisinde yönü ve şiddeti belli bir düzen içerisinde değişen akıma alternatif akım denir. Doğru akım ve alternatif akım devrelerinde akım yönleri şekilde görüldüğü

Detaylı

Paslanmaz Çelik Gövde. Yalıtım Sargısı. Katalizör Yüzey Tabakası. Egzoz Emisyonları: Su Karbondioksit Azot

Paslanmaz Çelik Gövde. Yalıtım Sargısı. Katalizör Yüzey Tabakası. Egzoz Emisyonları: Su Karbondioksit Azot Paslanmaz Çelik Gövde Yalıtım Sargısı Egzoz Emisyonları: Su Karbondioksit Azot Katalizör Yüzey Tabakası Egzoz Gazları: Hidrokarbonlar Karbon Monoksit Azot Oksitleri Bu bölüme kadar, açıkça ifade edilmese

Detaylı

İ çindekiler. xvii GİRİŞ 1 TEMEL AKIŞKANLAR DİNAMİĞİ BERNOULLİ DENKLEMİ 68 AKIŞKANLAR STATİĞİ 32. xvii

İ çindekiler. xvii GİRİŞ 1 TEMEL AKIŞKANLAR DİNAMİĞİ BERNOULLİ DENKLEMİ 68 AKIŞKANLAR STATİĞİ 32. xvii Last A Head xvii İ çindekiler 1 GİRİŞ 1 1.1 Akışkanların Bazı Karakteristikleri 3 1.2 Boyutlar, Boyutsal Homojenlik ve Birimler 3 1.2.1 Birim Sistemleri 6 1.3 Akışkan Davranışı Analizi 9 1.4 Akışkan Kütle

Detaylı

HAREKET HAREKET KUVVET İLİŞKİSİ

HAREKET HAREKET KUVVET İLİŞKİSİ HAREKET HAREKET KUVVET İLİŞKİSİ Sabit kabul edilen bir noktaya göre bir cismin konumundaki değişikliğe hareket denir. Bu sabit noktaya referans noktası denir. Fizikte hareket üçe ayrılır Ötelenme Hareketi:

Detaylı

Bize En Yakın Yıldız. Defne Üçer 30 Nisan 2011

Bize En Yakın Yıldız. Defne Üçer 30 Nisan 2011 Bize En Yakın Yıldız GÜNEŞ Defne Üçer 30 Nisan 2011 Sayılar sayılar Güneş Kütlesi = 300.000 Dünya Kütlesi Güneş çapı = 110 Dünya çapı Güneş yoğunluğu = Dünya yoğunluğu/4 Güneş Uzaklık= 1 Astronomik Birim

Detaylı

2. Işık Dalgalarında Kutuplanma:

2. Işık Dalgalarında Kutuplanma: KUTUPLANMA (POLARİZASYON). Giriş ve Temel ilgiler Işık, bir elektromanyetik dalgadır. Elektromanyetik dalgalar maddesel ortamlarda olduğu gibi boşlukta da yayılabilirler. Elektromanyetik dalgaların özellikleri

Detaylı

Elektrik Yük ve Elektrik Alan

Elektrik Yük ve Elektrik Alan Bölüm 1 Elektrik Yük ve Elektrik Alan Bölüm 1 Hedef Öğretiler Elektrik yükler ve bunların iletken ve yalıtkanlar daki davranışları. Coulomb s Yasası hesaplaması Test yük kavramı ve elektrik alan tanımı.

Detaylı

8.04 Kuantum Fiziği Ders XII

8.04 Kuantum Fiziği Ders XII Enerji ölçümünden sonra Sonucu E i olan enerji ölçümünden sonra parçacık enerji özdurumu u i de olacak ve daha sonraki ardışık tüm enerji ölçümleri E i enerjisini verecektir. Ölçüm yapılmadan önce enerji

Detaylı

Fizik 101-Fizik I 2013-2014. Statik Denge ve Esneklik

Fizik 101-Fizik I 2013-2014. Statik Denge ve Esneklik 1 -Fizik I 2013-2014 Statik Denge ve Esneklik Nurdan Demirci Sankır Ofis: 364, Tel: 2924332 2 İçerik Denge Şartları Ağırlık Merkezi Statik Dengedeki Katı Cisimlere ler Katıların Esneklik Özellikleri 1

Detaylı

RF MİKROELEKTRONİK GÜRÜLTÜ

RF MİKROELEKTRONİK GÜRÜLTÜ RF MİKROELEKTRONİK GÜRÜLTÜ RASTGELE BİR SİNYAL Gürültü rastgele bir sinyal olduğu için herhangi bir zamandaki değerini tahmin etmek imkansızdır. Bu sebeple tekrarlayan sinyallerde de kullandığımız ortalama

Detaylı

Manyetizma. Manyetik alan çizgileri, çizim. Manyetik malzeme türleri. Manyetik alanlar. BÖLÜM 29 Manyetik alanlar

Manyetizma. Manyetik alan çizgileri, çizim. Manyetik malzeme türleri. Manyetik alanlar. BÖLÜM 29 Manyetik alanlar ÖLÜM 29 Manyetik alanlar Manyetik alan Akım taşıyan bir iletkene etkiyen manyetik kuvvet Düzgün bir manyetik alan içerisindeki akım ilmeğine etkiyen tork Yüklü bir parçacığın düzgün bir manyetik alan içerisindeki

Detaylı

18.034 İleri Diferansiyel Denklemler

18.034 İleri Diferansiyel Denklemler MIT AçıkDersSistemi http://ocw.mit.edu 18.034 İleri Diferansiyel Denklemler 2009 Bahar Bu bilgilere atıfta bulunmak veya kullanım koşulları hakkında bilgi için http://ocw.mit.edu/terms web sitesini ziyaret

Detaylı

DA DEVRE. Ege Üniversitesi Ege MYO Mekatronik Programı ANALIZI

DA DEVRE. Ege Üniversitesi Ege MYO Mekatronik Programı ANALIZI DA DEVRE Ege Üniversitesi Ege MYO Mekatronik Programı ANALIZI BÖLÜM 1 Temel Kavramlar Temel Konular Akım, Gerilim ve Yük Direnç Ohm Yasası, Güç ve Enerji Dirençsel Devreler Devre Çözümleme ve Kuramlar

Detaylı

Fizik 101: Ders 21 Gündem

Fizik 101: Ders 21 Gündem Fizik 101: Ders 21 Gündem Yer çekimi nedeninden dolayı tork Rotasyon (özet) Statik Bayırda bir araba Statik denge denklemleri Örnekler Asılı tahterevalli Asılı lamba Merdiven Ders 21, Soru 1 Rotasyon Kütleleri

Detaylı

The Physics of Particle Accelerators - Klaus Wille (1.3.5-1.3.6-1.3.7)

The Physics of Particle Accelerators - Klaus Wille (1.3.5-1.3.6-1.3.7) - Klaus Wille (1.3.5-1.3.6-1.3.7) 2 Temmuz 2012 HF Çalışma Topluluğu İçerik 1.3.5 - Doğrusal Hızlandırıcılar 1 1.3.5 - Doğrusal Hızlandırıcılar 2 3 Doğrusal Hızlandırıcılar Tüm elektrostatik hızlandırıcılar

Detaylı

8.04 Kuantum Fiziği Ders IV. Kırınım olayı olarak Heisenberg belirsizlik ilkesi. ise, parçacığın dalga fonksiyonu,

8.04 Kuantum Fiziği Ders IV. Kırınım olayı olarak Heisenberg belirsizlik ilkesi. ise, parçacığın dalga fonksiyonu, Geçen Derste Kırınım olayı olarak Heisenberg belirsizlik ilkesi ΔxΔp x 2 Fourier ayrışımı Bugün φ(k) yı nasıl hesaplarız ψ(x) ve φ(k) ın yorumu: olasılık genliği ve olasılık yoğunluğu ölçüm φ ( k)veyahut

Detaylı

Hızlandırıcı Fiziği-2. Veli YILDIZ (Veliko Dimov) 04.02.2016

Hızlandırıcı Fiziği-2. Veli YILDIZ (Veliko Dimov) 04.02.2016 Hızlandırıcı Fiziği-2 Veli YILDIZ (Veliko Dimov) 04.02.2016 1 İçerik Hızlı bir tekrar. Doğrusal hızlandırıcılar Doğrusal hızlandırıcılarda kullanılan bazı yapılar. Yürüyen dalga kovukları ve elektron hızlandırma

Detaylı

5.111 Ders Özeti #12. Konular: I. Oktet kuralından sapmalar

5.111 Ders Özeti #12. Konular: I. Oktet kuralından sapmalar 5.111 Ders Özeti #12 Bugün için okuma: Bölüm 2.9 (3. Baskıda 2.10), Bölüm 2.10 (3. Baskıda 2.11), Bölüm 2.11 (3. Baskıda 2.12), Bölüm 2.3 (3. Baskıda 2.1), Bölüm 2.12 (3. Baskıda 2.13). Ders #13 için okuma:

Detaylı

8.333 İstatistiksel Mekanik I: Parçacıkların İstatistiksel Mekaniği

8.333 İstatistiksel Mekanik I: Parçacıkların İstatistiksel Mekaniği MIT Açık Ders Malzemeleri http://ocw.mit.edu 8.333 İstatistiksel Mekanik I: Parçacıkların İstatistiksel Mekaniği 2007 Güz Bu materyallerden alıntı yapmak veya Kullanım Şartları hakkında bilgi almak için

Detaylı

BÖLÜM 12-15 HARMONİK OSİLATÖR

BÖLÜM 12-15 HARMONİK OSİLATÖR BÖLÜM 12-15 HARMONİK OSİLATÖR Hemen hemen her sistem, dengeye yaklaşırken bir harmonik osilatör gibi davranabilir. Kuantum mekaniğinde sadece sayılı bir kaç problem kesin olarak çözülebilmektedir. Örnekler

Detaylı

1.36 hafta. 2.Cumartesi veya Pazar günü. 3. Günlük 4 saat. 4.Toplam 144 saat

1.36 hafta. 2.Cumartesi veya Pazar günü. 3. Günlük 4 saat. 4.Toplam 144 saat V : - V V: : : - 1.36 hafta 2.Cumartesi veya Pazar günü 3. Günlük 4 saat 4.Toplam 144 saat 1. Hafta 2. Hafta KONULAR MADDE VE a. Madde ve Özkütle b. d. Plazmalar KAZANIMLAR 1. 2. ve rasyonel olur. 3. 4.

Detaylı

Boğaziçi Üniversitesi. 21 Temmuz 2015 - CERN Türk Öğretmen Çalıştayı 4

Boğaziçi Üniversitesi. 21 Temmuz 2015 - CERN Türk Öğretmen Çalıştayı 4 - Algıç Fiziği 2 --Saime Gürbüz Boğaziçi Üniversitesi 21 Temmuz 2015 - CERN Türk Öğretmen Çalıştayı 4 2 1 2 3 Cevaplar için tesekkürler Dalida! 4 3 4 Parıldak Sayacı Plastik Plastik veya veya Kristal Kristal

Detaylı

X-IŞINLARININ ÖZELLİKLERİ VE ELDE EDİLMELERİ. X-ışınları Alman fizikçi Wilhelm RÖNTGEN tarafından 1895 yılında keşfedilmiştir.

X-IŞINLARININ ÖZELLİKLERİ VE ELDE EDİLMELERİ. X-ışınları Alman fizikçi Wilhelm RÖNTGEN tarafından 1895 yılında keşfedilmiştir. X-IŞINLARININ ÖZELLİKLERİ VE ELDE EDİLMELERİ X-ışınları Alman fizikçi Wilhelm RÖNTGEN tarafından 1895 yılında keşfedilmiştir. X-ışınlarının oluşum mekanizması fotoelektrik olaya neden olanın tam tersidir.

Detaylı

12. ÜNİTE IŞIK KONULAR 1. IŞIK VE IŞIK KAYNAKLARI 7. IŞIK ŞİDDETİ, TAYİNİ VE AYDINLATMA BİRİMLERİ 9. ÖZET 10. DEĞERLENDİRME SORULARI

12. ÜNİTE IŞIK KONULAR 1. IŞIK VE IŞIK KAYNAKLARI 7. IŞIK ŞİDDETİ, TAYİNİ VE AYDINLATMA BİRİMLERİ 9. ÖZET 10. DEĞERLENDİRME SORULARI 12. ÜNİTE IŞIK KONULAR 1. IŞIK VE IŞIK KAYNAKLARI 2. Işık 3. Işık Nasıl Yayılır? 4. Tam Gölge ve Yarı Gölge 5. Güneş Tutulması 6. Ay Tutulması 7. IŞIK ŞİDDETİ, TAYİNİ VE AYDINLATMA BİRİMLERİ 8. Işık Şiddeti

Detaylı

I FİZİĞE ÖN HAZIRLIKLAR

I FİZİĞE ÖN HAZIRLIKLAR İÇİNDEKİLER Önsöz. III Bölüm I FİZİĞE ÖN HAZIRLIKLAR 1 1 Ölçme ve Birim Sistemleri 1 2 Uzunluk, Kütle ve Zaman Büyüklükleri (Standartları) 1 3 Boyut Analizi 1 4 Birim Çevirme ve Dönüşüm Çarpanları 1 5

Detaylı

04 Kasım 2010 TÜBİTAK ikince kademe seviyesinde Deneme Sınavı (Prof.Dr.Ventsislav Dimitrov)

04 Kasım 2010 TÜBİTAK ikince kademe seviyesinde Deneme Sınavı (Prof.Dr.Ventsislav Dimitrov) 04 Kasım 010 TÜBİTAK ikince kademe seviyesinde Deneme Sınavı (Prof.Dr.Ventsislav Dimitrov) Soru 1. Şamandıra. Genç ama yetenekli fizikçi Ali bir yaz boyunca, Karabulak köyünde misafirdi. Bir gün isimi

Detaylı

ÖĞRENME ALANI: Kuvvet ve Hareket 2.ÜNİTE: Kaldırma Kuvveti ve Basınç. Kaldırma Kuvveti

ÖĞRENME ALANI: Kuvvet ve Hareket 2.ÜNİTE: Kaldırma Kuvveti ve Basınç. Kaldırma Kuvveti ÖĞRENME ALANI: Kuvvet ve Hareket 2.ÜNİTE: Kaldırma Kuvveti ve Basınç Kaldırma Kuvveti - Dünya, üzerinde bulunan bütün cisimlere kendi merkezine doğru çekim kuvveti uygular. Bu kuvvete yer çekimi kuvveti

Detaylı

6.HAFTA BÖLÜM 3: ÇEKİRDEK KUVVETLERİ VE ÇEKİRDEK MODELLERİ

6.HAFTA BÖLÜM 3: ÇEKİRDEK KUVVETLERİ VE ÇEKİRDEK MODELLERİ 6.HAFTA BÖLÜM 3: ÇEKİRDEK KUVVETLERİ VE ÇEKİRDEK MODELLERİ 3.1 ÇEKİRDEK KUVVETLERİ 3.1.1. GENEL KARAKTERİSTİK Çekirdek hakkında çok fazla bir şey bilmezden önce yalnızca iki farklı etkileşim kuvveti bilinmekteydi.

Detaylı

6. Osiloskop. Periyodik ve periyodik olmayan elektriksel işaretlerin gözlenmesi ve ölçülmesini sağlayan elektronik bir cihazdır.

6. Osiloskop. Periyodik ve periyodik olmayan elektriksel işaretlerin gözlenmesi ve ölçülmesini sağlayan elektronik bir cihazdır. 6. Osiloskop Periyodik ve periyodik olmayan elektriksel işaretlerin gözlenmesi ve ölçülmesini sağlayan elektronik bir cihazdır. Osiloskoplar üç gruba ayrılabilir; 1. Analog osiloskoplar 2. Dijital osiloskoplar

Detaylı

FİZ201 DALGALAR LABORATUVARI. Dr. F. Betül KAYNAK Dr. Akın BACIOĞLU

FİZ201 DALGALAR LABORATUVARI. Dr. F. Betül KAYNAK Dr. Akın BACIOĞLU FİZ201 DALGALAR LABORATUVARI Dr. F. Betül KAYNAK Dr. Akın BACIOĞLU LASER (Light AmplificaLon by SLmulated Emission of RadiaLon) Özellikleri Koherens (eş fazlı ve aynı uzaysal yönelime sahip), monokromalk

Detaylı

Dr. Fatih AY. Tel: 0 388 225 22 55 ayfatih@nigde.edu.tr

Dr. Fatih AY. Tel: 0 388 225 22 55 ayfatih@nigde.edu.tr Dr. Fatih AY Tel: 0 388 225 22 55 ayfatih@nigde.edu.tr Düzlemsel Güneş Toplayıcıları Vakumlu Güneş Toplayıcıları Yoğunlaştırıcı Sistemler Düz Toplayıcının Isıl Analizi 2 Yapı olarak havası boşaltılmış

Detaylı

Cobra3 lü Akuple Sarkaçlar

Cobra3 lü Akuple Sarkaçlar Dinamik Mekanik Öğrenebilecekleriniz... Spiral yay Yer çekimi sarkacı Yay sabiti Burulma titreşimi Tork Vuruş Açısal sürat Açısal ivme Karakteristik frekans Kural: Belirli bir karakteristik frekansa sahip

Detaylı

Bölüm 3: Vektörler. Kavrama Soruları. Konu İçeriği. Sunuş. 3-1 Koordinat Sistemleri

Bölüm 3: Vektörler. Kavrama Soruları. Konu İçeriği. Sunuş. 3-1 Koordinat Sistemleri ölüm 3: Vektörler Kavrama Soruları 1- Neden vektörlere ihtiyaç duyarız? - Vektör ve skaler arasındaki fark nedir? 3- Neden vektörel bölme işlemi yapılamaz? 4- π sayısı vektörel mi yoksa skaler bir nicelik

Detaylı

RADYO ASTRONOMİ. Nazlı Derya Dağtekin

RADYO ASTRONOMİ. Nazlı Derya Dağtekin RADYO ASTRONOMİ Nazlı Derya Dağtekin Elektromagnetik Işıma Işık dalgası, foton yada radyasyon olarak bilinen, kütlesiz enerji paketçikleridir. Radyasyonun doğası onun dalga boyu ve/veya frekansı ve/veya

Detaylı

SU Lise Yaz Okulu. Hubble Yasası, Evrenin Genişlemesi ve Büyük Patlama

SU Lise Yaz Okulu. Hubble Yasası, Evrenin Genişlemesi ve Büyük Patlama SU Lise Yaz Okulu Hubble Yasası, Evrenin Genişlemesi ve Büyük Patlama Doppler Etkisi Kaynak tra)ndan üre-len dalgaların tepe noktalarına bakalım. Ne kaynak, ne de gözlemci hareket ediyor olsun. λ=vdalga.t

Detaylı

Işığın Tanecikli Özelliği. Test 1 in Çözümleri

Işığın Tanecikli Özelliği. Test 1 in Çözümleri 37 Işığın Tanecikli Özelliği 1 Test 1 in Çözüleri 1. Fotoeletronların katottan ayrıla ızı, kullanılan ışığın frekansı ile doğru, dalga boyu ile ters orantılıdır. Bu elektronların anado doğru giderken ızlanaları

Detaylı

Bernoulli Denklemi, Basınç ve Hız Yükleri Borularda Piezometre ve Enerji Yükleri Venturi Deney Sistemi

Bernoulli Denklemi, Basınç ve Hız Yükleri Borularda Piezometre ve Enerji Yükleri Venturi Deney Sistemi Bernoulli Denklemi, Basınç ve Hız Yükleri Borularda Piezometre ve Enerji Yükleri Venturi Deney Sistemi Akışkanlar dinamiğinde, sürtünmesiz akışkanlar için Bernoulli prensibi akımın hız arttıkça aynı anda

Detaylı

MALZEME BİLGİSİ. Katı Eriyikler

MALZEME BİLGİSİ. Katı Eriyikler MALZEME BİLGİSİ Dr.- Ing. Rahmi ÜNAL Konu: Katı Eriyikler 1 Giriş Endüstriyel metaller çoğunlukla birden fazla tür eleman içerirler, çok azı arı halde kullanılır. Arı metallerin yüksek iletkenlik, korozyona

Detaylı

Bölüm 7. Manyetik Alan ve. Manyetik Kuvvet. Copyright 2008 Pearson Education Inc., publishing as Pearson Addison-Wesley

Bölüm 7. Manyetik Alan ve. Manyetik Kuvvet. Copyright 2008 Pearson Education Inc., publishing as Pearson Addison-Wesley Bölüm 7 Manyetik Alan ve Manyetik Kuvvet Hedef Öğretiler Manyetik Kuvvet Manyetik Alan ve Manyetik Akı Manyetik Alanda Yüklerin hareketi Yarıiletkenlerde Manyetik Kuvvet hesabı Manyetik Tork Elektrik Motor

Detaylı

EŞ POTANSİYEL VE ELEKTRİK ALAN ÇİZGİLERİ. 1. Zıt yükle yüklenmiş iki iletkenin oluşturduğu eş potansiyel çizgileri araştırıp bulmak.

EŞ POTANSİYEL VE ELEKTRİK ALAN ÇİZGİLERİ. 1. Zıt yükle yüklenmiş iki iletkenin oluşturduğu eş potansiyel çizgileri araştırıp bulmak. EŞ POTANSİYEL VE ELEKTRİK ALAN ÇİZGİLERİ AMAÇ: 1. Zıt yükle yüklenmiş iki iletkenin oluşturduğu eş potansiyel çizgileri araştırıp bulmak. 2. Bu eş potansiyel çizgileri kullanarak elektrik alan çizgilerinin

Detaylı

Ulusal Proton Hızlandırıcı Çalıştayı

Ulusal Proton Hızlandırıcı Çalıştayı PROTON TERAPĐ TEKNĐKLERĐ Doç.Dr. BAHAR DĐRĐCAN GATA RADYASYON ONKOLOJĐSĐ AD Ulusal Proton Hızlandırıcı Çalıştayı 18-19 Nisan 2013 SANAEM-ANKARA 1946 Robert D. Wilson un Proton terapisi ile ilgili yayını

Detaylı

TOZ METALURJİSİ Prof.Dr. Muzaffer ZEREN

TOZ METALURJİSİ Prof.Dr. Muzaffer ZEREN . TEKNİK SEÇİMLİ DERS I TOZ METALURJİSİ Prof.Dr. Muzaffer ZEREN SİNTERLEME Sinterleme, partiküllerarası birleşmeyi oluşturan ısıl prosestir; aynı zamanda ham konumda gözlenen özellikler artırılır. . Sinterlemenin

Detaylı